feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)

* feat: Bump llama.cpp to the latest master (17f7f4b)

This brings in significant improvements to prefill performance for all
models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h,
nemotron-h, Qwen3 Next) on Apple Metal.

See https://github.com/ggml-org/llama.cpp/pull/17876

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 1-4

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update patches 5-12

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 13-18

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patch 20

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 21-31

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Sync vendored code

The two files I'm not sure about here are the swap from gemma3-iswa.cpp to
gemma3.cpp (I chose to include this because I think it's required), and the
inclusion of `ggml-zendnn.h` which I chose to omit.

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart
2025-12-10 13:59:27 -07:00
committed by GitHub
parent c34fc64688
commit b95693056c
115 changed files with 5176 additions and 2585 deletions

View File

@@ -71,6 +71,9 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && attn_scale) {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(f_attn_temp_scale != 0.0f);
GGML_ASSERT(n_attn_temp_floor_scale != 0);
std::vector<float> attn_scale_data(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
@@ -810,9 +813,6 @@ ggml_tensor * llm_graph_context::build_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
@@ -973,7 +973,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// mask out the other groups
selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_fill(ctx0, selection_groups, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
cb(selection_probs, "ffn_moe_probs_masked", il);
}
@@ -1093,9 +1093,6 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);