sample: simplify top_k=0 sorting

This commit is contained in:
ParthSareen
2025-03-12 11:58:08 -04:00
committed by Parth Sareen
parent 1b7433b71e
commit 3ba91634c1
3 changed files with 13 additions and 172 deletions

View File

@@ -10,7 +10,7 @@ import (
type tokenHeap []token
func (h tokenHeap) Len() int { return len(h) }
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value } // Use < for min-heap to track largest elements
func (h tokenHeap) Less(i, j int) bool { return h[i].value < h[j].value }
func (h tokenHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *tokenHeap) Push(x any) {
@@ -72,7 +72,7 @@ func topK(ts []token, k int) []token {
}
// Convert heap to sorted slice in descending order
result := make([]token, k)
result := make([]token, len(h))
for i := k - 1; i >= 0; i-- {
result[i] = heap.Pop(&h).(token)
}
@@ -126,77 +126,16 @@ func minP(ts []token, p float32) []token {
return ts
}
// partialSortLogits uses quickselect to efficiently find and sort the top n tokens
func partialSortLogits(ts []token, n int) []token {
if n >= len(ts) {
n = len(ts)
}
left, right := 0, len(ts)-1
target := n - 1
// Quickselect algorithm to partition array around pivot
for left < right {
// Choose middle element as pivot and move it to the end
pivot := left + (right-left)/2
ts[pivot], ts[right] = ts[right], ts[pivot]
// storeIndex tracks where to put next element greater than pivot
storeIndex := left
pivotValue := ts[right].value
// Partition array into elements >= pivot and < pivot
// Elements >= pivot go to the left side
for i := left; i < right; i++ {
if ts[i].value >= pivotValue {
ts[storeIndex], ts[i] = ts[i], ts[storeIndex]
storeIndex++
}
}
// Move pivot to its final position
ts[right], ts[storeIndex] = ts[storeIndex], ts[right]
// If pivot is at target position, we're done
// Otherwise recursively partition the half containing target
if storeIndex == target {
break
} else if storeIndex < target {
left = storeIndex + 1 // Target is in right half
} else {
right = storeIndex - 1 // Target is in left half
}
}
// Sort just the top n elements in descending order
slices.SortFunc(ts[:n], func(a, b token) int {
if a.value > b.value {
return -1
}
if a.value < b.value {
return 1
}
return 0
})
return ts[:n]
}
// sortLogits uses partialSortLogits to efficiently sort tokens
// It sorts approximately sqrt(len(tokens)) elements which balances
// between having enough tokens for sampling while avoiding full sort
// sortLogits sorts the tokens in descending order of logits
func sortLogits(ts []token) {
// Use sqrt of token length as a heuristic for partial sort size
// This provides a good balance between performance and having enough tokens
n := int(math.Sqrt(float64(len(ts)))) + 1
// Ensure we have at least 100 tokens and at most 1000
switch {
case n < 100:
n = 100
case n > 1000:
n = 1000
}
partialSortLogits(ts, n)
slices.SortFunc(ts, func(a, b token) int {
switch {
case a.value < b.value:
return 1
case a.value > b.value:
return -1
default:
return 0
}
})
}