Use runners for GPU discovery (#12090)

This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
This commit is contained in:
Daniel Hiltgen
2025-10-01 15:12:32 -07:00
committed by GitHub
parent 6b50f2b9cd
commit bc8909fb38
57 changed files with 3288 additions and 3819 deletions

View File

@@ -1,730 +1,148 @@
//go:build linux || windows
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"context"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func GetCPUInfo() GpuInfo {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
return GpuInfo{
memInfo: mem,
DeviceID: ml.DeviceID{
Library: "cpu",
ID: "0",
},
}
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t
deviceCount int
func GetGPUInfo(ctx context.Context, runners []FilteredRunnerDiscovery) GpuInfoList {
devs := GPUDevices(ctx, runners)
return devInfoToInfoList(devs)
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
// (string values used to allow ldflags overrides at build time)
var (
CudaComputeMajorMin = "5"
CudaComputeMinorMin = "0"
)
var RocmComputeMajorMin = "9"
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
if err != nil {
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
}
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
if err != nil {
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
}
bootstrapErrors = []error{}
needRefresh = false
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
driverMajor = int(cHandles.cudart.driver_major)
driverMinor = int(cHandles.cudart.driver_minor)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
func devInfoToInfoList(devs []ml.DeviceInfo) GpuInfoList {
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
// Our current packaging model places ggml-hip in the main directory
// but keeps rocm in an isolated directory. We have to add it to
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
rocmDir := filepath.Join(LibOllamaPath, "rocm")
if _, err := os.Stat(rocmDir); err != nil {
rocmDir = ""
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
for _, dev := range devs {
info := GpuInfo{
DeviceID: dev.DeviceID,
filterID: dev.FilteredID,
Name: dev.Description,
memInfo: memInfo{
TotalMemory: dev.TotalMemory,
FreeMemory: dev.FreeMemory,
},
// TODO can we avoid variant
DependencyPath: dev.LibraryPath,
DriverMajor: dev.DriverMajor,
DriverMinor: dev.DriverMinor,
}
if dev.Library == "CUDA" || dev.Library == "ROCm" {
info.MinimumMemory = 457 * format.MebiByte
}
if dev.Library == "ROCm" {
info.Compute = fmt.Sprintf("gfx%x%02x", dev.ComputeMajor, dev.ComputeMinor)
if rocmDir != "" {
info.DependencyPath = append(info.DependencyPath, rocmDir)
}
} else {
info.Compute = fmt.Sprintf("%d.%d", dev.ComputeMajor, dev.ComputeMinor)
}
resp = append(resp, info)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
resp = append(resp, GpuInfo{
memInfo: mem,
DeviceID: ml.DeviceID{
Library: "cpu",
ID: "0",
},
})
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return &resp.ch, libPath, err
}
}
return nil, "", err
}
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
var err error
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath, err
}
}
return 0, nil, "", err
}
func getVerboseState() C.uint16_t {
if envconfig.LogLevel() < slog.LevelInfo {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
if len(l) == 0 {
return nil
}
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
}
return vd
return []string{rocmGetVisibleDevicesEnv(l)}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "ROCm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if info.filterID != "" {
ids = append(ids, info.filterID)
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
envVar := "ROCR_VISIBLE_DEVICES="
if runtime.GOOS != "linux" {
envVar = "HIP_VISIBLE_DEVICES="
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return envVar + strings.Join(ids, ",")
}
// GetSystemInfo returns the last cached state of the GPUs on the system
func GetSystemInfo() SystemInfo {
deviceMu.Lock()
defer deviceMu.Unlock()
gpus := devInfoToInfoList(devices)
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
System: CPUInfo{
CPUs: GetCPUDetails(),
GpuInfo: GetCPUInfo(),
},
GPUs: gpus,
}
}