feat: llama.cpp bump (17f7f4) for SSM performance improvements (#13408)

* feat: Bump llama.cpp to the latest master (17f7f4b)

This brings in significant improvements to prefill performance for all
models using the SSM_CONV and SSM_SCAN ops (granite4, jamba, falcon-h,
nemotron-h, Qwen3 Next) on Apple Metal.

See https://github.com/ggml-org/llama.cpp/pull/17876

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 1-4

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Update patches 5-12

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 13-18

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patch 20

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches 21-31

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Sync vendored code

The two files I'm not sure about here are the swap from gemma3-iswa.cpp to
gemma3.cpp (I chose to include this because I think it's required), and the
inclusion of `ggml-zendnn.h` which I chose to omit.

Branch: LlamaCPPMetalSSMImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart
2025-12-10 13:59:27 -07:00
committed by GitHub
parent c34fc64688
commit b95693056c
115 changed files with 5176 additions and 2585 deletions

View File

@@ -75,7 +75,7 @@ index 0f5b03cef..7bdf9d81f 100644
struct ggml_backend {
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index f511e8d76..74b7f070c 100644
index 312ca873c..4092dfe8a 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -41,6 +41,19 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
@@ -121,10 +121,10 @@ index f511e8d76..74b7f070c 100644
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
@@ -725,6 +745,12 @@ struct ggml_backend_sched {
int batch_size; // a hint on the batch size to optimize processing, -1 to use heuristics
int debug;
@@ -731,6 +751,12 @@ struct ggml_backend_sched {
int debug_realloc;
int debug_graph_size;
int debug_prev_graph_size;
+
+ // allocate buffers on attached ggml_backend_buffer_type_t's and during reservation
+ // if false, dummy buffers are used for faster memory sizing calculations
@@ -134,7 +134,7 @@ index f511e8d76..74b7f070c 100644
};
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
@@ -1614,6 +1640,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
@@ -1630,6 +1656,17 @@ ggml_backend_sched_t ggml_backend_sched_new(
size_t graph_size,
bool parallel,
bool op_offload) {
@@ -152,7 +152,7 @@ index f511e8d76..74b7f070c 100644
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
@@ -1655,11 +1692,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
@@ -1682,11 +1719,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
}
}
@@ -167,7 +167,7 @@ index f511e8d76..74b7f070c 100644
ggml_backend_sched_reset(sched);
@@ -1674,6 +1714,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
@@ -1701,6 +1741,10 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
for (int c = 0; c < sched->n_copies; c++) {
ggml_backend_event_free(sched->events[b][c]);
}
@@ -178,7 +178,7 @@ index f511e8d76..74b7f070c 100644
}
ggml_gallocr_free(sched->galloc);
ggml_free(sched->ctx);
@@ -1719,6 +1763,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
@@ -1746,6 +1790,24 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
return false;
}
@@ -203,7 +203,7 @@ index f511e8d76..74b7f070c 100644
ggml_backend_sched_reset(sched);
return true;
@@ -1824,7 +1886,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
@@ -1851,7 +1913,13 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
@@ -219,7 +219,7 @@ index f511e8d76..74b7f070c 100644
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh
index 611341deb..ee463af9c 100644
index c4529f5d9..8b0fb5d42 100644
--- a/ggml/src/ggml-cuda/common.cuh
+++ b/ggml/src/ggml-cuda/common.cuh
@@ -37,6 +37,41 @@
@@ -264,7 +264,7 @@ index 611341deb..ee463af9c 100644
#define STRINGIZE_IMPL(...) #__VA_ARGS__
#define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
@@ -891,6 +926,9 @@ struct ggml_cuda_pool {
@@ -938,6 +973,9 @@ struct ggml_cuda_pool {
virtual void * alloc(size_t size, size_t * actual_size) = 0;
virtual void free(void * ptr, size_t size) = 0;
@@ -274,7 +274,7 @@ index 611341deb..ee463af9c 100644
};
template<typename T>
@@ -1179,11 +1217,15 @@ struct ggml_backend_cuda_context {
@@ -1229,11 +1267,15 @@ struct ggml_backend_cuda_context {
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
@@ -292,7 +292,7 @@ index 611341deb..ee463af9c 100644
}
return *pools[device][curr_stream_no];
}
@@ -1191,6 +1233,22 @@ struct ggml_backend_cuda_context {
@@ -1241,6 +1283,22 @@ struct ggml_backend_cuda_context {
ggml_cuda_pool & pool() {
return pool(device);
}
@@ -316,10 +316,10 @@ index 611341deb..ee463af9c 100644
struct ggml_cuda_mm_fusion_args_host {
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index 78fb2d8b3..f1c178f31 100644
index 17062697b..ede1d089a 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -361,6 +361,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
@@ -365,6 +365,8 @@ const ggml_cuda_device_info & ggml_cuda_info() {
// #define DEBUG_CUDA_MALLOC
@@ -328,7 +328,7 @@ index 78fb2d8b3..f1c178f31 100644
// buffer pool for cuda (legacy)
struct ggml_cuda_pool_leg : public ggml_cuda_pool {
static const int MAX_BUFFERS = 256;
@@ -373,9 +375,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
@@ -377,9 +379,12 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
size_t pool_size = 0;
@@ -343,7 +343,7 @@ index 78fb2d8b3..f1c178f31 100644
}
~ggml_cuda_pool_leg() {
@@ -383,7 +388,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
@@ -387,7 +392,9 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cuda_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
@@ -354,7 +354,7 @@ index 78fb2d8b3..f1c178f31 100644
pool_size -= b.size;
}
}
@@ -431,8 +438,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
@@ -435,8 +442,15 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
void * ptr;
size_t look_ahead_size = (size_t) (1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255)/256);
@@ -372,7 +372,7 @@ index 78fb2d8b3..f1c178f31 100644
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CUDA_MALLOC
@@ -452,10 +466,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
@@ -456,10 +470,20 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
}
}
GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
@@ -395,7 +395,7 @@ index 78fb2d8b3..f1c178f31 100644
};
// pool with virtual memory
@@ -467,18 +491,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
@@ -471,18 +495,24 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
CUdeviceptr pool_addr = 0;
size_t pool_used = 0;
size_t pool_size = 0;
@@ -423,7 +423,7 @@ index 78fb2d8b3..f1c178f31 100644
#if defined(GGML_USE_HIP)
// Workaround for https://github.com/ROCm/ROCR-Runtime/issues/285
for (std::pair<CUdeviceptr, size_t> & mapping : mappings) {
@@ -505,35 +535,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
@@ -509,35 +539,49 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
@@ -499,7 +499,7 @@ index 78fb2d8b3..f1c178f31 100644
// add to the pool
pool_size += reserve_size;
@@ -566,17 +610,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
@@ -570,17 +614,27 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void *) ((char *)(pool_addr) + pool_used));
}
@@ -530,7 +530,7 @@ index 78fb2d8b3..f1c178f31 100644
}
// destroying a cuBLAS handle while a graph is being captured in a different thread can result in a CUDA error
@@ -760,11 +814,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
@@ -764,11 +818,20 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac
}
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
@@ -552,7 +552,7 @@ index 78fb2d8b3..f1c178f31 100644
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
@@ -788,6 +851,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
@@ -792,6 +855,7 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
@@ -560,7 +560,7 @@ index 78fb2d8b3..f1c178f31 100644
};
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
@@ -3258,6 +3322,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
@@ -3274,6 +3338,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
@@ -568,7 +568,7 @@ index 78fb2d8b3..f1c178f31 100644
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
@@ -3347,6 +3412,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
@@ -3410,6 +3475,10 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
continue;
}
@@ -579,7 +579,7 @@ index 78fb2d8b3..f1c178f31 100644
// start of fusion operations
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
@@ -3691,6 +3760,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
@@ -3754,6 +3823,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph, int batch_size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@@ -587,7 +587,7 @@ index 78fb2d8b3..f1c178f31 100644
ggml_cuda_set_device(cuda_ctx->device);
@@ -3766,6 +3836,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
@@ -3829,6 +3899,77 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend,
return GGML_STATUS_SUCCESS;
}
@@ -665,7 +665,7 @@ index 78fb2d8b3..f1c178f31 100644
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
@@ -4035,6 +4176,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
@@ -4097,6 +4238,9 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .graph_optimize = */ ggml_backend_cuda_graph_optimize,