mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
add new gemma model (#11204)
* update patches * cherry pick metal mean kernel * cherry pick cuda mean kernel * gemma3n
This commit is contained in:
@@ -190,6 +190,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Gemma3nForConditionalGeneration":
|
||||
conv = &gemma3nModel{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
|
||||
168
convert/convert_gemma3n.go
Normal file
168
convert/convert_gemma3n.go
Normal file
@@ -0,0 +1,168 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
type gemma3nModel struct {
|
||||
ModelParameters
|
||||
|
||||
TextModel struct {
|
||||
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
|
||||
AltupActiveIdx uint32 `json:"altup_active_idx"`
|
||||
AltupCoefClip float32 `json:"altup_coef_clip"`
|
||||
AltupCorrectScale bool `json:"altup_correct_scale"`
|
||||
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
|
||||
AltupNumInputs uint32 `json:"altup_num_inputs"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
LaurelRank uint32 `json:"laurel_rank"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct{} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3n"
|
||||
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
|
||||
norm := distuv.Normal{Mu: 0, Sigma: 1}
|
||||
for _, v := range m.TextModel.ActivationSparsityPattern {
|
||||
if !yield(float32(norm.Quantile(float64(v)))) {
|
||||
break
|
||||
}
|
||||
}
|
||||
})
|
||||
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
|
||||
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
|
||||
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
|
||||
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
|
||||
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
|
||||
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
|
||||
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
|
||||
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
|
||||
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
|
||||
for _, t := range m.TextModel.LayerTypes {
|
||||
if !yield(t == "sliding_attention") {
|
||||
break
|
||||
}
|
||||
}
|
||||
})
|
||||
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
|
||||
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
|
||||
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
|
||||
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
|
||||
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
|
||||
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
|
||||
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
|
||||
kv["gemma3n.laurel_rank"] = m.TextModel.LaurelRank
|
||||
kv["gemma3n.num_kv_shared_layers"] = m.TextModel.NumKVSharedLayers
|
||||
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
|
||||
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
out, ts := mergeTensors(ts,
|
||||
merge{"altup_proj.*.weight", "altup_proj.weight"},
|
||||
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
|
||||
)
|
||||
|
||||
for _, t := range ts {
|
||||
switch {
|
||||
case strings.Contains(t.Name(), "audio_tower"),
|
||||
strings.Contains(t.Name(), "embed_audio"),
|
||||
strings.Contains(t.Name(), "vision_tower"),
|
||||
strings.Contains(t.Name(), "embed_vision"):
|
||||
// TODO: handle audio and vision towers
|
||||
continue
|
||||
case strings.Contains(t.Name(), "altup_predict_coef"),
|
||||
strings.Contains(t.Name(), "altup_correct_coef"):
|
||||
if m.TextModel.AltupCoefClip > 0 {
|
||||
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) Replacements() []string {
|
||||
return []string{
|
||||
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
|
||||
"model.language_model.embed_tokens", "token_embd",
|
||||
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
|
||||
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
|
||||
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
|
||||
"model.language_model.norm", "output_norm",
|
||||
"model.language_model.layers", "blk",
|
||||
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"per_layer_input_gate", "inp_gate",
|
||||
"per_layer_projection", "proj",
|
||||
"post_per_layer_input_norm", "post_norm",
|
||||
"altup.", "altup_",
|
||||
"modality_router", "router",
|
||||
"prediction_coefs", "predict_coef",
|
||||
"correction_coefs", "correct_coef",
|
||||
"correct_output_scale", "correct_scale.weight",
|
||||
"laurel.", "laurel_",
|
||||
"linear_left", "l",
|
||||
"linear_right", "r",
|
||||
"post_laurel_norm", "post_norm",
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user