merge upstream for 4.0 update

This commit is contained in:
likelovewant
2024-11-07 12:07:28 +08:00
98 changed files with 4068 additions and 15473 deletions

View File

@@ -1,15 +0,0 @@
set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
target_link_options(${TARGET} PRIVATE -municode -Wl,/subsystem:console)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,661 +0,0 @@
// MIT License
// Copyright (c) 2023 Georgi Gerganov
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#pragma once
#include <string>
#include <vector>
#include <set>
#include <mutex>
#include <condition_variable>
#include <unordered_map>
#include <random>
#include <iostream>
#include <thread>
#include "json.hpp"
#include "../llava/clip.h"
using json = nlohmann::json;
extern bool server_verbose;
extern bool server_log_json;
#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif
#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...) \
do \
{ \
if (server_verbose) \
{ \
server_log("VERB", __func__, __LINE__, MSG, __VA_ARGS__); \
} \
} while (0)
#endif
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARN", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_DEBUG( MSG, ...) server_log("DEBUG", __func__, __LINE__, MSG, __VA_ARGS__)
enum server_state {
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
SERVER_STATE_READY, // Server is ready and model is loaded
SERVER_STATE_ERROR // An error occurred, load_model failed
};
enum task_type {
TASK_TYPE_COMPLETION,
TASK_TYPE_CANCEL,
TASK_TYPE_NEXT_RESPONSE,
TASK_TYPE_METRICS
};
struct task_server {
int id = -1; // to be filled by llama_server_queue
int target_id;
task_type type;
json data;
bool infill_mode = false;
bool embedding_mode = false;
int multitask_id = -1;
};
struct task_result {
int id;
int multitask_id = -1;
bool stop;
bool error;
json result_json;
};
struct task_multi {
int id;
std::set<int> subtasks_remaining{};
std::vector<task_result> results{};
};
// completion token output with probabilities
struct completion_token_output {
struct token_prob
{
llama_token tok;
float prob;
};
std::vector<token_prob> probs;
llama_token tok;
std::string text_to_send;
};
struct token_translator {
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
};
static inline void server_log(const char *level, const char *function, int line, const char *message, const nlohmann::ordered_json &extra) {
std::stringstream ss_tid;
ss_tid << std::this_thread::get_id();
json log = nlohmann::ordered_json{
{"tid", ss_tid.str()},
{"timestamp", time(nullptr)},
};
if (strncmp("DEBUG", level, strlen(level)) == 0 && !server_verbose) {
return;
}
if (server_log_json) {
log.merge_patch(
{
{"level", level},
{"function", function},
{"line", line},
{"msg", message},
});
if (!extra.empty()) {
log.merge_patch(extra);
}
std::cout << log.dump(-1, ' ', false, json::error_handler_t::replace) << "\n" << std::flush;
} else {
if (!extra.empty()) {
log.merge_patch(extra);
}
std::stringstream ss;
ss << level << " [" << function << "] " << message << " |";
for (const auto& el : log.items())
{
const std::string value = el.value().dump(-1, ' ', false, json::error_handler_t::replace);
ss << " " << el.key() << "=" << value;
}
const std::string str = ss.str();
printf("%.*s\n", (int)str.size(), str.data());
fflush(stdout);
}
}
//
// server utils
//
template <typename T>
static T json_value(const json &body, const std::string &key, const T &default_value) {
// Fallback null to default value
return body.contains(key) && !body.at(key).is_null()
? body.value(key, default_value)
: default_value;
}
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
inline bool verify_custom_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, buf.data(), buf.size());
return res >= 0;
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
size_t alloc_size = 0;
// vector holding all allocated string to be passed to llama_chat_apply_template
std::vector<std::string> str(messages.size() * 2);
std::vector<llama_chat_message> chat(messages.size());
for (size_t i = 0; i < messages.size(); ++i) {
auto &curr_msg = messages[i];
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
alloc_size += str[i*2 + 1].length();
chat[i].role = str[i*2 + 0].c_str();
chat[i].content = str[i*2 + 1].c_str();
}
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
std::vector<char> buf(alloc_size * 2);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
return formatted_chat;
}
//
// work queue utils
//
struct llama_server_queue {
int id = 0;
std::mutex mutex_tasks;
bool running;
// queues
std::vector<task_server> queue_tasks;
std::vector<task_server> queue_tasks_deferred;
std::vector<task_multi> queue_multitasks;
std::condition_variable condition_tasks;
// callback functions
std::function<void(task_server&)> callback_new_task;
std::function<void(task_multi&)> callback_finish_multitask;
std::function<void(void)> callback_run_slots;
// Add a new task to the end of the queue
int post(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
if (task.id == -1) {
task.id = id++;
LOG_VERBOSE("new task id", {{"new_id", task.id}});
}
queue_tasks.push_back(std::move(task));
condition_tasks.notify_one();
return task.id;
}
// Add a new task, but defer until one slot is available
void defer(task_server task) {
std::unique_lock<std::mutex> lock(mutex_tasks);
queue_tasks_deferred.push_back(std::move(task));
}
// Get the next id for creating anew task
int get_new_id() {
std::unique_lock<std::mutex> lock(mutex_tasks);
int new_id = id++;
LOG_VERBOSE("new task id", {{"new_id", new_id}});
return new_id;
}
// Register function to process a new task
void on_new_task(std::function<void(task_server&)> callback) {
callback_new_task = callback;
}
// Register function to process a multitask when it is finished
void on_finish_multitask(std::function<void(task_multi&)> callback) {
callback_finish_multitask = callback;
}
// Register the function to be called when all slots data is ready to be processed
void on_run_slots(std::function<void(void)> callback) {
callback_run_slots = callback;
}
// Call when the state of one slot is changed
void notify_slot_changed() {
// move deferred tasks back to main loop
std::unique_lock<std::mutex> lock(mutex_tasks);
for (auto & task : queue_tasks_deferred) {
queue_tasks.push_back(std::move(task));
}
queue_tasks_deferred.clear();
}
// end the start_loop routine
void terminate() {
{
std::unique_lock<std::mutex> lock(mutex_tasks);
running = false;
}
condition_tasks.notify_all();
}
/**
* Main loop consists of these steps:
* - Wait until a new task arrives
* - Process the task (i.e. maybe copy data into slot)
* - Check if multitask is finished
* - Run all slots
*/
void start_loop() {
running = true;
while (true) {
LOG_VERBOSE("new task may arrive", {});
{
while (true)
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
lock.unlock();
break;
}
task_server task = queue_tasks.front();
queue_tasks.erase(queue_tasks.begin());
lock.unlock();
LOG_VERBOSE("callback_new_task", {{"task_id", task.id}});
callback_new_task(task);
}
LOG_VERBOSE("update_multitasks", {});
// check if we have any finished multitasks
auto queue_iterator = queue_multitasks.begin();
while (queue_iterator != queue_multitasks.end())
{
if (queue_iterator->subtasks_remaining.empty())
{
// all subtasks done == multitask is done
task_multi current_multitask = *queue_iterator;
callback_finish_multitask(current_multitask);
// remove this multitask
queue_iterator = queue_multitasks.erase(queue_iterator);
}
else
{
++queue_iterator;
}
}
// all tasks in the current loop is processed, slots data is now ready
LOG_VERBOSE("callback_run_slots", {});
callback_run_slots();
}
LOG_VERBOSE("wait for new task", {});
// wait for new task
{
std::unique_lock<std::mutex> lock(mutex_tasks);
if (queue_tasks.empty()) {
if (!running) {
LOG_VERBOSE("ending start_loop", {});
return;
}
condition_tasks.wait(lock, [&]{
return (!queue_tasks.empty() || !running);
});
}
}
}
}
//
// functions to manage multitasks
//
// add a multitask by specifying the id of all subtask (subtask is a task_server)
void add_multitask(int multitask_id, std::vector<int>& sub_ids)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
task_multi multi;
multi.id = multitask_id;
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
queue_multitasks.push_back(multi);
}
// updatethe remaining subtasks, while appending results to multitask
void update_multitask(int multitask_id, int subtask_id, task_result& result)
{
std::lock_guard<std::mutex> lock(mutex_tasks);
for (auto& multitask : queue_multitasks)
{
if (multitask.id == multitask_id)
{
multitask.subtasks_remaining.erase(subtask_id);
multitask.results.push_back(result);
}
}
}
};
struct llama_server_response {
typedef std::function<void(int, int, task_result&)> callback_multitask_t;
callback_multitask_t callback_update_multitask;
// for keeping track of all tasks waiting for the result
std::set<int> waiting_task_ids;
// the main result queue
std::vector<task_result> queue_results;
std::mutex mutex_results;
std::condition_variable condition_results;
// add the task_id to the list of tasks waiting for response
void add_waiting_task_id(int task_id) {
LOG_VERBOSE("waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.insert(task_id);
}
// when the request is finished, we can remove task associated with it
void remove_waiting_task_id(int task_id) {
LOG_VERBOSE("remove waiting for task id", {{"task_id", task_id}});
std::unique_lock<std::mutex> lock(mutex_results);
waiting_task_ids.erase(task_id);
}
// This function blocks the thread until there is a response for this task_id
task_result recv(int task_id) {
while (true)
{
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
return !queue_results.empty();
});
for (int i = 0; i < (int) queue_results.size(); i++)
{
if (queue_results[i].id == task_id)
{
assert(queue_results[i].multitask_id == -1);
task_result res = queue_results[i];
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// Register the function to update multitask
void on_multitask_update(callback_multitask_t callback) {
callback_update_multitask = callback;
}
// Send a new result to a waiting task_id
void send(task_result result) {
std::unique_lock<std::mutex> lock(mutex_results);
LOG_VERBOSE("send new result", {{"task_id", result.id}});
for (auto& task_id : waiting_task_ids) {
// LOG_TEE("waiting task id %i \n", task_id);
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
if (result.multitask_id == task_id)
{
LOG_VERBOSE("callback_update_multitask", {{"task_id", task_id}});
callback_update_multitask(task_id, result.id, result);
continue;
}
if (result.id == task_id)
{
LOG_VERBOSE("queue_results.push_back", {{"task_id", task_id}});
queue_results.push_back(result);
condition_results.notify_all();
return;
}
}
}
};
//
// base64 utils (TODO: move to common in the future)
//
static const std::string base64_chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(uint8_t c)
{
return (isalnum(c) || (c == '+') || (c == '/'));
}
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string)
{
int i = 0;
int j = 0;
int in_ = 0;
int in_len = encoded_string.size();
uint8_t char_array_4[4];
uint8_t char_array_3[3];
std::vector<uint8_t> ret;
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
{
char_array_4[i++] = encoded_string[in_]; in_++;
if (i == 4)
{
for (i = 0; i <4; i++)
{
char_array_4[i] = base64_chars.find(char_array_4[i]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
{
ret.push_back(char_array_3[i]);
}
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
{
char_array_4[j] = 0;
}
for (j = 0; j <4; j++)
{
char_array_4[j] = base64_chars.find(char_array_4[j]);
}
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++)
{
ret.push_back(char_array_3[j]);
}
}
return ret;
}
//
// random string / id
//
static std::string random_string()
{
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
std::random_device rd;
std::mt19937 generator(rd());
std::string result(32, ' ');
for (int i = 0; i < 32; ++i) {
result[i] = str[generator() % str.size()];
}
return result;
}
static std::string gen_chatcmplid()
{
std::stringstream chatcmplid;
chatcmplid << "chatcmpl-" << random_string();
return chatcmplid.str();
}
//
// other common utils
//
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
{
}
return i;
}
static bool ends_with(const std::string &str, const std::string &suffix)
{
return str.size() >= suffix.size() &&
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}
static size_t find_partial_stop_string(const std::string &stop,
const std::string &text)
{
if (!text.empty() && !stop.empty())
{
const char text_last_char = text.back();
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
{
if (stop[char_index] == text_last_char)
{
const std::string current_partial = stop.substr(0, char_index + 1);
if (ends_with(text, current_partial))
{
return text.size() - char_index - 1;
}
}
}
}
return std::string::npos;
}
// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
std::string ret;
for (; begin != end; ++begin)
{
ret += llama_token_to_piece(ctx, *begin);
}
return ret;
}
// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
// if the size is 1 and first bit is 1, meaning it's a partial character
// (size > 1 meaning it's already a known token)
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
{
std::stringstream ss;
ss << std::hex << (out[0] & 0xff);
std::string res(ss.str());
out = "byte: \\x" + res;
}
return out;
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
{
json out = json::array();
for (const auto &prob : probs)
{
json probs_for_token = json::array();
for (const auto &p : prob.probs)
{
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
probs_for_token.push_back(json
{
{"tok_str", tok_str},
{"prob", p.prob},
});
}
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
out.push_back(json{
{"content", tok_str},
{"probs", probs_for_token},
});
}
return out;
}

View File

@@ -1,137 +0,0 @@
# common logic across linux and darwin
init_vars() {
case "${GOARCH}" in
"amd64")
ARCH="x86_64"
;;
"arm64")
ARCH="arm64"
;;
*)
echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
exit 1
;;
esac
LLAMACPP_DIR=../llama.cpp
CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on"
CMAKE_TARGETS="--target ollama_llama_server"
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
else
# TODO - add additional optimization flags...
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=Release -DLLAMA_SERVER_VERBOSE=off ${CMAKE_DEFS}"
fi
case $(uname -s) in
"Darwin")
LIB_EXT="dylib"
WHOLE_ARCHIVE="-Wl,-force_load"
NO_WHOLE_ARCHIVE=""
GCC_ARCH="-arch ${ARCH}"
DIST_BASE=../../dist/darwin-${GOARCH}/
PAYLOAD_BASE=../../build/darwin/${GOARCH}
;;
"Linux")
LIB_EXT="so"
WHOLE_ARCHIVE="-Wl,--whole-archive"
NO_WHOLE_ARCHIVE="-Wl,--no-whole-archive"
# Cross compiling not supported on linux - Use docker
GCC_ARCH=""
DIST_BASE=../../dist/linux-${GOARCH}/
PAYLOAD_BASE=../../build/linux/${GOARCH}
;;
*)
;;
esac
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
fi
GZIP=$(command -v pigz 2>/dev/null || echo "gzip")
RUNNER_BASE="${DIST_BASE}/lib/ollama/runners"
}
git_module_setup() {
if [ -n "${OLLAMA_SKIP_PATCHING}" ]; then
echo "Skipping submodule initialization"
return
fi
# Make sure the tree is clean after the directory moves
if [ -d "${LLAMACPP_DIR}/gguf" ]; then
echo "Cleaning up old submodule"
rm -rf ${LLAMACPP_DIR}
fi
git submodule init
git submodule update --force ${LLAMACPP_DIR}
}
apply_patches() {
# apply temporary patches until fix is upstream
for patch in ../patches/*.patch; do
git -c 'user.name=nobody' -c 'user.email=<>' -C ${LLAMACPP_DIR} am ${patch}
done
}
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
# remove unnecessary build artifacts
rm -f ${BUILD_DIR}/bin/ggml-common.h ${BUILD_DIR}/bin/ggml-metal.metal
}
dist() {
[ -z "${RUNNER}" ] && exit 1
mkdir -p ${RUNNER_BASE}/${RUNNER}/
for f in ${BUILD_DIR}/bin/* ; do
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
fi
}
# Compress from the build $BUILD_DIR into the $PAYLOAD_BASE/$RUNNER dir
compress() {
[ -z "${RUNNER}" ] && exit 1
echo "Compressing payloads with ${GZIP} to reduce overall binary size..."
rm -rf "${PAYLOAD_BASE}/${RUNNER}/"
mkdir -p "${PAYLOAD_BASE}/${RUNNER}/"
for f in ${BUILD_DIR}/bin/* ; do
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
fi
echo
}
wait_for_compress() {
for pid in ${compress_pids}; do
wait $pid
done
echo "Finished compression"
}
install() {
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT} | grep -v "${BUILD_DIR}/bin/" ); do
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
cp -af "${lib}" "${BUILD_DIR}/bin/"
done
}
# Keep the local tree clean after we're done with the build
cleanup() {
git submodule update --force ${LLAMACPP_DIR}
}

View File

@@ -1,91 +0,0 @@
#!/bin/bash
# This script is intended to run inside the go generate
# working directory must be ./llm/generate/
# TODO - add hardening to detect missing tools (cmake, etc.)
set -ex
set -o pipefail
compress_pids=""
echo "Starting darwin generate script"
source $(dirname $0)/gen_common.sh
init_vars
git_module_setup
apply_patches
sign() {
if [ -n "$APPLE_IDENTITY" ]; then
codesign -f --timestamp --deep --options=runtime --sign "$APPLE_IDENTITY" --identifier ai.ollama.ollama $1
fi
}
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DGGML_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
case "${GOARCH}" in
"amd64")
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DGGML_METAL=off -DGGML_NATIVE=off"
if [ -z "$OLLAMA_SKIP_CPU_GENERATE" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
RUNNER=cpu
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building LCD CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
#
# ~2011 CPU Dynamic library with more capabilities turned on to optimize performance
# Approximately 400% faster than LCD on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
RUNNER=cpu_avx
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
#
# ~2013 CPU Dynamic library
# Approximately 10% faster than AVX on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
RUNNER=cpu_avx2
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
fi
;;
"arm64")
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
init_vars
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
RUNNER="metal"
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
compress
fi
;;
*)
echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
exit 1
;;
esac
cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -1,3 +0,0 @@
package generate
//go:generate bash ./gen_darwin.sh

View File

@@ -1,3 +0,0 @@
package generate
//go:generate bash ./gen_linux.sh

View File

@@ -1,3 +0,0 @@
package generate
//go:generate powershell -ExecutionPolicy Bypass -File ./gen_windows.ps1

View File

@@ -360,7 +360,7 @@ func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
}, offset, nil
}
func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
func (llm GGML) GraphSize(context, batch uint64) (kv, partialOffload, fullOffload uint64) {
embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV()
@@ -368,9 +368,12 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
embeddingHeadsV := llm.KV().EmbeddingHeadCountV()
layers := llm.Tensors().Layers()
kv = 2 * context * llm.KV().BlockCount() * (embeddingHeadsK + embeddingHeadsV) * headsKV
switch llm.KV().Architecture() {
case "llama":
fullOffload = max(
@@ -400,6 +403,42 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := llm.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(llm.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
}
fullOffload = max(
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
// vocab graph
4*batch*(embedding+vocab),
)
var ropeFreqsCount uint64
if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
}
partialOffload = max(
4*(batch*
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
ropeFreqsCount+
embeddingHeadsK*context*headsKV),
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
fullOffload = max(
4*batch*(embedding+vocab),

View File

@@ -123,13 +123,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
slog.Warn("model missing blk.0 layer size")
}
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6
}
@@ -137,6 +131,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
graphFullOffload = graphPartialOffload
}
// KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount()
// on metal there's no partial offload overhead
if gpus[0].Library == "metal" {
graphPartialOffload = graphFullOffload

View File

@@ -1,22 +0,0 @@
From 7a3555098d4591c9b329c677654497ed8cee07ec Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Fri, 23 Aug 2024 11:27:48 -0700
Subject: [PATCH] patch cmakelist
---
CMakeLists.txt | 2 ++
1 file changed, 2 insertions(+)
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 415743c2..aaadd13e 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -210,3 +210,5 @@ if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
+
+add_subdirectory(../ext_server ext_server) # ollama
--
2.39.3 (Apple Git-146)

View File

@@ -1,44 +0,0 @@
From c97ed60c3369294d5551ba099a88ddc509687df1 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Thu, 19 Sep 2024 16:55:15 -0600
Subject: [PATCH] patch load progress
---
common/common.cpp | 2 ++
common/common.h | 7 +++++++
2 files changed, 9 insertions(+)
diff --git a/common/common.cpp b/common/common.cpp
index 8d0ed4f9..a09e8a53 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -955,6 +955,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
+ mparams.progress_callback = params.progress_callback;
+ mparams.progress_callback_user_data = params.progress_callback_user_data;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
diff --git a/common/common.h b/common/common.h
index cb87c447..818a4a4a 100644
--- a/common/common.h
+++ b/common/common.h
@@ -266,6 +266,13 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector // NOLINT
std::vector<std::string> image; // path to image file(s)
+ // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
+ // If the provided progress_callback returns true, model loading continues.
+ // If it returns false, model loading is immediately aborted.
+ llama_progress_callback progress_callback = NULL;
+ // context pointer passed to the progress callback
+ void * progress_callback_user_data;
+
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
--
2.39.3 (Apple Git-146)

View File

@@ -1,24 +0,0 @@
From 6fdf4268e13e56f0050fa6a29b029cbd54be49d2 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Thu, 19 Sep 2024 16:58:03 -0600
Subject: [PATCH] clip log
---
examples/llava/clip.cpp | 1 +
1 file changed, 1 insertion(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 8aa7b075..b8941c74 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -3,6 +3,7 @@
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
+#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
--
2.39.3 (Apple Git-146)

View File

@@ -1,57 +0,0 @@
From 4f2b9cd0f012c49f40d0784454864ad41ca418b2 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Thu, 19 Sep 2024 17:00:28 -0600
Subject: [PATCH] load exception
---
src/llama.cpp | 25 ++++++++++++++++---------
1 file changed, 16 insertions(+), 9 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index af8afd84..4d1db3d5 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8871,7 +8871,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
- return -1;
+ throw;
}
// loading time will be recalculate after the first eval, so
@@ -18675,16 +18675,23 @@ struct llama_model * llama_load_model_from_file(
}
model->rpc_servers.push_back(servers);
}
- int status = llama_model_load(path_model, *model, params);
- GGML_ASSERT(status <= 0);
- if (status < 0) {
- if (status == -1) {
- LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
- } else if (status == -2) {
- LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+
+ try {
+ int status = llama_model_load(path_model, *model, params);
+ GGML_ASSERT(status <= 0);
+ if (status < 0) {
+ if (status == -1) {
+ LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
+ } else if (status == -2) {
+ LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
+ }
+ delete model;
+ return nullptr;
}
+ } catch (...) {
+ LLAMA_LOG_ERROR("%s: exception loading model\n", __func__);
delete model;
- return nullptr;
+ throw;
}
return model;
--
2.39.3 (Apple Git-146)

View File

@@ -1,57 +0,0 @@
From 91d3f886f1645b38d9658c0e125603e8d5338146 Mon Sep 17 00:00:00 2001
From: nobody <>
Date: Tue, 1 Oct 2024 13:55:01 -0600
Subject: [PATCH] metal
---
ggml/src/ggml-metal.m | 30 +++++++++++++-----------------
1 file changed, 13 insertions(+), 17 deletions(-)
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index 9da08fe2..3a433703 100644
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -1720,27 +1720,23 @@ static void ggml_metal_encode_node(
// to the matrix-vector kernel
int ne11_mm_min = 1;
-#if 0
// the numbers below are measured on M2 Ultra for 7B and 13B models
// these numbers do not translate to other devices or model sizes
// TODO: need to find a better approach
- if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
- switch (src0t) {
- case GGML_TYPE_F16: ne11_mm_min = 2; break;
- case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
- case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
- case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
- case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
- case GGML_TYPE_Q5_0: // not tested yet
- case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
- case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
- case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
- default: ne11_mm_min = 1; break;
- }
+ switch (src0t) {
+ case GGML_TYPE_F16: ne11_mm_min = 2; break;
+ case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
+ case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
+ case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
+ case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
+ case GGML_TYPE_Q5_0: // not tested yet
+ case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
+ case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
+ case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
+ default: ne11_mm_min = 1; break;
}
-#endif
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
--
2.39.3 (Apple Git-146)

View File

@@ -1,44 +0,0 @@
From 0e531d69786c4a96a3a2bcf7b2d576bd6f7edf25 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:13 -0700
Subject: [PATCH] 05-default-pretokenizer.diff
---
src/llama.cpp | 14 +++-----------
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 4c0a1bb6..800dfb95 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -6287,16 +6287,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
- if (tokenizer_pre.empty()) {
- LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__);
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
- LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
- LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
- LLAMA_LOG_WARN("%s: \n", __func__);
- vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
- } else if (tokenizer_pre == "default") {
+ if (tokenizer_pre == "default") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -6398,7 +6389,8 @@ static void llm_load_vocab(
vocab.tokenizer_add_bos = true;
vocab.tokenizer_clean_spaces = false;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
}
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
--
2.39.3 (Apple Git-146)

View File

@@ -1,54 +0,0 @@
From 235b6d876a74cb09abe26985fa89ebe5bfc9f562 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Thu, 19 Sep 2024 17:06:17 -0600
Subject: [PATCH] embeddings
---
src/llama.cpp | 15 +++++++++------
1 file changed, 9 insertions(+), 6 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 1a8e0c51..e55ec3f8 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -16516,7 +16516,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
- const bool has_logits = !cparams.embeddings;
+ const bool has_logits = cparams.causal_attn;
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
@@ -16794,20 +16794,23 @@ static int llama_decode_internal(
// no output
res = nullptr;
embd = nullptr;
- } else if (cparams.embeddings) {
- res = nullptr; // do not extract logits for embedding case
- embd = nullptr;
+ }
+
+ if (cparams.embeddings) {
for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
+ embd = ggml_graph_node(gf, i);
if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) {
- embd = ggml_graph_node(gf, i);
break;
}
}
- GGML_ASSERT(embd != nullptr && "missing embeddings tensor");
} else {
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
+
+ if (!cparams.causal_attn) {
+ res = nullptr; // do not extract logits when not needed
+ }
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
ggml_backend_sched_alloc_graph(lctx.sched, gf);
--
2.39.3 (Apple Git-146)

View File

@@ -1,54 +0,0 @@
From 01c42149cbdc194644a2f138598029938e0dd447 Mon Sep 17 00:00:00 2001
From: Gabe Goodhart <ghart@us.ibm.com>
Date: Thu, 19 Sep 2024 17:09:57 -0600
Subject: [PATCH] clip unicode
---
examples/llava/clip.cpp | 23 +++++++++++++++++++++++
1 file changed, 23 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index b8941c74..3a735f17 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -40,6 +40,14 @@
#include <cinttypes>
#include <limits>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+ #define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
#define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
@@ -1227,7 +1235,22 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
+#ifdef _WIN32
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
+ if (!wlen) {
+ return NULL;
+ }
+ wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
+ wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
+ if (!wlen) {
+ free(wbuf);
+ return NULL;
+ }
+ auto fin = std::ifstream(wbuf, std::ios::binary);
+ free(wbuf);
+#else
auto fin = std::ifstream(fname, std::ios::binary);
+#endif
if (!fin) {
LOG_ERR("cannot open model file for loading tensors\n");
clip_free(new_clip);
--
2.39.3 (Apple Git-146)

View File

@@ -1,412 +0,0 @@
From a8fe40fa7b026d2db9bb6aeecd24fcd2027110ec Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:16 -0700
Subject: [PATCH] add solar-pro support
solar-pro introduces block skip connections where blocks are connected
to other, non-sequential blocks with a scale multiple
this change adds 4 new keys to store the skip connections and one new
tensor to store the scalar. the scalar is implemented a 1-dimensional
tensor with 2 elements dervied from the model's bskcn_tv configuration.
in general, the values are (bskcn_tv, 1 - bskcn_tv)
---
src/llama.cpp | 270 +++++++++++++++++++++++++++++++++++++++++++++++---
1 file changed, 255 insertions(+), 15 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 4c0a1bb6..c6fc0c3f 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -217,6 +217,7 @@ enum llm_arch {
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
+ LLM_ARCH_SOLAR,
LLM_ARCH_UNKNOWN,
};
@@ -270,6 +271,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
+ { LLM_ARCH_SOLAR, "solar" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -327,6 +329,7 @@ enum llm_kv {
LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_FREQ_BASE,
@@ -421,20 +424,21 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
- { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
- { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
- { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
- { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
- { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
- { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
- { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
- { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
- { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
- { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
- { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
- { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
- { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
- { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
+ { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
+ { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
+ { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
+ { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
+ { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
+ { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
+ { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
+ { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
+ { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
+ { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
+ { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
+ { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" },
+ { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
+ { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
@@ -608,6 +612,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
+ LLM_TENSOR_BSKCN_TV,
};
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
@@ -1527,6 +1532,25 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
+
+ {
+ LLM_ARCH_SOLAR,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_OUTPUT, "output" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_BSKCN_TV, "bskcn_tv" },
+ },
+ },
{
LLM_ARCH_UNKNOWN,
{
@@ -2360,6 +2384,7 @@ enum e_model {
MODEL_15B,
MODEL_16B,
MODEL_20B,
+ MODEL_22B,
MODEL_30B,
MODEL_34B,
MODEL_35B,
@@ -2409,6 +2434,8 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
+ std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
+
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -2479,6 +2506,7 @@ struct llama_hparams {
if (this->n_head_arr != other.n_head_arr) return true;
if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
if (this->n_ff_arr != other.n_ff_arr) return true;
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
@@ -2588,6 +2616,14 @@ struct llama_hparams {
return ssm_d_state * ssm_d_inner;
}
}
+
+ bool n_bskcn(uint32_t n, uint32_t il = 0) const {
+ if (il < n_layer) {
+ return n_bskcn_arr[n][il] > 0;
+ }
+
+ GGML_ABORT("fatal error");
+ }
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
@@ -2769,6 +2805,8 @@ struct llama_layer {
struct ggml_tensor * ffn_gate_scale;
struct ggml_tensor * ffn_up_scale;
struct ggml_tensor * ffn_down_scale;
+
+ struct ggml_tensor * bskcn_tv;
};
// very similar to llama_batch,
@@ -6134,6 +6172,21 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ for (int i = 0; i < hparams.n_bskcn_arr.max_size(); ++i) {
+ auto & bskcn = hparams.n_bskcn_arr.at(i);
+ bskcn.fill(0);
+ ml.get_key_or_arr(::format(LLM_KV_NAMES.at(LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION), LLM_ARCH_NAMES.at(ml.llm_kv.arch), i), bskcn, hparams.n_layer, false);
+ }
+
+ switch (hparams.n_layer) {
+ case 64: model.type = e_model::MODEL_22B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ }
default: (void)0;
}
@@ -8839,6 +8892,37 @@ static bool llm_load_tensors(
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ }
+ } break;
+ case LLM_ARCH_SOLAR:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ {
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
+ }
+
+ for (int i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+
+ layer.bskcn_tv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_BSKCN_TV, "weight"), {2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
+
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
@@ -16009,7 +16093,6 @@ struct llm_build_context {
return gf;
}
-
// ref: https://github.com/facebookresearch/chameleon
// based on the original build_llama() function, changes:
// * qk-norm
@@ -16187,6 +16270,158 @@ struct llm_build_context {
return gf;
}
+
+ ggml_cgraph * build_solar() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
+
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
+ int32_t n_tokens = this->n_tokens;
+
+ const int64_t n_embd_head = hparams.n_embd_head_v;
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ struct ggml_tensor * bskcn_1;
+ struct ggml_tensor * bskcn_2;
+
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ if (hparams.n_bskcn(0, il)) {
+ bskcn_1 = inpSA;
+ }
+
+ if (hparams.n_bskcn(1, il)) {
+ bskcn_2 = inpSA;
+ }
+
+ if (hparams.n_bskcn(2, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_1, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ if (hparams.n_bskcn(3, il)) {
+ inpSA = ggml_add(
+ ctx0,
+ ggml_mul(ctx0, bskcn_2, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, 0)),
+ ggml_mul(ctx0, inpSA, ggml_view_1d(ctx0, model.layers[il].bskcn_tv, 1, ggml_element_size(model.layers[il].bskcn_tv))));
+ }
+
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
+
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+ if (model.layers[il].bq) {
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
+ cb(Qcur, "Qcur", il);
+ }
+
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+ if (model.layers[il].bk) {
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
+ cb(Kcur, "Kcur", il);
+ }
+
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+ if (model.layers[il].bv) {
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
+ cb(Vcur, "Vcur", il);
+ }
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Qcur, "Qcur", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ n_tokens = n_outputs;
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+ }
+
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+ cb(ffn_inp, "ffn_inp", il);
+
+ // feed-forward network
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ cur = llm_build_ffn(ctx0, lctx, cur,
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
+ NULL,
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+
+ cur = ggml_add(ctx0, cur, ffn_inp);
+ cb(cur, "ffn_out", il);
+
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -16451,6 +16686,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_chameleon();
} break;
+ case LLM_ARCH_SOLAR:
+ {
+ result = llm.build_solar();
+ } break;
default:
GGML_ABORT("fatal error");
}
@@ -19594,6 +19833,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
+ case LLM_ARCH_SOLAR:
return LLAMA_ROPE_TYPE_NORM;
// the pairs of head values are offset by n_rot/2
--
2.39.3 (Apple Git-146)

View File

@@ -186,7 +186,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
"--model", model,
"--ctx-size", strconv.Itoa(opts.NumCtx),
"--batch-size", strconv.Itoa(opts.NumBatch),
"--embedding",
}
if opts.NumGPU >= 0 {
@@ -218,10 +217,6 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
params = append(params, "--threads", strconv.Itoa(defaultThreads))
}
if !opts.F16KV {
params = append(params, "--memory-f32")
}
flashAttnEnabled := envconfig.FlashAttention()
for _, g := range gpus {
@@ -958,7 +953,10 @@ func (s *llmServer) Tokenize(ctx context.Context, content string) ([]int, error)
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return nil, err
}
s.model = m
}
return s.model.Tokenize(content, false, true)
@@ -1027,7 +1025,10 @@ func (s *llmServer) Detokenize(ctx context.Context, tokens []int) (string, error
if resp.StatusCode == http.StatusNotFound {
if s.model == nil {
slog.Debug("new runner detected, loading model for cgo tokenization")
m := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
m, err := llama.LoadModelFromFile(s.modelPath, llama.ModelParams{VocabOnly: true})
if err != nil {
return "", err
}
s.model = m
}
var resp string