update vendored llama.cpp and ggml (#11823)

* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
This commit is contained in:
Michael Yang
2025-08-14 14:42:58 -07:00
committed by GitHub
parent 7ccfd97a93
commit 1a19df1f3a
243 changed files with 151610 additions and 43145 deletions

View File

@@ -6,12 +6,19 @@
// bump if necessary
#define LLAMA_MAX_LAYERS 512
#define LLAMA_MAX_EXPERTS 256 // DeepSeekV3
#define LLAMA_MAX_EXPERTS 384 // Kimi-K2
enum llama_expert_gating_func_type {
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2,
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
};
enum llama_swa_type {
LLAMA_SWA_TYPE_NONE = 0,
LLAMA_SWA_TYPE_STANDARD = 1,
LLAMA_SWA_TYPE_CHUNKED = 2,
};
struct llama_hparams_posnet {
@@ -35,8 +42,6 @@ struct llama_hparams {
uint32_t n_embd_features = 0;
uint32_t n_layer;
uint32_t n_rot;
uint32_t n_swa = 0; // sliding window attention (SWA)
uint32_t n_swa_pattern = 1; // by default, all layers use non-sliding-window attention
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
uint32_t n_expert = 0;
@@ -51,6 +56,8 @@ struct llama_hparams {
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
uint32_t n_shortconv_l_cache = 0;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
@@ -69,6 +76,7 @@ struct llama_hparams {
bool expert_weights_norm = false;
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
uint32_t moe_every_n_layers = 0;
uint32_t nextn_predict_layers = 0;
float f_norm_eps;
float f_norm_rms_eps;
@@ -94,15 +102,28 @@ struct llama_hparams {
float rope_freq_scale_train;
float rope_freq_scale_train_swa;
uint32_t n_ctx_orig_yarn;
float rope_yarn_log_mul;
float rope_yarn_log_mul = 0.0f;
std::array<int, 4> rope_sections;
// Sliding Window Attention (SWA)
llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
// the size of the sliding window (0 - no SWA)
uint32_t n_swa = 0;
// if swa_layers[il] == true, then layer il is SWA
// if swa_layers[il] == false, then layer il is dense (i.e. non-SWA)
// by default, all layers are dense
std::array<bool, LLAMA_MAX_LAYERS> swa_layers;
// for State Space Models
uint32_t ssm_d_conv = 0;
uint32_t ssm_d_inner = 0;
uint32_t ssm_d_state = 0;
uint32_t ssm_dt_rank = 0;
uint32_t ssm_n_group = 0;
// for hybrid state space models
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
bool ssm_dt_b_c_rms = false;
@@ -118,15 +139,23 @@ struct llama_hparams {
bool causal_attn = true;
bool use_alibi = false;
bool attn_soft_cap = false;
bool use_kq_norm = true;
// for Classifiers
uint32_t n_cls_out = 1;
// llama4 smallthinker
uint32_t n_moe_layer_step = 0;
bool use_kq_norm = true;
uint32_t n_attn_chunk = 0;
// values below seems to be fixed on llama4
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 8192;
float f_attn_temp_scale = 0.1;
// gemma3n altup
uint32_t n_altup = 4; // altup_num_inputs
uint32_t i_altup_act = 0; // altup_active_idx
uint32_t laurel_rank = 64;
uint32_t n_embd_altup = 256;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
@@ -135,6 +164,30 @@ struct llama_hparams {
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
// dense_first means whether the pattern is start with a dense layer
// note that if n_pattern == 0, all layers are SWA
// if n_pattern == 1, all layers are dense
// example 1: n_pattern = 3, dense_first = false
// il == 0: swa
// il == 1: swa
// il == 2: dense
// il == 3: swa
// il == 4: swa
// il == 5: dense
// il == 6: swa
// etc ...
// example 2: n_pattern = 2, dense_first = true
// il == 0: dense
// il == 1: swa
// il == 2: dense
// il == 3: swa
// etc ...
void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
// return true if one of the layers is SWA
bool is_swa_any() const;
uint32_t n_head(uint32_t il = 0) const;
uint32_t n_head_kv(uint32_t il = 0) const;
@@ -149,12 +202,25 @@ struct llama_hparams {
// dimension of value embeddings across all k-v heads
uint32_t n_embd_v_gqa(uint32_t il = 0) const;
// true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
bool is_n_embd_k_gqa_variable() const;
bool is_n_embd_v_gqa_variable() const;
// return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
uint32_t n_embd_k_gqa_max() const;
uint32_t n_embd_v_gqa_max() const;
// dimension of the rolling state embeddings
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
uint32_t n_embd_k_s() const;
uint32_t n_embd_r() const;
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
uint32_t n_embd_s() const;
// whether or not the given layer is recurrent (for hybrid models)
bool is_recurrent(uint32_t il) const;
uint32_t n_pos_per_embd() const;
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;