mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)
* feat: Bump llama.cpp to the latest master (17f7f4b) This brings in significant improvements to prefill performance for all models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h, nemotron-h, Qwen3 Next) on Apple Metal. See https://github.com/ggml-org/llama.cpp/pull/17876 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 1-4 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * fix: Update patches 5-12 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 13-18 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patch 20 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Update patches 21-31 Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> * feat: Sync vendored code The two files I'm not sure about here are the swap from gemma3-iswa.cpp to gemma3.cpp (I chose to include this because I think it's required), and the inclusion of `ggml-zendnn.h` which I chose to omit. Branch: LlamaCPPMetalSSMImprovements Signed-off-by: Gabe Goodhart <ghart@us.ibm.com> --------- Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
70
llama/llama.cpp/tools/mtmd/clip.cpp
vendored
70
llama/llama.cpp/tools/mtmd/clip.cpp
vendored
@@ -441,6 +441,7 @@ struct clip_ctx {
|
||||
int max_nodes = 8192;
|
||||
ggml_backend_sched_ptr sched;
|
||||
clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
|
||||
bool is_allocated = false;
|
||||
|
||||
// for debugging
|
||||
bool debug_graph = false;
|
||||
@@ -2033,7 +2034,7 @@ private:
|
||||
ggml_tensor * pos_embd = model.position_embeddings;
|
||||
const int height = img.ny / patch_size;
|
||||
const int width = img.nx / patch_size;
|
||||
const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
|
||||
const uint32_t mode = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
|
||||
const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
|
||||
|
||||
GGML_ASSERT(pos_embd);
|
||||
@@ -2812,7 +2813,8 @@ struct clip_model_loader {
|
||||
{
|
||||
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
|
||||
// ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
|
||||
hparams.set_limit_image_tokens(64, 256);
|
||||
// config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
|
||||
hparams.set_limit_image_tokens(64, 1024);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_PIXTRAL:
|
||||
case PROJECTOR_TYPE_LIGHTONOCR:
|
||||
@@ -3347,12 +3349,30 @@ struct clip_model_loader {
|
||||
};
|
||||
|
||||
static void warmup(clip_ctx & ctx_clip) {
|
||||
// create a fake batch
|
||||
const auto & hparams = ctx_clip.model.hparams;
|
||||
clip_image_f32_batch batch;
|
||||
clip_image_f32_ptr img(clip_image_f32_init());
|
||||
if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
|
||||
img->nx = hparams.warmup_image_size;
|
||||
img->ny = hparams.warmup_image_size;
|
||||
LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
|
||||
} else {
|
||||
img->nx = hparams.warmup_audio_size;
|
||||
img->ny = hparams.n_mel_bins;
|
||||
LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
|
||||
}
|
||||
batch.entries.push_back(std::move(img));
|
||||
warmup(ctx_clip, batch);
|
||||
}
|
||||
|
||||
static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
|
||||
support_info_graph info;
|
||||
|
||||
if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
|
||||
// try to enable flash attention to see if it's supported
|
||||
ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
|
||||
info = alloc_compute_meta(ctx_clip);
|
||||
info = alloc_compute_meta(ctx_clip, batch);
|
||||
if (!info.fattn && info.fattn_op) {
|
||||
auto op = info.fattn_op;
|
||||
LOG_WRN("%s: *****************************************************************\n", __func__);
|
||||
@@ -3371,15 +3391,17 @@ struct clip_model_loader {
|
||||
LOG_WRN("%s: please report this on github as an issue\n", __func__);
|
||||
LOG_WRN("%s: *****************************************************************\n", __func__);
|
||||
ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
|
||||
alloc_compute_meta(ctx_clip);
|
||||
alloc_compute_meta(ctx_clip, batch);
|
||||
}
|
||||
} else {
|
||||
info = alloc_compute_meta(ctx_clip);
|
||||
info = alloc_compute_meta(ctx_clip, batch);
|
||||
if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
|
||||
LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
|
||||
}
|
||||
}
|
||||
|
||||
ctx_clip.is_allocated = true; // mark buffers as allocated
|
||||
|
||||
LOG_INF("%s: flash attention is %s\n", __func__,
|
||||
(ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
|
||||
|
||||
@@ -3411,24 +3433,9 @@ struct clip_model_loader {
|
||||
}
|
||||
}
|
||||
|
||||
static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
|
||||
const auto & hparams = ctx_clip.model.hparams;
|
||||
static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
|
||||
ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
|
||||
|
||||
// create a fake batch
|
||||
clip_image_f32_batch batch;
|
||||
clip_image_f32_ptr img(clip_image_f32_init());
|
||||
if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
|
||||
img->nx = hparams.warmup_image_size;
|
||||
img->ny = hparams.warmup_image_size;
|
||||
LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
|
||||
} else {
|
||||
img->nx = hparams.warmup_audio_size;
|
||||
img->ny = hparams.n_mel_bins;
|
||||
LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
|
||||
}
|
||||
batch.entries.push_back(std::move(img));
|
||||
|
||||
ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
|
||||
ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
|
||||
|
||||
@@ -3568,14 +3575,18 @@ struct clip_init_result clip_init(const char * fname, struct clip_context_params
|
||||
ctx_vision = new clip_ctx(ctx_params);
|
||||
loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
|
||||
loader.load_tensors(*ctx_vision);
|
||||
loader.warmup(*ctx_vision);
|
||||
if (ctx_params.warmup) {
|
||||
loader.warmup(*ctx_vision);
|
||||
}
|
||||
}
|
||||
|
||||
if (loader.has_audio) {
|
||||
ctx_audio = new clip_ctx(ctx_params);
|
||||
loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
|
||||
loader.load_tensors(*ctx_audio);
|
||||
loader.warmup(*ctx_audio);
|
||||
if (ctx_params.warmup) {
|
||||
loader.warmup(*ctx_audio);
|
||||
}
|
||||
}
|
||||
|
||||
} catch (const std::exception & e) {
|
||||
@@ -3788,12 +3799,13 @@ struct img_tool {
|
||||
const int width = inp_size.width;
|
||||
const int height = inp_size.height;
|
||||
|
||||
auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
|
||||
auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
|
||||
auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
|
||||
|
||||
// always align up first
|
||||
int h_bar = std::max(align_size, ceil_by_factor(height));
|
||||
int w_bar = std::max(align_size, ceil_by_factor(width));
|
||||
int h_bar = std::max(align_size, round_by_factor(height));
|
||||
int w_bar = std::max(align_size, round_by_factor(width));
|
||||
|
||||
if (h_bar * w_bar > max_pixels) {
|
||||
const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
|
||||
@@ -4408,7 +4420,8 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
|
||||
|
||||
clip_image_u8 resized_img;
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
|
||||
const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
|
||||
clip_image_f32_ptr res(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
|
||||
res_imgs->entries.push_back(std::move(res));
|
||||
@@ -4666,6 +4679,11 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
||||
return false; // only support batch size of 1
|
||||
}
|
||||
|
||||
// if buffers are not allocated, we need to do a warmup run to allocate them
|
||||
if (!ctx->is_allocated) {
|
||||
clip_model_loader::warmup(*ctx, *imgs_c_ptr);
|
||||
}
|
||||
|
||||
// build the inference graph
|
||||
ctx->debug_print_tensors.clear();
|
||||
ggml_backend_sched_reset(ctx->sched.get());
|
||||
|
||||
Reference in New Issue
Block a user