mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
docs: add reference to docs.ollama.com (#12800)
This commit is contained in:
194
docs/capabilities/structured-outputs.mdx
Normal file
194
docs/capabilities/structured-outputs.mdx
Normal file
@@ -0,0 +1,194 @@
|
||||
---
|
||||
title: Structured Outputs
|
||||
---
|
||||
|
||||
Structured outputs let you enforce a JSON schema on model responses so you can reliably extract structured data, describe images, or keep every reply consistent.
|
||||
|
||||
## Generating structured JSON
|
||||
|
||||
<Tabs>
|
||||
<Tab title="cURL">
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-oss",
|
||||
"messages": [{"role": "user", "content": "Tell me about Canada in one line"}],
|
||||
"stream": false,
|
||||
"format": "json"
|
||||
}'
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="Python">
|
||||
```python
|
||||
from ollama import chat
|
||||
|
||||
response = chat(
|
||||
model='gpt-oss',
|
||||
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
|
||||
format='json'
|
||||
)
|
||||
print(response.message.content)
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="JavaScript">
|
||||
```javascript
|
||||
import ollama from 'ollama'
|
||||
|
||||
const response = await ollama.chat({
|
||||
model: 'gpt-oss',
|
||||
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
|
||||
format: 'json'
|
||||
})
|
||||
console.log(response.message.content)
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Generating structured JSON with a schema
|
||||
|
||||
Provide a JSON schema to the `format` field.
|
||||
|
||||
<Note>
|
||||
It is ideal to also pass the JSON schema as a string in the prompt to ground the model's response.
|
||||
</Note>
|
||||
|
||||
<Tabs>
|
||||
<Tab title="cURL">
|
||||
```shell
|
||||
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
|
||||
"model": "gpt-oss",
|
||||
"messages": [{"role": "user", "content": "Tell me about Canada."}],
|
||||
"stream": false,
|
||||
"format": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"capital": {"type": "string"},
|
||||
"languages": {
|
||||
"type": "array",
|
||||
"items": {"type": "string"}
|
||||
}
|
||||
},
|
||||
"required": ["name", "capital", "languages"]
|
||||
}
|
||||
}'
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="Python">
|
||||
Use Pydantic models and pass `model_json_schema()` to `format`, then validate the response:
|
||||
|
||||
```python
|
||||
from ollama import chat
|
||||
from pydantic import BaseModel
|
||||
|
||||
class Country(BaseModel):
|
||||
name: str
|
||||
capital: str
|
||||
languages: list[str]
|
||||
|
||||
response = chat(
|
||||
model='gpt-oss',
|
||||
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
|
||||
format=Country.model_json_schema(),
|
||||
)
|
||||
|
||||
country = Country.model_validate_json(response.message.content)
|
||||
print(country)
|
||||
```
|
||||
</Tab>
|
||||
<Tab title="JavaScript">
|
||||
Serialize a Zod schema with `zodToJsonSchema()` and parse the structured response:
|
||||
|
||||
```javascript
|
||||
import ollama from 'ollama'
|
||||
import { z } from 'zod'
|
||||
import { zodToJsonSchema } from 'zod-to-json-schema'
|
||||
|
||||
const Country = z.object({
|
||||
name: z.string(),
|
||||
capital: z.string(),
|
||||
languages: z.array(z.string()),
|
||||
})
|
||||
|
||||
const response = await ollama.chat({
|
||||
model: 'gpt-oss',
|
||||
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
|
||||
format: zodToJsonSchema(Country),
|
||||
})
|
||||
|
||||
const country = Country.parse(JSON.parse(response.message.content))
|
||||
console.log(country)
|
||||
```
|
||||
</Tab>
|
||||
</Tabs>
|
||||
|
||||
## Example: Extract structured data
|
||||
|
||||
Define the objects you want returned and let the model populate the fields:
|
||||
|
||||
```python
|
||||
from ollama import chat
|
||||
from pydantic import BaseModel
|
||||
|
||||
class Pet(BaseModel):
|
||||
name: str
|
||||
animal: str
|
||||
age: int
|
||||
color: str | None
|
||||
favorite_toy: str | None
|
||||
|
||||
class PetList(BaseModel):
|
||||
pets: list[Pet]
|
||||
|
||||
response = chat(
|
||||
model='gpt-oss',
|
||||
messages=[{'role': 'user', 'content': 'I have two cats named Luna and Loki...'}],
|
||||
format=PetList.model_json_schema(),
|
||||
)
|
||||
|
||||
pets = PetList.model_validate_json(response.message.content)
|
||||
print(pets)
|
||||
```
|
||||
|
||||
## Example: Vision with structured outputs
|
||||
|
||||
Vision models accept the same `format` parameter, enabling deterministic descriptions of images:
|
||||
|
||||
```python
|
||||
from ollama import chat
|
||||
from pydantic import BaseModel
|
||||
from typing import Literal, Optional
|
||||
|
||||
class Object(BaseModel):
|
||||
name: str
|
||||
confidence: float
|
||||
attributes: str
|
||||
|
||||
class ImageDescription(BaseModel):
|
||||
summary: str
|
||||
objects: list[Object]
|
||||
scene: str
|
||||
colors: list[str]
|
||||
time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
|
||||
setting: Literal['Indoor', 'Outdoor', 'Unknown']
|
||||
text_content: Optional[str] = None
|
||||
|
||||
response = chat(
|
||||
model='gemma3',
|
||||
messages=[{
|
||||
'role': 'user',
|
||||
'content': 'Describe this photo and list the objects you detect.',
|
||||
'images': ['path/to/image.jpg'],
|
||||
}],
|
||||
format=ImageDescription.model_json_schema(),
|
||||
options={'temperature': 0},
|
||||
)
|
||||
|
||||
image_description = ImageDescription.model_validate_json(response.message.content)
|
||||
print(image_description)
|
||||
```
|
||||
|
||||
## Tips for reliable structured outputs
|
||||
|
||||
- Define schemas with Pydantic (Python) or Zod (JavaScript) so they can be reused for validation.
|
||||
- Lower the temperature (e.g., set it to `0`) for more deterministic completions.
|
||||
- Structured outputs work through the OpenAI-compatible API via `response_format`
|
||||
Reference in New Issue
Block a user