mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 06:43:57 +00:00
feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b) This brings in significant improvements to prefill performance for all models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h, nemotron-h, Qwen3 Next) on Apple Metal. See https://github.com/ggml-org/llama.cpp/pull/17876 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 1-4 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update patches 5-12 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 13-18 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patch 20 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 21-31 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Sync vendored code The two files I'm not sure about here are the swap from gemma3-iswa.cpp to gemma3.cpp (I chose to include this because I think it's required), and the inclusion of `ggml-zendnn.h` which I chose to omit. Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
12
llama/llama.cpp/src/llama-context.cpp
vendored
12
llama/llama.cpp/src/llama-context.cpp
vendored
@@ -248,7 +248,10 @@ llama_context::llama_context(
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
|
||||
|
||||
const size_t max_nodes = this->graph_max_nodes();
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
const size_t max_nodes = this->graph_max_nodes(n_tokens);
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
|
||||
|
||||
@@ -300,9 +303,6 @@ llama_context::llama_context(
|
||||
|
||||
cross.v_embd.clear();
|
||||
|
||||
const uint32_t n_seqs = cparams.n_seq_max;
|
||||
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
|
||||
|
||||
// avoid reserving graphs with zero outputs - assume one output per sequence
|
||||
n_outputs = n_seqs;
|
||||
|
||||
@@ -1385,9 +1385,9 @@ void llama_context::output_reorder() {
|
||||
// graph
|
||||
//
|
||||
|
||||
uint32_t llama_context::graph_max_nodes() const {
|
||||
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT) {
|
||||
return std::max<uint32_t>(8192u, 32u*model.n_tensors());
|
||||
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
|
||||
}
|
||||
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user