mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
Merge remote-tracking branch 'upstream/main'
This commit is contained in:
@@ -98,7 +98,7 @@ if(CMAKE_HIP_COMPILER)
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011|1012(:xnack-)|103[0-6]|110[0-3]|1150)$")
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011(:xnack-)|1012(:xnack-)|103[0-6]|110[0-3]|115[01]|1201)$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
|
||||
@@ -56,7 +56,7 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1011;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1012:xnack-;"
|
||||
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx1201;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1011:xnack-;gfx1012:xnack-;"
|
||||
}
|
||||
}
|
||||
],
|
||||
|
||||
@@ -312,17 +312,19 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
||||
}
|
||||
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
bts := C.malloc(C.size_t(t.Size()))
|
||||
if bts == nil {
|
||||
return errors.New("failed to allocate tensor buffer")
|
||||
}
|
||||
defer C.free(bts)
|
||||
|
||||
buf := unsafe.Slice((*byte)(bts), t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
|
||||
if err != nil || n != len(buf) {
|
||||
return errors.New("read failed")
|
||||
}
|
||||
|
||||
if n != len(bts) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
|
||||
return nil
|
||||
})
|
||||
}
|
||||
@@ -371,7 +373,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
|
||||
C.int(len(schedBackends)),
|
||||
C.size_t(maxGraphNodes),
|
||||
true,
|
||||
C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
|
||||
),
|
||||
input: deviceBufferTypes[input.d],
|
||||
output: deviceBufferTypes[output.d],
|
||||
|
||||
@@ -89,7 +89,7 @@ type InputCacheSlot struct {
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*InputCacheSlot, []input.Input, error) {
|
||||
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
|
||||
var slot *InputCacheSlot
|
||||
var numPast int32
|
||||
var err error
|
||||
@@ -107,11 +107,6 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input, cachePrompt bool) (*Inp
|
||||
return nil, nil, err
|
||||
}
|
||||
|
||||
// TODO (brucemacd): cachePrompt is always true for completion, but false for embedding, can this be improved?
|
||||
if !cachePrompt {
|
||||
numPast = 0
|
||||
}
|
||||
|
||||
slot.InUse = true
|
||||
slot.lastUsed = time.Now()
|
||||
|
||||
|
||||
@@ -297,3 +297,131 @@ func TestShiftDiscard(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLoadCacheSlot(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
cache InputCache
|
||||
prompt []input.Input
|
||||
wantErr bool
|
||||
expectedSlotId int
|
||||
expectedPrompt int // expected length of remaining prompt
|
||||
}{
|
||||
{
|
||||
name: "Basic cache hit - single user",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Only token 3 remains
|
||||
},
|
||||
{
|
||||
name: "Basic cache hit - multi user",
|
||||
cache: InputCache{
|
||||
multiUserCache: true,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
{
|
||||
Id: 1,
|
||||
Inputs: []input.Input{},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-2 * time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Only token 3 remains
|
||||
},
|
||||
{
|
||||
name: "Exact match - leave one input",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: false,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}},
|
||||
wantErr: false,
|
||||
expectedSlotId: 0,
|
||||
expectedPrompt: 1, // Should leave 1 token for sampling
|
||||
},
|
||||
{
|
||||
name: "No available slots",
|
||||
cache: InputCache{
|
||||
multiUserCache: false,
|
||||
slots: []InputCacheSlot{
|
||||
{
|
||||
Id: 0,
|
||||
Inputs: []input.Input{{Token: 1}, {Token: 2}},
|
||||
InUse: true,
|
||||
lastUsed: time.Now().Add(-time.Second),
|
||||
},
|
||||
},
|
||||
},
|
||||
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
|
||||
wantErr: true,
|
||||
expectedSlotId: -1,
|
||||
expectedPrompt: -1,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
|
||||
|
||||
// Check error state
|
||||
if (err != nil) != tt.wantErr {
|
||||
t.Errorf("LoadCacheSlot() error = %v, wantErr %v", err, tt.wantErr)
|
||||
return
|
||||
}
|
||||
|
||||
if tt.wantErr {
|
||||
return // Skip further checks if we expected an error
|
||||
}
|
||||
|
||||
// Verify slot ID
|
||||
if slot.Id != tt.expectedSlotId {
|
||||
t.Errorf("LoadCacheSlot() slot ID = %v, expected %v", slot.Id, tt.expectedSlotId)
|
||||
}
|
||||
|
||||
// Verify slot is now marked in use
|
||||
if !slot.InUse {
|
||||
t.Errorf("LoadCacheSlot() slot not marked InUse")
|
||||
}
|
||||
|
||||
// Verify remaining prompt length
|
||||
if len(remainingPrompt) != tt.expectedPrompt {
|
||||
t.Errorf("LoadCacheSlot() remaining prompt length = %v, expected %v",
|
||||
len(remainingPrompt), tt.expectedPrompt)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -115,6 +115,9 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
|
||||
params.numKeep = int32(len(inputs))
|
||||
}
|
||||
|
||||
// TODO(jessegross): We should ensure that we always leave minBatch of context space to shift,
|
||||
// otherwise we might truncate or split the batch against the model's wishes
|
||||
|
||||
// Ensure that at least 1 input can be discarded during shift
|
||||
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
|
||||
|
||||
@@ -366,17 +369,6 @@ func (s *Server) processBatch() error {
|
||||
batchSize := s.batchSize
|
||||
|
||||
for j, inp := range seq.inputs {
|
||||
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+1) > s.cache.numCtx {
|
||||
if len(seq.pendingInputs) == 0 {
|
||||
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
} else {
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
// If we are required to put following inputs into a single batch then extend the
|
||||
// batch size. Since we are only extending the size the minimum amount possible, this
|
||||
// will cause a break if we have pending inputs.
|
||||
@@ -389,6 +381,20 @@ func (s *Server) processBatch() error {
|
||||
break
|
||||
}
|
||||
|
||||
// If the sum of our working set (already processed tokens, tokens we added to this
|
||||
// batch, required following tokens) exceeds the context size, then trigger a shift
|
||||
// now so we don't have to do one later when we can't break the batch.
|
||||
if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
|
||||
if len(seq.pendingInputs) != 0 {
|
||||
break
|
||||
}
|
||||
|
||||
err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
options.Inputs = append(options.Inputs, inp.Token)
|
||||
if inp.Multimodal != nil {
|
||||
options.Multimodal = append(options.Multimodal, input.MultimodalIndex{Index: len(options.Inputs) - 1, Multimodal: inp.Multimodal})
|
||||
@@ -590,7 +596,7 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
|
||||
found := false
|
||||
for i, sq := range s.seqs {
|
||||
if sq == nil {
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
|
||||
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
|
||||
if err != nil {
|
||||
s.mu.Unlock()
|
||||
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
|
||||
|
||||
@@ -87,8 +87,9 @@ func (s *Sampler) sample(tokens []token) (token, error) {
|
||||
// topK also sorts the tokens in descending order of logits
|
||||
tokens = topK(tokens, s.topK)
|
||||
|
||||
tokens = temperature(tokens, s.temperature)
|
||||
tokens = softmax(tokens)
|
||||
// scale and normalize the tokens in place
|
||||
temperature(tokens, s.temperature)
|
||||
softmax(tokens)
|
||||
|
||||
tokens = topP(tokens, s.topP)
|
||||
tokens = minP(tokens, s.minP)
|
||||
|
||||
@@ -26,17 +26,16 @@ func (h *tokenHeap) Pop() any {
|
||||
}
|
||||
|
||||
// temperature applies scaling to the logits
|
||||
func temperature(ts []token, temp float32) []token {
|
||||
func temperature(ts []token, temp float32) {
|
||||
// Ensure temperature clipping near 0 to avoid numerical instability
|
||||
temp = max(temp, 1e-7)
|
||||
for i := range ts {
|
||||
ts[i].value = ts[i].value / temp
|
||||
}
|
||||
return ts
|
||||
}
|
||||
|
||||
// softmax applies normalization to the logits
|
||||
func softmax(ts []token) []token {
|
||||
func softmax(ts []token) {
|
||||
// Find max logit for numerical stability
|
||||
maxLogit := float32(math.Inf(-1))
|
||||
for _, t := range ts {
|
||||
@@ -56,8 +55,6 @@ func softmax(ts []token) []token {
|
||||
for i := range ts {
|
||||
ts[i].value /= sum
|
||||
}
|
||||
|
||||
return ts
|
||||
}
|
||||
|
||||
// topK limits the number of tokens considered to the k highest logits
|
||||
@@ -99,6 +96,7 @@ func topK(ts []token, k int) []token {
|
||||
}
|
||||
|
||||
// topP limits tokens to those with cumulative probability p
|
||||
// requires ts to be sorted in descending order of probabilities
|
||||
func topP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
@@ -109,37 +107,24 @@ func topP(ts []token, p float32) []token {
|
||||
for i, t := range ts {
|
||||
sum += t.value
|
||||
if sum > float32(p) {
|
||||
ts = ts[:i+1]
|
||||
return ts
|
||||
return ts[:i+1]
|
||||
}
|
||||
}
|
||||
|
||||
return ts
|
||||
}
|
||||
|
||||
// minP limits tokens to those with cumulative probability p
|
||||
// minP filters tokens with probabilities >= p * max_prob
|
||||
// requires ts to be sorted in descending order of probabilities
|
||||
func minP(ts []token, p float32) []token {
|
||||
if p == 1.0 {
|
||||
return ts
|
||||
}
|
||||
|
||||
maxProb := float32(math.Inf(-1))
|
||||
for _, token := range ts {
|
||||
if token.value > maxProb {
|
||||
maxProb = token.value
|
||||
}
|
||||
}
|
||||
|
||||
threshold := maxProb * float32(p)
|
||||
|
||||
// Filter tokens in-place
|
||||
validTokens := ts[:0]
|
||||
for i, token := range ts {
|
||||
if token.value >= threshold {
|
||||
validTokens = append(validTokens, ts[i])
|
||||
}
|
||||
}
|
||||
|
||||
ts = validTokens
|
||||
maxProb := ts[0].value
|
||||
|
||||
threshold := maxProb * p
|
||||
|
||||
for i, t := range ts {
|
||||
if t.value < threshold {
|
||||
return ts[:i]
|
||||
}
|
||||
}
|
||||
return ts
|
||||
}
|
||||
|
||||
@@ -34,17 +34,22 @@ func compareLogits(t *testing.T, name string, want []float32, got []token) {
|
||||
|
||||
func TestTemperature(t *testing.T) {
|
||||
input := []float32{1.0, 4.0, -2.0, 0.0}
|
||||
got := temperature(toTokens(input), 0.5)
|
||||
tokens := toTokens(input)
|
||||
temperature(tokens, 0.5)
|
||||
want := []float32{2.0, 8.0, -4.0, 0.0}
|
||||
compareLogits(t, "temperature(0.5)", want, got)
|
||||
compareLogits(t, "temperature(0.5)", want, tokens)
|
||||
|
||||
got = temperature(toTokens(input), 1.0)
|
||||
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
tokens = toTokens(input)
|
||||
temperature(tokens, 1.0)
|
||||
want = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
compareLogits(t, "temperature(1)", want, got)
|
||||
compareLogits(t, "temperature(1)", want, tokens)
|
||||
|
||||
got = temperature(toTokens(input), 0.0)
|
||||
input = []float32{1.0, 4.0, -2.0, 0.0}
|
||||
tokens = toTokens(input)
|
||||
temperature(tokens, 0.0)
|
||||
want = []float32{1e7, 4e7, -2e7, 0.0}
|
||||
compareLogits(t, "temperature(0)", want, got)
|
||||
compareLogits(t, "temperature(0)", want, tokens)
|
||||
}
|
||||
|
||||
func TestSoftmax(t *testing.T) {
|
||||
@@ -90,16 +95,17 @@ func TestSoftmax(t *testing.T) {
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
got := softmax(toTokens(tt.input))
|
||||
tokens := toTokens(tt.input)
|
||||
softmax(tokens)
|
||||
|
||||
if tt.expected != nil {
|
||||
compareLogits(t, tt.name, tt.expected, got)
|
||||
compareLogits(t, tt.name, tt.expected, tokens)
|
||||
return
|
||||
}
|
||||
|
||||
// Check probabilities sum to 1
|
||||
var sum float32
|
||||
for _, token := range got {
|
||||
for _, token := range tokens {
|
||||
sum += token.value
|
||||
if token.value < 0 || token.value > 1 {
|
||||
t.Errorf("probability out of range [0,1]: got %f", token.value)
|
||||
@@ -114,38 +120,44 @@ func TestSoftmax(t *testing.T) {
|
||||
|
||||
func TestTopK(t *testing.T) {
|
||||
input := []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
|
||||
// Test k=5
|
||||
got := topK(toTokens(input), 5)
|
||||
if len(got) != 5 {
|
||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(got))
|
||||
tokens := toTokens(input)
|
||||
tokens = topK(tokens, 5)
|
||||
if len(tokens) != 5 {
|
||||
t.Errorf("topK(5): wrong length: want 5, got %d", len(tokens))
|
||||
}
|
||||
// Should keep highest 3 values in descending order
|
||||
want := []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154}
|
||||
compareLogits(t, "topK(3)", want, got)
|
||||
compareLogits(t, "topK(3)", want, tokens)
|
||||
|
||||
got = topK(toTokens(input), 20)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 20)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(20): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
|
||||
// Test k=-1
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), -1)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, -1)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
compareLogits(t, "topK(-1)", want, tokens)
|
||||
|
||||
// Test k=0
|
||||
input = []float32{0.026986899, 0.043722924, 0.036774673, 0.27755088, 0.0046718004, 0.08582123, 0.20409796, 0.00412893, 0.15720603, 0.045046154, 0.0030491839, 0.01681367}
|
||||
want = []float32{0.27755088, 0.20409796, 0.15720603, 0.08582123, 0.045046154, 0.043722924, 0.036774673, 0.026986899, 0.01681367, 0.0046718004, 0.00412893, 0.0030491839}
|
||||
got = topK(toTokens(input), 0)
|
||||
if len(got) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(got))
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 0)
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("topK(-1): wrong length: want %d, got %d", len(input), len(tokens))
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, tokens)
|
||||
|
||||
input = []float32{-1e7, -2e7, -3e7, -4e7}
|
||||
tokens = toTokens(input)
|
||||
tokens = topK(tokens, 1)
|
||||
if len(tokens) < 1 {
|
||||
t.Error("topK should keep at least one token")
|
||||
}
|
||||
compareLogits(t, "topK(-1)", want, got)
|
||||
}
|
||||
|
||||
func TestTopP(t *testing.T) {
|
||||
@@ -153,16 +165,25 @@ func TestTopP(t *testing.T) {
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax to get probabilities
|
||||
tokens = softmax(tokens)
|
||||
softmax(tokens)
|
||||
tokens = topK(tokens, 20)
|
||||
|
||||
// Then apply topP
|
||||
got := topP(tokens, 0.95)
|
||||
tokens = topP(tokens, 0.95)
|
||||
|
||||
// Should keep tokens until cumsum > 0.95
|
||||
if len(got) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(got))
|
||||
t.Logf("got: %v", got)
|
||||
if len(tokens) > 3 {
|
||||
t.Errorf("topP(0.95): kept too many tokens: got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
// Test edge case - ensure at least one token remains
|
||||
input = []float32{-1e6, -1e6, -1e6} // One dominant token
|
||||
tokens = toTokens(input)
|
||||
softmax(tokens)
|
||||
tokens = topP(tokens, 0.0) // Very small p
|
||||
if len(tokens) < 1 {
|
||||
t.Error("topP should keep at least one token")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -171,14 +192,45 @@ func TestMinP(t *testing.T) {
|
||||
tokens := toTokens(input)
|
||||
|
||||
// First apply temperature and softmax
|
||||
tokens = softmax(tokens)
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
|
||||
// Then apply minP
|
||||
got := minP(tokens, 0.2)
|
||||
tokens = minP(tokens, 1.0)
|
||||
|
||||
if len(tokens) != 1 {
|
||||
t.Errorf("minP(1.0): should keep all tokens, got %d, want %d", len(tokens), len(tokens))
|
||||
}
|
||||
|
||||
// Test with normal p value
|
||||
tokens = toTokens(input) // Reset tokens
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 0.2)
|
||||
|
||||
// Should keep tokens with prob >= 0.2 * max_prob
|
||||
if len(got) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(got))
|
||||
if len(tokens) > 3 {
|
||||
t.Errorf("minP(0.2): kept too many tokens: got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
// Test with zero p value
|
||||
tokens = toTokens(input) // Reset tokens
|
||||
tokens = topK(tokens, 20)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 0.0)
|
||||
|
||||
// Should keep only the highest probability token
|
||||
if len(tokens) != len(input) {
|
||||
t.Errorf("minP(0.0): should keep only one token, got %d", len(tokens))
|
||||
t.Logf("got: %v", tokens)
|
||||
}
|
||||
|
||||
input = []float32{1e-10, 1e-10, 1e-10}
|
||||
tokens = toTokens(input)
|
||||
softmax(tokens)
|
||||
tokens = minP(tokens, 1.0)
|
||||
if len(tokens) < 1 {
|
||||
t.Error("minP should keep at least one token even with extreme probabilities")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -231,7 +283,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 10)
|
||||
tokens = topK(tokensCopy, 10)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -239,7 +291,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topP(tokensCopy, 0.9)
|
||||
tokens = topP(tokensCopy, 0.9)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -247,7 +299,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
minP(tokensCopy, 0.2)
|
||||
tokens = minP(tokensCopy, 0.2)
|
||||
}
|
||||
})
|
||||
|
||||
@@ -255,7 +307,7 @@ func BenchmarkTransforms(b *testing.B) {
|
||||
b.ResetTimer()
|
||||
for b.Loop() {
|
||||
copy(tokensCopy, tokens)
|
||||
topK(tokensCopy, 200000)
|
||||
tokens = topK(tokensCopy, 200000)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user