mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b) This brings in significant improvements to prefill performance for all models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h, nemotron-h, Qwen3 Next) on Apple Metal. See https://github.com/ggml-org/llama.cpp/pull/17876 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 1-4 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update patches 5-12 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 13-18 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patch 20 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 21-31 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Sync vendored code The two files I'm not sure about here are the swap from gemma3-iswa.cpp to gemma3.cpp (I chose to include this because I think it's required), and the inclusion of `ggml-zendnn.h` which I chose to omit. Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
2
llama/build-info.cpp
generated
vendored
2
llama/build-info.cpp
generated
vendored
@@ -1,4 +1,4 @@
|
||||
int LLAMA_BUILD_NUMBER = 0;
|
||||
char const *LLAMA_COMMIT = "7f8ef50cce40e3e7e4526a3696cb45658190e69a";
|
||||
char const *LLAMA_COMMIT = "17f7f4baad8b3a716ee139da7bb56ae984e8c0fa";
|
||||
char const *LLAMA_COMPILER = "";
|
||||
char const *LLAMA_BUILD_TARGET = "";
|
||||
|
||||
77
llama/llama.cpp/common/common.cpp
vendored
77
llama/llama.cpp/common/common.cpp
vendored
@@ -694,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
|
||||
|
||||
// Validate if a filename is safe to use
|
||||
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
|
||||
bool fs_validate_filename(const std::string & filename) {
|
||||
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
|
||||
if (!filename.length()) {
|
||||
// Empty filename invalid
|
||||
return false;
|
||||
@@ -754,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|
||||
|| c == 0xFFFD // Replacement Character (UTF-8)
|
||||
|| c == 0xFEFF // Byte Order Mark (BOM)
|
||||
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|
||||
|| c == ':' || c == '*' // Illegal characters
|
||||
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
|
||||
return false;
|
||||
}
|
||||
if (!allow_subdirs && (c == '/' || c == '\\')) {
|
||||
// Subdirectories not allowed, reject path separators
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
|
||||
@@ -782,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
#include <iostream>
|
||||
|
||||
|
||||
#ifdef _WIN32
|
||||
static std::wstring utf8_to_wstring(const std::string & str) {
|
||||
if (str.empty()) {
|
||||
return std::wstring();
|
||||
}
|
||||
|
||||
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
|
||||
|
||||
if (size <= 0) {
|
||||
return std::wstring();
|
||||
}
|
||||
|
||||
std::wstring wstr(size, 0);
|
||||
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
|
||||
|
||||
return wstr;
|
||||
}
|
||||
#endif
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
std::wstring wpath = converter.from_bytes(path);
|
||||
std::wstring wpath = utf8_to_wstring(path);
|
||||
|
||||
// if the path already exists, check whether it's a directory
|
||||
const DWORD attributes = GetFileAttributesW(wpath.c_str());
|
||||
@@ -859,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
bool fs_is_directory(const std::string & path) {
|
||||
std::filesystem::path dir(path);
|
||||
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
|
||||
}
|
||||
|
||||
std::string fs_get_cache_directory() {
|
||||
std::string cache_directory = "";
|
||||
auto ensure_trailing_slash = [](std::string p) {
|
||||
@@ -893,6 +920,8 @@ std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#elif defined(__EMSCRIPTEN__)
|
||||
GGML_ABORT("not implemented on this platform");
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
@@ -912,7 +941,7 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
return cache_directory + filename;
|
||||
}
|
||||
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
|
||||
std::vector<common_file_info> files;
|
||||
if (path.empty()) return files;
|
||||
|
||||
@@ -927,14 +956,22 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
const auto & p = entry.path();
|
||||
if (std::filesystem::is_regular_file(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.is_dir = false;
|
||||
try {
|
||||
info.size = static_cast<size_t>(std::filesystem::file_size(p));
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
info.size = 0;
|
||||
}
|
||||
files.push_back(std::move(info));
|
||||
} else if (include_directories && std::filesystem::is_directory(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.size = 0; // Directories have no size
|
||||
info.is_dir = true;
|
||||
files.push_back(std::move(info));
|
||||
}
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
// skip entries we cannot inspect
|
||||
@@ -945,6 +982,32 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
return files;
|
||||
}
|
||||
|
||||
//
|
||||
// TTY utils
|
||||
//
|
||||
|
||||
bool tty_can_use_colors() {
|
||||
// Check NO_COLOR environment variable (https://no-color.org/)
|
||||
if (const char * no_color = std::getenv("NO_COLOR")) {
|
||||
if (no_color[0] != '\0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check TERM environment variable
|
||||
if (const char * term = std::getenv("TERM")) {
|
||||
if (std::strcmp(term, "dumb") == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if stdout and stderr are connected to a terminal
|
||||
// We check both because log messages can go to either
|
||||
bool stdout_is_tty = isatty(fileno(stdout));
|
||||
bool stderr_is_tty = isatty(fileno(stderr));
|
||||
|
||||
return stdout_is_tty || stderr_is_tty;
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
||||
28
llama/llama.cpp/common/common.h
vendored
28
llama/llama.cpp/common/common.h
vendored
@@ -12,6 +12,10 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#if defined(_WIN32) && !defined(_WIN32_WINNT)
|
||||
#define _WIN32_WINNT 0x0A00
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
#else
|
||||
@@ -26,8 +30,6 @@
|
||||
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
||||
} while(0)
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
|
||||
struct common_time_meas {
|
||||
common_time_meas(int64_t & t_acc, bool disable = false);
|
||||
~common_time_meas();
|
||||
@@ -223,6 +225,7 @@ struct common_params_model {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string docker_repo = ""; // Docker repo // NOLINT
|
||||
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
@@ -369,7 +372,7 @@ struct common_params {
|
||||
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t verbosity = 3; // LOG_LEVEL_INFO
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
bool offline = false;
|
||||
@@ -478,9 +481,15 @@ struct common_params {
|
||||
bool endpoint_props = false; // only control POST requests, not GET
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
// router server configs
|
||||
std::string models_dir = ""; // directory containing models for the router server
|
||||
int models_max = 4; // maximum number of models to load simultaneously
|
||||
bool models_autoload = true; // automatically load models when requested via the router server
|
||||
|
||||
bool log_json = false;
|
||||
|
||||
std::string slot_save_path;
|
||||
std::string media_path; // path to directory for loading media files
|
||||
|
||||
float slot_prompt_similarity = 0.1f;
|
||||
|
||||
@@ -631,8 +640,9 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
// Filesystem utils
|
||||
//
|
||||
|
||||
bool fs_validate_filename(const std::string & filename);
|
||||
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
|
||||
bool fs_create_directory_with_parents(const std::string & path);
|
||||
bool fs_is_directory(const std::string & path);
|
||||
|
||||
std::string fs_get_cache_directory();
|
||||
std::string fs_get_cache_file(const std::string & filename);
|
||||
@@ -641,8 +651,16 @@ struct common_file_info {
|
||||
std::string path;
|
||||
std::string name;
|
||||
size_t size = 0; // in bytes
|
||||
bool is_dir = false;
|
||||
};
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path);
|
||||
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
|
||||
|
||||
//
|
||||
// TTY utils
|
||||
//
|
||||
|
||||
// Auto-detect if colors can be enabled based on terminal and environment
|
||||
bool tty_can_use_colors();
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
||||
@@ -974,7 +974,7 @@ public:
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
|
||||
|
||||
45
llama/llama.cpp/common/log.cpp
vendored
45
llama/llama.cpp/common/log.cpp
vendored
@@ -1,3 +1,4 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
// Auto-detect if colors should be enabled based on terminal and environment
|
||||
static bool common_log_should_use_colors_auto() {
|
||||
// Check NO_COLOR environment variable (https://no-color.org/)
|
||||
if (const char * no_color = std::getenv("NO_COLOR")) {
|
||||
if (no_color[0] != '\0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check TERM environment variable
|
||||
if (const char * term = std::getenv("TERM")) {
|
||||
if (std::strcmp(term, "dumb") == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if stdout and stderr are connected to a terminal
|
||||
// We check both because log messages can go to either
|
||||
bool stdout_is_tty = isatty(fileno(stdout));
|
||||
bool stderr_is_tty = isatty(fileno(stderr));
|
||||
|
||||
return stdout_is_tty || stderr_is_tty;
|
||||
}
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
|
||||
static std::once_flag init_flag;
|
||||
std::call_once(init_flag, [&]() {
|
||||
// Set default to auto-detect colors
|
||||
log.set_colors(common_log_should_use_colors_auto());
|
||||
log.set_colors(tty_can_use_colors());
|
||||
});
|
||||
|
||||
return &log;
|
||||
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
|
||||
|
||||
void common_log_set_colors(struct common_log * log, log_colors colors) {
|
||||
if (colors == LOG_COLORS_AUTO) {
|
||||
log->set_colors(common_log_should_use_colors_auto());
|
||||
log->set_colors(tty_can_use_colors());
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -443,8 +420,22 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
||||
static int common_get_verbosity(enum ggml_log_level level) {
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
|
||||
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
|
||||
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
|
||||
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
|
||||
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
|
||||
case GGML_LOG_LEVEL_NONE:
|
||||
default:
|
||||
return LOG_LEVEL_OUTPUT;
|
||||
}
|
||||
}
|
||||
|
||||
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
auto verbosity = common_get_verbosity(level);
|
||||
if (verbosity <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}
|
||||
|
||||
31
llama/llama.cpp/common/log.h
vendored
31
llama/llama.cpp/common/log.h
vendored
@@ -21,8 +21,14 @@
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
|
||||
#define LOG_DEFAULT_DEBUG 1
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
#define LOG_LEVEL_DEBUG 4
|
||||
#define LOG_LEVEL_INFO 3
|
||||
#define LOG_LEVEL_WARN 2
|
||||
#define LOG_LEVEL_ERROR 1
|
||||
#define LOG_LEVEL_OUTPUT 0 // output data from tools
|
||||
|
||||
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
|
||||
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
|
||||
|
||||
enum log_colors {
|
||||
LOG_COLORS_AUTO = -1,
|
||||
@@ -67,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
|
||||
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// I - info (stdout, V = 0)
|
||||
// W - warning (stderr, V = 0)
|
||||
// E - error (stderr, V = 0)
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
// I - info (stdout, V = LOG_DEFAULT_INFO)
|
||||
// W - warning (stderr, V = LOG_DEFAULT_WARN)
|
||||
// E - error (stderr, V = LOG_DEFAULT_ERROR)
|
||||
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
|
||||
//
|
||||
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
@@ -95,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
|
||||
|
||||
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
|
||||
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)
|
||||
|
||||
31
llama/llama.cpp/src/llama-arch.cpp
vendored
31
llama/llama.cpp/src/llama-arch.cpp
vendored
@@ -112,6 +112,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_COGVLM, "cogvlm" },
|
||||
{ LLM_ARCH_RND1, "rnd1" },
|
||||
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
|
||||
{ LLM_ARCH_MISTRAL3, "mistral3" },
|
||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||
};
|
||||
|
||||
@@ -205,6 +206,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
{ LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
|
||||
{ LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
|
||||
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
|
||||
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
@@ -855,7 +857,7 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
|
||||
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
|
||||
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
|
||||
{ LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_A_NOSCAN, "blk.%d.ssm_a" },
|
||||
{ LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
|
||||
{ LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
|
||||
{ LLM_TENSOR_SSM_BETA_ALPHA, "blk.%d.ssm_ba" },
|
||||
@@ -2532,6 +2534,32 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MISTRAL3,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
@@ -2631,6 +2659,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_FFN_ACT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_DIV}},
|
||||
{LLM_TENSOR_SSM_CONV1D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_CONV}},
|
||||
{LLM_TENSOR_SSM_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_SSM_SCAN}},
|
||||
{LLM_TENSOR_SSM_A_NOSCAN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}}, // a version of SSM_A used for MUL instead of SSM_SCAN
|
||||
{LLM_TENSOR_SSM_DT_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_B_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
|
||||
3
llama/llama.cpp/src/llama-arch.h
vendored
3
llama/llama.cpp/src/llama-arch.h
vendored
@@ -116,6 +116,7 @@ enum llm_arch {
|
||||
LLM_ARCH_COGVLM,
|
||||
LLM_ARCH_RND1,
|
||||
LLM_ARCH_PANGU_EMBED,
|
||||
LLM_ARCH_MISTRAL3,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -209,6 +210,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
LLM_KV_ATTENTION_OUTPUT_SCALE,
|
||||
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
|
||||
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
|
||||
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
@@ -379,6 +381,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_DT_NORM,
|
||||
LLM_TENSOR_SSM_A,
|
||||
LLM_TENSOR_SSM_A_NOSCAN, // qwen3next special case with MUL instead of SSM_SCAN
|
||||
LLM_TENSOR_SSM_B_NORM,
|
||||
LLM_TENSOR_SSM_C_NORM,
|
||||
LLM_TENSOR_SSM_D,
|
||||
|
||||
12
llama/llama.cpp/src/llama-context.cpp
vendored
12
llama/llama.cpp/src/llama-context.cpp
vendored
@@ -248,7 +248,10 @@ llama_context::llama_context(
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
|
||||
|
||||
const size_t max_nodes = this->graph_max_nodes();
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
const size_t max_nodes = this->graph_max_nodes(n_tokens);
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
|
||||
|
||||
@@ -300,9 +303,6 @@ llama_context::llama_context(
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// avoid reserving graphs with zero outputs - assume one output per sequence
|
||||
n_outputs = n_seqs;
|
||||
|
||||
@@ -1385,9 +1385,9 @@ void llama_context::output_reorder() {
|
||||
// graph
|
||||
//
|
||||
|
||||
uint32_t llama_context::graph_max_nodes() const {
|
||||
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT) {
|
||||
return std::max<uint32_t>(8192u, 32u*model.n_tensors());
|
||||
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
|
||||
}
|
||||
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
}
|
||||
|
||||
2
llama/llama.cpp/src/llama-context.h
vendored
2
llama/llama.cpp/src/llama-context.h
vendored
@@ -197,7 +197,7 @@ private:
|
||||
//
|
||||
|
||||
public:
|
||||
uint32_t graph_max_nodes() const;
|
||||
uint32_t graph_max_nodes(uint32_t n_tokens) const;
|
||||
|
||||
// can reuse the llm_graph_result instance of the context (for example to update a memory module)
|
||||
llm_graph_result * get_gf_res_reserve() const;
|
||||
|
||||
265
llama/llama.cpp/src/llama-grammar.cpp
vendored
265
llama/llama.cpp/src/llama-grammar.cpp
vendored
@@ -181,6 +181,52 @@ static std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_token(const llama_vocab * vocab, const char * src) {
|
||||
const char * pos = src;
|
||||
if (*pos != '<') {
|
||||
throw std::runtime_error(std::string("expecting '<' at ") + pos);
|
||||
}
|
||||
pos++;
|
||||
|
||||
// Parse <[id]>
|
||||
if (*pos == '[') {
|
||||
pos++;
|
||||
const char * int_end = parse_int(pos);
|
||||
uint32_t token_id = std::stoul(std::string(pos, int_end - pos));
|
||||
pos = int_end;
|
||||
if (*pos != ']') {
|
||||
throw std::runtime_error(std::string("expecting ']' at ") + pos);
|
||||
}
|
||||
pos++;
|
||||
if (*pos != '>') {
|
||||
throw std::runtime_error(std::string("expecting '>' at ") + pos);
|
||||
}
|
||||
pos++;
|
||||
return std::make_pair(token_id, pos);
|
||||
}
|
||||
|
||||
if (vocab == nullptr) {
|
||||
throw std::runtime_error(std::string("no vocab to parse token at ") + src);
|
||||
}
|
||||
|
||||
// Parse <token> and tokenize to obtain the token id
|
||||
while (*pos != 0 && *pos != '>') {
|
||||
pos++;
|
||||
}
|
||||
if (*pos != '>') {
|
||||
throw std::runtime_error(std::string("expecting '>' at ") + pos);
|
||||
}
|
||||
pos++;
|
||||
|
||||
llama_token tokens[2];
|
||||
int32_t n_tokens = vocab->tokenize(src, static_cast<int32_t>(pos - src), tokens, 2, false, true);
|
||||
if (n_tokens != 1) {
|
||||
// must tokenize to exactly 1 token
|
||||
throw std::runtime_error("invalid token '" + std::string(src, pos - src) + "'");
|
||||
}
|
||||
return std::make_pair(tokens[0], pos);
|
||||
}
|
||||
|
||||
static void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
@@ -212,6 +258,8 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
|
||||
case LLAMA_GRETYPE_TOKEN: fprintf(file, "TOKEN"); break;
|
||||
case LLAMA_GRETYPE_TOKEN_NOT: fprintf(file, "TOKEN_NOT"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
@@ -228,6 +276,17 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_TOKEN:
|
||||
fprintf(file, "<[");
|
||||
fprintf(file, "%u", elem.value);
|
||||
fprintf(file, "]> ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_TOKEN_NOT:
|
||||
fprintf(file, "!");
|
||||
fprintf(file, "<[");
|
||||
fprintf(file, "%u", elem.value);
|
||||
fprintf(file, "]> ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
@@ -284,6 +343,17 @@ static void print_rule(
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
fprintf(file, ".");
|
||||
break;
|
||||
case LLAMA_GRETYPE_TOKEN:
|
||||
fprintf(file, "<[");
|
||||
fprintf(file, "%u", elem.value);
|
||||
fprintf(file, "]> ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_TOKEN_NOT:
|
||||
fprintf(file, "!");
|
||||
fprintf(file, "<[");
|
||||
fprintf(file, "%u", elem.value);
|
||||
fprintf(file, "]> ");
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
@@ -444,6 +514,17 @@ const char * llama_grammar_parser::parse_sequence(
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '<' || *pos == '!') { // token
|
||||
auto type = LLAMA_GRETYPE_TOKEN;
|
||||
if (*pos == '!') { // token inverse
|
||||
type = LLAMA_GRETYPE_TOKEN_NOT;
|
||||
pos++;
|
||||
}
|
||||
auto token_pair = parse_token(vocab, pos);
|
||||
const char * token_end = token_pair.second;
|
||||
last_sym_start = rule.size();
|
||||
rule.push_back({type, token_pair.first});
|
||||
pos = parse_space(token_end, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
|
||||
@@ -691,6 +772,21 @@ static bool llama_grammar_match_partial_char(
|
||||
return !is_positive_char;
|
||||
}
|
||||
|
||||
// returns true iff token matches the rule at pos (regular or inverse)
|
||||
// asserts that pos is pointing to a token element
|
||||
static bool llama_grammar_match_token(
|
||||
const llama_grammar_element * pos,
|
||||
const llama_token token) {
|
||||
GGML_ASSERT(pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT);
|
||||
if (pos->type == LLAMA_GRETYPE_TOKEN) {
|
||||
return pos->value == static_cast<uint32_t>(token);
|
||||
}
|
||||
if (pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
|
||||
return pos->value != static_cast<uint32_t>(token);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// transforms a grammar pushdown stack into N possible stacks, all ending
|
||||
// at a character range (terminal element)
|
||||
static void llama_grammar_advance_stack(
|
||||
@@ -738,6 +834,8 @@ static void llama_grammar_advance_stack(
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
case LLAMA_GRETYPE_CHAR_ANY:
|
||||
case LLAMA_GRETYPE_TOKEN:
|
||||
case LLAMA_GRETYPE_TOKEN_NOT:
|
||||
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
|
||||
// only add the stack if it's not a duplicate of one we already have
|
||||
new_stacks.emplace_back(stack);
|
||||
@@ -831,26 +929,38 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
|
||||
return grammar->stacks;
|
||||
}
|
||||
|
||||
static void llama_grammar_accept_chr(
|
||||
struct llama_grammar & grammar,
|
||||
const llama_grammar_stack & stack,
|
||||
uint32_t chr,
|
||||
llama_grammar_stacks & new_stacks) {
|
||||
if (stack.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
const llama_grammar_element * pos = stack.back();
|
||||
|
||||
// ignore if this turns into a token
|
||||
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto match = llama_grammar_match_char(pos, chr);
|
||||
if (match.first) {
|
||||
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
|
||||
if (!llama_grammar_is_end_of_sequence(match.second)) {
|
||||
new_stack.push_back(match.second);
|
||||
}
|
||||
llama_grammar_advance_stack(grammar.rules, new_stack, new_stacks);
|
||||
}
|
||||
}
|
||||
|
||||
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
|
||||
llama_grammar_stacks stacks_new;
|
||||
stacks_new.reserve(grammar->stacks.size());
|
||||
|
||||
for (const auto & stack : grammar->stacks) {
|
||||
if (stack.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto match = llama_grammar_match_char(stack.back(), chr);
|
||||
if (match.first) {
|
||||
const llama_grammar_element * pos = match.second;
|
||||
|
||||
// update top of stack to next element, if any
|
||||
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
|
||||
if (!llama_grammar_is_end_of_sequence(pos)) {
|
||||
new_stack.push_back(pos);
|
||||
}
|
||||
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
|
||||
}
|
||||
llama_grammar_accept_chr(*grammar, stack, chr, stacks_new);
|
||||
}
|
||||
|
||||
grammar->stacks = std::move(stacks_new);
|
||||
@@ -875,6 +985,22 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
|
||||
const llama_grammar_element * stack_pos = stack.back();
|
||||
|
||||
// if the top of the stack is a token rule, then we only need to check the token id
|
||||
if (stack_pos->type == LLAMA_GRETYPE_TOKEN || stack_pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
|
||||
for (const auto & tok : candidates) {
|
||||
if (*tok.code_points == 0) {
|
||||
// reached the end of a token consumed by char rules, reject iff it ended
|
||||
// in a partial response
|
||||
if (tok.partial_utf8.n_remain != 0) {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
} else if (!llama_grammar_match_token(stack_pos, tok.id)) {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
}
|
||||
return rejects;
|
||||
}
|
||||
|
||||
llama_grammar_candidates next_candidates;
|
||||
next_candidates.reserve(candidates.size());
|
||||
|
||||
@@ -887,7 +1013,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
|
||||
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
|
||||
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8, tok.id });
|
||||
} else {
|
||||
rejects.push_back(tok);
|
||||
}
|
||||
@@ -905,7 +1031,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
|
||||
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
|
||||
for (const auto & tok : next_rejects) {
|
||||
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
|
||||
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8, tok.id });
|
||||
}
|
||||
|
||||
return rejects;
|
||||
@@ -974,12 +1100,13 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
ollama_vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy =*/ false,
|
||||
/* .awaiting_trigger = */ false,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .trigger_tokens = */ {},
|
||||
/* .trigger_patterns = */ {},
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy = */ false,
|
||||
/* .awaiting_trigger = */ false,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .trigger_buffer_positions = */ {},
|
||||
/* .trigger_tokens = */ {},
|
||||
/* .trigger_patterns = */ {},
|
||||
};
|
||||
}
|
||||
|
||||
@@ -993,7 +1120,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
size_t num_trigger_patterns,
|
||||
const llama_token * trigger_tokens,
|
||||
size_t num_trigger_tokens) {
|
||||
llama_grammar_parser parser;
|
||||
llama_grammar_parser parser(vocab);
|
||||
|
||||
// if there is a grammar, parse it
|
||||
// rules will be empty (default) if there are parse errors
|
||||
@@ -1081,10 +1208,11 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
ollama_vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy = */ lazy,
|
||||
/* .awaiting_trigger = */ lazy,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .partial_utf8 = */ {},
|
||||
/* .lazy = */ lazy,
|
||||
/* .awaiting_trigger = */ lazy,
|
||||
/* .trigger_buffer = */ "",
|
||||
/* .trigger_buffer_positions = */ {},
|
||||
std::move(vec_trigger_tokens),
|
||||
std::move(vec_trigger_patterns),
|
||||
};
|
||||
@@ -1108,6 +1236,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
grammar.lazy,
|
||||
grammar.awaiting_trigger,
|
||||
grammar.trigger_buffer,
|
||||
grammar.trigger_buffer_positions,
|
||||
grammar.trigger_tokens,
|
||||
grammar.trigger_patterns,
|
||||
};
|
||||
@@ -1164,7 +1293,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
} else {
|
||||
candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8));
|
||||
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
|
||||
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second, id });
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1184,10 +1313,12 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
|
||||
grammar.awaiting_trigger = false;
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
llama_grammar_accept_token(grammar, token, piece);
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
|
||||
return;
|
||||
} else {
|
||||
auto position = std::make_pair(grammar.trigger_buffer.size(), grammar.trigger_buffer.size() + piece.size());
|
||||
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
|
||||
grammar.trigger_buffer += piece;
|
||||
|
||||
std::smatch match;
|
||||
@@ -1205,10 +1336,23 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
if (start == std::string::npos) {
|
||||
start = match.position(0);
|
||||
}
|
||||
|
||||
// replay tokens that overlap with [start, end)
|
||||
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {
|
||||
auto [tok_start, tok_end] = tok_pos;
|
||||
if (tok_end <= start) {
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t piece_start = (tok_start < start) ? start : tok_start; // allow for partial token pieces
|
||||
size_t piece_len = tok_end - piece_start;
|
||||
auto tok_piece = grammar.trigger_buffer.substr(piece_start, piece_len);
|
||||
llama_grammar_accept_token(grammar, tok, tok_piece);
|
||||
}
|
||||
|
||||
auto constrained_str = grammar.trigger_buffer.substr(start);
|
||||
// std::string constrained_str(match[1].first, grammar.trigger_buffer.end());
|
||||
grammar.trigger_buffer.clear();
|
||||
llama_grammar_accept_str(grammar, constrained_str);
|
||||
grammar.trigger_buffer_positions.clear();
|
||||
LLAMA_LOG_DEBUG("Grammar triggered on regex: '%s'\n", constrained_str.c_str());
|
||||
return;
|
||||
}
|
||||
@@ -1228,7 +1372,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
GGML_ABORT("grammar error: end of grammar token received but grammar stack is not empty");
|
||||
}
|
||||
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
llama_grammar_accept_token(grammar, token, piece);
|
||||
}
|
||||
|
||||
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
|
||||
@@ -1246,6 +1390,61 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
|
||||
}
|
||||
}
|
||||
|
||||
void llama_grammar_accept_token(struct llama_grammar & grammar, llama_token token, const std::string & piece) {
|
||||
// Note terminating 0 in decoded string
|
||||
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
|
||||
const auto & code_points = decoded.first;
|
||||
|
||||
llama_grammar_stacks stacks_new;
|
||||
stacks_new.reserve(grammar.stacks.size());
|
||||
|
||||
for (const auto & stack : grammar.stacks) {
|
||||
if (stack.empty()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const llama_grammar_element * pos = stack.back();
|
||||
|
||||
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
|
||||
if (llama_grammar_match_token(pos, token)) {
|
||||
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
|
||||
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
|
||||
new_stack.push_back(pos + 1);
|
||||
}
|
||||
llama_grammar_advance_stack(grammar.rules, new_stack, stacks_new);
|
||||
}
|
||||
} else {
|
||||
llama_grammar_stacks current_stacks = {stack};
|
||||
|
||||
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
|
||||
llama_grammar_stacks next_stacks;
|
||||
|
||||
for (const auto & cur_stack : current_stacks) {
|
||||
llama_grammar_accept_chr(grammar, cur_stack, *it, next_stacks);
|
||||
}
|
||||
|
||||
current_stacks = std::move(next_stacks);
|
||||
if (current_stacks.empty()) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto & surviving_stack : current_stacks) {
|
||||
if (std::find(stacks_new.begin(), stacks_new.end(), surviving_stack) == stacks_new.end()) {
|
||||
stacks_new.emplace_back(surviving_stack);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
grammar.stacks = std::move(stacks_new);
|
||||
grammar.partial_utf8 = decoded.second;
|
||||
|
||||
if (grammar.stacks.empty()) {
|
||||
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece + " (" + std::to_string(token) + ")");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const std::string & ollama_vocab::token_to_piece(const uint32_t token) const {
|
||||
try {
|
||||
|
||||
21
llama/llama.cpp/src/llama-grammar.h
vendored
21
llama/llama.cpp/src/llama-grammar.h
vendored
@@ -47,11 +47,17 @@ enum llama_gretype {
|
||||
|
||||
// any character (.)
|
||||
LLAMA_GRETYPE_CHAR_ANY = 7,
|
||||
|
||||
// terminal element: token (<[token-id]>)
|
||||
LLAMA_GRETYPE_TOKEN = 8,
|
||||
|
||||
// inverse token (!<[token-id]>)
|
||||
LLAMA_GRETYPE_TOKEN_NOT = 9,
|
||||
};
|
||||
|
||||
typedef struct llama_grammar_element {
|
||||
enum llama_gretype type;
|
||||
uint32_t value; // Unicode code point or rule ID
|
||||
uint32_t value; // Unicode code point, rule ID, or token ID
|
||||
} llama_grammar_element;
|
||||
|
||||
struct llama_partial_utf8 {
|
||||
@@ -63,6 +69,7 @@ struct llama_grammar_candidate {
|
||||
size_t index;
|
||||
const uint32_t * code_points;
|
||||
llama_partial_utf8 partial_utf8;
|
||||
llama_token id;
|
||||
};
|
||||
|
||||
using llama_grammar_rule = std::vector< llama_grammar_element>;
|
||||
@@ -88,10 +95,13 @@ std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
|
||||
const llama_grammar_candidates & candidates);
|
||||
|
||||
struct llama_grammar_parser {
|
||||
const llama_vocab * vocab;
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
|
||||
llama_grammar_rules rules;
|
||||
|
||||
llama_grammar_parser(const struct llama_vocab * vocab = nullptr) : vocab(vocab) {}
|
||||
|
||||
llama_grammar_stack c_rules() const;
|
||||
|
||||
uint32_t get_symbol_id(const char * src, size_t len);
|
||||
@@ -123,6 +133,9 @@ struct llama_grammar_trigger_pattern {
|
||||
};
|
||||
|
||||
struct llama_grammar {
|
||||
// maintain a list of llama_tokens and their positions in the trigger_buffer
|
||||
using token_pos = std::pair<llama_token, std::pair<size_t, size_t>>;
|
||||
|
||||
// note: allow null vocab for testing (not great)
|
||||
const llama_vocab * vocab;
|
||||
const ollama_vocab * o_vocab;
|
||||
@@ -139,6 +152,7 @@ struct llama_grammar {
|
||||
bool lazy = false;
|
||||
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
|
||||
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
|
||||
std::vector<token_pos> trigger_buffer_positions; // Tokens buffered by lazy grammar. Used to replay when a trigger is found.
|
||||
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
|
||||
std::vector<llama_grammar_trigger_pattern>
|
||||
trigger_patterns; // Regular expressions that trigger a lazy grammar. Must be a full match of the entire generated
|
||||
@@ -185,3 +199,8 @@ void llama_grammar_accept_impl(
|
||||
void llama_grammar_accept_str(
|
||||
struct llama_grammar & grammar,
|
||||
const std::string & piece);
|
||||
|
||||
void llama_grammar_accept_token(
|
||||
struct llama_grammar & grammar,
|
||||
llama_token token,
|
||||
const std::string & piece);
|
||||
|
||||
11
llama/llama.cpp/src/llama-graph.cpp
vendored
11
llama/llama.cpp/src/llama-graph.cpp
vendored
@@ -71,6 +71,9 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
|
||||
if (ubatch->pos && attn_scale) {
|
||||
const int64_t n_tokens = ubatch->n_tokens;
|
||||
|
||||
GGML_ASSERT(f_attn_temp_scale != 0.0f);
|
||||
GGML_ASSERT(n_attn_temp_floor_scale != 0);
|
||||
|
||||
std::vector<float> attn_scale_data(n_tokens, 0.0f);
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
const float pos = ubatch->pos[i];
|
||||
@@ -810,9 +813,6 @@ ggml_tensor * llm_graph_context::build_ffn(
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
//expand here so that we can fuse ffn gate
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
if (gate && type_gate == LLM_FFN_PAR) {
|
||||
cur = ggml_mul(ctx0, cur, tmp);
|
||||
cb(cur, "ffn_gate_par", il);
|
||||
@@ -973,7 +973,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
|
||||
// mask out the other groups
|
||||
selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
|
||||
selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
|
||||
selection_probs = ggml_set_rows(ctx0, ggml_fill(ctx0, selection_groups, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
|
||||
selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
|
||||
cb(selection_probs, "ffn_moe_probs_masked", il);
|
||||
}
|
||||
@@ -1093,9 +1093,6 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
//expand here so that we can fuse ffn gate
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
||||
cb(experts, "ffn_moe_down", il);
|
||||
|
||||
|
||||
4
llama/llama.cpp/src/llama-hparams.h
vendored
4
llama/llama.cpp/src/llama-hparams.h
vendored
@@ -164,8 +164,8 @@ struct llama_hparams {
|
||||
// llama4 smallthinker
|
||||
uint32_t n_moe_layer_step = 0;
|
||||
uint32_t n_no_rope_layer_step = 4;
|
||||
uint32_t n_attn_temp_floor_scale = 8192;
|
||||
float f_attn_temp_scale = 0.1;
|
||||
uint32_t n_attn_temp_floor_scale = 0;
|
||||
float f_attn_temp_scale = 0.0f;
|
||||
|
||||
// gemma3n altup
|
||||
uint32_t n_altup = 4; // altup_num_inputs
|
||||
|
||||
2
llama/llama.cpp/src/llama-impl.h
vendored
2
llama/llama.cpp/src/llama-impl.h
vendored
@@ -37,7 +37,7 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
|
||||
template <typename T>
|
||||
struct no_init {
|
||||
T value;
|
||||
no_init() { /* do nothing */ }
|
||||
no_init() = default;
|
||||
};
|
||||
|
||||
struct time_meas {
|
||||
|
||||
2
llama/llama.cpp/src/llama-mmap.cpp
vendored
2
llama/llama.cpp/src/llama-mmap.cpp
vendored
@@ -485,7 +485,7 @@ struct llama_mlock::impl {
|
||||
if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
|
||||
suggest = false;
|
||||
}
|
||||
if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
|
||||
if (suggest && ((uint64_t)lock_limit.rlim_max > (uint64_t)lock_limit.rlim_cur + size)) {
|
||||
suggest = false;
|
||||
}
|
||||
#endif
|
||||
|
||||
88
llama/llama.cpp/src/llama-model.cpp
vendored
88
llama/llama.cpp/src/llama-model.cpp
vendored
@@ -423,8 +423,8 @@ static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode s
|
||||
}
|
||||
|
||||
struct llama_model::impl {
|
||||
impl() {}
|
||||
~impl() {}
|
||||
impl() = default;
|
||||
~impl() = default;
|
||||
|
||||
uint64_t n_elements = 0;
|
||||
|
||||
@@ -461,7 +461,7 @@ llama_model::llama_model(const llama_model_params & params) : params(params), pi
|
||||
pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
|
||||
}
|
||||
|
||||
llama_model::~llama_model() {}
|
||||
llama_model::~llama_model() = default;
|
||||
|
||||
void llama_model::load_stats(llama_model_loader & ml) {
|
||||
pimpl->n_elements = ml.n_elements;
|
||||
@@ -663,8 +663,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
hparams.n_no_rope_layer_step = hparams.n_layer; // always use rope
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
|
||||
hparams.n_swa = 8192;
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
|
||||
hparams.n_swa = 8192;
|
||||
hparams.n_attn_temp_floor_scale = 8192;
|
||||
hparams.f_attn_temp_scale = 0.1f;
|
||||
hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
|
||||
}
|
||||
|
||||
@@ -1262,18 +1264,25 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(6);
|
||||
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
if (found_swa && hparams.n_swa > 0) {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.set_swa_pattern(6);
|
||||
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
hparams.rope_freq_scale_train_swa = 1.0f;
|
||||
} else {
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
}
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
hparams.f_final_logit_softcapping = 0.0f;
|
||||
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 18: type = LLM_TYPE_270M; break;
|
||||
case 26: type = LLM_TYPE_1B; break;
|
||||
case 32: type = LLM_TYPE_8B; break; // Rnj-1
|
||||
case 34: type = LLM_TYPE_4B; break;
|
||||
case 48: type = LLM_TYPE_12B; break;
|
||||
case 62: type = LLM_TYPE_27B; break;
|
||||
@@ -1597,8 +1606,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
|
||||
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 28: type = LLM_TYPE_20B; break;
|
||||
switch (hparams.n_ff_exp) {
|
||||
case 1408: type = LLM_TYPE_16B; break;
|
||||
case 1792: type = LLM_TYPE_20B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
@@ -1626,6 +1636,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
}
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
|
||||
|
||||
// (optional) temperature tuning - used by mistral-large
|
||||
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 27: type = LLM_TYPE_16B; break;
|
||||
case 60: type = LLM_TYPE_236B; break;
|
||||
@@ -2262,6 +2276,42 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_FAST, hparams.yarn_beta_fast, false);
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
|
||||
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
|
||||
|
||||
// TODO: maybe add n_attn_temp_floor_scale as a separate KV?
|
||||
if (hparams.f_attn_temp_scale != 0.0f) {
|
||||
hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
|
||||
if (hparams.n_attn_temp_floor_scale == 0) {
|
||||
throw std::runtime_error("invalid n_ctx_orig_yarn for attention temperature scaling");
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: this seems to be correct with the case of mscale == mscale_all_dims == 1.0f
|
||||
// but may need further verification with other values
|
||||
if (hparams.rope_yarn_log_mul != 0.0f) {
|
||||
float factor = 1.0f / hparams.rope_freq_scale_train;
|
||||
float mscale = 1.0f;
|
||||
float mscale_all_dims = hparams.rope_yarn_log_mul;
|
||||
static auto get_mscale = [](float scale, float mscale) {
|
||||
return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
|
||||
};
|
||||
hparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
|
||||
}
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 26: type = LLM_TYPE_3B; break;
|
||||
case 34: type = LLM_TYPE_8B; break;
|
||||
case 40: type = LLM_TYPE_14B; break;
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: throw std::runtime_error("unsupported model architecture");
|
||||
}
|
||||
|
||||
@@ -2575,6 +2625,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
case LLM_ARCH_MINICPM:
|
||||
case LLM_ARCH_GRANITE:
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
|
||||
|
||||
@@ -6530,7 +6581,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, qkvz_dim }, 0);
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
|
||||
@@ -7304,7 +7355,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
|
||||
if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
|
||||
llm = std::make_unique<llm_build_gemma3<true>>(*this, params);
|
||||
} else {
|
||||
llm = std::make_unique<llm_build_gemma3<false>>(*this, params);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3N:
|
||||
{
|
||||
@@ -7569,6 +7624,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen3next>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
llm = std::make_unique<llm_build_mistral3>(*this, params);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@@ -7738,6 +7797,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_ARCEE:
|
||||
case LLM_ARCH_ERNIE4_5:
|
||||
case LLM_ARCH_ERNIE4_5_MOE:
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
return LLAMA_ROPE_TYPE_NORM;
|
||||
|
||||
// the pairs of head values are offset by n_rot/2
|
||||
|
||||
29
llama/llama.cpp/src/llama-quant.cpp
vendored
29
llama/llama.cpp/src/llama-quant.cpp
vendored
@@ -666,7 +666,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
|
||||
std::map<int, std::string> mapped;
|
||||
int blk_id = 0;
|
||||
int pruned_attention_w = 0;
|
||||
|
||||
// make a list of weights
|
||||
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
|
||||
@@ -674,11 +673,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
for (const auto & it : ml.weights_map) {
|
||||
const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
|
||||
if (remapped_name.empty()) {
|
||||
if (it.first.find("attn_v.weight") != std::string::npos ||
|
||||
it.first.find("attn_qkv.weight") != std::string::npos ||
|
||||
it.first.find("attn_kv_b.weight") != std::string::npos) {
|
||||
pruned_attention_w++;
|
||||
}
|
||||
LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
|
||||
continue;
|
||||
}
|
||||
@@ -703,7 +697,6 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
});
|
||||
}
|
||||
|
||||
bool is_clip_model = false;
|
||||
for (const auto * it : tensors) {
|
||||
const struct ggml_tensor * tensor = it->tensor;
|
||||
|
||||
@@ -717,32 +710,10 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
qs.has_output = true;
|
||||
}
|
||||
|
||||
is_clip_model |= name.rfind("mm.", 0) == 0; // check the "mm." prefix
|
||||
}
|
||||
|
||||
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
||||
|
||||
// sanity checks for models that have attention layers
|
||||
if (qs.n_attention_wv != 0 && !is_clip_model)
|
||||
{
|
||||
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
||||
// attention layers have a non-zero number of kv heads
|
||||
int32_t n_layer_attn = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
|
||||
if (llama_model_has_encoder(&model)) {
|
||||
// now n_layer_attn is the number of attention layers in the encoder
|
||||
// for each decoder block, there are 2 attention layers
|
||||
n_layer_attn += 2 * model.hparams.dec_n_layer;
|
||||
}
|
||||
|
||||
// note: for linear-attention models (such as Qwen3 Next) this is the number of linear layers
|
||||
const int32_t n_layer_recr = std::count(model.hparams.recurrent_layer_arr.begin(), model.hparams.recurrent_layer_arr.end(), true);
|
||||
|
||||
LLAMA_LOG_INFO("%s: n_layer_attn = %d, n_layer_recr = %d, pruned_attention_w = %d\n", __func__, n_layer_attn, n_layer_recr, pruned_attention_w);
|
||||
|
||||
GGML_ASSERT((qs.n_attention_wv == n_layer_attn - pruned_attention_w - n_layer_recr) && "n_attention_wv is unexpected");
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
size_t total_size_new = 0;
|
||||
|
||||
|
||||
3
llama/llama.cpp/src/llama-vocab.cpp
vendored
3
llama/llama.cpp/src/llama-vocab.cpp
vendored
@@ -3243,8 +3243,7 @@ void llama_vocab::impl::print_info() const {
|
||||
llama_vocab::llama_vocab() : pimpl(new impl(*this)) {
|
||||
}
|
||||
|
||||
llama_vocab::~llama_vocab() {
|
||||
}
|
||||
llama_vocab::~llama_vocab() = default;
|
||||
|
||||
void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
pimpl->load(ml, kv);
|
||||
|
||||
18
llama/llama.cpp/src/models/deepseek2.cpp
vendored
18
llama/llama.cpp/src/models/deepseek2.cpp
vendored
@@ -30,6 +30,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
||||
// {n_embd, n_tokens}
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// (optional) temperature tuning - used by mistral-large
|
||||
ggml_tensor * inp_attn_scale = nullptr;
|
||||
if (hparams.f_attn_temp_scale != 0.0f) {
|
||||
inp_attn_scale = build_inp_attn_scale();
|
||||
}
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
@@ -128,6 +134,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
||||
ggml_tensor * Vcur = kv_cmpr;
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
if (inp_attn_scale) {
|
||||
// apply llama 4 temperature scaling
|
||||
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
|
||||
cb(Qcur, "Qcur_attn_temp_scaled", il);
|
||||
}
|
||||
|
||||
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, NULL,
|
||||
@@ -160,6 +172,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
|
||||
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
if (inp_attn_scale) {
|
||||
// apply llama 4 temperature scaling
|
||||
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
|
||||
cb(Qcur, "Qcur_attn_temp_scaled", il);
|
||||
}
|
||||
|
||||
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, NULL,
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "models.h"
|
||||
|
||||
llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
template <bool iswa>
|
||||
llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_k;
|
||||
|
||||
ggml_tensor * cur;
|
||||
@@ -17,13 +18,28 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// TODO: is causal == true correct? might need some changes
|
||||
auto * inp_attn = build_attn_inp_kv_iswa();
|
||||
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
|
||||
inp_attn_type * inp_attn = nullptr;
|
||||
|
||||
if constexpr (iswa) {
|
||||
inp_attn = build_attn_inp_kv_iswa();
|
||||
} else {
|
||||
inp_attn = build_attn_inp_kv();
|
||||
}
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
float freq_base_l = 0.0f;
|
||||
float freq_scale_l = 0.0f;
|
||||
|
||||
if constexpr (iswa) {
|
||||
freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
} else {
|
||||
freq_base_l = freq_base;
|
||||
freq_scale_l = freq_scale;
|
||||
}
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
@@ -102,7 +118,7 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
|
||||
cur = build_norm(cur,
|
||||
model.layers[il].ffn_post_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
cb(cur, "ffn_post_norm", -1);
|
||||
cb(cur, "ffn_post_norm", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, sa_out);
|
||||
|
||||
@@ -124,8 +140,17 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
if (hparams.f_final_logit_softcapping) {
|
||||
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
|
||||
cur = ggml_tanh(ctx0, cur);
|
||||
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
|
||||
}
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
template struct llm_build_gemma3<false>;
|
||||
template struct llm_build_gemma3<true>;
|
||||
160
llama/llama.cpp/src/models/mistral3.cpp
vendored
Normal file
160
llama/llama.cpp/src/models/mistral3.cpp
vendored
Normal file
@@ -0,0 +1,160 @@
|
||||
#include "models.h"
|
||||
|
||||
llm_build_mistral3::llm_build_mistral3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// (optional) temperature tuning
|
||||
ggml_tensor * inp_attn_scale = nullptr;
|
||||
if (hparams.f_attn_temp_scale != 0.0f) {
|
||||
inp_attn_scale = build_inp_attn_scale();
|
||||
}
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
if (inp_attn_scale) {
|
||||
// apply llama 4 temperature scaling
|
||||
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
|
||||
cb(Qcur, "Qcur_attn_temp_scaled", il);
|
||||
}
|
||||
|
||||
cur = build_attn(inp_attn,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network (non-MoE)
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
9
llama/llama.cpp/src/models/models.h
vendored
9
llama/llama.cpp/src/models/models.h
vendored
@@ -179,8 +179,9 @@ struct llm_build_gemma2_iswa : public llm_graph_context {
|
||||
llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_gemma3_iswa : public llm_graph_context {
|
||||
llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params);
|
||||
template <bool iswa>
|
||||
struct llm_build_gemma3 : public llm_graph_context {
|
||||
llm_build_gemma3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_gemma3n_iswa : public llm_graph_context {
|
||||
@@ -322,6 +323,10 @@ struct llm_build_minimax_m2 : public llm_graph_context {
|
||||
llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_mistral3 : public llm_graph_context {
|
||||
llm_build_mistral3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
struct llm_build_mpt : public llm_graph_context {
|
||||
llm_build_mpt(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
4
llama/llama.cpp/src/unicode.cpp
vendored
4
llama/llama.cpp/src/unicode.cpp
vendored
@@ -520,7 +520,7 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
|
||||
|
||||
// use std::wregex to split the text
|
||||
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
|
||||
std::wregex expr(regex_expr);
|
||||
std::wregex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
|
||||
std::vector<size_t> bpe_offsets; // store the offset of each word
|
||||
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
|
||||
size_t start = 0;
|
||||
@@ -550,7 +550,7 @@ static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, c
|
||||
|
||||
// use std::regex to split the text
|
||||
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
|
||||
std::regex expr(regex_expr);
|
||||
std::regex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
|
||||
std::vector<size_t> bpe_offsets; // store the offset of each word
|
||||
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
|
||||
size_t start = 0;
|
||||
|
||||
70
llama/llama.cpp/tools/mtmd/clip.cpp
vendored
70
llama/llama.cpp/tools/mtmd/clip.cpp
vendored
@@ -441,6 +441,7 @@ struct clip_ctx {
|
||||
int max_nodes = 8192;
|
||||
ggml_backend_sched_ptr sched;
|
||||
clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
|
||||
bool is_allocated = false;
|
||||
|
||||
// for debugging
|
||||
bool debug_graph = false;
|
||||
@@ -2033,7 +2034,7 @@ private:
|
||||
ggml_tensor * pos_embd = model.position_embeddings;
|
||||
const int height = img.ny / patch_size;
|
||||
const int width = img.nx / patch_size;
|
||||
const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
|
||||
const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
|
||||
const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
|
||||
|
||||
GGML_ASSERT(pos_embd);
|
||||
@@ -2812,7 +2813,8 @@ struct clip_model_loader {
|
||||
{
|
||||
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
|
||||
// ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
|
||||
hparams.set_limit_image_tokens(64, 256);
|
||||
// config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
|
||||
hparams.set_limit_image_tokens(64, 1024);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_PIXTRAL:
|
||||
case PROJECTOR_TYPE_LIGHTONOCR:
|
||||
@@ -3347,12 +3349,30 @@ struct clip_model_loader {
|
||||
};
|
||||
|
||||
static void warmup(clip_ctx & ctx_clip) {
|
||||
// create a fake batch
|
||||
const auto & hparams = ctx_clip.model.hparams;
|
||||
clip_image_f32_batch batch;
|
||||
clip_image_f32_ptr img(clip_image_f32_init());
|
||||
if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
|
||||
img->nx = hparams.warmup_image_size;
|
||||
img->ny = hparams.warmup_image_size;
|
||||
LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
|
||||
} else {
|
||||
img->nx = hparams.warmup_audio_size;
|
||||
img->ny = hparams.n_mel_bins;
|
||||
LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
|
||||
}
|
||||
batch.entries.push_back(std::move(img));
|
||||
warmup(ctx_clip, batch);
|
||||
}
|
||||
|
||||
static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
|
||||
support_info_graph info;
|
||||
|
||||
if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
|
||||
// try to enable flash attention to see if it's supported
|
||||
ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
|
||||
info = alloc_compute_meta(ctx_clip);
|
||||
info = alloc_compute_meta(ctx_clip, batch);
|
||||
if (!info.fattn && info.fattn_op) {
|
||||
auto op = info.fattn_op;
|
||||
LOG_WRN("%s: *****************************************************************\n", __func__);
|
||||
@@ -3371,15 +3391,17 @@ struct clip_model_loader {
|
||||
LOG_WRN("%s: please report this on github as an issue\n", __func__);
|
||||
LOG_WRN("%s: *****************************************************************\n", __func__);
|
||||
ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
|
||||
alloc_compute_meta(ctx_clip);
|
||||
alloc_compute_meta(ctx_clip, batch);
|
||||
}
|
||||
} else {
|
||||
info = alloc_compute_meta(ctx_clip);
|
||||
info = alloc_compute_meta(ctx_clip, batch);
|
||||
if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
|
||||
LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
ctx_clip.is_allocated = true; // mark buffers as allocated
|
||||
|
||||
LOG_INF("%s: flash attention is %s\n", __func__,
|
||||
(ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
|
||||
|
||||
@@ -3411,24 +3433,9 @@ struct clip_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
|
||||
const auto & hparams = ctx_clip.model.hparams;
|
||||
static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
|
||||
ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
|
||||
// create a fake batch
|
||||
clip_image_f32_batch batch;
|
||||
clip_image_f32_ptr img(clip_image_f32_init());
|
||||
if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
|
||||
img->nx = hparams.warmup_image_size;
|
||||
img->ny = hparams.warmup_image_size;
|
||||
LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
|
||||
} else {
|
||||
img->nx = hparams.warmup_audio_size;
|
||||
img->ny = hparams.n_mel_bins;
|
||||
LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
|
||||
}
|
||||
batch.entries.push_back(std::move(img));
|
||||
|
||||
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
|
||||
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
|
||||
|
||||
@@ -3568,14 +3575,18 @@ struct clip_init_result clip_init(const char * fname, struct clip_context_params
|
||||
ctx_vision = new clip_ctx(ctx_params);
|
||||
loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
|
||||
loader.load_tensors(*ctx_vision);
|
||||
loader.warmup(*ctx_vision);
|
||||
if (ctx_params.warmup) {
|
||||
loader.warmup(*ctx_vision);
|
||||
}
|
||||
}
|
||||
|
||||
if (loader.has_audio) {
|
||||
ctx_audio = new clip_ctx(ctx_params);
|
||||
loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
|
||||
loader.load_tensors(*ctx_audio);
|
||||
loader.warmup(*ctx_audio);
|
||||
if (ctx_params.warmup) {
|
||||
loader.warmup(*ctx_audio);
|
||||
}
|
||||
}
|
||||
|
||||
} catch (const std::exception & e) {
|
||||
@@ -3788,12 +3799,13 @@ struct img_tool {
|
||||
const int width = inp_size.width;
|
||||
const int height = inp_size.height;
|
||||
|
||||
auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
|
||||
auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
|
||||
auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
|
||||
|
||||
// always align up first
|
||||
int h_bar = std::max(align_size, ceil_by_factor(height));
|
||||
int w_bar = std::max(align_size, ceil_by_factor(width));
|
||||
int h_bar = std::max(align_size, round_by_factor(height));
|
||||
int w_bar = std::max(align_size, round_by_factor(width));
|
||||
|
||||
if (h_bar * w_bar > max_pixels) {
|
||||
const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
|
||||
@@ -4408,7 +4420,8 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
|
||||
|
||||
clip_image_u8 resized_img;
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
|
||||
const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
|
||||
clip_image_f32_ptr res(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
|
||||
res_imgs->entries.push_back(std::move(res));
|
||||
@@ -4666,6 +4679,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
return false; // only support batch size of 1
|
||||
}
|
||||
|
||||
// if buffers are not allocated, we need to do a warmup run to allocate them
|
||||
if (!ctx->is_allocated) {
|
||||
clip_model_loader::warmup(*ctx, *imgs_c_ptr);
|
||||
}
|
||||
|
||||
// build the inference graph
|
||||
ctx->debug_print_tensors.clear();
|
||||
ggml_backend_sched_reset(ctx->sched.get());
|
||||
|
||||
1
llama/llama.cpp/tools/mtmd/clip.h
vendored
1
llama/llama.cpp/tools/mtmd/clip.h
vendored
@@ -34,6 +34,7 @@ struct clip_context_params {
|
||||
enum clip_flash_attn_type flash_attn_type;
|
||||
int image_min_tokens;
|
||||
int image_max_tokens;
|
||||
bool warmup;
|
||||
};
|
||||
|
||||
struct clip_init_result {
|
||||
|
||||
6
llama/llama.cpp/tools/mtmd/mtmd.cpp
vendored
6
llama/llama.cpp/tools/mtmd/mtmd.cpp
vendored
@@ -118,6 +118,7 @@ mtmd_context_params mtmd_context_params_default() {
|
||||
/* image_marker */ MTMD_DEFAULT_IMAGE_MARKER,
|
||||
/* media_marker */ mtmd_default_marker(),
|
||||
/* flash_attn_type */ LLAMA_FLASH_ATTN_TYPE_AUTO,
|
||||
/* warmup */ true,
|
||||
/* image_min_tokens */ -1,
|
||||
/* image_max_tokens */ -1,
|
||||
};
|
||||
@@ -187,6 +188,7 @@ struct mtmd_context {
|
||||
/* flash_attn_type */ CLIP_FLASH_ATTN_TYPE_AUTO,
|
||||
/* image_min_tokens */ ctx_params.image_min_tokens,
|
||||
/* image_max_tokens */ ctx_params.image_max_tokens,
|
||||
/* warmup */ ctx_params.warmup,
|
||||
};
|
||||
|
||||
auto res = clip_init(mmproj_fname, ctx_clip_params);
|
||||
@@ -314,6 +316,10 @@ struct mtmd_context {
|
||||
img_beg = "<|im_start|>";
|
||||
img_end = "<|im_end|>";
|
||||
|
||||
} else if (proj == PROJECTOR_TYPE_LFM2) {
|
||||
img_beg = "<|image_start|>";
|
||||
img_end = "<|image_end|>";
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
1
llama/llama.cpp/tools/mtmd/mtmd.h
vendored
1
llama/llama.cpp/tools/mtmd/mtmd.h
vendored
@@ -85,6 +85,7 @@ struct mtmd_context_params {
|
||||
const char * image_marker; // deprecated, use media_marker instead
|
||||
const char * media_marker;
|
||||
enum llama_flash_attn_type flash_attn_type;
|
||||
bool warmup; // whether to run a warmup encode pass after initialization
|
||||
|
||||
// limit number of image tokens, only for vision models with dynamic resolution
|
||||
int image_min_tokens; // minimum number of tokens for image input (default: read from metadata)
|
||||
|
||||
@@ -23,7 +23,7 @@ problem.
|
||||
8 files changed, 21 insertions(+), 2 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index 4cf377e7f..4882541c8 100644
|
||||
index 08681f35e..afde2f0b7 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -113,7 +113,6 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
@@ -42,7 +42,7 @@ index 4cf377e7f..4882541c8 100644
|
||||
}
|
||||
|
||||
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@@ -2079,6 +2079,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -2106,6 +2106,11 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_aligned_free(buffer->context, buffer->size);
|
||||
@@ -54,7 +54,7 @@ index 4cf377e7f..4882541c8 100644
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
@@ -2131,7 +2136,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
|
||||
@@ -2158,7 +2163,7 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
|
||||
};
|
||||
|
||||
static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
|
||||
@@ -64,7 +64,7 @@ index 4cf377e7f..4882541c8 100644
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
|
||||
diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
index df28d67fb..1f6a56ba2 100644
|
||||
index 81288464c..866758782 100644
|
||||
--- a/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
+++ b/ggml/src/ggml-cann/ggml-cann.cpp
|
||||
@@ -831,6 +831,7 @@ static bool ggml_backend_buffer_is_cann(ggml_backend_buffer_t buffer) {
|
||||
@@ -84,10 +84,10 @@ index df28d67fb..1f6a56ba2 100644
|
||||
|
||||
/**
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index fa7e1e13a..8f3b1c173 100644
|
||||
index 279679a4e..5145c1e88 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -579,6 +579,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
@@ -583,6 +583,7 @@ struct ggml_backend_cuda_buffer_context {
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
@@ -95,7 +95,7 @@ index fa7e1e13a..8f3b1c173 100644
|
||||
}
|
||||
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
@@ -834,6 +835,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
@@ -838,6 +839,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
||||
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
@@ -103,7 +103,7 @@ index fa7e1e13a..8f3b1c173 100644
|
||||
}
|
||||
|
||||
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -1115,6 +1117,7 @@ static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
@@ -1119,6 +1121,7 @@ static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
|
||||
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
@@ -132,10 +132,10 @@ index 70bf6f3d9..f2b7fe692 100644
|
||||
|
||||
static void * ggml_backend_metal_buffer_private_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
index e5302f455..43fa83e8f 100644
|
||||
index 0d37587f6..ff373d413 100644
|
||||
--- a/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
+++ b/ggml/src/ggml-opencl/ggml-opencl.cpp
|
||||
@@ -3412,6 +3412,7 @@ struct ggml_backend_opencl_buffer_context {
|
||||
@@ -3417,6 +3417,7 @@ struct ggml_backend_opencl_buffer_context {
|
||||
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
delete ctx;
|
||||
@@ -144,10 +144,10 @@ index e5302f455..43fa83e8f 100644
|
||||
|
||||
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
index 48fd99a76..da2aab3df 100644
|
||||
index 18a45d2d9..89041805e 100644
|
||||
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
|
||||
@@ -555,6 +555,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@@ -556,6 +556,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
|
||||
RPC_STATUS_ASSERT(status);
|
||||
delete ctx;
|
||||
@@ -156,7 +156,7 @@ index 48fd99a76..da2aab3df 100644
|
||||
|
||||
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
index 3f1bdfb9f..a95c2f305 100644
|
||||
index 7449a9160..e69a1ff5f 100644
|
||||
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
|
||||
@@ -355,6 +355,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
|
||||
@@ -184,10 +184,10 @@ index 3f1bdfb9f..a95c2f305 100644
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
index 66dd0bfab..83cdec29e 100644
|
||||
index c6f5809cc..c801d2fd2 100644
|
||||
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
@@ -12368,6 +12368,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
@@ -12271,6 +12271,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
||||
delete ctx;
|
||||
@@ -195,7 +195,7 @@ index 66dd0bfab..83cdec29e 100644
|
||||
}
|
||||
|
||||
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
@@ -12511,6 +12512,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
|
||||
@@ -12414,6 +12415,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
|
||||
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
|
||||
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
|
||||
|
||||
@@ -10,7 +10,7 @@ logs instead of throwing an error
|
||||
1 file changed, 3 insertions(+), 11 deletions(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index a73c4c448..b9f0631f4 100644
|
||||
index e2cca66e4..8246a0a14 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1825,16 +1825,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
@@ -10,7 +10,7 @@ filesystems for paths that include wide characters
|
||||
1 file changed, 39 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
|
||||
index 05777d2d9..f4c4d2c48 100644
|
||||
index 3ed08a0fe..6be1470ad 100644
|
||||
--- a/tools/mtmd/clip.cpp
|
||||
+++ b/tools/mtmd/clip.cpp
|
||||
@@ -24,6 +24,19 @@
|
||||
@@ -33,7 +33,7 @@ index 05777d2d9..f4c4d2c48 100644
|
||||
struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
|
||||
|
||||
enum ffn_op_type {
|
||||
@@ -3255,7 +3268,29 @@ struct clip_model_loader {
|
||||
@@ -3257,7 +3270,29 @@ struct clip_model_loader {
|
||||
{
|
||||
std::vector<uint8_t> read_buf;
|
||||
|
||||
@@ -63,7 +63,7 @@ index 05777d2d9..f4c4d2c48 100644
|
||||
if (!fin) {
|
||||
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
|
||||
}
|
||||
@@ -3282,7 +3317,11 @@ struct clip_model_loader {
|
||||
@@ -3284,7 +3319,11 @@ struct clip_model_loader {
|
||||
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -19,7 +19,7 @@ adds support for the Solar Pro architecture
|
||||
create mode 100644 src/models/solar.cpp
|
||||
|
||||
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
|
||||
index 67c7807e0..fda881640 100644
|
||||
index 4192af7c0..bd44d73e7 100644
|
||||
--- a/src/CMakeLists.txt
|
||||
+++ b/src/CMakeLists.txt
|
||||
@@ -125,6 +125,7 @@ add_library(llama
|
||||
@@ -31,7 +31,7 @@ index 67c7807e0..fda881640 100644
|
||||
models/starcoder.cpp
|
||||
models/starcoder2.cpp
|
||||
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
|
||||
index 8571a2e02..b6bde25d5 100644
|
||||
index 64ad1b776..a5fe4f66c 100644
|
||||
--- a/src/llama-arch.cpp
|
||||
+++ b/src/llama-arch.cpp
|
||||
@@ -85,6 +85,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
@@ -42,15 +42,15 @@ index 8571a2e02..b6bde25d5 100644
|
||||
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
|
||||
{ LLM_ARCH_PLM, "plm" },
|
||||
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
|
||||
@@ -204,6 +205,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
||||
@@ -206,6 +207,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
||||
{ LLM_KV_ATTENTION_OUTPUT_SCALE, "%s.attention.output_scale" },
|
||||
{ LLM_KV_ATTENTION_TEMPERATURE_LENGTH, "%s.attention.temperature_length" },
|
||||
{ LLM_KV_ATTENTION_TEMPERATURE_SCALE, "%s.attention.temperature_scale" },
|
||||
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
|
||||
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
|
||||
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
|
||||
|
||||
@@ -2023,6 +2025,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
@@ -2025,6 +2027,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||
},
|
||||
},
|
||||
@@ -75,7 +75,7 @@ index 8571a2e02..b6bde25d5 100644
|
||||
{
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
{
|
||||
@@ -2681,6 +2701,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
@@ -2710,6 +2730,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
|
||||
{LLM_TENSOR_LAUREL_POST_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
// this tensor is loaded for T5, but never used
|
||||
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
|
||||
@@ -84,7 +84,7 @@ index 8571a2e02..b6bde25d5 100644
|
||||
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
|
||||
diff --git a/src/llama-arch.h b/src/llama-arch.h
|
||||
index 150646478..3936a4687 100644
|
||||
index e11318002..ec9e3a6df 100644
|
||||
--- a/src/llama-arch.h
|
||||
+++ b/src/llama-arch.h
|
||||
@@ -89,6 +89,7 @@ enum llm_arch {
|
||||
@@ -95,15 +95,15 @@ index 150646478..3936a4687 100644
|
||||
LLM_ARCH_WAVTOKENIZER_DEC,
|
||||
LLM_ARCH_PLM,
|
||||
LLM_ARCH_BAILINGMOE,
|
||||
@@ -208,6 +209,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_SCALE,
|
||||
@@ -210,6 +211,7 @@ enum llm_kv {
|
||||
LLM_KV_ATTENTION_OUTPUT_SCALE,
|
||||
LLM_KV_ATTENTION_TEMPERATURE_LENGTH,
|
||||
LLM_KV_ATTENTION_TEMPERATURE_SCALE,
|
||||
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
||||
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
|
||||
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
|
||||
|
||||
@@ -459,6 +461,7 @@ enum llm_tensor {
|
||||
@@ -462,6 +464,7 @@ enum llm_tensor {
|
||||
LLM_TENSOR_ENC_OUTPUT_NORM,
|
||||
LLM_TENSOR_CLS,
|
||||
LLM_TENSOR_CLS_OUT,
|
||||
@@ -131,7 +131,7 @@ index 8cdbaf69f..41127bf91 100644
|
||||
if (il < n_layer) {
|
||||
return swa_layers[il];
|
||||
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
|
||||
index c3a53be79..2ffe7dd30 100644
|
||||
index 6eff334a5..a778fc3cf 100644
|
||||
--- a/src/llama-hparams.h
|
||||
+++ b/src/llama-hparams.h
|
||||
@@ -64,6 +64,8 @@ struct llama_hparams {
|
||||
@@ -167,10 +167,10 @@ index aa3a65f87..ee303bd58 100644
|
||||
llama_model_loader::llama_model_loader(
|
||||
const std::string & fname,
|
||||
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
|
||||
index c2a545531..4468de2f9 100644
|
||||
index 04fccc979..3c503b424 100644
|
||||
--- a/src/llama-model.cpp
|
||||
+++ b/src/llama-model.cpp
|
||||
@@ -1961,6 +1961,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
@@ -1975,6 +1975,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
@@ -192,7 +192,7 @@ index c2a545531..4468de2f9 100644
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||
@@ -5350,6 +5365,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
@@ -5401,6 +5416,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
|
||||
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
|
||||
|
||||
@@ -227,7 +227,7 @@ index c2a545531..4468de2f9 100644
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
|
||||
@@ -7425,6 +7468,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
@@ -7480,6 +7523,10 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
{
|
||||
llm = std::make_unique<llm_build_chameleon>(*this, params);
|
||||
} break;
|
||||
@@ -238,7 +238,7 @@ index c2a545531..4468de2f9 100644
|
||||
case LLM_ARCH_WAVTOKENIZER_DEC:
|
||||
{
|
||||
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params);
|
||||
@@ -7684,6 +7731,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
@@ -7743,6 +7790,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_GRANITE_MOE:
|
||||
case LLM_ARCH_GRANITE_HYBRID:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
@@ -268,10 +268,10 @@ index f8342cf2c..cbf4e1bfa 100644
|
||||
|
||||
struct llama_layer_convnext convnext;
|
||||
diff --git a/src/models/models.h b/src/models/models.h
|
||||
index 7ba225b47..71fea796d 100644
|
||||
index 6494f5450..e0aec822c 100644
|
||||
--- a/src/models/models.h
|
||||
+++ b/src/models/models.h
|
||||
@@ -510,6 +510,11 @@ struct llm_build_smollm3 : public llm_graph_context {
|
||||
@@ -515,6 +515,11 @@ struct llm_build_smollm3 : public llm_graph_context {
|
||||
llm_build_smollm3(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ regex
|
||||
2 files changed, 22 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index b9f0631f4..1525283d7 100644
|
||||
index 8246a0a14..dfba7778b 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -299,7 +299,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
|
||||
@@ -25,7 +25,7 @@ index b9f0631f4..1525283d7 100644
|
||||
"\\s+$",
|
||||
"[一-龥ࠀ-一가-]+",
|
||||
diff --git a/src/unicode.cpp b/src/unicode.cpp
|
||||
index 77ba4fc46..040518e1e 100644
|
||||
index bb44edfad..13ced055f 100644
|
||||
--- a/src/unicode.cpp
|
||||
+++ b/src/unicode.cpp
|
||||
@@ -2,6 +2,11 @@
|
||||
|
||||
@@ -8,7 +8,7 @@ Subject: [PATCH] maintain ordering for rules for grammar
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/common/json-schema-to-grammar.cpp b/common/json-schema-to-grammar.cpp
|
||||
index c8421e1e8..cb659915d 100644
|
||||
index c3b4e5d9d..6be552826 100644
|
||||
--- a/common/json-schema-to-grammar.cpp
|
||||
+++ b/common/json-schema-to-grammar.cpp
|
||||
@@ -310,7 +310,7 @@ private:
|
||||
|
||||
@@ -11,10 +11,10 @@ with the fastest acceleration is loaded
|
||||
1 file changed, 13 insertions(+), 8 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index e96b5c403..a55d9b280 100644
|
||||
index 4181a714a..079dba211 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -179,7 +179,7 @@ struct ggml_backend_reg_entry {
|
||||
@@ -183,7 +183,7 @@ struct ggml_backend_reg_entry {
|
||||
|
||||
struct ggml_backend_registry {
|
||||
std::vector<ggml_backend_reg_entry> backends;
|
||||
@@ -23,7 +23,7 @@ index e96b5c403..a55d9b280 100644
|
||||
|
||||
ggml_backend_registry() {
|
||||
#ifdef GGML_USE_CUDA
|
||||
@@ -230,7 +230,7 @@ struct ggml_backend_registry {
|
||||
@@ -237,7 +237,7 @@ struct ggml_backend_registry {
|
||||
}
|
||||
}
|
||||
|
||||
@@ -32,7 +32,7 @@ index e96b5c403..a55d9b280 100644
|
||||
if (!reg) {
|
||||
return;
|
||||
}
|
||||
@@ -241,15 +241,20 @@ struct ggml_backend_registry {
|
||||
@@ -248,15 +248,20 @@ struct ggml_backend_registry {
|
||||
#endif
|
||||
backends.push_back({ reg, std::move(handle) });
|
||||
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
|
||||
@@ -56,7 +56,7 @@ index e96b5c403..a55d9b280 100644
|
||||
}
|
||||
|
||||
ggml_backend_reg_t load_backend(const fs::path & path, bool silent) {
|
||||
@@ -293,7 +298,7 @@ struct ggml_backend_registry {
|
||||
@@ -300,7 +305,7 @@ struct ggml_backend_registry {
|
||||
|
||||
GGML_LOG_INFO("%s: loaded %s backend from %s\n", __func__, ggml_backend_reg_name(reg), path_str(path).c_str());
|
||||
|
||||
@@ -65,7 +65,7 @@ index e96b5c403..a55d9b280 100644
|
||||
|
||||
return reg;
|
||||
}
|
||||
@@ -316,7 +321,7 @@ struct ggml_backend_registry {
|
||||
@@ -323,7 +328,7 @@ struct ggml_backend_registry {
|
||||
// remove devices
|
||||
devices.erase(
|
||||
std::remove_if(devices.begin(), devices.end(),
|
||||
@@ -74,7 +74,7 @@ index e96b5c403..a55d9b280 100644
|
||||
devices.end());
|
||||
|
||||
// remove backend
|
||||
@@ -374,7 +379,7 @@ size_t ggml_backend_dev_count() {
|
||||
@@ -381,7 +386,7 @@ size_t ggml_backend_dev_count() {
|
||||
|
||||
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
|
||||
GGML_ASSERT(index < ggml_backend_dev_count());
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] add phony target ggml-cpu for all cpu variants
|
||||
1 file changed, 2 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index d93664b8b..800f98b65 100644
|
||||
index 4c04c3300..f4747f262 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -349,6 +349,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
@@ -345,6 +345,7 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_variant_impl(${tag_name})
|
||||
@@ -19,7 +19,7 @@ index d93664b8b..800f98b65 100644
|
||||
endfunction()
|
||||
|
||||
ggml_add_backend(CPU)
|
||||
@@ -359,6 +360,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
@@ -355,6 +356,7 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
elseif (GGML_CPU_ARM_ARCH)
|
||||
message(FATAL_ERROR "Cannot use both GGML_CPU_ARM_ARCH and GGML_CPU_ALL_VARIANTS")
|
||||
endif()
|
||||
|
||||
@@ -9,10 +9,10 @@ disable amx as it reduces performance on some systems
|
||||
1 file changed, 4 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index 800f98b65..6d493a4ff 100644
|
||||
index f4747f262..d55aed348 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -369,10 +369,6 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
@@ -365,10 +365,6 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
ggml_add_cpu_backend_variant(skylakex SSE42 AVX F16C AVX2 BMI2 FMA AVX512)
|
||||
ggml_add_cpu_backend_variant(icelake SSE42 AVX F16C AVX2 BMI2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
|
||||
ggml_add_cpu_backend_variant(alderlake SSE42 AVX F16C AVX2 BMI2 FMA AVX_VNNI)
|
||||
|
||||
@@ -25,7 +25,7 @@ index 79ee20206..3efb22f01 100644
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
diff --git a/ggml/src/gguf.cpp b/ggml/src/gguf.cpp
|
||||
index 8cc4ef1cf..d950dbdf5 100644
|
||||
index b165d8bdc..f91d4faba 100644
|
||||
--- a/ggml/src/gguf.cpp
|
||||
+++ b/ggml/src/gguf.cpp
|
||||
@@ -805,10 +805,14 @@ enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id
|
||||
@@ -53,7 +53,7 @@ index 8cc4ef1cf..d950dbdf5 100644
|
||||
}
|
||||
|
||||
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
|
||||
index 1525283d7..ea450c361 100644
|
||||
index dfba7778b..f72f321b9 100644
|
||||
--- a/src/llama-vocab.cpp
|
||||
+++ b/src/llama-vocab.cpp
|
||||
@@ -1781,9 +1781,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
||||
|
||||
@@ -8,7 +8,7 @@ Subject: [PATCH] ollama debug tensor
|
||||
1 file changed, 6 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index 3247af8bb..5be08d6f4 100644
|
||||
index b468b115a..bb65985b4 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -15,6 +15,8 @@
|
||||
@@ -20,7 +20,7 @@ index 3247af8bb..5be08d6f4 100644
|
||||
#if defined(_MSC_VER) || defined(__MINGW32__)
|
||||
#include <malloc.h> // using malloc.h with MSC/MINGW
|
||||
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
|
||||
@@ -2922,6 +2924,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
@@ -2928,6 +2930,10 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
|
||||
@@ -4,16 +4,16 @@ Date: Mon, 21 Apr 2025 13:30:31 -0700
|
||||
Subject: [PATCH] add ollama vocab for grammar support
|
||||
|
||||
---
|
||||
src/llama-grammar.cpp | 49 ++++++++++++++++++++++++++++++++++++------
|
||||
src/llama-grammar.cpp | 48 ++++++++++++++++++++++++++++++++++++------
|
||||
src/llama-grammar.h | 14 ++++++++++++
|
||||
src/llama-sampling.cpp | 6 +++---
|
||||
3 files changed, 59 insertions(+), 10 deletions(-)
|
||||
3 files changed, 58 insertions(+), 10 deletions(-)
|
||||
|
||||
diff --git a/src/llama-grammar.cpp b/src/llama-grammar.cpp
|
||||
index b3c5eb571..a7307c47f 100644
|
||||
index 75d5d750c..a0299d181 100644
|
||||
--- a/src/llama-grammar.cpp
|
||||
+++ b/src/llama-grammar.cpp
|
||||
@@ -915,6 +915,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
@@ -1041,6 +1041,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
@@ -21,15 +21,15 @@ index b3c5eb571..a7307c47f 100644
|
||||
const llama_grammar_element ** rules,
|
||||
size_t n_rules,
|
||||
size_t start_rule_index) {
|
||||
@@ -970,6 +971,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
@@ -1096,6 +1097,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
+ ollama_vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
@@ -983,6 +985,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
/* .partial_utf8 = */ {},
|
||||
@@ -1110,6 +1112,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
@@ -37,15 +37,15 @@ index b3c5eb571..a7307c47f 100644
|
||||
const char * grammar_str,
|
||||
const char * grammar_root,
|
||||
bool lazy,
|
||||
@@ -1075,6 +1078,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
@@ -1202,6 +1205,7 @@ struct llama_grammar * llama_grammar_init_impl(
|
||||
// then the pointers would be invalidated when the local vec_rules goes out of scope.
|
||||
return new llama_grammar {
|
||||
vocab,
|
||||
+ ollama_vocab,
|
||||
std::move(vec_rules),
|
||||
std::move(stacks),
|
||||
/* .partial_utf8 = */ {},
|
||||
@@ -1097,6 +1101,7 @@ void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
||||
/* .partial_utf8 = */ {},
|
||||
@@ -1225,6 +1229,7 @@ void llama_grammar_free_impl(struct llama_grammar * grammar) {
|
||||
struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & grammar) {
|
||||
auto * result = new llama_grammar {
|
||||
grammar.vocab,
|
||||
@@ -53,7 +53,7 @@ index b3c5eb571..a7307c47f 100644
|
||||
grammar.rules,
|
||||
grammar.stacks,
|
||||
grammar.partial_utf8,
|
||||
@@ -1124,7 +1129,6 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
@@ -1253,7 +1258,6 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
|
||||
}
|
||||
|
||||
void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_data_array * cur_p) {
|
||||
@@ -61,7 +61,7 @@ index b3c5eb571..a7307c47f 100644
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
return;
|
||||
@@ -1146,9 +1150,13 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
@@ -1275,9 +1279,13 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
|
||||
for (size_t i = 0; i < cur_p->size; ++i) {
|
||||
const llama_token id = cur_p->data[i].id;
|
||||
@@ -77,7 +77,7 @@ index b3c5eb571..a7307c47f 100644
|
||||
if (!allow_eog) {
|
||||
cur_p->data[i].logit = -INFINITY;
|
||||
}
|
||||
@@ -1167,9 +1175,10 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
@@ -1296,9 +1304,10 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
|
||||
}
|
||||
|
||||
void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token) {
|
||||
@@ -90,7 +90,7 @@ index b3c5eb571..a7307c47f 100644
|
||||
|
||||
if (grammar.awaiting_trigger) {
|
||||
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
|
||||
@@ -1209,13 +1218,14 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
@@ -1353,13 +1362,14 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
|
||||
}
|
||||
}
|
||||
|
||||
@@ -106,12 +106,11 @@ index b3c5eb571..a7307c47f 100644
|
||||
+ GGML_ABORT("grammar error: end of grammar token received but grammar stack is not empty");
|
||||
}
|
||||
|
||||
llama_grammar_accept_str(grammar, piece);
|
||||
@@ -1235,3 +1245,28 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
|
||||
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
|
||||
llama_grammar_accept_token(grammar, token, piece);
|
||||
@@ -1435,3 +1445,27 @@ void llama_grammar_accept_token(struct llama_grammar & grammar, llama_token toke
|
||||
}
|
||||
}
|
||||
+
|
||||
|
||||
+
|
||||
+const std::string & ollama_vocab::token_to_piece(const uint32_t token) const {
|
||||
+ try {
|
||||
@@ -137,7 +136,7 @@ index b3c5eb571..a7307c47f 100644
|
||||
+ }
|
||||
+}
|
||||
diff --git a/src/llama-grammar.h b/src/llama-grammar.h
|
||||
index f8c291de9..2a3a62db3 100644
|
||||
index a4c978ac1..5c0da4049 100644
|
||||
--- a/src/llama-grammar.h
|
||||
+++ b/src/llama-grammar.h
|
||||
@@ -6,8 +6,19 @@
|
||||
@@ -160,15 +159,15 @@ index f8c291de9..2a3a62db3 100644
|
||||
|
||||
// grammar element type
|
||||
enum llama_gretype {
|
||||
@@ -114,6 +125,7 @@ struct llama_grammar_trigger_pattern {
|
||||
struct llama_grammar {
|
||||
@@ -127,6 +138,7 @@ struct llama_grammar {
|
||||
|
||||
// note: allow null vocab for testing (not great)
|
||||
const llama_vocab * vocab;
|
||||
+ const ollama_vocab * o_vocab;
|
||||
|
||||
const llama_grammar_rules rules; // TODO: shared ptr
|
||||
llama_grammar_stacks stacks;
|
||||
@@ -141,12 +153,14 @@ struct llama_grammar {
|
||||
@@ -155,12 +167,14 @@ struct llama_grammar {
|
||||
// note: needed for tests (not great)
|
||||
struct llama_grammar * llama_grammar_init_impl(
|
||||
const struct llama_vocab * vocab,
|
||||
|
||||
@@ -12,10 +12,10 @@ Subject: [PATCH] add argsort and cuda copy for i32
|
||||
5 files changed, 414 insertions(+), 12 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
|
||||
index 2745fc54e..40666bab6 100644
|
||||
index 303278397..7d1733adb 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.cpp
|
||||
+++ b/ggml/src/ggml-cpu/ops.cpp
|
||||
@@ -7846,6 +7846,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
@@ -7932,6 +7932,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
}
|
||||
}
|
||||
|
||||
@@ -61,7 +61,7 @@ index 2745fc54e..40666bab6 100644
|
||||
void ggml_compute_forward_argsort(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -7857,6 +7896,10 @@ void ggml_compute_forward_argsort(
|
||||
@@ -7943,6 +7982,10 @@ void ggml_compute_forward_argsort(
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, dst);
|
||||
} break;
|
||||
@@ -292,10 +292,10 @@ index c4ceb4fc5..0e53ecc39 100644
|
||||
if (can_be_transposed) {
|
||||
ggml_cpy_scalar_cuda<nv_bfloat16, nv_bfloat16, true>
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index 73b45c762..8a6c834d1 100644
|
||||
index 51bcbae30..236838e9e 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -4721,8 +4721,77 @@ kernel void kernel_argsort_f32_i32(
|
||||
@@ -4954,8 +4954,77 @@ kernel void kernel_argsort_f32_i32(
|
||||
}
|
||||
}
|
||||
|
||||
@@ -373,7 +373,7 @@ index 73b45c762..8a6c834d1 100644
|
||||
|
||||
typedef void (argsort_merge_t)(
|
||||
constant ggml_metal_kargs_argsort_merge & args,
|
||||
@@ -4877,8 +4946,154 @@ kernel void kernel_argsort_merge_f32_i32(
|
||||
@@ -5110,8 +5179,154 @@ kernel void kernel_argsort_merge_f32_i32(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -35,10 +35,10 @@ index f1b740785..c54ff98bf 100644
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
diff --git a/ggml/src/ggml-alloc.c b/ggml/src/ggml-alloc.c
|
||||
index 218222ece..06ee502ab 100644
|
||||
index a5995fdc2..dbfd8b5b2 100644
|
||||
--- a/ggml/src/ggml-alloc.c
|
||||
+++ b/ggml/src/ggml-alloc.c
|
||||
@@ -493,6 +493,7 @@ struct node_alloc {
|
||||
@@ -494,6 +494,7 @@ struct node_alloc {
|
||||
struct ggml_gallocr {
|
||||
ggml_backend_buffer_type_t * bufts; // [n_buffers]
|
||||
struct vbuffer ** buffers; // [n_buffers]
|
||||
@@ -46,7 +46,7 @@ index 218222ece..06ee502ab 100644
|
||||
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
|
||||
int n_buffers;
|
||||
|
||||
@@ -516,6 +517,9 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
||||
@@ -517,6 +518,9 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
||||
galloc->buffers = calloc(n_bufs, sizeof(struct vbuffer *));
|
||||
GGML_ASSERT(galloc->buffers != NULL);
|
||||
|
||||
@@ -56,7 +56,7 @@ index 218222ece..06ee502ab 100644
|
||||
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
|
||||
GGML_ASSERT(galloc->buf_tallocs != NULL);
|
||||
|
||||
@@ -583,6 +587,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
@@ -584,6 +588,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
ggml_hash_set_free(&galloc->hash_set);
|
||||
free(galloc->hash_values);
|
||||
free(galloc->bufts);
|
||||
@@ -64,7 +64,7 @@ index 218222ece..06ee502ab 100644
|
||||
free(galloc->buffers);
|
||||
free(galloc->buf_tallocs);
|
||||
free(galloc->node_allocs);
|
||||
@@ -898,6 +903,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
@@ -899,6 +904,8 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
}
|
||||
|
||||
@@ -73,7 +73,7 @@ index 218222ece..06ee502ab 100644
|
||||
// reallocate buffers if needed
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
// if the buffer type is used multiple times, we reuse the same buffer
|
||||
@@ -932,14 +939,19 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
@@ -933,14 +940,19 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
#endif
|
||||
ggml_vbuffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
|
||||
@@ -96,7 +96,7 @@ index 218222ece..06ee502ab 100644
|
||||
}
|
||||
|
||||
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
||||
@@ -1094,6 +1106,22 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
@@ -1095,6 +1107,22 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
return ggml_vbuffer_size(galloc->buffers[buffer_id]);
|
||||
}
|
||||
|
||||
@@ -120,10 +120,10 @@ index 218222ece..06ee502ab 100644
|
||||
|
||||
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index 4882541c8..ff41c7712 100644
|
||||
index afde2f0b7..dbf8486a0 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -1813,6 +1813,13 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
|
||||
@@ -1840,6 +1840,13 @@ size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backe
|
||||
return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
|
||||
}
|
||||
|
||||
|
||||
@@ -22,10 +22,10 @@ index c54ff98bf..229bf387b 100644
|
||||
size_t memory_total;
|
||||
// device type
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 8f3b1c173..e803f4af6 100644
|
||||
index 5145c1e88..f641c1016 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -185,6 +185,51 @@ static int ggml_cuda_parse_id(char devName[]) {
|
||||
@@ -189,6 +189,51 @@ static int ggml_cuda_parse_id(char devName[]) {
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
|
||||
@@ -77,7 +77,7 @@ index 8f3b1c173..e803f4af6 100644
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
ggml_cuda_device_info info = {};
|
||||
|
||||
@@ -251,22 +296,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -255,22 +300,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
info.devices[id].cc += prop.minor * 0x10;
|
||||
}
|
||||
}
|
||||
@@ -108,7 +108,7 @@ index 8f3b1c173..e803f4af6 100644
|
||||
std::string device_name(prop.name);
|
||||
if (device_name == "NVIDIA GeForce MX450") {
|
||||
turing_devices_without_mma.push_back({ id, device_name });
|
||||
@@ -4048,6 +4095,7 @@ struct ggml_backend_cuda_device_context {
|
||||
@@ -4110,6 +4157,7 @@ struct ggml_backend_cuda_device_context {
|
||||
std::string name;
|
||||
std::string description;
|
||||
std::string pci_bus_id;
|
||||
@@ -116,7 +116,7 @@ index 8f3b1c173..e803f4af6 100644
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -4136,6 +4184,11 @@ static bool ggml_backend_cuda_get_available_uma_memory(long * available_memory_k
|
||||
@@ -4198,6 +4246,11 @@ static bool ggml_backend_cuda_get_available_uma_memory(long * available_memory_k
|
||||
}
|
||||
#endif // defined(__linux__)
|
||||
|
||||
@@ -128,7 +128,7 @@ index 8f3b1c173..e803f4af6 100644
|
||||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -4176,6 +4229,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4238,6 +4291,7 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
|
||||
props->name = ggml_backend_cuda_device_get_name(dev);
|
||||
props->description = ggml_backend_cuda_device_get_description(dev);
|
||||
@@ -136,7 +136,7 @@ index 8f3b1c173..e803f4af6 100644
|
||||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
|
||||
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
@@ -4767,6 +4821,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -4833,6 +4887,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
|
||||
dev_ctx->description = prop.name;
|
||||
|
||||
@@ -10,7 +10,7 @@ Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
|
||||
2 files changed, 13 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/mtmd.cpp b/tools/mtmd/mtmd.cpp
|
||||
index dfad9cd79..9858de630 100644
|
||||
index d06fa42e6..0f5712e21 100644
|
||||
--- a/tools/mtmd/mtmd.cpp
|
||||
+++ b/tools/mtmd/mtmd.cpp
|
||||
@@ -87,6 +87,16 @@ enum mtmd_slice_tmpl {
|
||||
@@ -31,7 +31,7 @@ index dfad9cd79..9858de630 100644
|
||||
return "<__media__>";
|
||||
}
|
||||
diff --git a/tools/mtmd/mtmd.h b/tools/mtmd/mtmd.h
|
||||
index 015119be8..8d3fa5d34 100644
|
||||
index b3df24c29..a6a1af3b8 100644
|
||||
--- a/tools/mtmd/mtmd.h
|
||||
+++ b/tools/mtmd/mtmd.h
|
||||
@@ -75,6 +75,9 @@ typedef struct mtmd_input_chunk mtmd_input_chunk;
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] no power throttling win32 with gnuc
|
||||
1 file changed, 1 insertion(+), 1 deletion(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ggml-cpu.c b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
index 5be08d6f4..7a0df30c3 100644
|
||||
index bb65985b4..47089a62e 100644
|
||||
--- a/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
+++ b/ggml/src/ggml-cpu/ggml-cpu.c
|
||||
@@ -2463,7 +2463,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
@@ -2464,7 +2464,7 @@ static bool ggml_thread_apply_priority(int32_t prio) {
|
||||
// Newer Windows 11 versions aggresively park (offline) CPU cores and often place
|
||||
// all our threads onto the first 4 cores which results in terrible performance with
|
||||
// n_threads > 4
|
||||
|
||||
@@ -58,7 +58,7 @@ index 6792ba986..0f5b03cef 100644
|
||||
// (optional) event synchronization
|
||||
// record an event on this stream
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index ff41c7712..f511e8d76 100644
|
||||
index dbf8486a0..312ca873c 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -348,14 +348,14 @@ enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_ba
|
||||
@@ -86,9 +86,9 @@ index ff41c7712..f511e8d76 100644
|
||||
+ int batch_size; // a hint on the batch size to optimize processing, -1 to use heuristics
|
||||
+
|
||||
int debug;
|
||||
};
|
||||
|
||||
@@ -814,7 +816,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
// used for debugging graph reallocations [GGML_SCHED_DEBUG_REALLOC]
|
||||
@@ -820,7 +822,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
|
||||
if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
|
||||
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
|
||||
// check if a backend with higher prio wants to offload the op
|
||||
@@ -97,7 +97,7 @@ index ff41c7712..f511e8d76 100644
|
||||
for (int b = 0; b < src_backend_id; b++) {
|
||||
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
|
||||
SET_CAUSE(tensor, "1.off");
|
||||
@@ -1556,7 +1558,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
@@ -1572,7 +1574,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
}
|
||||
|
||||
if (!sched->callback_eval) {
|
||||
@@ -106,7 +106,7 @@ index ff41c7712..f511e8d76 100644
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
@@ -1578,7 +1580,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
@@ -1594,7 +1596,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
|
||||
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||
|
||||
@@ -115,7 +115,7 @@ index ff41c7712..f511e8d76 100644
|
||||
if (ec != GGML_STATUS_SUCCESS) {
|
||||
return ec;
|
||||
}
|
||||
@@ -1657,6 +1659,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
@@ -1684,6 +1686,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
|
||||
sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
|
||||
sched->op_offload = op_offload;
|
||||
@@ -123,7 +123,7 @@ index ff41c7712..f511e8d76 100644
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
@@ -1688,6 +1691,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
@@ -1715,6 +1718,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
free(sched);
|
||||
}
|
||||
|
||||
@@ -178,10 +178,10 @@ index 3191faaa4..32f14c811 100644
|
||||
|
||||
static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index e803f4af6..78fb2d8b3 100644
|
||||
index f641c1016..17062697b 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -2885,7 +2885,7 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
@@ -2901,7 +2901,7 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
@@ -190,7 +190,7 @@ index e803f4af6..78fb2d8b3 100644
|
||||
|
||||
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
|
||||
|
||||
@@ -2918,24 +2918,34 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
@@ -2934,24 +2934,34 @@ static bool check_node_graph_compatibility(ggml_cgraph * cgraph,
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -241,7 +241,7 @@ index e803f4af6..78fb2d8b3 100644
|
||||
}
|
||||
|
||||
if (!use_cuda_graph) {
|
||||
@@ -3679,7 +3689,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3742,7 +3752,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
}
|
||||
|
||||
@@ -250,7 +250,7 @@ index e803f4af6..78fb2d8b3 100644
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
@@ -3717,7 +3727,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
@@ -3780,7 +3790,7 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
if (use_cuda_graph) {
|
||||
cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph);
|
||||
|
||||
@@ -278,10 +278,10 @@ index 8fc1c2fb5..ba95b4acc 100644
|
||||
|
||||
static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
index 83cdec29e..a36c6560c 100644
|
||||
index c801d2fd2..b2c0d0cee 100644
|
||||
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
@@ -13103,7 +13103,7 @@ static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const stru
|
||||
@@ -13006,7 +13006,7 @@ static uint32_t ggml_vk_fuse_multi_add(ggml_backend_vk_context * ctx, const stru
|
||||
return num_adds;
|
||||
}
|
||||
|
||||
@@ -290,7 +290,7 @@ index 83cdec29e..a36c6560c 100644
|
||||
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
@@ -13320,6 +13320,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
||||
@@ -13241,6 +13241,7 @@ static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cg
|
||||
return GGML_STATUS_SUCCESS;
|
||||
|
||||
UNUSED(backend);
|
||||
|
||||
@@ -75,7 +75,7 @@ index 0f5b03cef..7bdf9d81f 100644
|
||||
|
||||
struct ggml_backend {
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index f511e8d76..74b7f070c 100644
|
||||
index 312ca873c..4092dfe8a 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -41,6 +41,19 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
|
||||
@@ -121,10 +121,10 @@ index f511e8d76..74b7f070c 100644
|
||||
void * base = buffer->iface.get_base(buffer);
|
||||
|
||||
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
|
||||
@@ -725,6 +745,12 @@ struct ggml_backend_sched {
|
||||
int batch_size; // a hint on the batch size to optimize processing, -1 to use heuristics
|
||||
|
||||
int debug;
|
||||
@@ -731,6 +751,12 @@ struct ggml_backend_sched {
|
||||
int debug_realloc;
|
||||
int debug_graph_size;
|
||||
int debug_prev_graph_size;
|
||||
+
|
||||
+ // allocate buffers on attached ggml_backend_buffer_type_t's and during reservation
|
||||
+ // if false, dummy buffers are used for faster memory sizing calculations
|
||||
@@ -134,7 +134,7 @@ index f511e8d76..74b7f070c 100644
|
||||
};
|
||||
|
||||
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
|
||||
@@ -1614,6 +1640,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
@@ -1630,6 +1656,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
size_t graph_size,
|
||||
bool parallel,
|
||||
bool op_offload) {
|
||||
@@ -152,7 +152,7 @@ index f511e8d76..74b7f070c 100644
|
||||
GGML_ASSERT(n_backends > 0);
|
||||
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
|
||||
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
@@ -1655,11 +1692,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
@@ -1682,11 +1719,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
|
||||
}
|
||||
}
|
||||
@@ -167,7 +167,7 @@ index f511e8d76..74b7f070c 100644
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
@@ -1674,6 +1714,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
@@ -1701,6 +1741,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
for (int c = 0; c < sched->n_copies; c++) {
|
||||
ggml_backend_event_free(sched->events[b][c]);
|
||||
}
|
||||
@@ -178,7 +178,7 @@ index f511e8d76..74b7f070c 100644
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
ggml_free(sched->ctx);
|
||||
@@ -1719,6 +1763,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
@@ -1746,6 +1790,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -203,7 +203,7 @@ index f511e8d76..74b7f070c 100644
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
return true;
|
||||
@@ -1824,7 +1886,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
|
||||
@@ -1851,7 +1913,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
||||
@@ -219,7 +219,7 @@ index f511e8d76..74b7f070c 100644
|
||||
|
||||
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
||||
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
|
||||
index 611341deb..ee463af9c 100644
|
||||
index c4529f5d9..8b0fb5d42 100644
|
||||
--- a/ggml/src/ggml-cuda/common.cuh
|
||||
+++ b/ggml/src/ggml-cuda/common.cuh
|
||||
@@ -37,6 +37,41 @@
|
||||
@@ -264,7 +264,7 @@ index 611341deb..ee463af9c 100644
|
||||
#define STRINGIZE_IMPL(...) #__VA_ARGS__
|
||||
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
|
||||
|
||||
@@ -891,6 +926,9 @@ struct ggml_cuda_pool {
|
||||
@@ -938,6 +973,9 @@ struct ggml_cuda_pool {
|
||||
|
||||
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||
virtual void free(void * ptr, size_t size) = 0;
|
||||
@@ -274,7 +274,7 @@ index 611341deb..ee463af9c 100644
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
@@ -1179,11 +1217,15 @@ struct ggml_backend_cuda_context {
|
||||
@@ -1229,11 +1267,15 @@ struct ggml_backend_cuda_context {
|
||||
// pool
|
||||
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
@@ -292,7 +292,7 @@ index 611341deb..ee463af9c 100644
|
||||
}
|
||||
return *pools[device][curr_stream_no];
|
||||
}
|
||||
@@ -1191,6 +1233,22 @@ struct ggml_backend_cuda_context {
|
||||
@@ -1241,6 +1283,22 @@ struct ggml_backend_cuda_context {
|
||||
ggml_cuda_pool & pool() {
|
||||
return pool(device);
|
||||
}
|
||||
@@ -316,10 +316,10 @@ index 611341deb..ee463af9c 100644
|
||||
|
||||
struct ggml_cuda_mm_fusion_args_host {
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 78fb2d8b3..f1c178f31 100644
|
||||
index 17062697b..ede1d089a 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -361,6 +361,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
|
||||
@@ -365,6 +365,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
|
||||
|
||||
// #define DEBUG_CUDA_MALLOC
|
||||
|
||||
@@ -328,7 +328,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
// buffer pool for cuda (legacy)
|
||||
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
static const int MAX_BUFFERS = 256;
|
||||
@@ -373,9 +375,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -377,9 +379,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
|
||||
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
|
||||
size_t pool_size = 0;
|
||||
@@ -343,7 +343,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
}
|
||||
|
||||
~ggml_cuda_pool_leg() {
|
||||
@@ -383,7 +388,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -387,7 +392,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
for (int i = 0; i < MAX_BUFFERS; ++i) {
|
||||
ggml_cuda_buffer & b = buffer_pool[i];
|
||||
if (b.ptr != nullptr) {
|
||||
@@ -354,7 +354,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
pool_size -= b.size;
|
||||
}
|
||||
}
|
||||
@@ -431,8 +438,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -435,8 +442,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
void * ptr;
|
||||
size_t look_ahead_size = (size_t) (1.05 * size);
|
||||
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
|
||||
@@ -372,7 +372,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
*actual_size = look_ahead_size;
|
||||
pool_size += look_ahead_size;
|
||||
#ifdef DEBUG_CUDA_MALLOC
|
||||
@@ -452,10 +466,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
@@ -456,10 +470,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
||||
}
|
||||
}
|
||||
GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||
@@ -395,7 +395,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
};
|
||||
|
||||
// pool with virtual memory
|
||||
@@ -467,18 +491,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -471,18 +495,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
CUdeviceptr pool_addr = 0;
|
||||
size_t pool_used = 0;
|
||||
size_t pool_size = 0;
|
||||
@@ -423,7 +423,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
|
||||
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
|
||||
@@ -505,35 +535,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -509,35 +539,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
|
||||
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
|
||||
|
||||
@@ -499,7 +499,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
|
||||
// add to the pool
|
||||
pool_size += reserve_size;
|
||||
@@ -566,17 +610,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
@@ -570,17 +614,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
|
||||
// all deallocations must be in reverse order of the allocations
|
||||
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
|
||||
}
|
||||
@@ -530,7 +530,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
}
|
||||
|
||||
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
|
||||
@@ -760,11 +814,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
@@ -764,11 +818,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
|
||||
}
|
||||
|
||||
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
@@ -552,7 +552,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
@@ -788,6 +851,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
|
||||
@@ -792,6 +855,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ NULL,
|
||||
@@ -560,7 +560,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
};
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
||||
@@ -3258,6 +3322,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
@@ -3274,6 +3338,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
|
||||
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
|
||||
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
|
||||
@@ -568,7 +568,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
// flag used to determine whether it is an integrated_gpu
|
||||
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
|
||||
|
||||
@@ -3347,6 +3412,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3410,6 +3475,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -579,7 +579,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
|
||||
// start of fusion operations
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
@@ -3691,6 +3760,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
@@ -3754,6 +3823,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph, int batch_size) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
@@ -587,7 +587,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
||||
@@ -3766,6 +3836,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
@@ -3829,6 +3899,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
@@ -665,7 +665,7 @@ index 78fb2d8b3..f1c178f31 100644
|
||||
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
@@ -4035,6 +4176,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
@@ -4097,6 +4238,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
/* .graph_optimize = */ ggml_backend_cuda_graph_optimize,
|
||||
|
||||
@@ -8,7 +8,7 @@ Subject: [PATCH] decode: disable output_all
|
||||
1 file changed, 1 insertion(+), 2 deletions(-)
|
||||
|
||||
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
|
||||
index e04f0fc4f..1359c614b 100644
|
||||
index 417140071..87f407f99 100644
|
||||
--- a/src/llama-context.cpp
|
||||
+++ b/src/llama-context.cpp
|
||||
@@ -999,8 +999,7 @@ int llama_context::decode(const llama_batch & batch_inp) {
|
||||
|
||||
@@ -43,7 +43,7 @@ index 7bdf9d81f..21b35ac5c 100644
|
||||
|
||||
struct ggml_backend_device {
|
||||
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
|
||||
index 74b7f070c..8d2cc167f 100644
|
||||
index 4092dfe8a..a1a19fe51 100644
|
||||
--- a/ggml/src/ggml-backend.cpp
|
||||
+++ b/ggml/src/ggml-backend.cpp
|
||||
@@ -526,6 +526,14 @@ ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * par
|
||||
@@ -62,10 +62,10 @@ index 74b7f070c..8d2cc167f 100644
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_buffer_type(device);
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index f1c178f31..1110ca372 100644
|
||||
index ede1d089a..ec63cadab 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -109,6 +109,11 @@ int ggml_cuda_get_device() {
|
||||
@@ -113,6 +113,11 @@ int ggml_cuda_get_device() {
|
||||
return id;
|
||||
}
|
||||
|
||||
@@ -77,7 +77,7 @@ index f1c178f31..1110ca372 100644
|
||||
static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
|
||||
ggml_cuda_set_device(device);
|
||||
cudaError_t err;
|
||||
@@ -4386,7 +4391,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4448,7 +4453,10 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
props->id = ggml_backend_cuda_device_get_id(dev);
|
||||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
|
||||
@@ -89,7 +89,7 @@ index f1c178f31..1110ca372 100644
|
||||
|
||||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
@@ -4841,6 +4849,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
|
||||
@@ -4907,6 +4915,11 @@ static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, g
|
||||
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
|
||||
}
|
||||
|
||||
@@ -101,7 +101,7 @@ index f1c178f31..1110ca372 100644
|
||||
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cuda_device_get_description,
|
||||
@@ -4857,6 +4870,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
@@ -4923,6 +4936,7 @@ static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
/* .event_new = */ ggml_backend_cuda_device_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_device_event_free,
|
||||
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
|
||||
|
||||
@@ -45,10 +45,10 @@ index 69223c488..6510e0cba 100644
|
||||
|
||||
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index 6d493a4ff..ac8f38464 100644
|
||||
index d55aed348..99ae293cc 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -209,6 +209,8 @@ add_library(ggml-base
|
||||
@@ -205,6 +205,8 @@ add_library(ggml-base
|
||||
ggml-threading.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
@@ -58,10 +58,10 @@ index 6d493a4ff..ac8f38464 100644
|
||||
|
||||
set_target_properties(ggml-base PROPERTIES
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index 1110ca372..c1bfadb3e 100644
|
||||
index ec63cadab..cd71902df 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -263,6 +263,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -267,6 +267,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
int device_vmm = 0;
|
||||
|
||||
@@ -78,7 +78,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
#if defined(GGML_USE_VMM)
|
||||
CUdevice device;
|
||||
CU_CHECK(cuDeviceGet(&device, id));
|
||||
@@ -316,6 +326,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
@@ -320,6 +330,11 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#else
|
||||
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
|
||||
info.devices[id].cc = 100*prop.major + 10*prop.minor;
|
||||
@@ -90,7 +90,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
|
||||
ggml_cuda_parse_uuid(prop, id).c_str());
|
||||
@@ -4255,6 +4270,11 @@ struct ggml_backend_cuda_device_context {
|
||||
@@ -4317,6 +4332,11 @@ struct ggml_backend_cuda_device_context {
|
||||
std::string description;
|
||||
std::string pci_bus_id;
|
||||
std::string id;
|
||||
@@ -102,7 +102,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -4351,6 +4371,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
|
||||
@@ -4413,6 +4433,28 @@ static const char * ggml_backend_cuda_device_get_id(ggml_backend_dev_t dev) {
|
||||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
@@ -131,7 +131,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/17368
|
||||
@@ -4383,6 +4425,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
@@ -4445,6 +4487,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
||||
}
|
||||
|
||||
@@ -139,7 +139,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
|
||||
@@ -4396,6 +4439,19 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
@@ -4458,6 +4501,19 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
|
||||
props->memory_total = props->memory_free = 0;
|
||||
|
||||
@@ -159,7 +159,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
bool events = false;
|
||||
@@ -4980,6 +5036,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -5046,6 +5102,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
@@ -167,7 +167,7 @@ index 1110ca372..c1bfadb3e 100644
|
||||
|
||||
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
|
||||
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
|
||||
@@ -4995,6 +5052,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
@@ -5061,6 +5118,14 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
|
||||
dev_ctx->pci_bus_id = pci_bus_id;
|
||||
|
||||
@@ -243,7 +243,7 @@ index ba95b4acc..f6f8f7a10 100644
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ false,
|
||||
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
index a36c6560c..a234eda2e 100644
|
||||
index b2c0d0cee..d9f4d34f5 100644
|
||||
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
@@ -236,6 +236,7 @@ class vk_memory_logger;
|
||||
@@ -254,7 +254,7 @@ index a36c6560c..a234eda2e 100644
|
||||
|
||||
static constexpr uint32_t mul_mat_vec_max_cols = 8;
|
||||
static constexpr uint32_t p021_max_gqa_ratio = 8;
|
||||
@@ -12353,6 +12354,29 @@ static void ggml_vk_get_device_description(int device, char * description, size_
|
||||
@@ -12256,6 +12257,29 @@ static void ggml_vk_get_device_description(int device, char * description, size_
|
||||
snprintf(description, description_size, "%s", props.deviceName.data());
|
||||
}
|
||||
|
||||
@@ -284,7 +284,7 @@ index a36c6560c..a234eda2e 100644
|
||||
// backend interface
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
@@ -13614,15 +13638,72 @@ void ggml_backend_vk_get_device_description(int device, char * description, size
|
||||
@@ -13535,15 +13559,72 @@ void ggml_backend_vk_get_device_description(int device, char * description, size
|
||||
ggml_vk_get_device_description(dev_idx, description, description_size);
|
||||
}
|
||||
|
||||
@@ -361,7 +361,7 @@ index a36c6560c..a234eda2e 100644
|
||||
|
||||
if (membudget_supported) {
|
||||
memprops.pNext = &budgetprops;
|
||||
@@ -13674,8 +13755,13 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
|
||||
@@ -13595,8 +13676,13 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
|
||||
}
|
||||
}
|
||||
|
||||
@@ -376,7 +376,7 @@ index a36c6560c..a234eda2e 100644
|
||||
}
|
||||
|
||||
vk::PhysicalDeviceProperties2 props = {};
|
||||
@@ -13692,19 +13778,24 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
|
||||
@@ -13613,19 +13699,24 @@ static std::string ggml_backend_vk_get_device_pci_id(int device_idx) {
|
||||
|
||||
char pci_bus_id[16] = {};
|
||||
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.%x", pci_domain, pci_bus, pci_device, pci_function);
|
||||
@@ -410,7 +410,7 @@ index a36c6560c..a234eda2e 100644
|
||||
|
||||
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
|
||||
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
||||
@@ -13716,9 +13807,14 @@ static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t de
|
||||
@@ -13637,9 +13728,14 @@ static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t de
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
@@ -426,7 +426,7 @@ index a36c6560c..a234eda2e 100644
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
@@ -13742,8 +13838,9 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
|
||||
@@ -13663,8 +13759,9 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
|
||||
|
||||
props->name = ggml_backend_vk_device_get_name(dev);
|
||||
props->description = ggml_backend_vk_device_get_description(dev);
|
||||
@@ -437,7 +437,7 @@ index a36c6560c..a234eda2e 100644
|
||||
ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
props->caps = {
|
||||
/* .async = */ false,
|
||||
@@ -13751,6 +13848,13 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
|
||||
@@ -13672,6 +13769,13 @@ static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml
|
||||
/* .buffer_from_host_ptr = */ false,
|
||||
/* .events = */ false,
|
||||
};
|
||||
@@ -451,7 +451,7 @@ index a36c6560c..a234eda2e 100644
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
@@ -14319,6 +14423,8 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
@@ -14236,6 +14340,8 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
@@ -460,7 +460,7 @@ index a36c6560c..a234eda2e 100644
|
||||
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
|
||||
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
|
||||
char desc[256];
|
||||
@@ -14327,12 +14433,41 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
@@ -14244,12 +14350,41 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
ctx->name = GGML_VK_NAME + std::to_string(i);
|
||||
ctx->description = desc;
|
||||
ctx->is_integrated_gpu = ggml_backend_vk_get_device_type(i) == vk::PhysicalDeviceType::eIntegratedGpu;
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] report LoadLibrary failures
|
||||
1 file changed, 12 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
|
||||
index a55d9b280..ec6f7f1e9 100644
|
||||
index 079dba211..2474e0ed6 100644
|
||||
--- a/ggml/src/ggml-backend-reg.cpp
|
||||
+++ b/ggml/src/ggml-backend-reg.cpp
|
||||
@@ -122,6 +122,18 @@ static dl_handle * dl_load_library(const fs::path & path) {
|
||||
@@ -126,6 +126,18 @@ static dl_handle * dl_load_library(const fs::path & path) {
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
@@ -13,7 +13,7 @@ interleaved version used for qwen3vl
|
||||
4 files changed, 16 insertions(+), 16 deletions(-)
|
||||
|
||||
diff --git a/ggml/src/ggml-cpu/ops.cpp b/ggml/src/ggml-cpu/ops.cpp
|
||||
index 40666bab6..3155cb4bb 100644
|
||||
index 7d1733adb..f4aae5332 100644
|
||||
--- a/ggml/src/ggml-cpu/ops.cpp
|
||||
+++ b/ggml/src/ggml-cpu/ops.cpp
|
||||
@@ -5599,14 +5599,14 @@ static void ggml_mrope_cache_init(
|
||||
@@ -59,10 +59,10 @@ index 88ed79111..71ca60214 100644
|
||||
} else {
|
||||
if (sector < sections.v[0]) {
|
||||
diff --git a/ggml/src/ggml-metal/ggml-metal.metal b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
index 8a6c834d1..761b57a26 100644
|
||||
index 236838e9e..c98d269d1 100644
|
||||
--- a/ggml/src/ggml-metal/ggml-metal.metal
|
||||
+++ b/ggml/src/ggml-metal/ggml-metal.metal
|
||||
@@ -4009,14 +4009,14 @@ kernel void kernel_rope_multi(
|
||||
@@ -4242,14 +4242,14 @@ kernel void kernel_rope_multi(
|
||||
|
||||
float theta_base;
|
||||
if (FC_rope_is_imrope) {
|
||||
|
||||
@@ -12,10 +12,10 @@ Subject: [PATCH] Add memory detection using DXGI + PDH
|
||||
create mode 100644 ggml/src/mem_dxgi_pdh.cpp
|
||||
|
||||
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
|
||||
index ac8f38464..faa1beed2 100644
|
||||
index 99ae293cc..9a134b7af 100644
|
||||
--- a/ggml/src/CMakeLists.txt
|
||||
+++ b/ggml/src/CMakeLists.txt
|
||||
@@ -211,6 +211,7 @@ add_library(ggml-base
|
||||
@@ -207,6 +207,7 @@ add_library(ggml-base
|
||||
ggml-quants.h
|
||||
mem_hip.cpp
|
||||
mem_nvml.cpp
|
||||
@@ -38,7 +38,7 @@ index 1c07e767a..0da3e065b 100644
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
index a234eda2e..c98f98c73 100644
|
||||
index d9f4d34f5..8a83427fb 100644
|
||||
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
|
||||
@@ -74,6 +74,7 @@ DispatchLoaderDynamic & ggml_vk_default_dispatcher();
|
||||
@@ -49,7 +49,7 @@ index a234eda2e..c98f98c73 100644
|
||||
|
||||
typedef struct VkPhysicalDeviceShaderBfloat16FeaturesKHR {
|
||||
VkStructureType sType;
|
||||
@@ -13655,6 +13656,7 @@ struct ggml_backend_vk_device_context {
|
||||
@@ -13576,6 +13577,7 @@ struct ggml_backend_vk_device_context {
|
||||
std::string pci_id;
|
||||
std::string id;
|
||||
std::string uuid;
|
||||
@@ -57,7 +57,7 @@ index a234eda2e..c98f98c73 100644
|
||||
int major;
|
||||
int minor;
|
||||
int driver_major;
|
||||
@@ -13673,6 +13675,20 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
|
||||
@@ -13594,6 +13596,20 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
|
||||
|
||||
vk::PhysicalDeviceProperties2 props2;
|
||||
vkdev.getProperties2(&props2);
|
||||
@@ -78,7 +78,7 @@ index a234eda2e..c98f98c73 100644
|
||||
|
||||
if (!is_integrated_gpu)
|
||||
{
|
||||
@@ -13704,7 +13720,6 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
|
||||
@@ -13625,7 +13641,6 @@ void ggml_backend_vk_get_device_memory(ggml_backend_vk_device_context *ctx, size
|
||||
}
|
||||
// else fallback to memory budget if supported
|
||||
|
||||
@@ -86,7 +86,7 @@ index a234eda2e..c98f98c73 100644
|
||||
if (membudget_supported) {
|
||||
memprops.pNext = &budgetprops;
|
||||
}
|
||||
@@ -14440,7 +14455,6 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
@@ -14357,7 +14372,6 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ ctx,
|
||||
});
|
||||
@@ -94,7 +94,7 @@ index a234eda2e..c98f98c73 100644
|
||||
// Gather additional information about the device
|
||||
int dev_idx = vk_instance.device_indices[i];
|
||||
vk::PhysicalDeviceProperties props1;
|
||||
@@ -14463,6 +14477,14 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
@@ -14380,6 +14394,14 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
|
||||
}
|
||||
}
|
||||
ctx->uuid = oss.str();
|
||||
|
||||
@@ -10,10 +10,10 @@ fallback to cpu
|
||||
1 file changed, 3 insertions(+)
|
||||
|
||||
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
index c1bfadb3e..16c166a08 100644
|
||||
index cd71902df..d69d62193 100644
|
||||
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
|
||||
@@ -4570,6 +4570,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
@@ -4632,6 +4632,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -8,10 +8,10 @@ Subject: [PATCH] win: exit instead of abort
|
||||
1 file changed, 6 insertions(+), 1 deletion(-)
|
||||
|
||||
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
||||
index b99345a2e..1c9e0bc05 100644
|
||||
index 530ff7b95..fc0196eb7 100644
|
||||
--- a/ggml/src/ggml.c
|
||||
+++ b/ggml/src/ggml.c
|
||||
@@ -229,8 +229,13 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
|
||||
@@ -250,8 +250,13 @@ void ggml_abort(const char * file, int line, const char * fmt, ...) {
|
||||
fprintf(stderr, "%s\n", message);
|
||||
ggml_print_backtrace();
|
||||
}
|
||||
|
||||
@@ -9,10 +9,10 @@ Rever to prior logic of assuming an empty projector type is mlp
|
||||
1 file changed, 4 insertions(+)
|
||||
|
||||
diff --git a/tools/mtmd/clip.cpp b/tools/mtmd/clip.cpp
|
||||
index f4c4d2c48..3334ff25b 100644
|
||||
index 6be1470ad..2a325c726 100644
|
||||
--- a/tools/mtmd/clip.cpp
|
||||
+++ b/tools/mtmd/clip.cpp
|
||||
@@ -2648,6 +2648,10 @@ struct clip_model_loader {
|
||||
@@ -2649,6 +2649,10 @@ struct clip_model_loader {
|
||||
if (proj_type.empty()) {
|
||||
if (modality == CLIP_MODALITY_VISION) {
|
||||
get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
|
||||
|
||||
Reference in New Issue
Block a user