mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-24 07:28:27 +00:00
docs: add reference to docs.ollama.com (#12800)
This commit is contained in:
113
docs/capabilities/embeddings.mdx
Normal file
113
docs/capabilities/embeddings.mdx
Normal file
@@ -0,0 +1,113 @@
|
||||
---
|
||||
title: Embeddings
|
||||
description: Generate text embeddings for semantic search, retrieval, and RAG.
|
||||
---
|
||||
|
||||
Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 384–1024 dimensions).
|
||||
|
||||
## Recommended models
|
||||
|
||||
- [embeddinggemma](https://ollama.com/library/embeddinggemma)
|
||||
- [qwen3-embedding](https://ollama.com/library/qwen3-embedding)
|
||||
- [all-minilm](https://ollama.com/library/all-minilm)
|
||||
|
||||
## Generate embeddings
|
||||
|
||||
Use `/api/embed` with a single string.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="cURL">
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/embed \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "embeddinggemma",
|
||||
"input": "The quick brown fox jumps over the lazy dog."
|
||||
}'
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="Python">
|
||||
```python
|
||||
import ollama
|
||||
|
||||
single = ollama.embed(
|
||||
model='embeddinggemma',
|
||||
input='The quick brown fox jumps over the lazy dog.'
|
||||
)
|
||||
print(len(single['embeddings'][0])) # vector length
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="JavaScript">
|
||||
```javascript
|
||||
import ollama from 'ollama'
|
||||
|
||||
const single = await ollama.embed({
|
||||
model: 'embeddinggemma',
|
||||
input: 'The quick brown fox jumps over the lazy dog.',
|
||||
})
|
||||
console.log(single.embeddings[0].length) // vector length
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
<Note>
|
||||
The `/api/embed` endpoint returns L2‑normalized (unit‑length) vectors.
|
||||
</Note>
|
||||
|
||||
## Generate a batch of embeddings
|
||||
|
||||
Pass an array of strings to `input`.
|
||||
|
||||
<Tabs>
|
||||
<Tab title="cURL">
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/embed \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "embeddinggemma",
|
||||
"input": [
|
||||
"First sentence",
|
||||
"Second sentence",
|
||||
"Third sentence"
|
||||
]
|
||||
}'
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="Python">
|
||||
```python
|
||||
import ollama
|
||||
|
||||
batch = ollama.embed(
|
||||
model='embeddinggemma',
|
||||
input=[
|
||||
'The quick brown fox jumps over the lazy dog.',
|
||||
'The five boxing wizards jump quickly.',
|
||||
'Jackdaws love my big sphinx of quartz.',
|
||||
]
|
||||
)
|
||||
print(len(batch['embeddings'])) # number of vectors
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="JavaScript">
|
||||
```javascript
|
||||
import ollama from 'ollama'
|
||||
|
||||
const batch = await ollama.embed({
|
||||
model: 'embeddinggemma',
|
||||
input: [
|
||||
'The quick brown fox jumps over the lazy dog.',
|
||||
'The five boxing wizards jump quickly.',
|
||||
'Jackdaws love my big sphinx of quartz.',
|
||||
],
|
||||
})
|
||||
console.log(batch.embeddings.length) // number of vectors
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Tips
|
||||
|
||||
- Use cosine similarity for most semantic search use cases.
|
||||
- Use the same embedding model for both indexing and querying.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user