mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
batch: use tensors for outputs (#12185)
this cleans up the model interface slightly without too much impact in other areas
This commit is contained in:
@@ -176,7 +176,6 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
|
||||
@@ -193,7 +192,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
lastLayerOutputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
|
||||
|
||||
@@ -22,7 +22,6 @@ type embedModel struct {
|
||||
}
|
||||
|
||||
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
batch.Outputs = batch.Positions // return all positions
|
||||
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
|
||||
|
||||
switch m.PoolingType {
|
||||
|
||||
@@ -161,7 +161,6 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
|
||||
|
||||
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
|
||||
@@ -194,7 +193,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
|
||||
|
||||
var lastLayerOutputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
lastLayerOutputs = outputs
|
||||
lastLayerOutputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
|
||||
|
||||
@@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
|
||||
|
||||
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
|
||||
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
|
||||
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
|
||||
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
|
||||
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
|
||||
@@ -41,8 +41,8 @@ func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, err
|
||||
}
|
||||
|
||||
var outputs ml.Tensor
|
||||
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if i == len(m.TransformerBlocks)-1 {
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
|
||||
|
||||
@@ -160,7 +160,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
|
||||
|
||||
@@ -176,9 +176,7 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
@@ -159,9 +159,8 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
@@ -107,10 +107,9 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
// TODO: attention mask, cross attention mask
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
@@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
|
||||
|
||||
@@ -140,9 +140,8 @@ func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
@@ -165,7 +165,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
|
||||
var outputs ml.Tensor
|
||||
if i == len(m.Layers)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
|
||||
|
||||
Reference in New Issue
Block a user