From 4372d0bfefc7c705b5765177460605ebc8eef1f3 Mon Sep 17 00:00:00 2001 From: Jesse Gross Date: Mon, 10 Nov 2025 14:49:46 -0800 Subject: [PATCH] llamarunner: Respect device ordering for offloaded layers We used to control the way that llama.cpp saw devices using CUDA_VISIBLE_DEVICES or similar. This would ensure that the layers offloaded to a device were actually the ones intended. This is particularly important because we might reorder devices based on free memory or performance. When we started explicitly scheduling layers, this logic went away but the llamarunner didn't have any way to set the correct order of devices. This meant that the correct number of layers would be assigned to a device but not necessarily the layers that were expected. This change sets up the devices correctly based on the offload information. --- llama/llama.go | 34 +++++++++++++++++++++++++++++----- ml/device.go | 28 ++++++++++++++++++++++++++++ runner/llamarunner/runner.go | 18 ++++++++++++------ 3 files changed, 69 insertions(+), 11 deletions(-) diff --git a/llama/llama.go b/llama/llama.go index f8a051ea..582d4128 100644 --- a/llama/llama.go +++ b/llama/llama.go @@ -63,8 +63,13 @@ func BackendInit() { C.llama_backend_init() } -func EnumerateGPUs() []ml.DeviceID { - var ids []ml.DeviceID +type Devices struct { + ml.DeviceID + LlamaID uint64 +} + +func EnumerateGPUs() []Devices { + var ids []Devices for i := range C.ggml_backend_dev_count() { device := C.ggml_backend_dev_get(i) @@ -74,9 +79,12 @@ func EnumerateGPUs() []ml.DeviceID { C.GGML_BACKEND_DEVICE_TYPE_IGPU: var props C.struct_ggml_backend_dev_props C.ggml_backend_dev_get_props(device, &props) - ids = append(ids, ml.DeviceID{ - ID: C.GoString(props.id), - Library: C.GoString(props.library), + ids = append(ids, Devices{ + DeviceID: ml.DeviceID{ + ID: C.GoString(props.id), + Library: C.GoString(props.library), + }, + LlamaID: uint64(i), }) } } @@ -231,6 +239,7 @@ func (c *Context) GetLogitsIth(i int) []float32 { } type ModelParams struct { + Devices []uint64 NumGpuLayers int MainGpu int UseMmap bool @@ -254,6 +263,21 @@ func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) { cparams.use_mmap = C.bool(params.UseMmap) cparams.vocab_only = C.bool(params.VocabOnly) + var devices []C.ggml_backend_dev_t + for _, llamaID := range params.Devices { + devices = append(devices, C.ggml_backend_dev_get(C.size_t(llamaID))) + } + if len(devices) > 0 { + devices = append(devices, C.ggml_backend_dev_t(C.NULL)) + devicesData := &devices[0] + + var devicesPin runtime.Pinner + devicesPin.Pin(devicesData) + defer devicesPin.Unpin() + + cparams.devices = devicesData + } + if len(params.TensorSplit) > 0 { tensorSplitData := ¶ms.TensorSplit[0] diff --git a/ml/device.go b/ml/device.go index dc91359f..040764fe 100644 --- a/ml/device.go +++ b/ml/device.go @@ -8,6 +8,7 @@ import ( "hash/maphash" "io" "log/slog" + "math" "net/http" "runtime" "slices" @@ -28,6 +29,22 @@ type GPULayers struct { Layers []int } +// FirstLayer returns the smallest layer index scheduled on this GPU, or MaxInt when empty. +func (g GPULayers) FirstLayer() int { + if len(g.Layers) == 0 { + return math.MaxInt + } + + first := g.Layers[0] + for i := 1; i < len(g.Layers); i++ { + if g.Layers[i] < first { + first = g.Layers[i] + } + } + + return first +} + func (g GPULayers) String() string { if len(g.Layers) == 0 { return "" @@ -54,6 +71,17 @@ func (g GPULayers) String() string { // GPULayersList is a set of layer allocations across multiple GPUs type GPULayersList []GPULayers +func (l GPULayersList) Len() int { return len(l) } +func (l GPULayersList) Swap(i, j int) { l[i], l[j] = l[j], l[i] } + +// Sort by the ordering of the layers offloaded +func (l GPULayersList) Less(i, j int) bool { + li := l[i].FirstLayer() + lj := l[j].FirstLayer() + + return li < lj +} + func (l GPULayersList) String() string { if l.Sum() > 0 { return fmt.Sprintf("%v%v", l.Sum(), []GPULayers(l)) diff --git a/runner/llamarunner/runner.go b/runner/llamarunner/runner.go index 16c84a78..a23ddd61 100644 --- a/runner/llamarunner/runner.go +++ b/runner/llamarunner/runner.go @@ -12,6 +12,7 @@ import ( "net/http" "os" "regexp" + "sort" "strconv" "strings" "sync" @@ -900,19 +901,24 @@ func (s *Server) load(w http.ResponseWriter, r *http.Request) { s.seqs = make([]*Sequence, s.parallel) s.seqsSem = semaphore.NewWeighted(int64(s.parallel)) - gpuIDs := llama.EnumerateGPUs() - tensorSplit := make([]float32, len(gpuIDs)) numGPU := 0 - for i := range gpuIDs { - for _, layers := range req.GPULayers { - if gpuIDs[i] == layers.DeviceID { - tensorSplit[i] = float32(len(layers.Layers)) + var tensorSplit []float32 + var llamaIDs []uint64 + + gpuIDs := llama.EnumerateGPUs() + sort.Sort(req.GPULayers) + for _, layers := range req.GPULayers { + for i := range gpuIDs { + if gpuIDs[i].DeviceID == layers.DeviceID { numGPU += len(layers.Layers) + tensorSplit = append(tensorSplit, float32(len(layers.Layers))) + llamaIDs = append(llamaIDs, gpuIDs[i].LlamaID) } } } params := llama.ModelParams{ + Devices: llamaIDs, NumGpuLayers: numGPU, MainGpu: req.MainGPU, UseMmap: req.UseMmap && len(req.LoraPath) == 0,