docs: add reference to docs.ollama.com (#12800)

This commit is contained in:
Parth Sareen
2025-10-28 12:44:02 -07:00
committed by GitHub
parent 1188f408dd
commit 934dd9e196
77 changed files with 6702 additions and 0 deletions

View File

@@ -0,0 +1,113 @@
---
title: Embeddings
description: Generate text embeddings for semantic search, retrieval, and RAG.
---
Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 3841024 dimensions).
## Recommended models
- [embeddinggemma](https://ollama.com/library/embeddinggemma)
- [qwen3-embedding](https://ollama.com/library/qwen3-embedding)
- [all-minilm](https://ollama.com/library/all-minilm)
## Generate embeddings
Use `/api/embed` with a single string.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": "The quick brown fox jumps over the lazy dog."
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
single = ollama.embed(
model='embeddinggemma',
input='The quick brown fox jumps over the lazy dog.'
)
print(len(single['embeddings'][0])) # vector length
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const single = await ollama.embed({
model: 'embeddinggemma',
input: 'The quick brown fox jumps over the lazy dog.',
})
console.log(single.embeddings[0].length) // vector length
```
</Tab>
</Tabs>
<Note>
The `/api/embed` endpoint returns L2normalized (unitlength) vectors.
</Note>
## Generate a batch of embeddings
Pass an array of strings to `input`.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": [
"First sentence",
"Second sentence",
"Third sentence"
]
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
batch = ollama.embed(
model='embeddinggemma',
input=[
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
]
)
print(len(batch['embeddings'])) # number of vectors
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const batch = await ollama.embed({
model: 'embeddinggemma',
input: [
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
],
})
console.log(batch.embeddings.length) // number of vectors
```
</Tab>
</Tabs>
## Tips
- Use cosine similarity for most semantic search use cases.
- Use the same embedding model for both indexing and querying.