mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
Move quantization to new backend (#10363)
* Move quantization logic to GGML via new backend This moves the model aware logic to Go code and calls GGMLs quantization code for model creation. * Remove "add model quantizations" This is no longer needed now that quantization is implemented in Go+GGML code directly.
This commit is contained in:
@@ -15,6 +15,7 @@ import (
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
"sync/atomic"
|
||||
|
||||
"github.com/gin-gonic/gin"
|
||||
|
||||
@@ -23,7 +24,6 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/llama"
|
||||
"github.com/ollama/ollama/template"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
@@ -425,9 +425,14 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
|
||||
|
||||
func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.ProgressResponse)) (*layerGGML, error) {
|
||||
ft := layer.GGML.KV().FileType()
|
||||
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType)})
|
||||
|
||||
want, err := ggml.ParseFileType(quantizeType)
|
||||
var doneBytes atomic.Uint64
|
||||
totalBytes := uint64(layer.Size) - layer.GGML.Tensors().Offset
|
||||
fnWrap := func(n uint64) {
|
||||
done := doneBytes.Add(n)
|
||||
progress := float32(done) / float32(totalBytes)
|
||||
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType), Digest: "0", Total: layer.Size, Completed: int64(progress * float32(layer.Size))})
|
||||
}
|
||||
ftype, err := ggml.ParseFileType(quantizeType)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -436,6 +441,11 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
fp, err := os.Open(blob)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer fp.Close()
|
||||
|
||||
temp, err := os.CreateTemp(filepath.Dir(blob), quantizeType)
|
||||
if err != nil {
|
||||
@@ -444,15 +454,15 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
|
||||
defer temp.Close()
|
||||
defer os.Remove(temp.Name())
|
||||
|
||||
if err := llama.Quantize(blob, temp.Name(), uint32(want)); err != nil {
|
||||
if err := quantize(fp, temp, layer.GGML, ftype, fnWrap); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
temp.Seek(0, io.SeekStart)
|
||||
fn(api.ProgressResponse{Status: "verifying conversion"})
|
||||
newLayer, err := NewLayer(temp, layer.MediaType)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if _, err := temp.Seek(0, io.SeekStart); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -462,7 +472,6 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
|
||||
slog.Error(fmt.Sprintf("error decoding ggml: %s\n", err))
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &layerGGML{newLayer, f}, nil
|
||||
}
|
||||
|
||||
|
||||
@@ -64,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
|
||||
}
|
||||
defer blob.Close()
|
||||
|
||||
f, _, err := ggml.Decode(blob, 1024)
|
||||
f, _, err := ggml.Decode(blob, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
274
server/quantization.go
Normal file
274
server/quantization.go
Normal file
@@ -0,0 +1,274 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"strings"
|
||||
"unsafe"
|
||||
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
)
|
||||
|
||||
type quantizer struct {
|
||||
*os.File
|
||||
offset uint64
|
||||
from, to *fsggml.Tensor
|
||||
progressFn func(n uint64)
|
||||
}
|
||||
|
||||
func (q quantizer) WriteTo(w io.Writer) (int64, error) {
|
||||
quantize := q.from.Kind != q.to.Kind
|
||||
sr := io.NewSectionReader(q, int64(q.offset), int64(q.from.Size()))
|
||||
if !quantize {
|
||||
n, err := io.Copy(w, sr)
|
||||
q.progressFn(q.from.Size())
|
||||
return n, err
|
||||
}
|
||||
data, err := io.ReadAll(sr)
|
||||
if err != nil {
|
||||
slog.Warn("file read error", "tensor", q.from.Name, "file", q.Name(), "error", err)
|
||||
return 0, fmt.Errorf("unable to read tensor %s from %s: %s", q.from.Name, q.Name(), err)
|
||||
}
|
||||
var f32s []float32
|
||||
newType := fsggml.TensorType(q.to.Kind)
|
||||
if fsggml.TensorType(q.from.Kind) == fsggml.TensorTypeF32 {
|
||||
f32s = unsafe.Slice((*float32)(unsafe.Pointer(&data[0])), q.from.Elements())
|
||||
} else {
|
||||
f32s = ggml.ConvertToF32(data, q.from.Kind, q.from.Elements())
|
||||
}
|
||||
data = ggml.Quantize(newType, f32s, q.from.Shape)
|
||||
n, err := w.Write(data)
|
||||
q.progressFn(q.from.Size())
|
||||
return int64(n), err
|
||||
}
|
||||
|
||||
type quantizeState struct {
|
||||
nAttnV int // Number of attn_*v* weight tensors
|
||||
nFfnDown int // Number of ffn_down tensors
|
||||
iAttnV int // Running counter of number of attn_v tensors that have been processed
|
||||
iFfnDown int // Running counter of number of ffn_down tensors that have been processed
|
||||
hasOutput bool // used to figure out if a model shares tok_embd with the output weight
|
||||
}
|
||||
|
||||
func useMoreBits(iLayer, nLayers int) bool {
|
||||
return iLayer < (nLayers/8) || iLayer >= 7*nLayers/8 || (iLayer-nLayers/8)%3 == 2
|
||||
}
|
||||
|
||||
func getTensorNewType(kv fsggml.KV, qs *quantizeState, newType fsggml.TensorType, name string, shape []uint64, ftype fsggml.FileType) fsggml.TensorType {
|
||||
// Ported from llama_tensor_get_type, removed unsupported quantization types
|
||||
nExperts := max(1, kv.Uint("expert_count", 0))
|
||||
if name == "output.weight" || name == "output_norm.weight" || (!qs.hasOutput && name == "token_embd.weight") {
|
||||
nx := shape[0]
|
||||
qk_k := newType.BlockSize()
|
||||
if nx%qk_k != 0 {
|
||||
newType = fsggml.TensorTypeQ8_0
|
||||
} else if newType != fsggml.TensorTypeQ8_0 {
|
||||
newType = fsggml.TensorTypeQ6_K
|
||||
}
|
||||
} else if strings.Contains(name, "attn_v.weight") {
|
||||
if ftype == fsggml.FileTypeQ2_K {
|
||||
if kv.GQA() >= 4 {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
} else {
|
||||
newType = fsggml.TensorTypeQ3_K
|
||||
}
|
||||
} else if ftype == fsggml.FileTypeQ2_K_S && kv.GQA() >= 4 {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
} else if ftype == fsggml.FileTypeQ3_K_M {
|
||||
if qs.iAttnV < 2 {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
} else {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
}
|
||||
} else if ftype == fsggml.FileTypeQ3_K_L {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
} else if (ftype == fsggml.FileTypeQ4_K_M || ftype == fsggml.FileTypeQ5_K_M) &&
|
||||
useMoreBits(qs.iAttnV, qs.nAttnV) {
|
||||
newType = fsggml.TensorTypeQ6_K
|
||||
} else if ftype == fsggml.FileTypeQ4_K_S && qs.iAttnV < 4 {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
}
|
||||
|
||||
// TODO
|
||||
// if (qs.model.type == LLM_TYPE_70B) {
|
||||
// // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// // nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
// if (newType == GGML_TYPE_Q3_K || newType == GGML_TYPE_Q4_K) newType = GGML_TYPE_Q5_K;
|
||||
// }
|
||||
|
||||
if nExperts == 8 {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
newType = fsggml.TensorTypeQ8_0
|
||||
}
|
||||
qs.iAttnV++
|
||||
} else if strings.Contains(name, "attn_k.weight") {
|
||||
if nExperts == 8 {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
newType = fsggml.TensorTypeQ8_0
|
||||
}
|
||||
} else if strings.Contains(name, "ffn_down") {
|
||||
iLayer := qs.iFfnDown
|
||||
n_layer := qs.nFfnDown
|
||||
if ftype == fsggml.FileTypeQ2_K {
|
||||
newType = fsggml.TensorTypeQ3_K
|
||||
} else if ftype == fsggml.FileTypeQ2_K_S {
|
||||
if iLayer < n_layer/8 {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
}
|
||||
} else if ftype == fsggml.FileTypeQ3_K_M {
|
||||
if iLayer < n_layer/16 {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
} else if useMoreBits(iLayer, n_layer) {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
} else {
|
||||
newType = fsggml.TensorTypeQ3_K
|
||||
}
|
||||
} else if ftype == fsggml.FileTypeQ3_K_L {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
} else if ftype == fsggml.FileTypeQ4_K_M {
|
||||
if useMoreBits(iLayer, n_layer) {
|
||||
newType = fsggml.TensorTypeQ6_K
|
||||
}
|
||||
} else if ftype == fsggml.FileTypeQ5_K_M && useMoreBits(iLayer, n_layer) {
|
||||
newType = fsggml.TensorTypeQ6_K
|
||||
} else if ftype == fsggml.FileTypeQ4_K_S && iLayer < n_layer/8 {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
}
|
||||
qs.iFfnDown++
|
||||
} else if strings.Contains(name, "attn_output.weight") {
|
||||
if nExperts == 8 {
|
||||
if ftype == fsggml.FileTypeQ2_K || ftype == fsggml.FileTypeQ3_K_S || ftype == fsggml.FileTypeQ3_K_M ||
|
||||
ftype == fsggml.FileTypeQ4_K_S || ftype == fsggml.FileTypeQ4_K_M {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
}
|
||||
} else {
|
||||
if ftype == fsggml.FileTypeQ2_K {
|
||||
newType = fsggml.TensorTypeQ3_K
|
||||
} else if ftype == fsggml.FileTypeQ3_K_M {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
} else if ftype == fsggml.FileTypeQ3_K_L {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
}
|
||||
}
|
||||
} else if strings.Contains(name, "attn_qkv.weight") {
|
||||
if ftype == fsggml.FileTypeQ3_K_M || ftype == fsggml.FileTypeQ3_K_L {
|
||||
newType = fsggml.TensorTypeQ4_K
|
||||
} else if ftype == fsggml.FileTypeQ4_K_M {
|
||||
newType = fsggml.TensorTypeQ5_K
|
||||
} else if ftype == fsggml.FileTypeQ5_K_M {
|
||||
newType = fsggml.TensorTypeQ6_K
|
||||
}
|
||||
}
|
||||
|
||||
if newType.IsQuantized() {
|
||||
nx := shape[0]
|
||||
ny := uint64(1)
|
||||
if len(shape) > 1 {
|
||||
ny = shape[1]
|
||||
}
|
||||
qk_k := newType.BlockSize()
|
||||
if nx%qk_k != 0 {
|
||||
slog.Warn(fmt.Sprintf("tensor cols %d x %d are not divisible by %d, required for %s. Falling back to quantization %s", nx, ny, qk_k, newType.String(), fsggml.TensorTypeF16.String()))
|
||||
newType = fsggml.TensorTypeF16
|
||||
}
|
||||
}
|
||||
return newType
|
||||
}
|
||||
|
||||
func quantize(in, out *os.File, orig *fsggml.GGML, newFileType fsggml.FileType, progressFn func(n uint64)) error {
|
||||
kv := maps.Clone(orig.KV())
|
||||
kv["general.file_type"] = newFileType
|
||||
// kv["general.quantization_version"] = ggml.QuantizationVersion()
|
||||
qs := &quantizeState{}
|
||||
// Build up the quantize state so newType can adjust types
|
||||
layerCount := 0
|
||||
for k, l := range orig.Tensors().GroupLayers() {
|
||||
if strings.HasPrefix(k, "blk.") {
|
||||
layerCount++
|
||||
}
|
||||
for _, tensor := range l {
|
||||
if strings.Contains(tensor.Name, "attn_v.weight") ||
|
||||
strings.Contains(tensor.Name, "attn_qkv.weight") ||
|
||||
strings.Contains(tensor.Name, "attn_kv_b.weight") {
|
||||
qs.nAttnV++
|
||||
} else if tensor.Name == "output.weight" {
|
||||
qs.hasOutput = true
|
||||
}
|
||||
}
|
||||
}
|
||||
qs.nFfnDown = layerCount
|
||||
|
||||
origTensors := orig.Tensors().Items()
|
||||
outputTensors := make([]*fsggml.Tensor, len(origTensors))
|
||||
for i, tensor := range origTensors {
|
||||
tensor := tensor
|
||||
newType := newType(tensor, kv, qs, newFileType)
|
||||
newTensor := &fsggml.Tensor{
|
||||
Name: tensor.Name,
|
||||
Shape: tensor.Shape,
|
||||
Kind: uint32(newType),
|
||||
}
|
||||
outputTensors[i] = newTensor
|
||||
outputTensors[i].WriterTo = quantizer{
|
||||
File: in,
|
||||
offset: orig.Tensors().Offset + tensor.Offset,
|
||||
from: tensor,
|
||||
to: newTensor,
|
||||
progressFn: progressFn,
|
||||
}
|
||||
}
|
||||
return fsggml.WriteGGUF(out, kv, outputTensors)
|
||||
}
|
||||
|
||||
func newType(t *fsggml.Tensor, kv fsggml.KV, qs *quantizeState, ftype fsggml.FileType) fsggml.TensorType {
|
||||
defaultType := ftype.ToTensorType()
|
||||
name := t.Name
|
||||
quantize := strings.HasSuffix(name, "weight")
|
||||
|
||||
// don't quantize vision stuff
|
||||
quantize = quantize && (!strings.Contains(name, "v.") || strings.Contains(name, "_v."))
|
||||
quantize = quantize && !strings.Contains(name, "mm.")
|
||||
|
||||
// quantize only 2D and 3D tensors (experts)
|
||||
quantize = quantize && (len(t.Shape) >= 2)
|
||||
|
||||
// do not quantize norm tensors
|
||||
quantize = quantize && !strings.Contains(name, "_norm.weight")
|
||||
|
||||
// do not quantize expert gating tensors
|
||||
quantize = quantize && !strings.Contains(name, "ffn_gate_inp.weight")
|
||||
|
||||
// do not quantize positional embeddings and token types (BERT)
|
||||
quantize = quantize && (name != "position_embd.weight")
|
||||
quantize = quantize && (name != "token_types.weight")
|
||||
|
||||
// do not quantize Mamba's small yet 2D weights
|
||||
// NOTE: can't use LLM_TN here because the layer number is not known
|
||||
quantize = quantize && !strings.Contains(name, "ssm_conv1d.weight")
|
||||
|
||||
// do not quantize RWKV's time_mix_first tensors
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_first.weight")
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_w1.weight")
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_w2.weight")
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_decay_w1.weight")
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_decay_w2.weight")
|
||||
quantize = quantize && !strings.Contains(name, "time_mix_lerp_fused.weight")
|
||||
|
||||
// do not quantize relative position bias (T5)
|
||||
quantize = quantize && !strings.Contains(name, "attn_rel_b.weight")
|
||||
|
||||
newType := fsggml.TensorType(t.Kind)
|
||||
if quantize {
|
||||
// get more optimal quantization type based on the tensor shape, layer, etc.
|
||||
newType = getTensorNewType(kv, qs, defaultType, t.Name, t.Shape, ftype)
|
||||
if newType != defaultType {
|
||||
slog.Debug("tensor quantization adjusted for better quality", "name", t.Name, "requested", defaultType, "quantization", newType)
|
||||
}
|
||||
}
|
||||
return newType
|
||||
}
|
||||
882
server/quantization_test.go
Normal file
882
server/quantization_test.go
Normal file
@@ -0,0 +1,882 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"fmt"
|
||||
"math"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
)
|
||||
|
||||
func TestGetTensorNewType(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
kv map[string]any
|
||||
qs quantizeState
|
||||
newType fsggml.TensorType
|
||||
tensor_name string
|
||||
shape []uint64
|
||||
ftype fsggml.FileType
|
||||
expected fsggml.TensorType
|
||||
expectedPanic string
|
||||
}{
|
||||
{
|
||||
name: "output_unsupported",
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "output.weight",
|
||||
shape: []uint64{100, 100},
|
||||
ftype: fsggml.FileTypeF32,
|
||||
expected: fsggml.TensorTypeF16,
|
||||
},
|
||||
{
|
||||
name: "output_Q8",
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "output.weight",
|
||||
shape: []uint64{1024, 1024},
|
||||
ftype: fsggml.FileTypeF32,
|
||||
expected: fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q4_k",
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
"foo.attention.head_count": uint32(4),
|
||||
"foo.attention.head_count_kv": uint32(1),
|
||||
},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q3_k",
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K,
|
||||
expected: fsggml.TensorTypeQ3_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q2_k_s_q4_k",
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
"foo.attention.head_count": uint32(4),
|
||||
"foo.attention.head_count_kv": uint32(1),
|
||||
},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K_S,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q3_k_m",
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q3_k_m_i",
|
||||
qs: quantizeState{
|
||||
iAttnV: 2,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q3_k_l",
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_L,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q4_k_m",
|
||||
qs: quantizeState{
|
||||
iAttnV: 2,
|
||||
nAttnV: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_M,
|
||||
expected: fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_q4_k_s",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_S,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_v.weight_8_expert",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
"foo.expert_count": uint32(8),
|
||||
},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_v.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeF32,
|
||||
expected: fsggml.TensorTypeQ8_0,
|
||||
},
|
||||
{
|
||||
name: "attn_k.weight_8_expert",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
"foo.expert_count": uint32(8),
|
||||
},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_k.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeF32,
|
||||
expected: fsggml.TensorTypeQ8_0,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q2_k",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K,
|
||||
expected: fsggml.TensorTypeQ3_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q2_k_s",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K_S,
|
||||
expected: fsggml.TensorTypeQ4_0,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q2_k_s_layers",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K_S,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q3_k_m_base",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 1,
|
||||
nFfnDown: 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ3_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q3_k_m_16",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 16,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q3_k_m_8",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q3_k_l",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_L,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q4_k_m",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 1,
|
||||
nFfnDown: 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_M,
|
||||
expected: fsggml.TensorTypeQ4_0,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q4_k_m_6",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_M,
|
||||
expected: fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q5_k_m",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ5_K_M,
|
||||
expected: fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
{
|
||||
name: "ffn_down_q4_k_s",
|
||||
qs: quantizeState{
|
||||
iFfnDown: 2,
|
||||
nFfnDown: 3 * 8,
|
||||
},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "ffn_down",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_S,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_output.weight_8_expert",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
"foo.expert_count": uint32(8),
|
||||
},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_output.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_output.weight_q2",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_output.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ2_K,
|
||||
expected: fsggml.TensorTypeQ3_K,
|
||||
},
|
||||
{
|
||||
name: "attn_output.weight_q3_k_m",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_output.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "attn_output.weight_q3_k_l",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_output.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_L,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_qkv.weight_q3_k_m",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_qkv.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ3_K_M,
|
||||
expected: fsggml.TensorTypeQ4_K,
|
||||
},
|
||||
{
|
||||
name: "attn_qkv.weight_q4_k_m",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_qkv.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ4_K_M,
|
||||
expected: fsggml.TensorTypeQ5_K,
|
||||
},
|
||||
{
|
||||
name: "attn_qkv.weight_q5_k_m",
|
||||
qs: quantizeState{},
|
||||
kv: map[string]any{},
|
||||
newType: fsggml.TensorTypeQ4_0,
|
||||
tensor_name: "blk.0.attn_qkv.weight",
|
||||
shape: []uint64{256},
|
||||
ftype: fsggml.FileTypeQ5_K_M,
|
||||
expected: fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
}
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
if tt.expectedPanic != "" {
|
||||
defer func() {
|
||||
e := recover()
|
||||
if !strings.Contains(fmt.Sprintf("%v", e), tt.expectedPanic) {
|
||||
t.Fatalf("incorrect panic\ngot: %v\nexpected: %s", e, tt.expectedPanic)
|
||||
}
|
||||
}()
|
||||
} else {
|
||||
defer func() {
|
||||
e := recover()
|
||||
if e != nil {
|
||||
t.Fatalf("hit unexpected panic %v", e)
|
||||
}
|
||||
}()
|
||||
}
|
||||
ret := getTensorNewType(tt.kv, &tt.qs, tt.newType, tt.tensor_name, tt.shape, tt.ftype)
|
||||
if ret != tt.expected {
|
||||
t.Fatalf("incorrect type returned\ngot: %d\nexpected: %d", ret, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestQuantizeModel(t *testing.T) {
|
||||
cases := []struct {
|
||||
name string
|
||||
kv map[string]any
|
||||
tensors []*fsggml.Tensor
|
||||
newType string
|
||||
expectedTensorTypes map[string]fsggml.TensorType
|
||||
}{
|
||||
{
|
||||
name: "f16_q4_k",
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
},
|
||||
tensors: []*fsggml.Tensor{
|
||||
{
|
||||
Name: "blk.0.attn.weight", Kind: uint32(fsggml.TensorTypeF16),
|
||||
Offset: uint64(0), Shape: []uint64{512, 2},
|
||||
WriterTo: bytes.NewReader(
|
||||
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
|
||||
),
|
||||
},
|
||||
{
|
||||
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF16),
|
||||
Offset: uint64(0), Shape: []uint64{256, 4},
|
||||
WriterTo: bytes.NewReader(
|
||||
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
|
||||
),
|
||||
},
|
||||
},
|
||||
newType: "Q4_K",
|
||||
expectedTensorTypes: map[string]fsggml.TensorType{
|
||||
"blk.0.attn.weight": fsggml.TensorTypeQ4_K,
|
||||
"output.weight": fsggml.TensorTypeQ6_K,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "f32_q4_k",
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
},
|
||||
tensors: []*fsggml.Tensor{
|
||||
{
|
||||
Name: "blk.0.attn_v.weight", Kind: uint32(fsggml.TensorTypeF32),
|
||||
Offset: uint64(0), Shape: []uint64{512, 2},
|
||||
WriterTo: bytes.NewReader(
|
||||
append(append(append(quantBytes[fsggml.TensorTypeF32], quantBytes[fsggml.TensorTypeF32]...), quantBytes[fsggml.TensorTypeF32]...), quantBytes[fsggml.TensorTypeF32]...),
|
||||
),
|
||||
},
|
||||
{
|
||||
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF32),
|
||||
Offset: uint64(0), Shape: []uint64{512},
|
||||
WriterTo: bytes.NewReader(append(quantBytes[fsggml.TensorTypeF32], quantBytes[fsggml.TensorTypeF32]...)),
|
||||
},
|
||||
},
|
||||
newType: "Q4_K",
|
||||
expectedTensorTypes: map[string]fsggml.TensorType{
|
||||
"blk.0.attn_v.weight": fsggml.TensorTypeQ6_K,
|
||||
"output.weight": fsggml.TensorTypeF32,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "f16_q8_0",
|
||||
kv: map[string]any{
|
||||
"general.architecture": "foo",
|
||||
},
|
||||
tensors: []*fsggml.Tensor{
|
||||
{
|
||||
Name: "blk.0.attn.weight", Kind: uint32(fsggml.TensorTypeF16),
|
||||
Offset: uint64(0), Shape: []uint64{32, 16, 2},
|
||||
WriterTo: bytes.NewReader(
|
||||
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
|
||||
),
|
||||
},
|
||||
{
|
||||
Name: "output.weight", Kind: uint32(fsggml.TensorTypeF16),
|
||||
Offset: uint64(0), Shape: []uint64{256, 4},
|
||||
WriterTo: bytes.NewReader(
|
||||
append(append(append(quantBytes[fsggml.TensorTypeF16], quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...), quantBytes[fsggml.TensorTypeF16]...),
|
||||
),
|
||||
},
|
||||
},
|
||||
newType: "Q8_0",
|
||||
expectedTensorTypes: map[string]fsggml.TensorType{
|
||||
"blk.0.attn.weight": fsggml.TensorTypeQ8_0,
|
||||
"output.weight": fsggml.TensorTypeQ8_0,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
f, err := os.CreateTemp(t.TempDir(), tt.name)
|
||||
if err != nil {
|
||||
t.Fatal(err.Error())
|
||||
}
|
||||
defer f.Close()
|
||||
err = fsggml.WriteGGUF(f, tt.kv, tt.tensors)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to create initial model: %s", err)
|
||||
}
|
||||
fp, err := os.Open(f.Name())
|
||||
if err != nil {
|
||||
t.Fatal(err.Error())
|
||||
}
|
||||
defer fp.Close()
|
||||
meta, _, err := fsggml.Decode(fp, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err.Error())
|
||||
}
|
||||
progressCalled := false
|
||||
progress := func(n uint64) {
|
||||
// fmt.Fprintf(os.Stderr, "progress: %f\n", p)
|
||||
progressCalled = true
|
||||
}
|
||||
tmp, err := os.CreateTemp(t.TempDir(), tt.name+".out")
|
||||
if err != nil {
|
||||
t.Fatal(err.Error())
|
||||
}
|
||||
defer tmp.Close()
|
||||
ftype, err := fsggml.ParseFileType(tt.newType)
|
||||
if err != nil {
|
||||
t.Fatal(err.Error())
|
||||
}
|
||||
|
||||
err = quantize(fp, tmp, meta, ftype, progress)
|
||||
if err != nil {
|
||||
t.Fatalf("error during quantize: %s", err)
|
||||
}
|
||||
if !progressCalled {
|
||||
t.Fatalf("progress was not reported")
|
||||
}
|
||||
// Now attempt to load it back and make sure types match expected
|
||||
fpNew, err := os.Open(tmp.Name())
|
||||
if err != nil {
|
||||
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
|
||||
}
|
||||
defer fpNew.Close()
|
||||
newMeta, _, err := fsggml.Decode(fpNew, -1)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to load the quantized model %s: %s", tmp.Name(), err)
|
||||
}
|
||||
tensors := newMeta.Tensors()
|
||||
for _, l := range tensors.GroupLayers() {
|
||||
for _, tensor := range l {
|
||||
if fsggml.TensorType(tensor.Kind) != tt.expectedTensorTypes[tensor.Name] {
|
||||
t.Fatalf("incorrect output type for %s\ngot:%s\nexpected:%s", tensor.Name, fsggml.TensorType(tensor.Kind), tt.expectedTensorTypes[tensor.Name])
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestConvertToF32(t *testing.T) {
|
||||
expected := make([]float32, 256)
|
||||
for i := range expected {
|
||||
expected[i] = float32(i)
|
||||
}
|
||||
for dtype, data := range quantBytes {
|
||||
// Skip the no-op
|
||||
if dtype == fsggml.TensorTypeF32 {
|
||||
continue
|
||||
}
|
||||
t.Run(dtype.String(), func(t *testing.T) {
|
||||
fp32 := ggml.ConvertToF32(data, uint32(dtype), 256)
|
||||
similarity := cosineSimilarity(expected, fp32)
|
||||
if similarity < 0.999 {
|
||||
t.Fatalf("Results not similar enough: %s %f", dtype.String(), similarity)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func dotProduct[V float32 | float64](v1, v2 []V) V {
|
||||
var result V = 0
|
||||
for i := range v1 {
|
||||
result += v1[i] * v2[i]
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
func magnitude[V float32 | float64](v []V) V {
|
||||
var result V = 0
|
||||
for _, val := range v {
|
||||
result += val * val
|
||||
}
|
||||
return V(math.Sqrt(float64(result)))
|
||||
}
|
||||
|
||||
func cosineSimilarity[V float32 | float64](v1, v2 []V) V {
|
||||
return dotProduct(v1, v2) / (magnitude(v1) * magnitude(v2))
|
||||
}
|
||||
|
||||
// Precomputed quantized data - arange 256
|
||||
// # For gguf-py supported types
|
||||
// import gguf
|
||||
// import numpy as np
|
||||
// print(repr(gguf.quantize(np.arange(256, dtype=np.float16), gguf.GGMLQuantizationType.Q4_0)))
|
||||
//
|
||||
// For types not supported by gguf-py converted via ggml_fp32_to_fp16_row and quantize_XXX
|
||||
//
|
||||
// data := make([]byte, 256*2)
|
||||
// fp32 := make([]float32, 256)
|
||||
// for i := range 256 {
|
||||
// fp32[i] = float32(i)
|
||||
// }
|
||||
// l := C.quantize_q6_K((*C.float)(&fp32[0]), unsafe.Pointer(&data[0]), 1, 256, nil)
|
||||
// for i := range data[:int(l)] {
|
||||
// fmt.Printf("%d, ", data[i])
|
||||
// }
|
||||
var (
|
||||
quantBytes = map[fsggml.TensorType][]byte{
|
||||
fsggml.TensorTypeQ4_0: {
|
||||
192, 195, 72, 72, 55, 55, 55, 55, 38, 38, 38, 38, 21,
|
||||
21, 21, 21, 4, 4, 224, 199, 36, 36, 36, 36, 19, 19,
|
||||
19, 19, 19, 19, 19, 19, 2, 2, 2, 2, 240, 201, 19,
|
||||
19, 18, 18, 18, 18, 18, 18, 18, 18, 2, 2, 2, 2,
|
||||
1, 1, 240, 203, 18, 18, 18, 18, 18, 18, 18, 18, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 248, 204, 18, 18, 17, 17,
|
||||
17, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 248,
|
||||
205, 17, 17, 17, 17, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 248, 206, 17, 17, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 248, 207, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1,
|
||||
},
|
||||
fsggml.TensorTypeQ4_1: {
|
||||
34, 64, 0, 0, 128, 128, 145, 145, 162, 162, 179, 179, 196,
|
||||
196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 80, 128, 128,
|
||||
145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230, 230, 247,
|
||||
247, 34, 64, 0, 84, 128, 128, 145, 145, 162, 162, 179, 179,
|
||||
196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 86, 128,
|
||||
128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230, 230,
|
||||
247, 247, 34, 64, 0, 88, 128, 128, 145, 145, 162, 162, 179,
|
||||
179, 196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0, 89,
|
||||
128, 128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213, 230,
|
||||
230, 247, 247, 34, 64, 0, 90, 128, 128, 145, 145, 162, 162,
|
||||
179, 179, 196, 196, 213, 213, 230, 230, 247, 247, 34, 64, 0,
|
||||
91, 128, 128, 145, 145, 162, 162, 179, 179, 196, 196, 213, 213,
|
||||
230, 230, 247, 247,
|
||||
},
|
||||
fsggml.TensorTypeQ5_0: {
|
||||
192, 191, 1, 0, 0, 0, 128, 127, 127, 110, 110, 93, 93,
|
||||
76, 76, 59, 59, 42, 42, 25, 25, 8, 224, 195, 0, 0,
|
||||
0, 0, 72, 72, 55, 55, 55, 55, 38, 38, 38, 38, 21,
|
||||
21, 21, 21, 4, 4, 240, 197, 0, 0, 0, 0, 53, 37,
|
||||
37, 37, 37, 36, 36, 20, 20, 20, 20, 19, 19, 3, 3,
|
||||
3, 240, 199, 0, 0, 0, 0, 36, 36, 36, 36, 19, 19,
|
||||
19, 19, 19, 19, 19, 19, 2, 2, 2, 2, 248, 200, 0,
|
||||
0, 0, 0, 35, 19, 19, 19, 19, 19, 19, 18, 18, 18,
|
||||
18, 2, 2, 2, 2, 2, 248, 201, 0, 0, 0, 0, 19,
|
||||
19, 18, 18, 18, 18, 18, 18, 18, 18, 2, 2, 2, 2,
|
||||
1, 1, 248, 202, 0, 0, 0, 0, 18, 18, 18, 18, 18,
|
||||
18, 18, 18, 18, 2, 2, 1, 1, 1, 1, 1, 248, 203,
|
||||
0, 0, 0, 0, 18, 18, 18, 18, 18, 18, 18, 18, 1,
|
||||
1, 1, 1, 1, 1, 1, 1,
|
||||
},
|
||||
fsggml.TensorTypeQ5_1: {
|
||||
0, 60, 0, 0, 0, 0, 255, 255, 0, 17, 34, 51, 68,
|
||||
85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 0, 60,
|
||||
0, 80, 0, 0, 255, 255, 0, 17, 34, 51, 68, 85, 102,
|
||||
119, 136, 153, 170, 187, 204, 221, 238, 255, 0, 60, 0, 84,
|
||||
0, 0, 255, 255, 0, 17, 34, 51, 68, 85, 102, 119, 136,
|
||||
153, 170, 187, 204, 221, 238, 255, 0, 60, 0, 86, 0, 0,
|
||||
255, 255, 0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170,
|
||||
187, 204, 221, 238, 255, 0, 60, 0, 88, 0, 0, 255, 255,
|
||||
0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204,
|
||||
221, 238, 255, 0, 60, 0, 89, 0, 0, 255, 255, 0, 17,
|
||||
34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238,
|
||||
255, 0, 60, 0, 90, 0, 0, 255, 255, 0, 17, 34, 51,
|
||||
68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 0,
|
||||
60, 0, 91, 0, 0, 255, 255, 0, 17, 34, 51, 68, 85,
|
||||
102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
|
||||
},
|
||||
fsggml.TensorTypeQ8_0: {
|
||||
208, 51, 0, 4, 8, 12, 16, 20, 25, 29, 33, 37, 41,
|
||||
45, 49, 53, 57, 61, 66, 70, 74, 78, 82, 86, 90, 94,
|
||||
98, 102, 107, 111, 115, 119, 123, 127, 240, 55, 65, 67, 69,
|
||||
71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95,
|
||||
97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121,
|
||||
123, 125, 127, 252, 57, 86, 87, 88, 90, 91, 92, 94, 95,
|
||||
96, 98, 99, 100, 102, 103, 104, 106, 107, 108, 110, 111, 112,
|
||||
114, 115, 116, 118, 119, 120, 122, 123, 124, 126, 127, 0, 60,
|
||||
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
|
||||
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
|
||||
122, 123, 124, 125, 126, 127, 2, 61, 102, 103, 104, 105, 105,
|
||||
106, 107, 108, 109, 109, 110, 111, 112, 113, 113, 114, 115, 116,
|
||||
117, 117, 118, 119, 120, 121, 121, 122, 123, 124, 125, 125, 126,
|
||||
127, 4, 62, 106, 107, 108, 108, 109, 110, 110, 111, 112, 112,
|
||||
113, 114, 114, 115, 116, 116, 117, 118, 118, 119, 120, 120, 121,
|
||||
122, 122, 123, 124, 124, 125, 126, 126, 127, 6, 63, 109, 110,
|
||||
110, 111, 112, 112, 113, 113, 114, 114, 115, 116, 116, 117, 117,
|
||||
118, 118, 119, 120, 120, 121, 121, 122, 122, 123, 124, 124, 125,
|
||||
125, 126, 126, 127, 4, 64, 112, 112, 113, 113, 114, 114, 115,
|
||||
115, 116, 116, 117, 117, 118, 118, 119, 119, 120, 120, 121, 121,
|
||||
122, 122, 123, 123, 124, 124, 125, 125, 126, 126, 127, 127,
|
||||
},
|
||||
fsggml.TensorTypeBF16: {
|
||||
0, 0, 128, 63, 0, 64, 64, 64, 128, 64, 160, 64, 192,
|
||||
64, 224, 64, 0, 65, 16, 65, 32, 65, 48, 65, 64, 65,
|
||||
80, 65, 96, 65, 112, 65, 128, 65, 136, 65, 144, 65, 152,
|
||||
65, 160, 65, 168, 65, 176, 65, 184, 65, 192, 65, 200, 65,
|
||||
208, 65, 216, 65, 224, 65, 232, 65, 240, 65, 248, 65, 0,
|
||||
66, 4, 66, 8, 66, 12, 66, 16, 66, 20, 66, 24, 66,
|
||||
28, 66, 32, 66, 36, 66, 40, 66, 44, 66, 48, 66, 52,
|
||||
66, 56, 66, 60, 66, 64, 66, 68, 66, 72, 66, 76, 66,
|
||||
80, 66, 84, 66, 88, 66, 92, 66, 96, 66, 100, 66, 104,
|
||||
66, 108, 66, 112, 66, 116, 66, 120, 66, 124, 66, 128, 66,
|
||||
130, 66, 132, 66, 134, 66, 136, 66, 138, 66, 140, 66, 142,
|
||||
66, 144, 66, 146, 66, 148, 66, 150, 66, 152, 66, 154, 66,
|
||||
156, 66, 158, 66, 160, 66, 162, 66, 164, 66, 166, 66, 168,
|
||||
66, 170, 66, 172, 66, 174, 66, 176, 66, 178, 66, 180, 66,
|
||||
182, 66, 184, 66, 186, 66, 188, 66, 190, 66, 192, 66, 194,
|
||||
66, 196, 66, 198, 66, 200, 66, 202, 66, 204, 66, 206, 66,
|
||||
208, 66, 210, 66, 212, 66, 214, 66, 216, 66, 218, 66, 220,
|
||||
66, 222, 66, 224, 66, 226, 66, 228, 66, 230, 66, 232, 66,
|
||||
234, 66, 236, 66, 238, 66, 240, 66, 242, 66, 244, 66, 246,
|
||||
66, 248, 66, 250, 66, 252, 66, 254, 66, 0, 67, 1, 67,
|
||||
2, 67, 3, 67, 4, 67, 5, 67, 6, 67, 7, 67, 8,
|
||||
67, 9, 67, 10, 67, 11, 67, 12, 67, 13, 67, 14, 67,
|
||||
15, 67, 16, 67, 17, 67, 18, 67, 19, 67, 20, 67, 21,
|
||||
67, 22, 67, 23, 67, 24, 67, 25, 67, 26, 67, 27, 67,
|
||||
28, 67, 29, 67, 30, 67, 31, 67, 32, 67, 33, 67, 34,
|
||||
67, 35, 67, 36, 67, 37, 67, 38, 67, 39, 67, 40, 67,
|
||||
41, 67, 42, 67, 43, 67, 44, 67, 45, 67, 46, 67, 47,
|
||||
67, 48, 67, 49, 67, 50, 67, 51, 67, 52, 67, 53, 67,
|
||||
54, 67, 55, 67, 56, 67, 57, 67, 58, 67, 59, 67, 60,
|
||||
67, 61, 67, 62, 67, 63, 67, 64, 67, 65, 67, 66, 67,
|
||||
67, 67, 68, 67, 69, 67, 70, 67, 71, 67, 72, 67, 73,
|
||||
67, 74, 67, 75, 67, 76, 67, 77, 67, 78, 67, 79, 67,
|
||||
80, 67, 81, 67, 82, 67, 83, 67, 84, 67, 85, 67, 86,
|
||||
67, 87, 67, 88, 67, 89, 67, 90, 67, 91, 67, 92, 67,
|
||||
93, 67, 94, 67, 95, 67, 96, 67, 97, 67, 98, 67, 99,
|
||||
67, 100, 67, 101, 67, 102, 67, 103, 67, 104, 67, 105, 67,
|
||||
106, 67, 107, 67, 108, 67, 109, 67, 110, 67, 111, 67, 112,
|
||||
67, 113, 67, 114, 67, 115, 67, 116, 67, 117, 67, 118, 67,
|
||||
119, 67, 120, 67, 121, 67, 122, 67, 123, 67, 124, 67, 125,
|
||||
67, 126, 67, 127, 67,
|
||||
},
|
||||
fsggml.TensorTypeF16: {
|
||||
0, 0, 0, 60, 0, 64, 0, 66, 0, 68, 0, 69, 0, 70, 0, 71, 0,
|
||||
72, 128, 72, 0, 73, 128, 73, 0, 74, 128, 74, 0, 75, 128, 75,
|
||||
0, 76, 64, 76, 128, 76, 192, 76, 0, 77, 64, 77, 128, 77, 192,
|
||||
77, 0, 78, 64, 78, 128, 78, 192, 78, 0, 79, 64, 79, 128, 79,
|
||||
192, 79, 0, 80, 32, 80, 64, 80, 96, 80, 128, 80, 160, 80,
|
||||
192, 80, 224, 80, 0, 81, 32, 81, 64, 81, 96, 81, 128, 81,
|
||||
160, 81, 192, 81, 224, 81, 0, 82, 32, 82, 64, 82, 96, 82,
|
||||
128, 82, 160, 82, 192, 82, 224, 82, 0, 83, 32, 83, 64, 83,
|
||||
96, 83, 128, 83, 160, 83, 192, 83, 224, 83, 0, 84, 16, 84,
|
||||
32, 84, 48, 84, 64, 84, 80, 84, 96, 84, 112, 84, 128, 84,
|
||||
144, 84, 160, 84, 176, 84, 192, 84, 208, 84, 224, 84, 240,
|
||||
84, 0, 85, 16, 85, 32, 85, 48, 85, 64, 85, 80, 85, 96, 85,
|
||||
112, 85, 128, 85, 144, 85, 160, 85, 176, 85, 192, 85, 208,
|
||||
85, 224, 85, 240, 85, 0, 86, 16, 86, 32, 86, 48, 86, 64,
|
||||
86, 80, 86, 96, 86, 112, 86, 128, 86, 144, 86, 160, 86,
|
||||
176, 86, 192, 86, 208, 86, 224, 86, 240, 86, 0, 87, 16,
|
||||
87, 32, 87, 48, 87, 64, 87, 80, 87, 96, 87, 112, 87, 128,
|
||||
87, 144, 87, 160, 87, 176, 87, 192, 87, 208, 87, 224, 87,
|
||||
240, 87, 0, 88, 8, 88, 16, 88, 24, 88, 32, 88, 40, 88,
|
||||
48, 88, 56, 88, 64, 88, 72, 88, 80, 88, 88, 88, 96, 88,
|
||||
104, 88, 112, 88, 120, 88, 128, 88, 136, 88, 144, 88, 152,
|
||||
88, 160, 88, 168, 88, 176, 88, 184, 88, 192, 88, 200, 88,
|
||||
208, 88, 216, 88, 224, 88, 232, 88, 240, 88, 248, 88, 0,
|
||||
89, 8, 89, 16, 89, 24, 89, 32, 89, 40, 89, 48, 89, 56, 89,
|
||||
64, 89, 72, 89, 80, 89, 88, 89, 96, 89, 104, 89, 112, 89,
|
||||
120, 89, 128, 89, 136, 89, 144, 89, 152, 89, 160, 89, 168,
|
||||
89, 176, 89, 184, 89, 192, 89, 200, 89, 208, 89, 216, 89,
|
||||
224, 89, 232, 89, 240, 89, 248, 89, 0, 90, 8, 90, 16, 90,
|
||||
24, 90, 32, 90, 40, 90, 48, 90, 56, 90, 64, 90, 72, 90, 80,
|
||||
90, 88, 90, 96, 90, 104, 90, 112, 90, 120, 90, 128, 90,
|
||||
136, 90, 144, 90, 152, 90, 160, 90, 168, 90, 176, 90, 184,
|
||||
90, 192, 90, 200, 90, 208, 90, 216, 90, 224, 90, 232, 90,
|
||||
240, 90, 248, 90, 0, 91, 8, 91, 16, 91, 24, 91, 32, 91, 40,
|
||||
91, 48, 91, 56, 91, 64, 91, 72, 91, 80, 91, 88, 91, 96, 91,
|
||||
104, 91, 112, 91, 120, 91, 128, 91, 136, 91, 144, 91, 152,
|
||||
91, 160, 91, 168, 91, 176, 91, 184, 91, 192, 91, 200, 91,
|
||||
208, 91, 216, 91, 224, 91, 232, 91, 240, 91, 248, 91,
|
||||
},
|
||||
fsggml.TensorTypeF32: {
|
||||
0, 0, 0, 0, 0, 0, 128, 63, 0, 0, 0, 64, 0, 0, 64, 64, 0, 0, 128,
|
||||
64, 0, 0, 160, 64, 0, 0, 192, 64, 0, 0, 224, 64, 0, 0, 0, 65, 0,
|
||||
0, 16, 65, 0, 0, 32, 65, 0, 0, 48, 65, 0, 0, 64, 65, 0, 0, 80, 65,
|
||||
0, 0, 96, 65, 0, 0, 112, 65, 0, 0, 128, 65, 0, 0, 136, 65, 0, 0,
|
||||
144, 65, 0, 0, 152, 65, 0, 0, 160, 65, 0, 0, 168, 65, 0, 0, 176,
|
||||
65, 0, 0, 184, 65, 0, 0, 192, 65, 0, 0, 200, 65, 0, 0, 208, 65, 0,
|
||||
0, 216, 65, 0, 0, 224, 65, 0, 0, 232, 65, 0, 0, 240, 65, 0, 0, 248,
|
||||
65, 0, 0, 0, 66, 0, 0, 4, 66, 0, 0, 8, 66, 0, 0, 12, 66, 0, 0, 16,
|
||||
66, 0, 0, 20, 66, 0, 0, 24, 66, 0, 0, 28, 66, 0, 0, 32, 66, 0, 0,
|
||||
36, 66, 0, 0, 40, 66, 0, 0, 44, 66, 0, 0, 48, 66, 0, 0, 52, 66, 0,
|
||||
0, 56, 66, 0, 0, 60, 66, 0, 0, 64, 66, 0, 0, 68, 66, 0, 0, 72, 66,
|
||||
0, 0, 76, 66, 0, 0, 80, 66, 0, 0, 84, 66, 0, 0, 88, 66, 0, 0, 92, 66,
|
||||
0, 0, 96, 66, 0, 0, 100, 66, 0, 0, 104, 66, 0, 0, 108, 66, 0, 0, 112,
|
||||
66, 0, 0, 116, 66, 0, 0, 120, 66, 0, 0, 124, 66, 0, 0, 128, 66, 0, 0,
|
||||
130, 66, 0, 0, 132, 66, 0, 0, 134, 66, 0, 0, 136, 66, 0, 0, 138, 66,
|
||||
0, 0, 140, 66, 0, 0, 142, 66, 0, 0, 144, 66, 0, 0, 146, 66, 0, 0, 148,
|
||||
66, 0, 0, 150, 66, 0, 0, 152, 66, 0, 0, 154, 66, 0, 0, 156, 66, 0, 0,
|
||||
158, 66, 0, 0, 160, 66, 0, 0, 162, 66, 0, 0, 164, 66, 0, 0, 166, 66,
|
||||
0, 0, 168, 66, 0, 0, 170, 66, 0, 0, 172, 66, 0, 0, 174, 66, 0, 0, 176,
|
||||
66, 0, 0, 178, 66, 0, 0, 180, 66, 0, 0, 182, 66, 0, 0, 184, 66, 0, 0,
|
||||
186, 66, 0, 0, 188, 66, 0, 0, 190, 66, 0, 0, 192, 66, 0, 0, 194, 66, 0,
|
||||
0, 196, 66, 0, 0, 198, 66, 0, 0, 200, 66, 0, 0, 202, 66, 0, 0, 204, 66,
|
||||
0, 0, 206, 66, 0, 0, 208, 66, 0, 0, 210, 66, 0, 0, 212, 66, 0, 0, 214, 66,
|
||||
0, 0, 216, 66, 0, 0, 218, 66, 0, 0, 220, 66, 0, 0, 222, 66, 0, 0, 224, 66,
|
||||
0, 0, 226, 66, 0, 0, 228, 66, 0, 0, 230, 66, 0, 0, 232, 66, 0, 0, 234, 66,
|
||||
0, 0, 236, 66, 0, 0, 238, 66, 0, 0, 240, 66, 0, 0, 242, 66, 0, 0, 244, 66,
|
||||
0, 0, 246, 66, 0, 0, 248, 66, 0, 0, 250, 66, 0, 0, 252, 66, 0, 0, 254, 66,
|
||||
0, 0, 0, 67, 0, 0, 1, 67, 0, 0, 2, 67, 0, 0, 3, 67, 0, 0, 4, 67, 0, 0, 5, 67,
|
||||
0, 0, 6, 67, 0, 0, 7, 67, 0, 0, 8, 67, 0, 0, 9, 67, 0, 0, 10, 67, 0, 0, 11,
|
||||
67, 0, 0, 12, 67, 0, 0, 13, 67, 0, 0, 14, 67, 0, 0, 15, 67, 0, 0, 16, 67,
|
||||
0, 0, 17, 67, 0, 0, 18, 67, 0, 0, 19, 67, 0, 0, 20, 67, 0, 0, 21, 67, 0, 0,
|
||||
22, 67, 0, 0, 23, 67, 0, 0, 24, 67, 0, 0, 25, 67, 0, 0, 26, 67, 0, 0, 27,
|
||||
67, 0, 0, 28, 67, 0, 0, 29, 67, 0, 0, 30, 67, 0, 0, 31, 67, 0, 0, 32, 67,
|
||||
0, 0, 33, 67, 0, 0, 34, 67, 0, 0, 35, 67, 0, 0, 36, 67, 0, 0, 37, 67, 0, 0,
|
||||
38, 67, 0, 0, 39, 67, 0, 0, 40, 67, 0, 0, 41, 67, 0, 0, 42, 67, 0, 0, 43, 67,
|
||||
0, 0, 44, 67, 0, 0, 45, 67, 0, 0, 46, 67, 0, 0, 47, 67, 0, 0, 48, 67, 0, 0,
|
||||
49, 67, 0, 0, 50, 67, 0, 0, 51, 67, 0, 0, 52, 67, 0, 0, 53, 67, 0, 0, 54, 67,
|
||||
0, 0, 55, 67, 0, 0, 56, 67, 0, 0, 57, 67, 0, 0, 58, 67, 0, 0, 59, 67, 0, 0,
|
||||
60, 67, 0, 0, 61, 67, 0, 0, 62, 67, 0, 0, 63, 67, 0, 0, 64, 67, 0, 0, 65, 67,
|
||||
0, 0, 66, 67, 0, 0, 67, 67, 0, 0, 68, 67, 0, 0, 69, 67, 0, 0, 70, 67, 0, 0, 71,
|
||||
67, 0, 0, 72, 67, 0, 0, 73, 67, 0, 0, 74, 67, 0, 0, 75, 67, 0, 0, 76, 67, 0,
|
||||
0, 77, 67, 0, 0, 78, 67, 0, 0, 79, 67, 0, 0, 80, 67, 0, 0, 81, 67, 0, 0, 82,
|
||||
67, 0, 0, 83, 67, 0, 0, 84, 67, 0, 0, 85, 67, 0, 0, 86, 67, 0, 0, 87, 67, 0,
|
||||
0, 88, 67, 0, 0, 89, 67, 0, 0, 90, 67, 0, 0, 91, 67, 0, 0, 92, 67, 0, 0, 93,
|
||||
67, 0, 0, 94, 67, 0, 0, 95, 67, 0, 0, 96, 67, 0, 0, 97, 67, 0, 0, 98, 67, 0,
|
||||
0, 99, 67, 0, 0, 100, 67, 0, 0, 101, 67, 0, 0, 102, 67, 0, 0, 103, 67, 0, 0,
|
||||
104, 67, 0, 0, 105, 67, 0, 0, 106, 67, 0, 0, 107, 67, 0, 0, 108, 67, 0, 0, 109,
|
||||
67, 0, 0, 110, 67, 0, 0, 111, 67, 0, 0, 112, 67, 0, 0, 113, 67, 0, 0, 114, 67,
|
||||
0, 0, 115, 67, 0, 0, 116, 67, 0, 0, 117, 67, 0, 0, 118, 67, 0, 0, 119, 67, 0,
|
||||
0, 120, 67, 0, 0, 121, 67, 0, 0, 122, 67, 0, 0, 123, 67, 0, 0, 124, 67, 0, 0,
|
||||
125, 67, 0, 0, 126, 67, 0, 0, 127, 67,
|
||||
},
|
||||
fsggml.TensorTypeQ4_K: {
|
||||
52, 52, 0, 0, 136, 208, 216, 223, 0, 0, 0, 0, 8, 0, 8, 15, 128,
|
||||
128, 129, 129, 146, 146, 147, 147, 164, 164, 165, 165, 166, 182,
|
||||
183, 183, 184, 200, 201, 201, 202, 218, 218, 219, 219, 236, 236,
|
||||
237, 237, 254, 254, 255, 202, 202, 202, 203, 203, 203, 219, 219,
|
||||
219, 220, 220, 220, 220, 220, 236, 237, 237, 237, 237, 237,
|
||||
237, 237, 238, 254, 254, 254, 254, 254, 255, 255, 255, 255, 220,
|
||||
220, 220, 220, 221, 221, 221, 221, 221, 221, 221, 237, 237, 237,
|
||||
238, 238, 238, 238, 238, 238, 238, 238, 238, 254, 254, 255, 255,
|
||||
255, 255, 255, 255, 255, 237, 237, 237, 237, 237, 237, 237, 238,
|
||||
238, 238, 238, 238, 238, 238, 238, 238, 254, 254, 254, 254, 254,
|
||||
254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
},
|
||||
fsggml.TensorTypeQ2_K: {
|
||||
1, 2, 3, 3, 4, 5, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 184, 184,
|
||||
184, 185, 249, 249, 249, 249, 249, 250, 250, 254, 254, 254, 254,
|
||||
255, 253, 253, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
|
||||
254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 171, 69, 0, 0,
|
||||
},
|
||||
fsggml.TensorTypeQ5_K: {
|
||||
32, 48, 0, 0, 136, 208, 216, 223, 0, 0, 0, 0, 8, 0, 7, 15, 254,
|
||||
254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254,
|
||||
254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
||||
255, 255, 255, 255, 255, 0, 1, 2, 19, 20, 37, 38, 55, 56, 73, 74,
|
||||
91, 92, 109, 110, 127, 112, 128, 129, 146, 147, 164, 165, 182, 183,
|
||||
200, 201, 218, 219, 236, 237, 254, 133, 133, 149, 150, 150, 150,
|
||||
167, 167, 167, 168, 184, 184, 185, 185, 201, 202, 202, 202, 219,
|
||||
219, 219, 219, 236, 236, 236, 237, 253, 253, 254, 254, 254, 255,
|
||||
169, 169, 169, 169, 186, 186, 186, 186, 186, 187, 187, 203, 203,
|
||||
203, 204, 204, 204, 220, 220, 221, 221, 221, 221, 237, 237, 238,
|
||||
238, 238, 238, 254, 255, 255, 203, 203, 203, 204, 204, 204, 204,
|
||||
204, 220, 220, 220, 221, 221, 221, 221, 221, 237, 237, 238, 238,
|
||||
238, 238, 238, 238, 254, 255, 255, 255, 255, 255, 255, 255,
|
||||
},
|
||||
fsggml.TensorTypeQ6_K: {
|
||||
96, 110, 92, 90, 88, 70, 68, 50, 48, 46, 44, 42, 24, 22, 4, 2, 80,
|
||||
95, 78, 77, 76, 59, 58, 57, 40, 39, 38, 21, 20, 19, 2, 1, 75, 75,
|
||||
74, 57, 57, 56, 55, 39, 38, 37, 21, 20, 20, 19, 2, 2, 72, 55, 55,
|
||||
54, 54, 37, 37, 36, 36, 19, 19, 18, 18, 1, 1, 0, 35, 35, 35, 35,
|
||||
34, 18, 18, 18, 17, 17, 17, 1, 1, 0, 0, 0, 35, 35, 34, 34, 18,
|
||||
18, 18, 17, 17, 17, 17, 1, 0, 0, 0, 0, 35, 35, 35, 19, 19, 18, 18,
|
||||
18, 18, 18, 1, 1, 1, 1, 1, 1, 34, 34, 18, 18, 18, 18, 17, 17, 17,
|
||||
17, 1, 1, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
|
||||
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 248, 240, 231, 224, 216, 208, 200, 192, 184, 176,
|
||||
166, 160, 152, 144, 136, 128, 235, 43,
|
||||
},
|
||||
fsggml.TensorTypeQ3_K: {
|
||||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 20, 23, 23, 7, 7, 6, 6, 6, 2,
|
||||
1, 1, 1, 1, 0, 0, 22, 22, 6, 6, 5, 5, 5, 1, 1, 1, 1, 1, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 238, 204, 170, 136, 102, 68,
|
||||
34, 1, 5, 5, 5, 5, 189, 63,
|
||||
},
|
||||
}
|
||||
)
|
||||
@@ -24,7 +24,7 @@ import (
|
||||
|
||||
var stream bool = false
|
||||
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []ggml.Tensor) (string, string) {
|
||||
func createBinFile(t *testing.T, kv map[string]any, ti []*ggml.Tensor) (string, string) {
|
||||
t.Helper()
|
||||
t.Setenv("OLLAMA_MODELS", cmp.Or(os.Getenv("OLLAMA_MODELS"), t.TempDir()))
|
||||
|
||||
|
||||
@@ -99,7 +99,7 @@ func TestGenerateChat(t *testing.T) {
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []ggml.Tensor{
|
||||
}, []*ggml.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
@@ -158,7 +158,7 @@ func TestGenerateChat(t *testing.T) {
|
||||
_, digest := createBinFile(t, ggml.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []ggml.Tensor{})
|
||||
}, []*ggml.Tensor{})
|
||||
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
Files: map[string]string{"bert.gguf": digest},
|
||||
@@ -643,7 +643,7 @@ func TestGenerate(t *testing.T) {
|
||||
"tokenizer.ggml.tokens": []string{""},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []ggml.Tensor{
|
||||
}, []*ggml.Tensor{
|
||||
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
|
||||
@@ -698,7 +698,7 @@ func TestGenerate(t *testing.T) {
|
||||
_, digest := createBinFile(t, ggml.KV{
|
||||
"general.architecture": "bert",
|
||||
"bert.pooling_type": uint32(0),
|
||||
}, []ggml.Tensor{})
|
||||
}, []*ggml.Tensor{})
|
||||
|
||||
w := createRequest(t, s.CreateHandler, api.CreateRequest{
|
||||
Model: "bert",
|
||||
|
||||
@@ -126,7 +126,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
|
||||
"tokenizer.ggml.tokens": []string{" "},
|
||||
"tokenizer.ggml.scores": []float32{0},
|
||||
"tokenizer.ggml.token_type": []int32{0},
|
||||
}, []ggml.Tensor{
|
||||
}, []*ggml.Tensor{
|
||||
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
|
||||
}))
|
||||
|
||||
Reference in New Issue
Block a user