mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
Update GGML to b6646 (#12245)
Notable EOLs with this change: - MacOS v12 and v13 are no longer supported (v14+ required) - AMD gfx900 and gfx906 are no longer supported
This commit is contained in:
22
ml/backend/ggml/ggml/include/ggml-backend.h
vendored
22
ml/backend/ggml/ggml/include/ggml-backend.h
vendored
@@ -132,6 +132,8 @@ extern "C" {
|
||||
GGML_BACKEND_DEVICE_TYPE_CPU,
|
||||
// GPU device using dedicated memory
|
||||
GGML_BACKEND_DEVICE_TYPE_GPU,
|
||||
// integrated GPU device using host memory
|
||||
GGML_BACKEND_DEVICE_TYPE_IGPU,
|
||||
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
|
||||
GGML_BACKEND_DEVICE_TYPE_ACCEL
|
||||
};
|
||||
@@ -150,12 +152,22 @@ extern "C" {
|
||||
|
||||
// all the device properties
|
||||
struct ggml_backend_dev_props {
|
||||
// device name
|
||||
const char * name;
|
||||
// device description
|
||||
const char * description;
|
||||
const char * id;
|
||||
// device free memory in bytes
|
||||
size_t memory_free;
|
||||
const char * id;
|
||||
// device total memory in bytes
|
||||
size_t memory_total;
|
||||
// device type
|
||||
enum ggml_backend_dev_type type;
|
||||
// device id
|
||||
// for PCI devices, this should be the PCI bus id formatted as "domain:bus:device.function" (e.g. "0000:01:00.0")
|
||||
// if the id is unknown, this should be NULL
|
||||
const char * device_id;
|
||||
// device capabilities
|
||||
struct ggml_backend_dev_caps caps;
|
||||
int driver_major;
|
||||
int driver_minor;
|
||||
@@ -314,12 +326,16 @@ extern "C" {
|
||||
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
|
||||
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
|
||||
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);
|
||||
|
||||
// Split graph without allocating it
|
||||
GGML_API void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
// Allocate and compute graph on the backend scheduler
|
||||
GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); // returns success
|
||||
GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
|
||||
|
||||
2
ml/backend/ggml/ggml/include/ggml-cpu.h
vendored
2
ml/backend/ggml/ggml/include/ggml-cpu.h
vendored
@@ -101,7 +101,6 @@ extern "C" {
|
||||
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_nnpa (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
|
||||
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
|
||||
|
||||
@@ -135,6 +134,7 @@ extern "C" {
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_i32 (const float *, int32_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp16(const float *, ggml_fp16_t *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp16_to_fp32(const ggml_fp16_t *, float *, int64_t);
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_bf16(const float *, ggml_bf16_t *, int64_t);
|
||||
|
||||
7
ml/backend/ggml/ggml/include/ggml-metal.h
vendored
7
ml/backend/ggml/ggml/include/ggml-metal.h
vendored
@@ -39,18 +39,13 @@ extern "C" {
|
||||
// user-code should use only these functions
|
||||
//
|
||||
|
||||
// TODO: remove in the future
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
|
||||
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
|
||||
31
ml/backend/ggml/ggml/include/ggml-opt.h
vendored
31
ml/backend/ggml/ggml/include/ggml-opt.h
vendored
@@ -74,16 +74,26 @@ extern "C" {
|
||||
GGML_OPT_BUILD_TYPE_OPT = 30,
|
||||
};
|
||||
|
||||
enum ggml_opt_optimizer_type {
|
||||
GGML_OPT_OPTIMIZER_TYPE_ADAMW,
|
||||
GGML_OPT_OPTIMIZER_TYPE_SGD,
|
||||
|
||||
GGML_OPT_OPTIMIZER_TYPE_COUNT
|
||||
};
|
||||
|
||||
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
|
||||
struct ggml_opt_optimizer_params {
|
||||
// AdamW optimizer parameters
|
||||
struct {
|
||||
float alpha; // learning rate
|
||||
float beta1;
|
||||
float beta2;
|
||||
float beta1; // first AdamW momentum
|
||||
float beta2; // second AdamW momentum
|
||||
float eps; // epsilon for numerical stability
|
||||
float wd; // weight decay for AdamW, use 0.0f to disable
|
||||
float wd; // weight decay - 0.0f to disable
|
||||
} adamw;
|
||||
struct {
|
||||
float alpha; // learning rate
|
||||
float wd; // weight decay
|
||||
} sgd;
|
||||
};
|
||||
|
||||
// callback to calculate optimizer parameters prior to a backward pass
|
||||
@@ -112,8 +122,11 @@ extern "C" {
|
||||
|
||||
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
|
||||
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
|
||||
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
|
||||
|
||||
// only GGML_OPT_OPTIMIZER_TYPE_ADAMW needs m, v momenta per parameter tensor
|
||||
enum ggml_opt_optimizer_type optimizer;
|
||||
};
|
||||
|
||||
// get parameters for an optimization context with defaults set where possible
|
||||
@@ -142,6 +155,10 @@ extern "C" {
|
||||
// get the gradient accumulator for a node from the forward graph
|
||||
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
|
||||
|
||||
GGML_API enum ggml_opt_optimizer_type ggml_opt_context_optimizer_type(ggml_opt_context_t); //TODO consistent naming scheme
|
||||
|
||||
GGML_API const char * ggml_opt_optimizer_name(enum ggml_opt_optimizer_type);
|
||||
|
||||
// ====== Optimization Result ======
|
||||
|
||||
GGML_API ggml_opt_result_t ggml_opt_result_init(void);
|
||||
@@ -226,12 +243,14 @@ extern "C" {
|
||||
struct ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
|
||||
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
|
||||
enum ggml_opt_loss_type loss_type, // loss to minimize
|
||||
enum ggml_opt_optimizer_type optimizer, // sgd or adamw
|
||||
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
|
||||
int64_t nepoch, // how many times the dataset should be iterated over
|
||||
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
|
||||
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
|
||||
bool silent); // whether or not info prints to stderr should be suppressed
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
17
ml/backend/ggml/ggml/include/ggml-zdnn.h
vendored
Normal file
17
ml/backend/ggml/ggml/include/ggml-zdnn.h
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// device buffer
|
||||
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
119
ml/backend/ggml/ggml/include/ggml.h
vendored
119
ml/backend/ggml/ggml/include/ggml.h
vendored
@@ -241,7 +241,16 @@
|
||||
#define GGML_ROPE_TYPE_MROPE 8
|
||||
#define GGML_ROPE_TYPE_VISION 24
|
||||
|
||||
#define GGML_MROPE_SECTIONS 4
|
||||
|
||||
#define GGML_UNUSED(x) (void)(x)
|
||||
#ifdef __CUDACC__
|
||||
template<typename... Args>
|
||||
__host__ __device__ constexpr inline void ggml_unused_vars_impl(Args&&...) noexcept {}
|
||||
#define GGML_UNUSED_VARS(...) ggml_unused_vars_impl(__VA_ARGS__)
|
||||
#else
|
||||
#define GGML_UNUSED_VARS(...) do { (void)sizeof((__VA_ARGS__, 0)); } while(0)
|
||||
#endif // __CUDACC__
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
|
||||
@@ -275,19 +284,19 @@
|
||||
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
||||
//
|
||||
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
||||
const type prefix##0 = (pointer)->array[0]; \
|
||||
const type prefix##0 = (pointer) ? (pointer)->array[0] : 0; \
|
||||
GGML_UNUSED(prefix##0);
|
||||
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
||||
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
||||
const type prefix##1 = (pointer)->array[1]; \
|
||||
const type prefix##1 = (pointer) ? (pointer)->array[1] : 0; \
|
||||
GGML_UNUSED(prefix##1);
|
||||
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
||||
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
||||
const type prefix##2 = (pointer)->array[2]; \
|
||||
const type prefix##2 = (pointer) ? (pointer)->array[2] : 0; \
|
||||
GGML_UNUSED(prefix##2);
|
||||
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
||||
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
||||
const type prefix##3 = (pointer)->array[3]; \
|
||||
const type prefix##3 = (pointer) ? (pointer)->array[3] : 0; \
|
||||
GGML_UNUSED(prefix##3);
|
||||
|
||||
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
||||
@@ -502,7 +511,9 @@ extern "C" {
|
||||
GGML_OP_CONV_TRANSPOSE_1D,
|
||||
GGML_OP_IM2COL,
|
||||
GGML_OP_IM2COL_BACK,
|
||||
GGML_OP_IM2COL_3D,
|
||||
GGML_OP_CONV_2D,
|
||||
GGML_OP_CONV_3D,
|
||||
GGML_OP_CONV_2D_DW,
|
||||
GGML_OP_CONV_TRANSPOSE_2D,
|
||||
GGML_OP_POOL_1D,
|
||||
@@ -540,6 +551,7 @@ extern "C" {
|
||||
GGML_OP_CROSS_ENTROPY_LOSS,
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
GGML_OP_OPT_STEP_SGD,
|
||||
|
||||
GGML_OP_GLU,
|
||||
|
||||
@@ -1392,6 +1404,7 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// note: casting from f32 to i32 will discard the fractional part
|
||||
GGML_API struct ggml_tensor * ggml_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -1516,7 +1529,11 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
// supports 3D: a->ne[2] == b->ne[1]
|
||||
// supports 4D a:
|
||||
// a [n_embd, ne1, ne2, ne3]
|
||||
// b I32 [n_rows, ne2, ne3, 1]
|
||||
//
|
||||
// return [n_embd, n_rows, ne2, ne3]
|
||||
GGML_API struct ggml_tensor * ggml_get_rows(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // data
|
||||
@@ -1660,7 +1677,7 @@ extern "C" {
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[4],
|
||||
int sections[GGML_MROPE_SECTIONS],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
@@ -1686,6 +1703,22 @@ extern "C" {
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rope_multi_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
int n_dims,
|
||||
int sections[GGML_MROPE_SECTIONS],
|
||||
int mode,
|
||||
int n_ctx_orig,
|
||||
float freq_base,
|
||||
float freq_scale,
|
||||
float ext_factor,
|
||||
float attn_factor,
|
||||
float beta_fast,
|
||||
float beta_slow);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -1843,6 +1876,41 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_im2col_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int64_t IC,
|
||||
int s0, // stride width
|
||||
int s1, // stride height
|
||||
int s2, // stride depth
|
||||
int p0, // padding width
|
||||
int p1, // padding height
|
||||
int p2, // padding depth
|
||||
int d0, // dilation width
|
||||
int d1, // dilation height
|
||||
int d2, // dilation depth
|
||||
enum ggml_type dst_type);
|
||||
|
||||
// a: [OC*IC, KD, KH, KW]
|
||||
// b: [N*IC, ID, IH, IW]
|
||||
// result: [N*OC, OD, OH, OW]
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
int64_t IC,
|
||||
int s0, // stride width
|
||||
int s1, // stride height
|
||||
int s2, // stride depth
|
||||
int p0, // padding width
|
||||
int p1, // padding height
|
||||
int p2, // padding depth
|
||||
int d0, // dilation width
|
||||
int d1, // dilation height
|
||||
int d2 // dilation depth
|
||||
);
|
||||
|
||||
// kernel size is a->ne[0] x a->ne[1]
|
||||
// stride is equal to kernel size
|
||||
// padding is zero
|
||||
@@ -1914,6 +1982,23 @@ extern "C" {
|
||||
int d0, // dilation dimension 0
|
||||
int d1); // dilation dimension 1
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_3d_direct(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a, // kernel [KW, KH, KD, IC * OC]
|
||||
struct ggml_tensor * b, // input [W, H, D, C * N]
|
||||
int s0, // stride
|
||||
int s1,
|
||||
int s2,
|
||||
int p0, // padding
|
||||
int p1,
|
||||
int p2,
|
||||
int d0, // dilation
|
||||
int d1,
|
||||
int d2,
|
||||
int n_channels,
|
||||
int n_batch,
|
||||
int n_channels_out);
|
||||
|
||||
enum ggml_op_pool {
|
||||
GGML_OP_POOL_MAX,
|
||||
GGML_OP_POOL_AVG,
|
||||
@@ -2004,6 +2089,19 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_pad_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int lp0,
|
||||
int rp0,
|
||||
int lp1,
|
||||
int rp1,
|
||||
int lp2,
|
||||
int rp2,
|
||||
int lp3,
|
||||
int rp3
|
||||
);
|
||||
|
||||
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
||||
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
struct ggml_context * ctx,
|
||||
@@ -2293,7 +2391,14 @@ extern "C" {
|
||||
struct ggml_tensor * grad,
|
||||
struct ggml_tensor * m,
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * adamw_params); // parameters such a the learning rate
|
||||
struct ggml_tensor * adamw_params); // parameters such as the learning rate
|
||||
|
||||
// stochastic gradient descent step (with weight decay)
|
||||
GGML_API struct ggml_tensor * ggml_opt_step_sgd(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * grad,
|
||||
struct ggml_tensor * sgd_params); // alpha, weight decay
|
||||
|
||||
//
|
||||
// automatic differentiation
|
||||
|
||||
4
ml/backend/ggml/ggml/src/CMakeLists.txt
vendored
4
ml/backend/ggml/ggml/src/CMakeLists.txt
vendored
@@ -114,6 +114,9 @@ message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
|
||||
|
||||
if (NOT MSVC)
|
||||
if (GGML_STATIC)
|
||||
if (UNIX AND NOT APPLE)
|
||||
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a;.so")
|
||||
endif()
|
||||
add_link_options(-static)
|
||||
if (MINGW)
|
||||
add_link_options(-static-libgcc -static-libstdc++)
|
||||
@@ -382,6 +385,7 @@ ggml_add_backend(RPC)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(zDNN)
|
||||
ggml_add_backend(OpenCL)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
|
||||
424
ml/backend/ggml/ggml/src/ggml-alloc.c
vendored
424
ml/backend/ggml/ggml/src/ggml-alloc.c
vendored
@@ -23,7 +23,7 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
|
||||
}
|
||||
|
||||
// ops that return true for this function must not use restrict pointers for their backend implementations
|
||||
static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
switch (op) {
|
||||
case GGML_OP_SCALE:
|
||||
case GGML_OP_DIAG_MASK_ZERO:
|
||||
@@ -95,39 +95,104 @@ enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_te
|
||||
|
||||
// dynamic tensor allocator
|
||||
|
||||
#define GGML_VBUFFER_MAX_CHUNKS 16
|
||||
|
||||
// relative memory address within an allocation that can be split into multiple buffers (chunks)
|
||||
struct buffer_address {
|
||||
int chunk; // index of a backend buffer
|
||||
size_t offset; // local memory offset within the buffer
|
||||
};
|
||||
|
||||
static const struct buffer_address GGML_BUFFER_ADDRESS_INVALID = { -1, SIZE_MAX };
|
||||
|
||||
static bool ggml_buffer_address_less(struct buffer_address a, struct buffer_address b) {
|
||||
return a.chunk != b.chunk ? a.chunk < b.chunk : a.offset < b.offset;
|
||||
}
|
||||
|
||||
struct free_block {
|
||||
size_t offset;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct tallocr_chunk {
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
int n_free_blocks;
|
||||
size_t max_size;
|
||||
};
|
||||
|
||||
struct ggml_dyn_tallocr {
|
||||
size_t alignment;
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
size_t max_size;
|
||||
size_t max_chunk_size;
|
||||
struct tallocr_chunk * chunks[GGML_VBUFFER_MAX_CHUNKS];
|
||||
int n_chunks;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct {
|
||||
const struct ggml_tensor * tensor;
|
||||
size_t offset;
|
||||
struct buffer_address addr;
|
||||
} allocated_tensors[1024];
|
||||
#endif
|
||||
};
|
||||
|
||||
static void ggml_dyn_tallocr_insert_block(struct tallocr_chunk * chunk, size_t offset, size_t size) {
|
||||
GGML_ASSERT(chunk->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < chunk->n_free_blocks && chunk->free_blocks[insert_pos].offset < offset) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = chunk->n_free_blocks; i > insert_pos; i--) {
|
||||
chunk->free_blocks[i] = chunk->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
chunk->free_blocks[insert_pos].offset = offset;
|
||||
chunk->free_blocks[insert_pos].size = size;
|
||||
chunk->n_free_blocks++;
|
||||
}
|
||||
|
||||
static void ggml_dyn_tallocr_remove_block(struct tallocr_chunk * chunk, int idx) {
|
||||
// shift all elements after idx by 1 to the left, overwriting the element at idx
|
||||
for (int i = idx; i < chunk->n_free_blocks; i++) {
|
||||
chunk->free_blocks[i] = chunk->free_blocks[i+1];
|
||||
}
|
||||
chunk->n_free_blocks--;
|
||||
}
|
||||
|
||||
static int ggml_dyn_tallocr_new_chunk(struct ggml_dyn_tallocr * alloc, size_t min_size) {
|
||||
if (alloc->n_chunks >= GGML_VBUFFER_MAX_CHUNKS) {
|
||||
return -1;
|
||||
}
|
||||
struct tallocr_chunk * chunk = calloc(1, sizeof(struct tallocr_chunk));
|
||||
chunk->n_free_blocks = 1;
|
||||
chunk->free_blocks[0].offset = 0;
|
||||
// available space in a chunk is limited to max_chunk_size, but can be higher if:
|
||||
// 1. a single tensor exceeds the maximum, and cannot fit any other way
|
||||
// 2. we are running out of chunks
|
||||
// backends will either manage to allocate the larger size, or report an error.
|
||||
chunk->free_blocks[0].size = MAX(min_size, alloc->max_chunk_size);
|
||||
if (alloc->n_chunks == GGML_VBUFFER_MAX_CHUNKS - 1) {
|
||||
chunk->free_blocks[0].size = SIZE_MAX/2;
|
||||
}
|
||||
alloc->chunks[alloc->n_chunks] = chunk;
|
||||
alloc->n_chunks++;
|
||||
return alloc->n_chunks - 1;
|
||||
}
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
|
||||
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i].tensor == NULL) {
|
||||
alloc->allocated_tensors[i].tensor = tensor;
|
||||
alloc->allocated_tensors[i].offset = offset;
|
||||
alloc->allocated_tensors[i].addr = addr;
|
||||
return;
|
||||
}
|
||||
}
|
||||
GGML_ABORT("out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
|
||||
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i].offset == offset) {
|
||||
if (alloc->allocated_tensors[i].addr.chunk == addr.chunk && alloc->allocated_tensors[i].addr.offset == addr.offset) {
|
||||
alloc->allocated_tensors[i].tensor = NULL;
|
||||
return;
|
||||
}
|
||||
@@ -136,76 +201,94 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
|
||||
}
|
||||
#endif
|
||||
|
||||
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
|
||||
static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
||||
|
||||
int best_fit_chunk = -1;
|
||||
int best_fit_block = -1;
|
||||
size_t max_avail = 0;
|
||||
|
||||
// find the best fitting free block besides the last block
|
||||
int best_fit_block = -1;
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size && block->size <= best_fit_size) {
|
||||
best_fit_block = i;
|
||||
best_fit_size = block->size;
|
||||
// find the best fitting free block besides the last block, within any chunk
|
||||
for (int c = 0; c < alloc->n_chunks; ++c) {
|
||||
struct tallocr_chunk * chunk = alloc->chunks[c];
|
||||
size_t best_fit_size = SIZE_MAX;
|
||||
for (int i = 0; i < chunk->n_free_blocks - 1; i++) {
|
||||
struct free_block * block = &chunk->free_blocks[i];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size && block->size <= best_fit_size) {
|
||||
best_fit_chunk = c;
|
||||
best_fit_block = i;
|
||||
best_fit_size = block->size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// the last block is our last resort
|
||||
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
best_fit_block = alloc->n_free_blocks - 1;
|
||||
} else {
|
||||
// this should never happen
|
||||
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ABORT("not enough space in the buffer");
|
||||
}
|
||||
}
|
||||
|
||||
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
||||
size_t offset = block->offset;
|
||||
block->offset = offset + size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
}
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, offset, tensor);
|
||||
size_t cur_max = offset + size;
|
||||
if (cur_max > alloc->max_size) {
|
||||
// sort allocated_tensors by offset
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
for (int j = i + 1; j < 1024; j++) {
|
||||
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
|
||||
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
|
||||
size_t tmp_offset = alloc->allocated_tensors[i].offset;
|
||||
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
|
||||
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
|
||||
alloc->allocated_tensors[j].tensor = tmp_tensor;
|
||||
alloc->allocated_tensors[j].offset = tmp_offset;
|
||||
// no suitable block found, try the last block (this will grow a chunks size)
|
||||
for (int c = 0; c < alloc->n_chunks; ++c) {
|
||||
struct tallocr_chunk * chunk = alloc->chunks[c];
|
||||
if (chunk->n_free_blocks > 0) {
|
||||
struct free_block * block = &chunk->free_blocks[chunk->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
best_fit_chunk = c;
|
||||
best_fit_block = chunk->n_free_blocks - 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
||||
}
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// none of the existing chunks have enough space left
|
||||
best_fit_chunk = ggml_dyn_tallocr_new_chunk(alloc, size);
|
||||
best_fit_block = 0;
|
||||
}
|
||||
if (best_fit_chunk == -1) {
|
||||
// since the last chunk always has virtually endless memory, this should never happen
|
||||
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
|
||||
__func__, size, max_avail);
|
||||
GGML_ABORT("graph allocation: failed to reserve memory");
|
||||
}
|
||||
|
||||
struct tallocr_chunk * chunk = alloc->chunks[best_fit_chunk];
|
||||
struct free_block * block = &chunk->free_blocks[best_fit_block];
|
||||
struct buffer_address addr = {.chunk = best_fit_chunk, .offset = block->offset };
|
||||
block->offset += size;
|
||||
block->size -= size;
|
||||
if (block->size == 0) {
|
||||
// remove block if empty
|
||||
ggml_dyn_tallocr_remove_block(chunk, best_fit_block);
|
||||
}
|
||||
|
||||
AT_PRINTF("block %d, offset %zu, chunk %d\n", best_fit_block, addr.offset, addr.chunk);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, addr, tensor);
|
||||
size_t cur_max = addr.offset + size;
|
||||
if (cur_max > alloc->max_size[addr.chunk]) {
|
||||
// sort allocated_tensors by chunk/offset
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
for (int j = i + 1; j < 1024; j++) {
|
||||
if (ggml_buffer_address_less(alloc->allocated_tensors[j].addr, alloc->allocated_tensors[i].addr)) {
|
||||
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
|
||||
struct buffer_address tmp_addr = alloc->allocated_tensors[i].addr;
|
||||
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
|
||||
alloc->allocated_tensors[i].addr = alloc->allocated_tensors[j].addr;
|
||||
alloc->allocated_tensors[j].tensor = tmp_tensor;
|
||||
alloc->allocated_tensors[j].addr = tmp_addr;
|
||||
}
|
||||
}
|
||||
}
|
||||
GGML_LOG_DEBUG("max_size[%d] = %.2f MB: tensors: ", addr.chunk, cur_max / 1024.0 / 1024.0);
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i].tensor) {
|
||||
GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
|
||||
alloc->allocated_tensors[i].offset,
|
||||
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
|
||||
GGML_LOG_DEBUG("%s [%d: %zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
|
||||
alloc->allocated_tensors[i].addr.chunk,
|
||||
alloc->allocated_tensors[i].addr.offset,
|
||||
alloc->allocated_tensors[i].addr.offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
|
||||
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
@@ -213,78 +296,69 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
|
||||
}
|
||||
#endif
|
||||
|
||||
alloc->max_size = MAX(alloc->max_size, offset + size);
|
||||
chunk->max_size = MAX(chunk->max_size, addr.offset + size);
|
||||
|
||||
return offset;
|
||||
return addr;
|
||||
|
||||
GGML_UNUSED(tensor);
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
|
||||
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, size_t size, const struct ggml_tensor * tensor) {
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
|
||||
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
|
||||
AT_PRINTF("%s: freeing %s at {chunk=%d, offset=%zu} (%zu bytes) - n_free_blocks = %d\n",
|
||||
__func__, tensor->name, addr.chunk, addr.offset, size, alloc->chunks[addr.chunk]->n_free_blocks);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, offset, tensor);
|
||||
remove_allocated_tensor(alloc, addr, tensor);
|
||||
#endif
|
||||
|
||||
struct tallocr_chunk * chunk = alloc->chunks[addr.chunk];
|
||||
|
||||
// see if we can merge with an existing block
|
||||
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
||||
struct free_block * block = &alloc->free_blocks[i];
|
||||
for (int i = 0; i < chunk->n_free_blocks; i++) {
|
||||
struct free_block * block = &chunk->free_blocks[i];
|
||||
// check if ptr is at the end of the block
|
||||
if (block->offset + block->size == offset) {
|
||||
if (block->offset + block->size == addr.offset) {
|
||||
block->size += size;
|
||||
// check if we can merge with the next block
|
||||
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
|
||||
block->size += alloc->free_blocks[i+1].size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
if (i < chunk->n_free_blocks - 1) {
|
||||
struct free_block * next = &chunk->free_blocks[i+1];
|
||||
if (block->offset + block->size == next->offset) {
|
||||
block->size += next->size;
|
||||
ggml_dyn_tallocr_remove_block(chunk, i+1);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
// check if ptr is at the beginning of the block
|
||||
if (offset + size == block->offset) {
|
||||
block->offset = offset;
|
||||
if (addr.offset + size == block->offset) {
|
||||
block->offset = addr.offset;
|
||||
block->size += size;
|
||||
// check if we can merge with the previous block
|
||||
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
|
||||
alloc->free_blocks[i-1].size += block->size;
|
||||
alloc->n_free_blocks--;
|
||||
for (int j = i; j < alloc->n_free_blocks; j++) {
|
||||
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
||||
if (i > 0) {
|
||||
struct free_block * prev = &chunk->free_blocks[i-1];
|
||||
if (prev->offset + prev->size == block->offset) {
|
||||
prev->size += block->size;
|
||||
ggml_dyn_tallocr_remove_block(chunk, i);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
// otherwise, add a new block
|
||||
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
||||
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
||||
int insert_pos = 0;
|
||||
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
|
||||
insert_pos++;
|
||||
}
|
||||
// shift all blocks from insert_pos onward to make room for the new block
|
||||
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
||||
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
||||
}
|
||||
// insert the new block
|
||||
alloc->free_blocks[insert_pos].offset = offset;
|
||||
alloc->free_blocks[insert_pos].size = size;
|
||||
alloc->n_free_blocks++;
|
||||
ggml_dyn_tallocr_insert_block(chunk, addr.offset, size);
|
||||
|
||||
GGML_UNUSED(tensor);
|
||||
}
|
||||
|
||||
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
|
||||
alloc->n_free_blocks = 1;
|
||||
alloc->free_blocks[0].offset = 0;
|
||||
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
||||
alloc->max_size = 0;
|
||||
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; i++) {
|
||||
free(alloc->chunks[i]);
|
||||
alloc->chunks[i] = NULL;
|
||||
}
|
||||
alloc->n_chunks = 0;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
@@ -293,14 +367,14 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
|
||||
#endif
|
||||
}
|
||||
|
||||
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
|
||||
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment, size_t max_buffer_size) {
|
||||
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
|
||||
|
||||
*alloc = (struct ggml_dyn_tallocr) {
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.alignment = */ alignment,
|
||||
/*.max_chunk_size = */ MIN(max_buffer_size, SIZE_MAX/2), // clamp to avoid overflows
|
||||
/*.chunks = */ {NULL},
|
||||
/*.n_chunks = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {{0}},
|
||||
#endif
|
||||
@@ -312,11 +386,79 @@ static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
|
||||
}
|
||||
|
||||
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
|
||||
for (int i = 0; i < alloc->n_chunks; ++i) {
|
||||
free(alloc->chunks[i]);
|
||||
}
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
|
||||
return alloc->max_size;
|
||||
size_t max_size = 0;
|
||||
for (int i = 0; i < alloc->n_chunks; i++) {
|
||||
max_size += alloc->chunks[i]->max_size;
|
||||
}
|
||||
return max_size;
|
||||
}
|
||||
|
||||
|
||||
// virtual buffer with contiguous memory range, split into multiple backend buffers (chunks)
|
||||
|
||||
struct vbuffer {
|
||||
ggml_backend_buffer_t chunks[GGML_VBUFFER_MAX_CHUNKS];
|
||||
};
|
||||
|
||||
static void ggml_vbuffer_free(struct vbuffer * buf) {
|
||||
if (buf == NULL) {
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; ++i) {
|
||||
ggml_backend_buffer_free(buf->chunks[i]);
|
||||
}
|
||||
free(buf);
|
||||
}
|
||||
|
||||
static int ggml_vbuffer_n_chunks(struct vbuffer * buf) {
|
||||
int n = 0;
|
||||
while (n < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[n]) n++;
|
||||
return n;
|
||||
}
|
||||
|
||||
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
|
||||
size_t size = 0;
|
||||
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
|
||||
size += ggml_backend_buffer_get_size(buf->chunks[i]);
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static struct vbuffer * ggml_vbuffer_alloc(ggml_backend_buffer_type_t buft, const struct ggml_dyn_tallocr * talloc, enum ggml_backend_buffer_usage usage) {
|
||||
struct vbuffer * buf = (struct vbuffer *)calloc(1, sizeof(struct vbuffer));
|
||||
if (buf == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (int n = 0; n < talloc->n_chunks; n++) {
|
||||
size_t chunk_size = talloc->chunks[n]->max_size;
|
||||
buf->chunks[n] = ggml_backend_buft_alloc_buffer(buft, chunk_size);
|
||||
if (buf->chunks[n] == NULL) {
|
||||
ggml_vbuffer_free(buf);
|
||||
return NULL;
|
||||
}
|
||||
ggml_backend_buffer_set_usage(buf->chunks[n], usage);
|
||||
}
|
||||
return buf;
|
||||
}
|
||||
|
||||
static void ggml_vbuffer_tensor_alloc(struct vbuffer * buf, struct ggml_tensor * tensor, struct buffer_address buf_addr) {
|
||||
void * base = ggml_backend_buffer_get_base(buf->chunks[buf_addr.chunk]);
|
||||
void * addr = (char *)base + buf_addr.offset;
|
||||
ggml_backend_tensor_alloc(buf->chunks[buf_addr.chunk], tensor, addr);
|
||||
}
|
||||
|
||||
static void ggml_vbuffer_reset(struct vbuffer * buf) {
|
||||
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
|
||||
ggml_backend_buffer_reset(buf->chunks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -328,13 +470,13 @@ struct hash_node {
|
||||
int n_children;
|
||||
int n_views;
|
||||
int buffer_id;
|
||||
size_t offset; // offset within the buffer
|
||||
struct buffer_address addr;
|
||||
bool allocated;
|
||||
};
|
||||
|
||||
struct tensor_alloc {
|
||||
int buffer_id;
|
||||
size_t offset;
|
||||
struct buffer_address addr;
|
||||
size_t size_max; // 0 = pre-allocated, unused, or view
|
||||
};
|
||||
|
||||
@@ -349,7 +491,7 @@ struct node_alloc {
|
||||
|
||||
struct ggml_gallocr {
|
||||
ggml_backend_buffer_type_t * bufts; // [n_buffers]
|
||||
ggml_backend_buffer_t * buffers; // [n_buffers]
|
||||
struct vbuffer ** buffers; // [n_buffers]
|
||||
size_t *buffer_sizes; // [n_buffers]
|
||||
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
|
||||
int n_buffers;
|
||||
@@ -371,7 +513,7 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
||||
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
|
||||
GGML_ASSERT(galloc->bufts != NULL);
|
||||
|
||||
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
|
||||
galloc->buffers = calloc(n_bufs, sizeof(struct vbuffer *));
|
||||
GGML_ASSERT(galloc->buffers != NULL);
|
||||
|
||||
galloc->buffer_sizes = calloc(n_bufs, sizeof(size_t));
|
||||
@@ -394,7 +536,8 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
|
||||
|
||||
if (galloc->buf_tallocs[i] == NULL) {
|
||||
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
||||
size_t max_size = ggml_backend_buft_get_max_size(bufts[i]);
|
||||
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment, max_size);
|
||||
}
|
||||
}
|
||||
galloc->n_buffers = n_bufs;
|
||||
@@ -422,7 +565,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
}
|
||||
}
|
||||
if (!freed) {
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
ggml_vbuffer_free(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
if (galloc->buf_tallocs != NULL) {
|
||||
@@ -472,7 +615,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
|
||||
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
|
||||
hn->allocated = true;
|
||||
assert(hn->offset == 0);
|
||||
assert(hn->addr.offset == 0);
|
||||
|
||||
// try to reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
@@ -506,9 +649,9 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||
assert(view_src_hn->offset == p_hn->offset);
|
||||
assert(view_src_hn->addr.chunk == p_hn->addr.chunk && view_src_hn->addr.offset == p_hn->addr.offset);
|
||||
hn->buffer_id = p_hn->buffer_id;
|
||||
hn->offset = p_hn->offset;
|
||||
hn->addr = p_hn->addr;
|
||||
p_hn->allocated = false; // avoid freeing the parent
|
||||
view_src_hn->allocated = false;
|
||||
return;
|
||||
@@ -516,7 +659,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
} else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
hn->buffer_id = p_hn->buffer_id;
|
||||
hn->offset = p_hn->offset;
|
||||
hn->addr = p_hn->addr;
|
||||
p_hn->allocated = false; // avoid freeing the parent
|
||||
return;
|
||||
}
|
||||
@@ -527,9 +670,8 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
||||
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
|
||||
hn->buffer_id = buffer_id;
|
||||
hn->offset = offset;
|
||||
hn->addr = ggml_dyn_tallocr_alloc(alloc, size, node);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -541,12 +683,11 @@ static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * n
|
||||
}
|
||||
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
size_t offset = hn->offset;
|
||||
int buffer_id = hn->buffer_id;
|
||||
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
||||
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
||||
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
||||
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
|
||||
ggml_dyn_tallocr_free_tensor(alloc, hn->addr, size, node);
|
||||
hn->allocated = false;
|
||||
}
|
||||
|
||||
@@ -697,24 +838,24 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
||||
if (node->view_src || node->data) {
|
||||
node_alloc->dst.buffer_id = -1;
|
||||
node_alloc->dst.offset = SIZE_MAX;
|
||||
node_alloc->dst.addr = GGML_BUFFER_ADDRESS_INVALID;
|
||||
node_alloc->dst.size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
node_alloc->dst.buffer_id = hn->buffer_id;
|
||||
node_alloc->dst.offset = hn->offset;
|
||||
node_alloc->dst.addr = hn->addr;
|
||||
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (!src || src->view_src || src->data) {
|
||||
node_alloc->src[j].buffer_id = -1;
|
||||
node_alloc->src[j].offset = SIZE_MAX;
|
||||
node_alloc->src[j].addr = GGML_BUFFER_ADDRESS_INVALID;
|
||||
node_alloc->src[j].size_max = 0;
|
||||
} else {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
|
||||
node_alloc->src[j].buffer_id = hn->buffer_id;
|
||||
node_alloc->src[j].offset = hn->offset;
|
||||
node_alloc->src[j].addr = hn->addr;
|
||||
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
|
||||
}
|
||||
}
|
||||
@@ -730,11 +871,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
||||
if (leaf->view_src || leaf->data) {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = -1;
|
||||
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
||||
galloc->leaf_allocs[i].leaf.addr = GGML_BUFFER_ADDRESS_INVALID;
|
||||
galloc->leaf_allocs[i].leaf.size_max = 0;
|
||||
} else {
|
||||
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
|
||||
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
||||
galloc->leaf_allocs[i].leaf.addr = hn->addr;
|
||||
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
||||
}
|
||||
}
|
||||
@@ -751,7 +892,7 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
}
|
||||
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
|
||||
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
||||
|
||||
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
|
||||
@@ -760,18 +901,17 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
#endif
|
||||
|
||||
ggml_backend_buffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
|
||||
ggml_vbuffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
|
||||
if (galloc->buffers[i]) {
|
||||
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
|
||||
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
|
||||
galloc->buffer_sizes[i] = ggml_vbuffer_size(galloc->buffers[i]);
|
||||
} else {
|
||||
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
|
||||
galloc->buffer_sizes[i] = new_size;
|
||||
success = false;
|
||||
}
|
||||
} else {
|
||||
galloc->buffer_sizes[i] = ggml_backend_buffer_get_size(galloc->buffers[i]);
|
||||
galloc->buffer_sizes[i] = ggml_vbuffer_size(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -784,11 +924,11 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
||||
|
||||
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
|
||||
int buffer_id = tensor_alloc->buffer_id;
|
||||
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
assert(tensor->data || tensor->view_src || ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
if (tensor->buffer == NULL) {
|
||||
assert(tensor_alloc->offset == SIZE_MAX);
|
||||
assert(tensor_alloc->addr.offset == SIZE_MAX);
|
||||
if (tensor->view_src->buffer == NULL) {
|
||||
// this tensor was allocated without ggml-backend
|
||||
return;
|
||||
@@ -797,11 +937,9 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
|
||||
}
|
||||
} else {
|
||||
if (tensor->data == NULL) {
|
||||
assert(tensor_alloc->offset != SIZE_MAX);
|
||||
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
|
||||
void * addr = (char *)base + tensor_alloc->offset;
|
||||
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
|
||||
assert(tensor_alloc->addr.offset != SIZE_MAX);
|
||||
assert(ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
|
||||
ggml_vbuffer_tensor_alloc(galloc->buffers[buffer_id], tensor, tensor_alloc->addr);
|
||||
} else {
|
||||
if (tensor->buffer == NULL) {
|
||||
// this tensor was allocated without ggml-backend
|
||||
@@ -886,7 +1024,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
|
||||
// reset buffers
|
||||
for (int i = 0; i < galloc->n_buffers; i++) {
|
||||
if (galloc->buffers[i] != NULL) {
|
||||
ggml_backend_buffer_reset(galloc->buffers[i]);
|
||||
ggml_vbuffer_reset(galloc->buffers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -929,7 +1067,7 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
}
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
|
||||
return ggml_vbuffer_size(galloc->buffers[buffer_id]);
|
||||
}
|
||||
|
||||
size_t ggml_gallocr_get_attempted_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
|
||||
5
ml/backend/ggml/ggml/src/ggml-backend-impl.h
vendored
5
ml/backend/ggml/ggml/src/ggml-backend-impl.h
vendored
@@ -8,7 +8,7 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_BACKEND_API_VERSION 1
|
||||
#define GGML_BACKEND_API_VERSION 2
|
||||
|
||||
//
|
||||
// Backend buffer type
|
||||
@@ -121,6 +121,9 @@ extern "C" {
|
||||
// wait for an event on on a different stream
|
||||
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
// (optional) sort/optimize the nodes in the graph
|
||||
void (*graph_optimize) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// (optional) reserves intermediate buffers needed for the compution
|
||||
// if alloc is true, memory is actually allocated, otherwise the required amount is just returned by buffer_size
|
||||
enum ggml_status (*graph_reserve) (ggml_backend_t backend, struct ggml_cgraph * cgraph, bool alloc);
|
||||
|
||||
25
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
25
ml/backend/ggml/ggml/src/ggml-backend-reg.cpp
vendored
@@ -49,6 +49,10 @@
|
||||
#include "ggml-webgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_ZDNN
|
||||
#include "ggml-zdnn.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
@@ -131,6 +135,10 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return p;
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
@@ -151,6 +159,11 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
@@ -180,6 +193,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_ZDNN
|
||||
register_backend(ggml_backend_zdnn_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
@@ -238,7 +254,7 @@ struct ggml_backend_registry {
|
||||
dl_handle_ptr handle { dl_load_library(path) };
|
||||
if (!handle) {
|
||||
if (!silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(path).c_str(), dl_error());
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
@@ -398,9 +414,8 @@ ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const
|
||||
|
||||
ggml_backend_t ggml_backend_init_best(void) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
|
||||
if (!dev) {
|
||||
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
}
|
||||
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU);
|
||||
dev = dev ? dev : ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
|
||||
if (!dev) {
|
||||
return nullptr;
|
||||
}
|
||||
@@ -529,7 +544,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
if (filename.native().find(file_prefix) == 0 && ext == file_extension) {
|
||||
dl_handle_ptr handle { dl_load_library(entry) };
|
||||
if (!handle && !silent) {
|
||||
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
|
||||
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(entry.path()).c_str(), dl_error());
|
||||
}
|
||||
if (handle) {
|
||||
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");
|
||||
|
||||
224
ml/backend/ggml/ggml/src/ggml-backend.cpp
vendored
224
ml/backend/ggml/ggml/src/ggml-backend.cpp
vendored
@@ -19,9 +19,8 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#ifdef __APPLE__
|
||||
#include <sys/types.h>
|
||||
@@ -32,6 +31,7 @@
|
||||
// backend buffer type
|
||||
|
||||
const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.get_name(buft);
|
||||
}
|
||||
|
||||
@@ -54,14 +54,17 @@ ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t
|
||||
return buf;
|
||||
}
|
||||
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.alloc_buffer(buft, size);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->iface.get_alignment(buft);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
// get_max_size is optional, defaults to SIZE_MAX
|
||||
if (buft->iface.get_max_size) {
|
||||
return buft->iface.get_max_size(buft);
|
||||
@@ -70,6 +73,7 @@ size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
}
|
||||
|
||||
size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(buft);
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buft->iface.get_alloc_size) {
|
||||
size_t size = buft->iface.get_alloc_size(buft, tensor);
|
||||
@@ -80,6 +84,7 @@ size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, const s
|
||||
}
|
||||
|
||||
bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
if (buft->iface.is_host) {
|
||||
return buft->iface.is_host(buft);
|
||||
}
|
||||
@@ -87,6 +92,7 @@ bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(buft);
|
||||
return buft->device;
|
||||
}
|
||||
|
||||
@@ -124,10 +130,12 @@ void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->size;
|
||||
}
|
||||
|
||||
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
// get_base is optional if the buffer is zero-sized
|
||||
if (buffer->size == 0) {
|
||||
return NULL;
|
||||
@@ -147,6 +155,7 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(buffer);
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
return buffer->iface.init_tensor(buffer, tensor);
|
||||
@@ -155,6 +164,7 @@ enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, s
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
// clear is optional if the buffer is zero-sized
|
||||
if (buffer->size == 0) {
|
||||
return;
|
||||
@@ -180,6 +190,7 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||
GGML_ASSERT(buffer);
|
||||
buffer->usage = usage;
|
||||
|
||||
// FIXME: add a generic callback to the buffer interface
|
||||
@@ -189,14 +200,17 @@ void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backe
|
||||
}
|
||||
|
||||
enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->usage;
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->buft;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
if (buffer->iface.reset) {
|
||||
buffer->iface.reset(buffer);
|
||||
}
|
||||
@@ -235,6 +249,7 @@ void ggml_backend_free(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_buffer_type(backend->device);
|
||||
}
|
||||
|
||||
@@ -251,6 +266,8 @@ size_t ggml_backend_get_max_size(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
@@ -262,6 +279,8 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
@@ -303,6 +322,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
if (size == 0) {
|
||||
@@ -318,6 +338,7 @@ void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
if (backend->iface.synchronize == NULL) {
|
||||
return;
|
||||
}
|
||||
@@ -326,18 +347,21 @@ void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
}
|
||||
|
||||
ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_create != NULL);
|
||||
|
||||
return backend->iface.graph_plan_create(backend, cgraph);
|
||||
}
|
||||
|
||||
void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_free != NULL);
|
||||
|
||||
backend->iface.graph_plan_free(backend, plan);
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
|
||||
|
||||
return backend->iface.graph_plan_compute(backend, plan);
|
||||
@@ -350,22 +374,27 @@ enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
return backend->iface.graph_compute(backend, cgraph);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_supports_op(backend->device, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_supports_buft(backend->device, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(backend);
|
||||
return ggml_backend_dev_offload_op(backend->device, op);
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
return backend->device;
|
||||
}
|
||||
|
||||
@@ -401,6 +430,7 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(backend_dst);
|
||||
if (backend_dst->iface.cpy_tensor_async != NULL) {
|
||||
if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
|
||||
return;
|
||||
@@ -432,38 +462,52 @@ void ggml_backend_event_free(ggml_backend_event_t event) {
|
||||
}
|
||||
|
||||
void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.event_record != NULL);
|
||||
|
||||
backend->iface.event_record(backend, event);
|
||||
}
|
||||
|
||||
void ggml_backend_event_synchronize(ggml_backend_event_t event) {
|
||||
GGML_ASSERT(event);
|
||||
GGML_ASSERT(event->device->iface.event_synchronize);
|
||||
|
||||
event->device->iface.event_synchronize(event->device, event);
|
||||
}
|
||||
|
||||
void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
GGML_ASSERT(backend);
|
||||
GGML_ASSERT(backend->iface.event_wait != NULL);
|
||||
|
||||
backend->iface.event_wait(backend, event);
|
||||
}
|
||||
|
||||
static void ggml_backend_graph_optimize(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
GGML_ASSERT(backend);
|
||||
if (backend->iface.graph_optimize != NULL) {
|
||||
backend->iface.graph_optimize(backend, cgraph);
|
||||
}
|
||||
}
|
||||
|
||||
// Backend device
|
||||
|
||||
const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_name(device);
|
||||
}
|
||||
|
||||
const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_description(device);
|
||||
}
|
||||
|
||||
void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
|
||||
GGML_ASSERT(device);
|
||||
device->iface.get_memory(device, free, total);
|
||||
}
|
||||
|
||||
enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_type(device);
|
||||
}
|
||||
|
||||
@@ -473,10 +517,12 @@ void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_d
|
||||
}
|
||||
|
||||
ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->reg;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.init_backend(device, params);
|
||||
}
|
||||
|
||||
@@ -489,10 +535,12 @@ void ggml_backend_dev_reset(ggml_backend_dev_t device) {
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.get_buffer_type(device);
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
|
||||
GGML_ASSERT(device);
|
||||
if (device->iface.get_host_buffer_type == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
@@ -501,18 +549,22 @@ ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.supports_op(device, op);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
|
||||
GGML_ASSERT(device);
|
||||
return device->iface.supports_buft(device, buft);
|
||||
}
|
||||
|
||||
bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
|
||||
GGML_ASSERT(device);
|
||||
if (device->iface.offload_op != NULL) {
|
||||
return device->iface.offload_op(device, op);
|
||||
}
|
||||
@@ -523,18 +575,22 @@ bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_te
|
||||
// Backend (reg)
|
||||
|
||||
const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_name(reg);
|
||||
}
|
||||
|
||||
size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_device_count(reg);
|
||||
}
|
||||
|
||||
ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(reg);
|
||||
return reg->iface.get_device(reg, index);
|
||||
}
|
||||
|
||||
void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
GGML_ASSERT(reg);
|
||||
if (!reg->iface.get_proc_address) {
|
||||
return NULL;
|
||||
}
|
||||
@@ -549,6 +605,7 @@ struct ggml_backend_multi_buffer_context {
|
||||
};
|
||||
|
||||
static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
ggml_backend_buffer_free(ctx->buffers[i]);
|
||||
@@ -560,6 +617,7 @@ static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer)
|
||||
}
|
||||
|
||||
static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
ggml_backend_buffer_clear(ctx->buffers[i], value);
|
||||
@@ -595,10 +653,12 @@ ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer
|
||||
}
|
||||
|
||||
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
|
||||
}
|
||||
|
||||
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
|
||||
GGML_ASSERT(buffer);
|
||||
GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
|
||||
ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
|
||||
for (size_t i = 0; i < ctx->n_buffers; i++) {
|
||||
@@ -626,7 +686,7 @@ static bool ggml_is_view_op(enum ggml_op op) {
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
|
||||
#define GGML_SCHED_MAX_SPLIT_INPUTS 30
|
||||
#endif
|
||||
|
||||
#ifndef GGML_SCHED_MAX_COPIES
|
||||
@@ -883,7 +943,7 @@ static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, stru
|
||||
}
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset splits
|
||||
sched->n_splits = 0;
|
||||
sched->n_graph_inputs = 0;
|
||||
@@ -1279,6 +1339,10 @@ static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct gg
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
|
||||
|
||||
// Optimize this split of the graph. This needs to happen before we make graph_copy,
|
||||
// so they are in sync.
|
||||
ggml_backend_graph_optimize(sched->backends[split->backend_id], &split->graph);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
assert(graph_copy->size > (graph_copy->n_nodes + 1));
|
||||
@@ -1384,17 +1448,22 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
ggml_tensor * prev_ids_tensor = nullptr;
|
||||
std::vector<int32_t> ids;
|
||||
std::vector<ggml_bitset_t> used_ids;
|
||||
|
||||
for (int split_id = 0; split_id < sched->n_splits; split_id++) {
|
||||
struct ggml_backend_sched_split * split = &splits[split_id];
|
||||
int split_backend_id = split->backend_id;
|
||||
ggml_backend_t split_backend = sched->backends[split_backend_id];
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
for (int input_id = 0; input_id < split->n_inputs; input_id++) {
|
||||
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[input_id]);
|
||||
struct ggml_tensor * input = split->inputs[input_id];
|
||||
struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);
|
||||
|
||||
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
|
||||
@@ -1412,16 +1481,104 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
}
|
||||
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
|
||||
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
|
||||
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
|
||||
|
||||
// when offloading MoE weights, we can reduce the amount of data copied by copying only the experts that are used
|
||||
ggml_tensor * node = split->graph.nodes[0];
|
||||
if (split->graph.n_nodes > 0 &&
|
||||
ggml_backend_buffer_get_usage(input->buffer) == GGML_BACKEND_BUFFER_USAGE_WEIGHTS &&
|
||||
ggml_backend_buffer_is_host(input->buffer) && (
|
||||
(node->src[0] == input_cpy && node->op == GGML_OP_MUL_MAT_ID)
|
||||
//|| (node->src[1] == input_cpy && node->op == GGML_OP_ADD_ID) /* GGML_OP_ADD_ID weights are small and not worth splitting */
|
||||
)) {
|
||||
|
||||
const int64_t n_expert = node->op == GGML_OP_MUL_MAT_ID ? input->ne[2] : input->ne[1];
|
||||
const size_t expert_size = node->op == GGML_OP_MUL_MAT_ID ? input->nb[2] : input->nb[1];
|
||||
|
||||
ggml_backend_synchronize(input_backend);
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
|
||||
// get the ids
|
||||
ggml_tensor * ids_tensor = node->src[2];
|
||||
ggml_backend_t ids_backend = split_backend;
|
||||
|
||||
// if the ids tensor is also an input of the split, it may not have been copied yet to the split backend
|
||||
// in that case, we use the original ids tensor
|
||||
for (int i = input_id + 1; i < split->n_inputs; i++) {
|
||||
if (ids_tensor == tensor_copy(split->inputs[i], split_backend_id, sched->cur_copy)) {
|
||||
ids_tensor = split->inputs[i];
|
||||
ids_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[i]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (ids_tensor != prev_ids_tensor) {
|
||||
ids.resize(ggml_nbytes(ids_tensor) / sizeof(int32_t));
|
||||
ggml_backend_tensor_get_async(ids_backend, ids_tensor, ids.data(), 0, ggml_nbytes(ids_tensor));
|
||||
ggml_backend_synchronize(ids_backend);
|
||||
|
||||
// find the used experts
|
||||
used_ids.clear();
|
||||
used_ids.resize(ggml_bitset_size(n_expert));
|
||||
for (int64_t i1 = 0; i1 < ids_tensor->ne[1]; i1++) {
|
||||
for (int64_t i0 = 0; i0 < ids_tensor->ne[0]; i0++) {
|
||||
int32_t id = ids[i1 * ids_tensor->nb[1]/sizeof(int32_t) + i0 * ids_tensor->nb[0]/sizeof(int32_t)];
|
||||
GGML_ASSERT(id >= 0 && id < n_expert);
|
||||
ggml_bitset_set(used_ids.data(), id);
|
||||
}
|
||||
}
|
||||
|
||||
prev_ids_tensor = ids_tensor;
|
||||
}
|
||||
|
||||
// group consecutive experts and copy them together
|
||||
auto copy_experts = [&](int32_t first_id, int32_t last_id) {
|
||||
const size_t expert_offset = first_id * expert_size;
|
||||
const size_t expert_size_copy = (last_id - first_id + 1) * expert_size;
|
||||
const size_t padding = std::min<size_t>(expert_size, 512);
|
||||
const size_t padding_end = last_id < n_expert - 1 ? padding : 0;
|
||||
|
||||
ggml_backend_tensor_set_async(split_backend,
|
||||
input_cpy,
|
||||
(const uint8_t *)input->data + expert_offset, expert_offset,
|
||||
// copy a bit extra at the to ensure there are no NaNs in the padding of the last expert
|
||||
// this is necessary for MMQ in the CUDA backend
|
||||
expert_size_copy + padding_end);
|
||||
};
|
||||
|
||||
int id = 0;
|
||||
while (!ggml_bitset_get(used_ids.data(), id)) {
|
||||
id++;
|
||||
}
|
||||
int32_t first_id = id;
|
||||
int32_t last_id = first_id;
|
||||
|
||||
for (++id; id < n_expert; ++id) {
|
||||
if (!ggml_bitset_get(used_ids.data(), id)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (id == last_id + 1) {
|
||||
last_id = id;
|
||||
continue;
|
||||
}
|
||||
|
||||
copy_experts(first_id, last_id);
|
||||
|
||||
first_id = id;
|
||||
last_id = id;
|
||||
}
|
||||
copy_experts(first_id, last_id);
|
||||
} else {
|
||||
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
|
||||
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
|
||||
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
|
||||
ggml_backend_synchronize(input_backend);
|
||||
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
|
||||
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
|
||||
} else {
|
||||
ggml_backend_synchronize(split_backend);
|
||||
}
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
ggml_backend_tensor_copy(input, input_cpy);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1578,6 +1735,7 @@ void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
// reset state for the next run
|
||||
if (!sched->is_reset) {
|
||||
ggml_hash_set_reset(&sched->hash_set);
|
||||
@@ -1589,8 +1747,11 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);
|
||||
|
||||
ggml_backend_sched_reset(sched);
|
||||
|
||||
ggml_backend_sched_synchronize(sched);
|
||||
|
||||
ggml_backend_sched_split_graph(sched, measure_graph);
|
||||
@@ -1623,6 +1784,7 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
|
||||
}
|
||||
|
||||
bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);
|
||||
GGML_ASSERT(!sched->is_alloc);
|
||||
|
||||
@@ -1647,6 +1809,7 @@ enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, st
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched);
|
||||
if (!sched->is_reset && !sched->is_alloc) {
|
||||
ggml_backend_sched_reset(sched);
|
||||
}
|
||||
@@ -1661,6 +1824,7 @@ enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sch
|
||||
}
|
||||
|
||||
void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
@@ -1673,28 +1837,42 @@ void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||
GGML_ASSERT(sched);
|
||||
sched->callback_eval = callback;
|
||||
sched->callback_eval_user_data = user_data;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_splits;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_copies;
|
||||
}
|
||||
|
||||
int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
|
||||
GGML_ASSERT(sched);
|
||||
return sched->n_backends;
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
|
||||
GGML_ASSERT(sched);
|
||||
GGML_ASSERT(i >= 0 && i < sched->n_backends);
|
||||
return sched->backends[i];
|
||||
}
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
||||
return sched->bufts[backend_index];
|
||||
}
|
||||
|
||||
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
|
||||
@@ -1715,6 +1893,7 @@ size_t ggml_backend_sched_get_attempted_buffer_size(ggml_backend_sched_t sched,
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = ggml_backend_sched_backend_id(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
tensor_backend_id(node) = backend_index;
|
||||
@@ -1723,6 +1902,7 @@ void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct gg
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
GGML_ASSERT(sched);
|
||||
int backend_index = tensor_backend_id(node);
|
||||
if (backend_index == -1) {
|
||||
return NULL;
|
||||
@@ -1733,6 +1913,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
|
||||
// utils
|
||||
|
||||
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
@@ -1744,6 +1925,7 @@ enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
}
|
||||
|
||||
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
GGML_ASSERT(tensor);
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src == NULL);
|
||||
@@ -1817,6 +1999,7 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
|
||||
}
|
||||
|
||||
struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(graph);
|
||||
struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
|
||||
struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
|
||||
bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));
|
||||
@@ -1961,6 +2144,7 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
// CPU backend - buffer
|
||||
|
||||
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
uintptr_t data = (uintptr_t)buffer->context;
|
||||
|
||||
// align the buffer
|
||||
@@ -1972,6 +2156,7 @@ static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
GGML_ASSERT(buffer);
|
||||
ggml_aligned_free(buffer->context, buffer->size);
|
||||
delete buffer;
|
||||
}
|
||||
@@ -1981,24 +2166,28 @@ static void ggml_backend_cpu_ptr_buffer_free_buffer(ggml_backend_buffer_t buffer
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(tensor);
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src);
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
return true;
|
||||
@@ -2009,6 +2198,7 @@ static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, con
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_ASSERT(buffer);
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
|
||||
@@ -74,7 +74,7 @@ if (BLAS_FOUND)
|
||||
|
||||
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
|
||||
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
|
||||
if ("${BLAS_INCLUDE_DIRS}" MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
|
||||
|
||||
@@ -270,6 +270,7 @@ static struct ggml_backend_i blas_backend_i = {
|
||||
/* .graph_compute = */ ggml_backend_blas_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .graph_optimize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
|
||||
55
ml/backend/ggml/ggml/src/ggml-cpu/CMakeLists.txt
vendored
55
ml/backend/ggml/ggml/src/ggml-cpu/CMakeLists.txt
vendored
@@ -224,7 +224,13 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
|
||||
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
|
||||
if (NOT ${feature_pos} EQUAL -1)
|
||||
message(STATUS "ARM feature ${feature} enabled")
|
||||
# Special handling for MATMUL_INT8 when machine doesn't support i8mm
|
||||
if ("${feature}" STREQUAL "MATMUL_INT8" AND GGML_MACHINE_SUPPORTS_noi8mm)
|
||||
message(STATUS "ARM feature ${feature} detected but unsetting due to machine not supporting i8mm")
|
||||
list(APPEND ARCH_FLAGS -U__ARM_FEATURE_MATMUL_INT8)
|
||||
else()
|
||||
message(STATUS "ARM feature ${feature} enabled")
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
@@ -433,15 +439,31 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
ggml-cpu/arch/riscv/quants.c
|
||||
ggml-cpu/arch/riscv/repack.cpp
|
||||
)
|
||||
if (GGML_RVV)
|
||||
if (GGML_XTHEADVECTOR)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_xtheadvector -mabi=lp64d)
|
||||
elseif (GGML_RV_ZFH)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -mabi=lp64d)
|
||||
else()
|
||||
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
|
||||
if (GGML_CPU_RISCV64_SPACEMIT)
|
||||
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_RISCV64_SPACEMIT ${RISCV64_SPACEMIT_IME_SPEC})
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/spacemit/ime.cpp
|
||||
ggml-cpu/spacemit/ime.h
|
||||
ggml-cpu/spacemit/ime1_kernels.cpp
|
||||
ggml-cpu/spacemit/ime_kernels.h
|
||||
)
|
||||
endif()
|
||||
set(MARCH_STR "rv64gc")
|
||||
if (GGML_RV_ZFH)
|
||||
string(APPEND MARCH_STR "_zfh")
|
||||
endif()
|
||||
if (GGML_XTHEADVECTOR)
|
||||
string(APPEND MARCH_STR "_xtheadvector")
|
||||
elseif (GGML_RVV)
|
||||
string(APPEND MARCH_STR "_v")
|
||||
if (GGML_RV_ZVFH)
|
||||
string(APPEND MARCH_STR "_zvfh")
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_RV_ZICBOP)
|
||||
string(APPEND MARCH_STR "_zicbop")
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
@@ -450,7 +472,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
set(GGML_NNPA OFF)
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
@@ -460,7 +481,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=z17)
|
||||
list(APPEND ARCH_FLAGS -march=arch15)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
@@ -472,11 +493,6 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_VXE)
|
||||
endif()
|
||||
|
||||
if (GGML_NNPA)
|
||||
message(STATUS "NNPA enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_NNPA)
|
||||
endif()
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
@@ -497,9 +513,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
# Fetch KleidiAI sources:
|
||||
include(FetchContent)
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
|
||||
set(KLEIDIAI_COMMIT_TAG "v1.14.0")
|
||||
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")
|
||||
set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc")
|
||||
|
||||
if (POLICY CMP0135)
|
||||
cmake_policy(SET CMP0135 NEW)
|
||||
@@ -555,6 +571,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
list(APPEND GGML_KLEIDIAI_SOURCES
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p4x8sb_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
|
||||
@@ -575,8 +592,10 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa_asm.S
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c)
|
||||
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
|
||||
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
|
||||
set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
|
||||
endif()
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "traits.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#if defined(__linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
@@ -186,7 +186,7 @@ static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_ty
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
#if defined(__linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
@@ -194,6 +194,8 @@ static bool ggml_amx_init() {
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -40,18 +40,22 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
@@ -69,7 +73,6 @@
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
@@ -80,12 +83,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__loongarch64)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
@@ -103,12 +108,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__riscv)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
@@ -133,16 +140,16 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__s390x__)
|
||||
// quants.c
|
||||
#define quantize_row_q8_K_generic quantize_row_q8_K
|
||||
#define ggml_vec_dot_q5_0_q8_0_generic ggml_vec_dot_q5_0_q8_0
|
||||
#define ggml_vec_dot_q5_1_q8_1_generic ggml_vec_dot_q5_1_q8_1
|
||||
#define ggml_vec_dot_tq1_0_q8_K_generic ggml_vec_dot_tq1_0_q8_K
|
||||
#define ggml_vec_dot_tq2_0_q8_K_generic ggml_vec_dot_tq2_0_q8_K
|
||||
#define ggml_vec_dot_q2_K_q8_K_generic ggml_vec_dot_q2_K_q8_K
|
||||
@@ -153,7 +160,6 @@
|
||||
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
|
||||
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
|
||||
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
|
||||
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
@@ -164,12 +170,14 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__wasm__)
|
||||
// quants.c
|
||||
#define ggml_vec_dot_q4_1_q8_1_generic ggml_vec_dot_q4_1_q8_1
|
||||
@@ -195,10 +203,12 @@
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#endif
|
||||
|
||||
1579
ml/backend/ggml/ggml/src/ggml-cpu/arch/x86/repack.cpp
vendored
1579
ml/backend/ggml/ggml/src/ggml-cpu/arch/x86/repack.cpp
vendored
File diff suppressed because it is too large
Load Diff
14
ml/backend/ggml/ggml/src/ggml-cpu/common.h
vendored
14
ml/backend/ggml/ggml/src/ggml-cpu/common.h
vendored
@@ -28,6 +28,14 @@ static inline float bf16_to_f32(ggml_bf16_t x) {
|
||||
return GGML_BF16_TO_FP32(x);
|
||||
}
|
||||
|
||||
static inline float i32_to_f32(int32_t x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
static inline int32_t f32_to_i32(float x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
static inline float f32_to_f32(float x) {
|
||||
return x;
|
||||
}
|
||||
@@ -54,6 +62,12 @@ struct type_conversion_table<ggml_bf16_t> {
|
||||
static constexpr ggml_bf16_t (*from_f32)(float) = f32_to_bf16;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct type_conversion_table<int32_t> {
|
||||
static constexpr float (*to_f32)(int32_t) = i32_to_f32;
|
||||
static constexpr int32_t (*from_f32)(float) = f32_to_i32;
|
||||
};
|
||||
|
||||
static std::pair<int64_t, int64_t> get_thread_range(const struct ggml_compute_params * params, const struct ggml_tensor * src0) {
|
||||
const int64_t ith = params->ith;
|
||||
const int64_t nth = params->nth;
|
||||
|
||||
@@ -68,12 +68,6 @@ struct ggml_compute_params {
|
||||
#endif // __VXE2__
|
||||
#endif // __s390x__ && __VEC__
|
||||
|
||||
#if defined(__s390x__) && defined(GGML_NNPA)
|
||||
#ifndef __NNPA__
|
||||
#define __NNPA__
|
||||
#endif // __NNPA__
|
||||
#endif // __s390x__ && GGML_NNPA
|
||||
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
#include <sys/prctl.h>
|
||||
#endif
|
||||
@@ -486,6 +480,19 @@ inline static int16x8_t vec_padd_s16(int16x8_t a, int16x8_t b) {
|
||||
return v_abo + v_abe;
|
||||
}
|
||||
|
||||
/**
|
||||
* @see https://github.com/ggml-org/llama.cpp/pull/14037
|
||||
*/
|
||||
inline static float vec_hsum_f32x4(float32x4_t v) {
|
||||
float32x4_t v_temp = v + vec_reve(v);
|
||||
return v_temp[0] + v_temp[1];
|
||||
}
|
||||
|
||||
inline static int32_t vec_hsum_i32x4(int32x4_t v) {
|
||||
int32x4_t v_temp = v + vec_reve(v);
|
||||
return v_temp[0] + v_temp[1];
|
||||
}
|
||||
|
||||
inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
const int16x8_t p = vec_mule(a, b) + vec_mulo(a, b);
|
||||
return acc + (vec_unpackh(p) + vec_unpackl(p));
|
||||
|
||||
95
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
95
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.c
vendored
@@ -375,6 +375,9 @@ static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
.nrows = 1,
|
||||
},
|
||||
[GGML_TYPE_I32] = {
|
||||
.from_float = (ggml_from_float_t) ggml_cpu_fp32_to_i32,
|
||||
},
|
||||
};
|
||||
|
||||
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
|
||||
@@ -472,10 +475,10 @@ struct ggml_threadpool {
|
||||
struct ggml_compute_state {
|
||||
#ifndef GGML_USE_OPENMP
|
||||
ggml_thread_t thrd;
|
||||
bool cpumask[GGML_MAX_N_THREADS];
|
||||
int last_graph;
|
||||
bool pending;
|
||||
#endif
|
||||
bool cpumask[GGML_MAX_N_THREADS];
|
||||
struct ggml_threadpool * threadpool;
|
||||
int ith;
|
||||
};
|
||||
@@ -1878,10 +1881,18 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_im2col_back_f32(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_IM2COL_3D:
|
||||
{
|
||||
ggml_compute_forward_im2col_3d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
{
|
||||
ggml_compute_forward_conv_2d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_3D:
|
||||
{
|
||||
ggml_compute_forward_conv_3d(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
{
|
||||
ggml_compute_forward_conv_2d_dw(params, tensor);
|
||||
@@ -2024,6 +2035,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
ggml_compute_forward_opt_step_adamw(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
{
|
||||
ggml_compute_forward_opt_step_sgd(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_NONE:
|
||||
{
|
||||
// nop
|
||||
@@ -2248,7 +2264,9 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
} break;
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_BACK:
|
||||
case GGML_OP_IM2COL_3D:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
@@ -2327,6 +2345,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
{
|
||||
n_tasks = n_threads;
|
||||
} break;
|
||||
@@ -2682,7 +2701,10 @@ struct ggml_cplan ggml_graph_plan(
|
||||
if (ggml_is_quantized(node->type) ||
|
||||
// F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
|
||||
(node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
|
||||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
|
||||
(node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) ||
|
||||
// conversion between F32 and I32
|
||||
(node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) ||
|
||||
(node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) {
|
||||
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
|
||||
}
|
||||
} break;
|
||||
@@ -2769,6 +2791,7 @@ struct ggml_cplan ggml_graph_plan(
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_3D:
|
||||
{
|
||||
cur = GGML_IM2COL_WORK_SIZE;
|
||||
} break;
|
||||
@@ -3064,7 +3087,14 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
|
||||
|
||||
threadpool->workers = workers;
|
||||
|
||||
#ifndef GGML_USE_OPENMP
|
||||
#ifdef GGML_USE_OPENMP
|
||||
int32_t cpumask_iter = 0;
|
||||
|
||||
// Compute CPU masks for each thread
|
||||
for (int j = 0; j < tpp->n_threads; j++) {
|
||||
ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
|
||||
}
|
||||
#else // GGML_USE_OPENMP
|
||||
ggml_mutex_init(&threadpool->mutex);
|
||||
ggml_cond_init(&threadpool->cond);
|
||||
|
||||
@@ -3137,7 +3167,14 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
|
||||
atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
|
||||
}
|
||||
|
||||
ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
|
||||
// Apply thread CPU mask and priority
|
||||
int ith = omp_get_thread_num();
|
||||
|
||||
ggml_thread_apply_priority(threadpool->prio);
|
||||
if (ggml_thread_cpumask_is_valid(threadpool->workers[ith].cpumask)) {
|
||||
ggml_thread_apply_affinity(threadpool->workers[ith].cpumask);
|
||||
}
|
||||
ggml_graph_compute_thread(&threadpool->workers[ith]);
|
||||
}
|
||||
} else {
|
||||
atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);
|
||||
@@ -3200,20 +3237,12 @@ void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
|
||||
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
|
||||
_mm_storel_epi64((__m128i *)(y + i), y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
float32x4_t v_xh = vec_xl(0, (const float *)(x + i + 0));
|
||||
float32x4_t v_xl = vec_xl(0, (const float *)(x + i + 4));
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_xh, v_xl, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t v_x = vec_xl(0, (const float *)(x + i));
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_yd = vec_round_from_fp32(v_x, v_zero, 0);
|
||||
uint16x8_t v_y = vec_convert_to_fp16(v_yd, 0);
|
||||
vec_xst(v_y, 0, (ggml_fp16_t *)(y + i));
|
||||
#elif defined(__riscv_zvfh)
|
||||
for (int vl; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m2(n - i);
|
||||
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
|
||||
vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
|
||||
__riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
@@ -3241,21 +3270,6 @@ void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
|
||||
__m128 y_vec = _mm_cvtph_ps(x_vec);
|
||||
_mm_storeu_ps(y + i, y_vec);
|
||||
}
|
||||
#elif defined(__NNPA__)
|
||||
for (; i + 7 < n; i += 8) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
float32x4_t v_yl = vec_extend_to_fp32_lo(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i + 0));
|
||||
vec_xst(v_yl, 0, (float *)(y + i + 4));
|
||||
}
|
||||
for (; i + 3 < n; i += 4) {
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)(x + i));
|
||||
uint16x8_t v_yd = vec_convert_from_fp16(v_x, 0);
|
||||
float32x4_t v_yh = vec_extend_to_fp32_hi(v_yd, 0);
|
||||
vec_xst(v_yh, 0, (float *)(y + i));
|
||||
}
|
||||
#endif
|
||||
|
||||
for (; i < n; ++i) {
|
||||
@@ -3270,6 +3284,13 @@ void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
for (; i < n; ++i) {
|
||||
y[i] = x[i];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
|
||||
int64_t i = 0;
|
||||
#if defined(__AVX2__)
|
||||
@@ -3459,14 +3480,6 @@ int ggml_cpu_has_vxe(void) {
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_nnpa(void) {
|
||||
#if defined(GGML_NNPA)
|
||||
return 1;
|
||||
#else
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
int ggml_cpu_has_neon(void) {
|
||||
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
|
||||
return 1;
|
||||
|
||||
18
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.cpp
vendored
18
ml/backend/ggml/ggml/src/ggml-cpu/ggml-cpu.cpp
vendored
@@ -18,6 +18,10 @@
|
||||
# include "kleidiai/kleidiai.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
|
||||
# include "spacemit/ime.h"
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
@@ -45,6 +49,12 @@ std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffer_type
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
|
||||
if (ggml_backend_cpu_riscv64_spacemit_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_riscv64_spacemit_buffer_type());
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CPU_KLEIDIAI
|
||||
if (ggml_backend_cpu_kleidiai_buffer_type()) {
|
||||
bufts.push_back(ggml_backend_cpu_kleidiai_buffer_type());
|
||||
@@ -190,6 +200,7 @@ static const struct ggml_backend_i ggml_backend_cpu_i = {
|
||||
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .graph_optimize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cpu_guid(void) {
|
||||
@@ -348,8 +359,10 @@ static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t *
|
||||
long pages = sysconf(_SC_PHYS_PAGES);
|
||||
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||
*total = pages * page_size;
|
||||
|
||||
// "free" system memory is ill-defined, for practical purposes assume that all of it is free:
|
||||
*free = *total;
|
||||
#endif
|
||||
#endif // _WIN32
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
@@ -576,9 +589,6 @@ static ggml_backend_feature * ggml_backend_cpu_get_features(ggml_backend_reg_t r
|
||||
if (ggml_cpu_has_vxe()) {
|
||||
features.push_back({ "VXE", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_nnpa()) {
|
||||
features.push_back({ "NNPA", "1" });
|
||||
}
|
||||
if (ggml_cpu_has_wasm_simd()) {
|
||||
features.push_back({ "WASM_SIMD", "1" });
|
||||
}
|
||||
|
||||
@@ -2169,94 +2169,117 @@ class tinyBLAS_Q0_PPC {
|
||||
class tinyBLAS_PPC {
|
||||
public:
|
||||
tinyBLAS_PPC(int64_t k,
|
||||
const float *A, int64_t lda,
|
||||
const float *B, int64_t ldb,
|
||||
float *C, int64_t ldc,
|
||||
const float * A, int64_t lda,
|
||||
const float * B, int64_t ldb,
|
||||
float * C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
int64_t mc = 256; int64_t nc = 256; int64_t kc = 256;
|
||||
if (m % mc == 0 && n % nc == 0 && k % kc == 0) {
|
||||
matmul_tiled(m, n, mc, nc, kc);
|
||||
} else {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
|
||||
|
||||
inline void vector_permute_store_4(vector float *src, float *vecOffset) {
|
||||
vector float t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
t1 = vec_mergeh(src[0], src[1]);
|
||||
t2 = vec_mergeh(src[2], src[3]);
|
||||
t3 = vec_mergel(src[0], src[1]);
|
||||
t4 = vec_mergel(src[2], src[3]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t1, t2, 3);
|
||||
t7 = vec_xxpermdi(t3, t4, 0);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset + 4);
|
||||
vec_xst(t7, 0, vecOffset + 8);
|
||||
vec_xst(t8, 0, vecOffset + 12);
|
||||
}
|
||||
|
||||
inline void vector_permute_store_8(vector float *src, float *vecOffset) {
|
||||
vector float t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
t1 = vec_mergeh(src[0], src[1]);
|
||||
t2 = vec_mergeh(src[2], src[3]);
|
||||
t3 = vec_mergeh(src[4], src[5]);
|
||||
t4 = vec_mergeh(src[6], src[7]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t3, t4, 0);
|
||||
t7 = vec_xxpermdi(t1, t2, 3);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset + 4);
|
||||
vec_xst(t7, 0, vecOffset + 8);
|
||||
vec_xst(t8, 0, vecOffset + 12);
|
||||
|
||||
t1 = vec_mergel(src[0], src[1]);
|
||||
t2 = vec_mergel(src[2], src[3]);
|
||||
t3 = vec_mergel(src[4], src[5]);
|
||||
t4 = vec_mergel(src[6], src[7]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t3, t4, 0);
|
||||
t7 = vec_xxpermdi(t1, t2, 3);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset + 16);
|
||||
vec_xst(t6, 0, vecOffset + 20);
|
||||
vec_xst(t7, 0, vecOffset + 24);
|
||||
vec_xst(t8, 0, vecOffset + 28);
|
||||
inline void save_acc(acc_t * ACC, int64_t ii, int64_t jj) {
|
||||
vec_t vec_C[4];
|
||||
__builtin_mma_disassemble_acc(vec_C, ACC);
|
||||
for (int I = 0; I < 4; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
*((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void packTranspose(const float* a, int64_t lda, int rows, int cols, float* vec) {
|
||||
inline void add_save_acc(acc_t * ACC, int64_t ii, int64_t jj) {
|
||||
vec_t vec_C[4];
|
||||
__builtin_mma_disassemble_acc(vec_C, ACC);
|
||||
for (int I = 0; I < 4; I++) {
|
||||
for (int J = 0; J < 4; J++) {
|
||||
float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I);
|
||||
*c_ptr += *((float *)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void vector_permute_store_4(vector float * src, float * vecOffset) {
|
||||
vector float t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
t1 = vec_mergeh(src[0], src[1]);
|
||||
t2 = vec_mergeh(src[2], src[3]);
|
||||
t3 = vec_mergel(src[0], src[1]);
|
||||
t4 = vec_mergel(src[2], src[3]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t1, t2, 3);
|
||||
t7 = vec_xxpermdi(t3, t4, 0);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset + 4);
|
||||
vec_xst(t7, 0, vecOffset + 8);
|
||||
vec_xst(t8, 0, vecOffset + 12);
|
||||
}
|
||||
|
||||
inline void vector_permute_store_8(vector float * src, float * vecOffset) {
|
||||
vector float t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
t1 = vec_mergeh(src[0], src[1]);
|
||||
t2 = vec_mergeh(src[2], src[3]);
|
||||
t3 = vec_mergeh(src[4], src[5]);
|
||||
t4 = vec_mergeh(src[6], src[7]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t3, t4, 0);
|
||||
t7 = vec_xxpermdi(t1, t2, 3);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset + 4);
|
||||
vec_xst(t7, 0, vecOffset + 8);
|
||||
vec_xst(t8, 0, vecOffset + 12);
|
||||
|
||||
t1 = vec_mergel(src[0], src[1]);
|
||||
t2 = vec_mergel(src[2], src[3]);
|
||||
t3 = vec_mergel(src[4], src[5]);
|
||||
t4 = vec_mergel(src[6], src[7]);
|
||||
|
||||
t5 = vec_xxpermdi(t1, t2, 0);
|
||||
t6 = vec_xxpermdi(t3, t4, 0);
|
||||
t7 = vec_xxpermdi(t1, t2, 3);
|
||||
t8 = vec_xxpermdi(t3, t4, 3);
|
||||
|
||||
vec_xst(t5, 0, vecOffset + 16);
|
||||
vec_xst(t6, 0, vecOffset + 20);
|
||||
vec_xst(t7, 0, vecOffset + 24);
|
||||
vec_xst(t8, 0, vecOffset + 28);
|
||||
}
|
||||
|
||||
void packTranspose(const float * a, int64_t lda, int rows, int cols, float * vec) {
|
||||
int64_t i, j;
|
||||
float * aoffsets[8];
|
||||
float *aoffset = NULL, *boffset = NULL;
|
||||
float * aoffset = NULL, * boffset = NULL;
|
||||
__vector_pair arr[8];
|
||||
vector float c[8][2] = {0};
|
||||
vector float c1[8] = {0};
|
||||
vector float c2[8] = {0};
|
||||
aoffset = const_cast<float*>(a);
|
||||
aoffset = const_cast<float *>(a);
|
||||
boffset = vec;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
|
||||
do {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it< 8; it++)
|
||||
for (int it = 1; it < 8; it++)
|
||||
aoffsets[it] = aoffsets[it-1] + lda;
|
||||
aoffset += 8 * lda;
|
||||
i = (cols >> 3);
|
||||
if (i > 0) {
|
||||
do {
|
||||
for (int it = 0; it< 8; it++) {
|
||||
for (int it = 0; it < 8; it++) {
|
||||
arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)aoffsets[it]);
|
||||
__builtin_vsx_disassemble_pair(c[it], &arr[it]);
|
||||
c1[it] = c[it][0];
|
||||
@@ -2264,11 +2287,14 @@ class tinyBLAS_PPC {
|
||||
}
|
||||
|
||||
vector_permute_store_8(c1, boffset);
|
||||
vector_permute_store_8(c2, boffset+32);
|
||||
for (int it = 0; it < 4; it++)
|
||||
aoffsets[it] = aoffsets[it] + 8*lda;
|
||||
vector_permute_store_8(c2, boffset + 32);
|
||||
boffset += 64;
|
||||
i--;
|
||||
if (i > 0) {
|
||||
for (int it = 0; it < 8; it++) {
|
||||
aoffsets[it] = aoffsets[it] + 8;
|
||||
}
|
||||
}
|
||||
} while(i > 0);
|
||||
}
|
||||
if (cols & 4) {
|
||||
@@ -2295,9 +2321,9 @@ class tinyBLAS_PPC {
|
||||
c2[it] = c[it][1];
|
||||
}
|
||||
vector_permute_store_4(c1, boffset);
|
||||
vector_permute_store_4(c2, boffset+16);
|
||||
vector_permute_store_4(c2, boffset + 16);
|
||||
for (int it = 0; it < 4; it++)
|
||||
aoffsets[it] += 8*lda;
|
||||
aoffsets[it] += 8 * lda;
|
||||
boffset += 32;
|
||||
i--;
|
||||
} while(i > 0);
|
||||
@@ -2325,15 +2351,15 @@ class tinyBLAS_PPC {
|
||||
vec_t vec_A[4], vec_B[4], vec_C[4];
|
||||
acc_t acc_0;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
for (int l = 0; l < k; l+=4) {
|
||||
packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
|
||||
for (int l = 0; l < k; l += 4) {
|
||||
packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
save_acc(&acc_0, ii, jj);
|
||||
}
|
||||
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
@@ -2341,9 +2367,9 @@ class tinyBLAS_PPC {
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int64_t l = 0; l < k; l+=4) {
|
||||
packTranspose(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
|
||||
for (int64_t l = 0; l < k; l += 4) {
|
||||
packTranspose(A + (ii * lda) + l, lda, 4, 4, (float *)vec_A);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, 8, 4, (float *)vec_B);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
|
||||
@@ -2353,8 +2379,8 @@ class tinyBLAS_PPC {
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]);
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
save_acc(&acc_0, ii, jj);
|
||||
save_acc(&acc_1, ii, jj + 4);
|
||||
}
|
||||
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
@@ -2362,9 +2388,9 @@ class tinyBLAS_PPC {
|
||||
acc_t acc_0, acc_1;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
__builtin_mma_xxsetaccz(&acc_1);
|
||||
for (int64_t l = 0; l < k; l+=4) {
|
||||
packTranspose(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
|
||||
for (int64_t l = 0; l < k; l += 4) {
|
||||
packTranspose(A + (ii * lda) + l, lda, 8, 4, (float *)vec_A);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, 4, 4, (float *)vec_B);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
|
||||
@@ -2374,8 +2400,8 @@ class tinyBLAS_PPC {
|
||||
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]);
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii+4, jj);
|
||||
save_acc(&acc_0, ii, jj);
|
||||
save_acc(&acc_1, ii + 4, jj);
|
||||
}
|
||||
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
@@ -2386,19 +2412,96 @@ class tinyBLAS_PPC {
|
||||
__builtin_mma_xxsetaccz(&acc_2);
|
||||
__builtin_mma_xxsetaccz(&acc_3);
|
||||
for (int l = 0; l < k; l+=8) {
|
||||
packTranspose(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
|
||||
packTranspose(A + (ii * lda) + l, lda, 8, 8, (float *)vec_A);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, 8, 8, (float *)vec_B);
|
||||
for(int x = 0; x < 16; x+=2) {
|
||||
__builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
|
||||
__builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]);
|
||||
__builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x + 1]);
|
||||
__builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x + 1], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x + 1], vec_B[x + 1]);
|
||||
}
|
||||
}
|
||||
save_acc(&acc_0, ii, jj);
|
||||
save_acc(&acc_1, ii, jj + 4);
|
||||
save_acc(&acc_2, ii + 4, jj);
|
||||
save_acc(&acc_3, ii + 4, jj + 4);
|
||||
}
|
||||
|
||||
inline void MMA_16x8(vec_t * vec_A0, vec_t * vec_A1, vec_t * vec_B, acc_t * acc) {
|
||||
for (int x = 0; x < 16; x += 2) {
|
||||
__builtin_mma_xvf32gerpp(&acc[0], vec_A0[x + 0], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc[1], vec_A0[x + 0], vec_B[x + 1]);
|
||||
__builtin_mma_xvf32gerpp(&acc[2], vec_A0[x + 1], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc[3], vec_A0[x + 1], vec_B[x + 1]);
|
||||
__builtin_mma_xvf32gerpp(&acc[4], vec_A1[x + 0], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc[5], vec_A1[x + 0], vec_B[x + 1]);
|
||||
__builtin_mma_xvf32gerpp(&acc[6], vec_A1[x + 1], vec_B[x]);
|
||||
__builtin_mma_xvf32gerpp(&acc[7], vec_A1[x + 1], vec_B[x + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
void KERNEL(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, vec_t * vec_A, vec_t * vec_B, int64_t kk) {
|
||||
for (int64_t i = 0; i < mc; i += 16) {
|
||||
int A_base_addr = (mc / 8) * (i / 8) * 16;
|
||||
for (int64_t j = 0; j < nc; j += 8) {
|
||||
int B_base_addr = (nc / 8) * (j / 8) * 16;
|
||||
acc_t acc[8];
|
||||
vec_t A0_block[16]; vec_t A1_block[16];
|
||||
for (int x = 0; x < 8; x++)
|
||||
__builtin_mma_xxsetaccz(&acc[x]);
|
||||
for (int64_t l = 0; l < kc; l += 8) {
|
||||
int A0_block_idx = A_base_addr + (l / 8) * 16;
|
||||
int A1_block_idx = A0_block_idx + (mc / 8) * 16;
|
||||
int B_block_idx = B_base_addr + (l / 8) * 16;
|
||||
vec_t* A0_block = &vec_A[A0_block_idx];
|
||||
vec_t* A1_block = &vec_A[A1_block_idx];
|
||||
vec_t* B_block = &vec_B[B_block_idx];
|
||||
MMA_16x8(A0_block, A1_block, B_block, acc);
|
||||
}
|
||||
if (kk == 0) {
|
||||
save_acc(&acc[0], ii + i, jj + j);
|
||||
save_acc(&acc[1], ii + i, jj + j + 4);
|
||||
save_acc(&acc[2], ii + i + 4, jj + j);
|
||||
save_acc(&acc[3], ii + i + 4, jj + j + 4);
|
||||
save_acc(&acc[4], ii + i + 8, jj + j);
|
||||
save_acc(&acc[5], ii + i + 8, jj + j + 4);
|
||||
save_acc(&acc[6], ii + i + 12, jj + j);
|
||||
save_acc(&acc[7], ii + i + 12, jj + j + 4);
|
||||
} else {
|
||||
add_save_acc(&acc[0], ii + i, jj + j);
|
||||
add_save_acc(&acc[1], ii + i, jj + j + 4);
|
||||
add_save_acc(&acc[2], ii + i + 4, jj + j);
|
||||
add_save_acc(&acc[3], ii + i + 4, jj + j + 4);
|
||||
add_save_acc(&acc[4], ii + i + 8, jj + j);
|
||||
add_save_acc(&acc[5], ii + i + 8, jj + j + 4);
|
||||
add_save_acc(&acc[6], ii + i + 12, jj + j);
|
||||
add_save_acc(&acc[7], ii + i + 12, jj + j + 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void matmul_tiled(int64_t m , int64_t n, int64_t mc, int64_t nc, int64_t kc) {
|
||||
int64_t ytiles = m / mc;
|
||||
int64_t xtiles = n / nc;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles) {
|
||||
end = tiles;
|
||||
}
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = (job / xtiles) * mc;
|
||||
int64_t jj = (job % xtiles) * nc;
|
||||
for (int64_t kk = 0; kk < k; kk += kc) {
|
||||
vec_t A_pack[kc * mc / 4];
|
||||
vec_t B_pack[kc * nc / 4];
|
||||
packTranspose(A + (ii * lda) + kk, lda, kc, mc, (float *)A_pack);
|
||||
packTranspose(B + (jj * ldb) + kk, ldb, kc, nc, (float *)B_pack);
|
||||
KERNEL(ii, jj, mc, nc, kc, A_pack, B_pack, kk);
|
||||
}
|
||||
}
|
||||
SAVE_ACC(&acc_0, ii, jj);
|
||||
SAVE_ACC(&acc_1, ii, jj+4);
|
||||
SAVE_ACC(&acc_2, ii+4, jj);
|
||||
SAVE_ACC(&acc_3, ii+4, jj+4);
|
||||
}
|
||||
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
@@ -2406,35 +2509,35 @@ class tinyBLAS_PPC {
|
||||
int n_rem = MIN(n - n0, 8);
|
||||
int mc = 0, nc = 0;
|
||||
if (m_rem >= 8 && n_rem >= 8) {
|
||||
mc = 8;
|
||||
nc = 8;
|
||||
gemm<8, 8>(m0, m, n0, n);
|
||||
mc = 8;
|
||||
nc = 8;
|
||||
gemm<8, 8>(m0, m, n0, n);
|
||||
} else if (m_rem >= 4 && n_rem >= 8) {
|
||||
mc = 4;
|
||||
nc = 8;
|
||||
gemm<4, 8>(m0, m, n0, n);
|
||||
mc = 4;
|
||||
nc = 8;
|
||||
gemm<4, 8>(m0, m, n0, n);
|
||||
} else if (m_rem >= 8 && n_rem >= 4) {
|
||||
mc = 8;
|
||||
nc = 4;
|
||||
gemm<8, 4>(m0, m, n0, n);
|
||||
mc = 8;
|
||||
nc = 4;
|
||||
gemm<8, 4>(m0, m, n0, n);
|
||||
} else if (m_rem >= 4 && n_rem >= 4) {
|
||||
mc = 4;
|
||||
nc = 4;
|
||||
gemm<4, 4>(m0, m, n0, n);
|
||||
mc = 4;
|
||||
nc = 4;
|
||||
gemm<4, 4>(m0, m, n0, n);
|
||||
} else {
|
||||
mc = (m_rem >= 4) ? 4 : m_rem;
|
||||
nc = (n_rem >= 4) ? 4 : n_rem;
|
||||
if (mc == 0 || nc == 0)
|
||||
return;
|
||||
return;
|
||||
gemm_small(m0, m, n0, n, mc, nc);
|
||||
}
|
||||
int64_t mp = m0 + ((m - m0) / mc) * mc;
|
||||
int64_t np = n0 + ((n - n0) / nc) * nc;
|
||||
mnpack(mp, m, n0, np);
|
||||
mnpack(m0, m, np, n);
|
||||
}
|
||||
}
|
||||
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
@@ -2449,30 +2552,30 @@ class tinyBLAS_PPC {
|
||||
vec_t vec_C[4];
|
||||
acc_t acc_0;
|
||||
__builtin_mma_xxsetaccz(&acc_0);
|
||||
vec_t vec_A[4] {0}, vec_B[4] = {0};
|
||||
for (int l=0; l<k; l+=4) {
|
||||
vec_t vec_A[4] = {0}, vec_B[4] = {0};
|
||||
for (int l = 0; l < k; l += 4) {
|
||||
/* 'GEMV Forwarding' concept is used in first two conditional loops.
|
||||
* when one of the matrix has a single row/column, the elements are
|
||||
* broadcasted, instead of using packing routine to prepack the
|
||||
* matrix elements.
|
||||
*/
|
||||
if (RM == 1) {
|
||||
float* a = const_cast<float*>(A+(ii)*lda+l);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
|
||||
float * a = const_cast<float *>(A + (ii) * lda + l);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B);
|
||||
vec_A[0] = (vec_t)vec_xl(0,a);
|
||||
vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
|
||||
vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
|
||||
vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
|
||||
vec_A[1] = (vec_t)vec_splats(*((float *)&vec_A+1));
|
||||
vec_A[2] = (vec_t)vec_splats(*((float *)&vec_A+2));
|
||||
vec_A[3] = (vec_t)vec_splats(*((float *)&vec_A+3));
|
||||
} else if (RN == 1) {
|
||||
packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
|
||||
float* b = const_cast<float*>(B+(jj)*ldb+l);
|
||||
packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A);
|
||||
float * b = const_cast<float *>(B + (jj) * ldb + l);
|
||||
vec_B[0] = (vec_t)vec_xl(0,b);
|
||||
vec_B[1] = (vec_t)vec_splats(*((float*)&vec_B+1));
|
||||
vec_B[2] = (vec_t)vec_splats(*((float*)&vec_B+2));
|
||||
vec_B[3] = (vec_t)vec_splats(*((float*)&vec_B+3));
|
||||
vec_B[1] = (vec_t)vec_splats(*((float *)&vec_B+1));
|
||||
vec_B[2] = (vec_t)vec_splats(*((float *)&vec_B+2));
|
||||
vec_B[3] = (vec_t)vec_splats(*((float *)&vec_B+3));
|
||||
} else {
|
||||
packTranspose(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
|
||||
packTranspose(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
|
||||
packTranspose(A + (ii * lda) + l, lda, RM, 4, (float *)vec_A);
|
||||
packTranspose(B + (jj * ldb) + l, ldb, RN, 4, (float *)vec_B);
|
||||
}
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
|
||||
__builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
|
||||
@@ -2482,12 +2585,27 @@ class tinyBLAS_PPC {
|
||||
__builtin_mma_disassemble_acc(vec_C, &acc_0);
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
|
||||
*((float *)(C+ii+((jj+J)*ldc)+I)) = *((float *)&vec_C[I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 4) {
|
||||
KERNEL_4x4(ii, jj);
|
||||
} else if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii, jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii, jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii, jj);
|
||||
} else {
|
||||
static_assert(false, "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <int RM, int RN>
|
||||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
@@ -2496,27 +2614,18 @@ class tinyBLAS_PPC {
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (RM == 4 && RN == 4) {
|
||||
kernel = &tinyBLAS_PPC::KERNEL_4x4;
|
||||
} else if (RM == 4 && RN == 8) {
|
||||
kernel = &tinyBLAS_PPC::KERNEL_4x8;
|
||||
} else if (RM == 8 && RN == 4) {
|
||||
kernel = &tinyBLAS_PPC::KERNEL_8x4;
|
||||
} else if (RM == 8 && RN == 8) {
|
||||
kernel = &tinyBLAS_PPC::KERNEL_8x8;
|
||||
}
|
||||
if (end > tiles)
|
||||
end = tiles;
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
(this->*kernel)(ii, jj);
|
||||
kernel<RM, RN>(ii, jj);
|
||||
}
|
||||
}
|
||||
|
||||
const float *const A;
|
||||
const float *const B;
|
||||
float *C;
|
||||
const float * const A;
|
||||
const float * const B;
|
||||
float * C;
|
||||
const int64_t k;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
|
||||
1244
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
1244
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
File diff suppressed because it is too large
Load Diff
4
ml/backend/ggml/ggml/src/ggml-cpu/ops.h
vendored
4
ml/backend/ggml/ggml/src/ggml-cpu/ops.h
vendored
@@ -69,7 +69,9 @@ void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struc
|
||||
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_im2col_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_3d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_conv_2d_dw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
@@ -107,7 +109,7 @@ void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params *
|
||||
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
void ggml_compute_forward_opt_step_sgd(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
251
ml/backend/ggml/ggml/src/ggml-cpu/repack.cpp
vendored
251
ml/backend/ggml/ggml/src/ggml-cpu/repack.cpp
vendored
@@ -206,8 +206,9 @@ void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
assert(nr == 1);
|
||||
assert(n % qk == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
@@ -307,30 +308,28 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
{
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_0x8 * b_ptr = (const block_q4_0x8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] << 4);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF0);
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2])) >> 4;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -494,43 +493,73 @@ void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
const int ncols_interleaved = 4;
|
||||
const int blocklen = 4;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
assert(nr == 1);
|
||||
assert(n % qk == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(s);
|
||||
UNUSED(bs);
|
||||
UNUSED(vx);
|
||||
UNUSED(vy);
|
||||
UNUSED(nr);
|
||||
UNUSED(nc);
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
{
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
float sumf[4];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx4 * b_ptr = (const block_iq4_nlx4 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert(nr == 1);
|
||||
assert(n % qk == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(bs);
|
||||
UNUSED(nr);
|
||||
|
||||
float sumf[8];
|
||||
int sumi;
|
||||
|
||||
const block_q8_0 * a_ptr = (const block_q8_0 *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[j] = 0.0;
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * blocklen + i]) + (v1 * a_ptr[l].qs[k * blocklen + i + qk / 2]));
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) s[x * ncols_interleaved + j] = sumf[j];
|
||||
}
|
||||
}
|
||||
|
||||
@@ -934,6 +963,50 @@ void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nr % 4 == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
float sumf[4][8];
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_0x4 * a_ptr = (const block_q8_0x4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_iq4_nlx8 * b_ptr = (const block_iq4_nlx8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) sumf[m][j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0x0F];
|
||||
const int v1 = kvalues_iq4nl[b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4];
|
||||
sumi += ((v0 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i]) +
|
||||
(v1 * a_ptr[l].qs[k * 4 * blocklen + m * blocklen + i + qk / 2 * 4]));
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * GGML_CPU_FP16_TO_FP32(a_ptr[l].d[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++)
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // extern "C"
|
||||
|
||||
static block_q4_0x4 make_block_q4_0x4(block_q4_0 * in, unsigned int blck_size_interleave) {
|
||||
@@ -1285,15 +1358,16 @@ static block_iq4_nlx4 make_block_iq4_nlx4(block_iq4_nl * in, unsigned int blck_s
|
||||
|
||||
static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
|
||||
//GGML_ASSERT(interleave_block == 4 || interleave_block == 8);
|
||||
GGML_ASSERT(interleave_block == 4);
|
||||
|
||||
block_iq4_nlx4 * dst = (block_iq4_nlx4 *)t->data;
|
||||
const block_iq4_nl * src = (const block_iq4_nl *)data;
|
||||
const block_iq4_nl * src = (const block_iq4_nl *)data;
|
||||
block_iq4_nlx4 * dst = ( block_iq4_nlx4 *)t->data;
|
||||
|
||||
block_iq4_nl dst_tmp[4];
|
||||
|
||||
int nrow = ggml_nrows(t);
|
||||
int nrows_interleaved = 4;
|
||||
int nblocks = t->ne[0] / QK4_0;
|
||||
int nblocks = t->ne[0] / QK4_NL;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
|
||||
|
||||
@@ -1315,6 +1389,63 @@ static int repack_iq4_nl_to_iq4_nl_4_bl(struct ggml_tensor * t, int interleave_b
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static block_iq4_nlx8 make_block_iq4_nlx8(block_iq4_nl * in, unsigned int blck_size_interleave) {
|
||||
block_iq4_nlx8 out;
|
||||
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out.d[i] = in[i].d;
|
||||
}
|
||||
|
||||
const int end = QK4_NL * 4 / blck_size_interleave;
|
||||
|
||||
if (blck_size_interleave == 8) {
|
||||
for (int i = 0; i < end; ++i) {
|
||||
int src_id = i % 8;
|
||||
int src_offset = (i / 8) * blck_size_interleave;
|
||||
int dst_offset = i * blck_size_interleave;
|
||||
|
||||
memcpy(&out.qs[dst_offset], &in[src_id].qs[src_offset], sizeof(uint64_t));
|
||||
}
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
static int repack_iq4_nl_to_iq4_nl_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_IQ4_NL);
|
||||
GGML_ASSERT(interleave_block == 8);
|
||||
|
||||
const block_iq4_nl * src = (const block_iq4_nl *)data;
|
||||
block_iq4_nlx8 * dst = ( block_iq4_nlx8 *)t->data;
|
||||
|
||||
block_iq4_nl dst_tmp[8];
|
||||
|
||||
int nrow = ggml_nrows(t);
|
||||
int nrows_interleaved = 8;
|
||||
int nblocks = t->ne[0] / QK4_NL;
|
||||
|
||||
GGML_ASSERT(data_size == nrow * nblocks * sizeof(block_iq4_nl));
|
||||
|
||||
if (t->ne[1] % nrows_interleaved != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
for (int b = 0; b < nrow; b += nrows_interleaved) {
|
||||
for (int64_t x = 0; x < nblocks; x++) {
|
||||
for (int i = 0; i < nrows_interleaved; i++) {
|
||||
dst_tmp[i] = src[x + i * nblocks];
|
||||
}
|
||||
*dst++ = make_block_iq4_nlx8(dst_tmp, interleave_block);
|
||||
}
|
||||
src += nrows_interleaved * nblocks;
|
||||
}
|
||||
return 0;
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
namespace ggml::cpu::repack {
|
||||
// repack
|
||||
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
|
||||
@@ -1350,6 +1481,10 @@ template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void *
|
||||
// return repack_iq4_nl_to_iq4_nl_4_bl(t, 8, data, data_size);
|
||||
//}
|
||||
|
||||
template <> int repack<block_iq4_nl, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
|
||||
return repack_iq4_nl_to_iq4_nl_8_bl(t, 8, data, data_size);
|
||||
}
|
||||
|
||||
// gemv
|
||||
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
|
||||
void gemv(int, float *, size_t, const void *, const void *, int, int);
|
||||
@@ -1378,6 +1513,10 @@ template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size
|
||||
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemv<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemv_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
// gemm
|
||||
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
|
||||
void gemm(int, float *, size_t, const void *, const void *, int, int);
|
||||
@@ -1406,6 +1545,10 @@ template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size
|
||||
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemm<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemm_iq4_nl_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
class tensor_traits_base : public ggml::cpu::tensor_traits {
|
||||
public:
|
||||
virtual int repack(struct ggml_tensor * t, const void * data, size_t data_size) = 0;
|
||||
@@ -1680,6 +1823,7 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
|
||||
// instance for IQ4
|
||||
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
|
||||
static const ggml::cpu::repack::tensor_traits<block_iq4_nl, 8, 8, GGML_TYPE_Q8_0> iq4_nl_8x8_q8_0;
|
||||
|
||||
if (cur->type == GGML_TYPE_Q4_0) {
|
||||
if (ggml_cpu_has_avx2() || (ggml_cpu_has_sve() && ggml_cpu_has_matmul_int8() && ggml_cpu_get_sve_cnt() == QK8_0)) {
|
||||
@@ -1710,6 +1854,11 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
}
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_IQ4_NL) {
|
||||
if (ggml_cpu_has_avx2()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
return &iq4_nl_8x8_q8_0;
|
||||
}
|
||||
}
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
if (cur->ne[1] % 4 == 0) {
|
||||
return &iq4_nl_4x4_q8_0;
|
||||
|
||||
11
ml/backend/ggml/ggml/src/ggml-cpu/repack.h
vendored
11
ml/backend/ggml/ggml/src/ggml-cpu/repack.h
vendored
@@ -67,6 +67,13 @@ struct block_iq4_nlx4 {
|
||||
|
||||
static_assert(sizeof(block_iq4_nlx4) == 4 * sizeof(ggml_half) + QK4_NL * 2, "wrong iq4_nlx4 block size/padding");
|
||||
|
||||
struct block_iq4_nlx8 {
|
||||
ggml_half d[8]; // deltas for 8 iq4_nl blocks
|
||||
uint8_t qs[QK4_NL * 4]; // nibbles / quants for 8 iq4_nl blocks
|
||||
};
|
||||
|
||||
static_assert(sizeof(block_iq4_nlx8) == 8 * sizeof(ggml_half) + QK4_NL * 4, "wrong iq4_nlx8 block size/padding");
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
@@ -80,12 +87,14 @@ void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
// Native implementations
|
||||
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
@@ -97,12 +106,14 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
#if defined(__cplusplus)
|
||||
} // extern "C"
|
||||
|
||||
147
ml/backend/ggml/ggml/src/ggml-cpu/simd-mappings.h
vendored
147
ml/backend/ggml/ggml/src/ggml-cpu/simd-mappings.h
vendored
@@ -18,6 +18,10 @@
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(__riscv_v_intrinsic)
|
||||
#include <riscv_vector.h>
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
@@ -94,24 +98,15 @@ extern "C" {
|
||||
}
|
||||
#elif defined(__riscv) && defined(__riscv_zfhmin)
|
||||
static inline float riscv_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
float f;
|
||||
__asm__(
|
||||
"fmv.h.x %[f], %[h]\n\t"
|
||||
"fcvt.s.h %[f], %[f]"
|
||||
: [f] "=&f" (f)
|
||||
: [h] "r" (h)
|
||||
);
|
||||
return f;
|
||||
_Float16 hf;
|
||||
memcpy(&hf, &h, sizeof(ggml_fp16_t));
|
||||
return hf;
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t riscv_compute_fp32_to_fp16(float f) {
|
||||
ggml_fp16_t res;
|
||||
__asm__(
|
||||
"fcvt.h.s %[f], %[f]\n\t"
|
||||
"fmv.x.h %[h], %[f]"
|
||||
: [h] "=&r" (res)
|
||||
: [f] "f" (f)
|
||||
);
|
||||
_Float16 hf = (_Float16)f;
|
||||
memcpy(&res, &hf, sizeof(ggml_fp16_t));
|
||||
return res;
|
||||
}
|
||||
|
||||
@@ -119,26 +114,6 @@ extern "C" {
|
||||
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) riscv_compute_fp32_to_fp16(x)
|
||||
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
|
||||
#elif defined(__NNPA__)
|
||||
#define GGML_CPU_COMPUTE_FP16_TO_FP32(x) nnpa_compute_fp16_to_fp32(x)
|
||||
#define GGML_CPU_COMPUTE_FP32_TO_FP16(x) nnpa_compute_fp32_to_fp16(x)
|
||||
|
||||
#define GGML_CPU_FP16_TO_FP32(x) GGML_CPU_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_CPU_FP32_TO_FP16(x) GGML_CPU_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
static inline float nnpa_compute_fp16_to_fp32(ggml_fp16_t h) {
|
||||
uint16x8_t v_h = vec_splats(h);
|
||||
uint16x8_t v_hd = vec_convert_from_fp16(v_h, 0);
|
||||
return vec_extend_to_fp32_hi(v_hd, 0)[0];
|
||||
}
|
||||
|
||||
static inline ggml_fp16_t nnpa_compute_fp32_to_fp16(float f) {
|
||||
float32x4_t v_f = vec_splats(f);
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_hd = vec_round_from_fp32(v_f, v_zero, 0);
|
||||
uint16x8_t v_h = vec_convert_to_fp16(v_hd, 0);
|
||||
return vec_extract(v_h, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
// precomputed f32 table for f16 (256 KB)
|
||||
@@ -220,6 +195,47 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F32_VEC_MUL GGML_F32xt_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32xt_REDUCE
|
||||
|
||||
// F16 SVE
|
||||
#define DEFAULT_PG32 svptrue_b32()
|
||||
#define DEFAULT_PG16 svptrue_b16()
|
||||
|
||||
#define GGML_F32Cxt svfloat16_t
|
||||
#define GGML_F32Cxt_ZERO svdup_n_f16(0.0f)
|
||||
#define GGML_F32Cxt_SET1(x) svdup_n_f16(x)
|
||||
#define GGML_F32Cxt_LOAD(p) svld1_f16(DEFAULT_PG16, (const __fp16 *)(p))
|
||||
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
|
||||
|
||||
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
|
||||
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
|
||||
|
||||
#define GGML_F16x_VEC GGML_F32Cxt
|
||||
#define GGML_F16x_VEC_ZERO GGML_F32Cxt_ZERO
|
||||
#define GGML_F16x_VEC_SET1 GGML_F32Cxt_SET1
|
||||
#define GGML_F16x_VEC_LOAD(p, i) GGML_F32Cxt_LOAD(p)
|
||||
#define GGML_F16x_VEC_STORE(p, r, i) GGML_F32Cxt_STORE((__fp16 *)(p), r)
|
||||
#define GGML_F16x_VEC_FMA GGML_F32Cxt_FMA
|
||||
#define GGML_F16x_VEC_ADD GGML_F32Cxt_ADD
|
||||
#define GGML_F16x_VEC_MUL GGML_F32Cxt_MUL
|
||||
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
|
||||
|
||||
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
|
||||
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
|
||||
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
|
||||
{ \
|
||||
sum1 = svadd_f16_x(pg16, sum1, sum2); \
|
||||
sum3 = svadd_f16_x(pg16, sum3, sum4); \
|
||||
sum1 = svadd_f16_x(pg16, sum1, sum3); \
|
||||
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
|
||||
(res) = (ggml_float) sum_f16; \
|
||||
}
|
||||
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
|
||||
// F16 NEON
|
||||
|
||||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||
@@ -982,9 +998,9 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 __m128
|
||||
#define GGML_F32x4_ZERO __lsx_vldi(0)
|
||||
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
|
||||
#define GGML_F32x4_ZERO (__m128)__lsx_vldi(0)
|
||||
#define GGML_F32x4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32x4_LOAD(x) (__m128)__lsx_vld((x), 0)
|
||||
#define GGML_F32x4_STORE(x, y) __lsx_vst(y, x, 0)
|
||||
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
|
||||
#define GGML_F32x4_ADD __lsx_vfadd_s
|
||||
@@ -1006,7 +1022,7 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
|
||||
const __m128 t0 = (__m128)__lsx_vshuf4i_w(tmp, 0x88); \
|
||||
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
@@ -1036,7 +1052,7 @@ static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
|
||||
tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
|
||||
tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);
|
||||
|
||||
return __lsx_vld(tmp, 0);
|
||||
return (__m128)__lsx_vld(tmp, 0);
|
||||
}
|
||||
|
||||
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
@@ -1051,9 +1067,9 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
}
|
||||
|
||||
#define GGML_F32Cx4 __m128
|
||||
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
|
||||
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
|
||||
#define GGML_F32Cx4_ZERO (__m128)__lsx_vldi(0)
|
||||
#define GGML_F32Cx4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32Cx4_LOAD(x) (__m128)__lsx_f16x4_load(x)
|
||||
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
|
||||
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32Cx4_ADD __lsx_vfadd_s
|
||||
@@ -1120,11 +1136,6 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
#define GGML_F16_EPR GGML_F32_EPR
|
||||
|
||||
static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
|
||||
#if defined(__NNPA__)
|
||||
uint16x8_t v_x = vec_xl(0, (const ggml_fp16_t *)x);
|
||||
uint16x8_t v_xd = vec_convert_from_fp16(v_x, 0);
|
||||
return vec_extend_to_fp32_hi(v_xd, 0);
|
||||
#else
|
||||
float tmp[4];
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
@@ -1134,20 +1145,9 @@ static inline float32x4_t __lzs_f16cx4_load(const ggml_fp16_t * x) {
|
||||
// note: keep type-cast here to prevent compiler bugs
|
||||
// see: https://github.com/ggml-org/llama.cpp/issues/12846
|
||||
return vec_xl(0, (const float *)(tmp));
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
|
||||
#if defined(__NNPA__)
|
||||
float32x4_t v_zero = vec_splats(0.0f);
|
||||
uint16x8_t v_xd = vec_round_from_fp32(v_y, v_zero, 0);
|
||||
uint16x8_t v_x = vec_convert_to_fp16(v_xd, 0);
|
||||
|
||||
x[0] = vec_extract(v_x, 0);
|
||||
x[1] = vec_extract(v_x, 1);
|
||||
x[2] = vec_extract(v_x, 2);
|
||||
x[3] = vec_extract(v_x, 3);
|
||||
#else
|
||||
float arr[4];
|
||||
|
||||
// note: keep type-cast here to prevent compiler bugs
|
||||
@@ -1157,7 +1157,6 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
x[i] = GGML_CPU_FP32_TO_FP16(arr[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#define GGML_F16_VEC GGML_F32x4
|
||||
@@ -1170,6 +1169,36 @@ static inline void __lzs_f16cx4_store(ggml_fp16_t * x, float32x4_t v_y) {
|
||||
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
|
||||
// compatible with vlen >= 128
|
||||
|
||||
#define GGML_SIMD
|
||||
|
||||
// F32
|
||||
|
||||
#define GGML_F32_STEP 16
|
||||
#define GGML_F32_EPR 4
|
||||
|
||||
#define GGML_F32x4 vfloat32m1_t
|
||||
#define GGML_F32x4_ZERO __riscv_vfmv_v_f_f32m1(0.0f, GGML_F32_EPR)
|
||||
#define GGML_F32x4_SET1(x) __riscv_vfmv_v_f_f32m1(x, GGML_F32_EPR)
|
||||
#define GGML_F32x4_LOAD(x) __riscv_vle32_v_f32m1(x, GGML_F32_EPR)
|
||||
#define GGML_F32x4_STORE(b, v) __riscv_vse32_v_f32m1(b, v, GGML_F32_EPR)
|
||||
#define GGML_F32x4_FMA(a, b, c) __riscv_vfmacc_vv_f32m1(a, b, c, GGML_F32_EPR)
|
||||
#define GGML_F32x4_ADD(a, b) __riscv_vfadd_vv_f32m1(a, b, GGML_F32_EPR)
|
||||
#define GGML_F32x4_MUL(a, b) __riscv_vfmul_vv_f32m1(a, b, GGML_F32_EPR)
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
|
||||
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
|
||||
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
|
||||
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
|
||||
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
|
||||
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
|
||||
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
|
||||
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
|
||||
|
||||
#endif
|
||||
|
||||
// GGML_F32_ARR / GGML_F16_ARR
|
||||
|
||||
179
ml/backend/ggml/ggml/src/ggml-cpu/vec.cpp
vendored
179
ml/backend/ggml/ggml/src/ggml-cpu/vec.cpp
vendored
@@ -84,6 +84,22 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
||||
}
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
int vl = __riscv_vsetvlmax_e32m8();
|
||||
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
|
||||
vfloat32m8_t vsum;
|
||||
vfloat32m8_t ax;
|
||||
vfloat32m8_t ay;
|
||||
vsum = __riscv_vfmv_v_f_f32m8_tu(vsum, 0.0f, vl);
|
||||
for (int i = 0; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m8(n - i);
|
||||
ax = __riscv_vle32_v_f32m8_tu(ax, &x[i], vl);
|
||||
ay = __riscv_vle32_v_f32m8_tu(ay, &y[i], vl);
|
||||
vsum = __riscv_vfmacc_vv_f32m8_tu(vsum, ax, ay, vl);
|
||||
}
|
||||
vl = __riscv_vsetvlmax_e32m8();
|
||||
vs = __riscv_vfredusum_vs_f32m8_f32m1(vsum, vs, vl);
|
||||
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -197,38 +213,125 @@ void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * G
|
||||
|
||||
ggml_float sumf = 0.0;
|
||||
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8; //get vector length
|
||||
const int ggml_f16_epr = sve_register_length / 16; // running when 16
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||||
const int np= (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t sum1 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum2 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum3 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum4 = svdup_n_f16(0.0f);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, ax1, ay1);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
sum2 = GGML_F16x_VEC_FMA(sum2, ax2, ay2);
|
||||
|
||||
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
sum3 = GGML_F16x_VEC_FMA(sum3, ax3, ay3);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
sum4 = GGML_F16x_VEC_FMA(sum4, ax4, ay4);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, ax5, ay5);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
sum2 = GGML_F16x_VEC_FMA(sum2, ax6, ay6);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
sum3 = GGML_F16x_VEC_FMA(sum3, ax7, ay7);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
sum4 = GGML_F16x_VEC_FMA(sum4, ax8, ay8);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F16_VEC_REDUCE(sumf, sum);
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1)); // round down to multiple of 8
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
sum1 = GGML_F16x_VEC_FMA(sum1, rx, ry);
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
|
||||
// if you hit this, you are likely running outside the FP range
|
||||
assert(!isnan(sumf) && !isinf(sumf));
|
||||
sum1 = svmad_f16_x(pg, hx, hy, sum1);
|
||||
}
|
||||
GGML_F16x_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
#if defined(__riscv_zvfh)
|
||||
int vl = __riscv_vsetvlmax_e32m2();
|
||||
vfloat32m1_t vs = __riscv_vfmv_v_f_f32m1(0.0f, 1);
|
||||
vfloat32m2_t vsum;
|
||||
vfloat16m1_t ax;
|
||||
vfloat16m1_t ay;
|
||||
vsum = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vmv_v_x_u32m2(0, vl));
|
||||
for (int i = 0; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e16m1(n - i);
|
||||
ax = __riscv_vle16_v_f16m1_tu(ax, (const _Float16 *)&x[i], vl);
|
||||
ay = __riscv_vle16_v_f16m1_tu(ay, (const _Float16 *)&y[i], vl);
|
||||
vsum = __riscv_vfwmacc_vv_f32m2_tu(vsum, ax, ay, vl);
|
||||
}
|
||||
vl = __riscv_vsetvlmax_e32m1();
|
||||
vfloat32m1_t ac0 = __riscv_vfadd_vv_f32m1(__riscv_vget_v_f32m2_f32m1(vsum, 0), __riscv_vget_v_f32m2_f32m1(vsum, 1), vl);
|
||||
vs = __riscv_vfredusum_vs_f32m1_f32m1(ac0, vs, vl);
|
||||
sumf += __riscv_vfmv_f_s_f32m1_f32(vs);
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#endif // __riscv_zvfh
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F16_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
// if you hit this, you are likely running outside the FP range
|
||||
assert(!isnan(sumf) && !isinf(sumf));
|
||||
#endif
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
#endif
|
||||
#endif // GGML_SIMD
|
||||
|
||||
*s = sumf;
|
||||
}
|
||||
@@ -247,6 +350,12 @@ void ggml_vec_silu_f32(const int n, float * y, const float * x) {
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svst1_f32(pg, y + i, ggml_v_silu(pg, svld1_f32(pg, x + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
|
||||
@@ -271,10 +380,24 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
|
||||
for (; i + 3 < n; i += 4) {
|
||||
_mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svst1_f32(pg, y + i, svmul_f32_x(pg, ggml_v_silu(pg, svld1_f32(pg, x + i)), svld1_f32(pg, g + i)));
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int vl; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e32m2(n - i);
|
||||
vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
|
||||
vfloat32m2_t vg = __riscv_vle32_v_f32m2(&g[i], vl);
|
||||
vfloat32m2_t vy = __riscv_vfmul_vv_f32m2(ggml_v_silu_m2(vx, vl), vg, vl);
|
||||
__riscv_vse32_v_f32m2(&y[i], vy, vl);
|
||||
}
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
y[i] = ggml_silu_f32(x[i]) * g[i];
|
||||
@@ -318,6 +441,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
|
||||
#endif
|
||||
sum += (ggml_float)_mm_cvtss_f32(val);
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
const int vlen = svcntw();
|
||||
for (; i < n; i += vlen) {
|
||||
const svbool_t pg = svwhilelt_b32_s32(i, n);
|
||||
svfloat32_t val = ggml_v_expf(pg, svsub_f32_x(pg, svld1_f32(pg, x + i),
|
||||
svdup_n_f32_x(pg, max)));
|
||||
svst1_f32(pg, y + i, val);
|
||||
sum += (ggml_float)svaddv_f32(pg, val);
|
||||
}
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
for (; i + 3 < n; i += 4) {
|
||||
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
|
||||
@@ -325,6 +457,15 @@ ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float
|
||||
vst1q_f32(y + i, val);
|
||||
sum += (ggml_float)vaddvq_f32(val);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
vfloat64m1_t vsum = __riscv_vfmv_v_f_f64m1(0, 1);
|
||||
for (int avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m2(n - i);
|
||||
vfloat32m2_t val = ggml_v_expf_m2(__riscv_vfsub_vf_f32m2(__riscv_vle32_v_f32m2(&x[i], avl), max, avl), avl);
|
||||
__riscv_vse32_v_f32m2(&y[i], val, avl);
|
||||
vsum = __riscv_vfwredusum_vs_f32m2_f64m1(val, vsum, avl);
|
||||
}
|
||||
return (ggml_float)__riscv_vfmv_f_s_f64m1_f64(vsum);
|
||||
#endif
|
||||
for (; i < n; ++i) {
|
||||
float val = expf(x[i] - max);
|
||||
|
||||
455
ml/backend/ggml/ggml/src/ggml-cpu/vec.h
vendored
455
ml/backend/ggml/ggml/src/ggml-cpu/vec.h
vendored
@@ -119,36 +119,149 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GG
|
||||
}
|
||||
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
|
||||
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16; // running when 16
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
svfloat16_t sum_00 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_01 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_02 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_03 = svdup_n_f16(0.0f);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||||
svfloat16_t sum_10 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_11 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_12 = svdup_n_f16(0.0f);
|
||||
svfloat16_t sum_13 = svdup_n_f16(0.0f);
|
||||
|
||||
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0); // 8 elements
|
||||
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[0] + i + 0*ggml_f16_epr, 0); // 8 elemnst
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax1, ay1); // sum_00 = sum_00+ax1*ay1
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 0*ggml_f16_epr, 0); // 8 elements
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax1, ay1);
|
||||
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1); // next 8 elements
|
||||
|
||||
ax2 = GGML_F16x_VEC_LOAD(x[0] + i + 1*ggml_f16_epr, 1); // next 8 ekements
|
||||
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax2, ay2);
|
||||
ax2 = GGML_F16x_VEC_LOAD(x[1] + i + 1*ggml_f16_epr, 1);
|
||||
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax2, ay2);
|
||||
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x[0] + i + 2*ggml_f16_epr, 2);
|
||||
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax3, ay3);
|
||||
ax1 = GGML_F16x_VEC_LOAD(x[1] + i + 2*ggml_f16_epr, 2);
|
||||
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax3, ay3);
|
||||
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x[0] + i + 3*ggml_f16_epr, 3);
|
||||
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax4, ay4);
|
||||
ax4 = GGML_F16x_VEC_LOAD(x[1] + i + 3*ggml_f16_epr, 3);
|
||||
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax4, ay4);
|
||||
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x[0] + i + 4*ggml_f16_epr, 4);
|
||||
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, ax5, ay5);
|
||||
ax5 = GGML_F16x_VEC_LOAD(x[1] + i + 4*ggml_f16_epr, 4);
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, ax5, ay5);
|
||||
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x[0] + i + 5*ggml_f16_epr, 5);
|
||||
|
||||
sum_01 = GGML_F16x_VEC_FMA(sum_01, ax6, ay6);
|
||||
ax6 = GGML_F16x_VEC_LOAD(x[1] + i + 5*ggml_f16_epr, 5);
|
||||
sum_11 = GGML_F16x_VEC_FMA(sum_11, ax6, ay6);
|
||||
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x[0] + i + 6*ggml_f16_epr, 6);
|
||||
|
||||
sum_02 = GGML_F16x_VEC_FMA(sum_02, ax7, ay7);
|
||||
ax7 = GGML_F16x_VEC_LOAD(x[1] + i + 6*ggml_f16_epr, 6);
|
||||
sum_12 = GGML_F16x_VEC_FMA(sum_12, ax7, ay7);
|
||||
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x[0] + i + 7*ggml_f16_epr, 7);
|
||||
|
||||
sum_03 = GGML_F16x_VEC_FMA(sum_03, ax8, ay8);
|
||||
ax8 = GGML_F16x_VEC_LOAD(x[1] + i + 7*ggml_f16_epr, 7);
|
||||
sum_13 = GGML_F16x_VEC_FMA(sum_13, ax8, ay8);
|
||||
}
|
||||
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x[0] + k, 0);
|
||||
sum_00 = GGML_F16x_VEC_FMA(sum_00, rx, ry);
|
||||
rx = GGML_F16x_VEC_LOAD(x[1] + k, 0);
|
||||
sum_10 = GGML_F16x_VEC_FMA(sum_10, rx, ry);
|
||||
}
|
||||
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx_0 = svld1_f16(pg, (const __fp16 *)(x[0] + np2));
|
||||
svfloat16_t hx_1 = svld1_f16(pg, (const __fp16 *)(x[1] + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
|
||||
sum_00 = svmad_f16_x(pg, hx_0, hy, sum_00);
|
||||
sum_10 = svmad_f16_x(pg, hx_1, hy, sum_10);
|
||||
}
|
||||
GGML_F16x_VEC_REDUCE(sumf[0], sum_00, sum_01, sum_02, sum_03);
|
||||
GGML_F16x_VEC_REDUCE(sumf[1], sum_10, sum_11, sum_12, sum_13);
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
|
||||
|
||||
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
// reduce sum0..sum3 to sum0
|
||||
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
|
||||
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
sumf[j] += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[j][i])*GGML_CPU_FP16_TO_FP32(y[i]));
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
for (int i = 0; i < n; ++i) {
|
||||
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
|
||||
@@ -243,6 +356,14 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
|
||||
svst1_f32(pg, y + np2, ay1);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m8(n - i);
|
||||
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
|
||||
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
|
||||
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, v, ay, avl);
|
||||
__riscv_vse32_v_f32m8(&y[i], ny, avl);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -276,27 +397,112 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
|
||||
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr;
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
const int np= (n & ~(ggml_f16_step - 1));
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
|
||||
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
|
||||
}
|
||||
}
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
GGML_F16x_VEC_STORE(y + k, ry, 0);
|
||||
}
|
||||
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
hy = svmad_f16_x(pg, hx, vx, hy);
|
||||
svst1_f16(pg, (__fp16 *)(y + np2), hy);
|
||||
}
|
||||
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -324,6 +530,16 @@ inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int
|
||||
y[i] += x[k][i]*v[k][0];
|
||||
}
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m8(n - i);
|
||||
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
|
||||
for (int k = 0; k < GGML_VEC_MAD_UNROLL; k++) {
|
||||
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[k][i], avl);
|
||||
ay = __riscv_vfmadd_vf_f32m8(ax, v[k][0], ay, avl);
|
||||
}
|
||||
__riscv_vse32_v_f32m8(&y[i], ay, avl);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -375,6 +591,14 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = x[i]*s + b;
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m8(n - i);
|
||||
vfloat32m8_t ax = __riscv_vle32_v_f32m8(&x[i], avl);
|
||||
vfloat32m8_t vb = __riscv_vfmv_v_f_f32m8(b, avl);
|
||||
vfloat32m8_t ny = __riscv_vfmadd_vf_f32m8(ax, s, vb, avl);
|
||||
__riscv_vse32_v_f32m8(&y[i], ny, avl);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -386,7 +610,7 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ay[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_FMA(ay[j], vs, vb);
|
||||
ay[j] = GGML_F32_VEC_FMA(vb, ay[j], vs);
|
||||
|
||||
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
|
||||
}
|
||||
@@ -436,6 +660,13 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
ay1 = svmul_f32_m(pg, ay1, vx);
|
||||
svst1_f32(pg, y + np, ay1);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e32m8(n - i);
|
||||
vfloat32m8_t ay = __riscv_vle32_v_f32m8(&y[i], avl);
|
||||
vfloat32m8_t ny = __riscv_vfmul_vf_f32m8(ay, v, avl);
|
||||
__riscv_vse32_v_f32m8(&y[i], ny, avl);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
@@ -467,25 +698,59 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
|
||||
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 2 * ggml_f16_epr;
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t ay1, ay2;
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b16(np, n);
|
||||
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
|
||||
svfloat16_t out = svmul_f16_m(pg, hy, vx);
|
||||
svst1_f16(pg, (__fp16 *)(y + np), out);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
@@ -737,7 +1002,39 @@ https://github.com/openvinotoolkit/openvino/blob/master/src/plugins/intel_cpu/sr
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_NEON) && defined(__aarch64__)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
|
||||
|
||||
inline static svfloat32_t ggml_v_expf(svbool_t pg, svfloat32_t x) {
|
||||
const svfloat32_t r = svdup_n_f32_x(pg, 0x1.8p23f);
|
||||
const svfloat32_t z = svmla_n_f32_x(pg, r, x, 0x1.715476p+0f);
|
||||
const svfloat32_t n = svsub_f32_x(pg, z, r);
|
||||
const svfloat32_t b = svmls_n_f32_x(pg, svmls_n_f32_x(pg, x, n, 0x1.62e4p-1f), n, 0x1.7f7d1cp-20f);
|
||||
const svuint32_t e = svlsl_n_u32_x(pg, svreinterpret_u32_f32(z), 23);
|
||||
const svfloat32_t k = svreinterpret_f32_u32(svadd_u32_x(pg, e, svreinterpret_u32_f32(svdup_n_f32_x(pg, 1))));
|
||||
const svbool_t c = svacgt_n_f32(pg, n, 126);
|
||||
const svfloat32_t u = svmul_f32_x(pg, b, b);
|
||||
const svfloat32_t j = svmla_f32_x(pg,
|
||||
svmul_n_f32_x(pg, b, 0x1.ffffecp-1f),
|
||||
svmla_f32_x(pg, svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.fffdb6p-2f), svdup_n_f32_x(pg, 0x1.555e66p-3f), b),
|
||||
svmla_f32_x(pg, svdup_n_f32_x(pg, 0x1.573e2ep-5f), svdup_n_f32_x(pg, 0x1.0e4020p-7f), b), u), u);
|
||||
const svuint32_t d = svdup_n_u32_z(svcmple_n_f32(pg, n, 0.0), 0x82000000);
|
||||
const svfloat32_t s1 = svreinterpret_f32_u32(svadd_n_u32_x(pg, d, 0x7f000000));
|
||||
const svfloat32_t s2 = svreinterpret_f32_u32(svsub_u32_x(pg, e, d));
|
||||
return svsel_f32(svacgt_f32(pg, n, svdup_n_f32_x(pg, 192)), svmul_f32_x(pg, s1, s1),
|
||||
svsel_f32(c, svmul_f32_x(pg, svmla_f32_x(pg, s2, s2, j), s1), svmla_f32_x(pg, k, k, j)));
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static svfloat32_t ggml_v_silu(svbool_t pg, svfloat32_t x) {
|
||||
const svfloat32_t one = svdup_n_f32_x(pg, 1.0f);
|
||||
const svfloat32_t zero = svdup_n_f32_x(pg, 0.0f);
|
||||
const svfloat32_t neg_x = svsub_f32_x(pg, zero, x);
|
||||
const svfloat32_t exp_neg_x = ggml_v_expf(pg, neg_x);
|
||||
const svfloat32_t one_plus_exp_neg_x = svadd_f32_x(pg, one, exp_neg_x);
|
||||
return svdiv_f32_x(pg, x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#elif defined(__ARM_NEON) && defined(__aarch64__)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
@@ -928,7 +1225,59 @@ inline static __m128 ggml_v_silu(__m128 x) {
|
||||
return _mm_div_ps(x, one_plus_exp_neg_x);
|
||||
}
|
||||
|
||||
#endif // __ARM_NEON / __AVX2__ / __SSE2__
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
|
||||
// adapted from arm limited optimized routine
|
||||
// the maximum error is 1.45358 plus 0.5 ulps
|
||||
// numbers above 88.38 will flush to infinity
|
||||
// numbers beneath -103.97 will flush to zero
|
||||
inline static vfloat32m2_t ggml_v_expf_m2(vfloat32m2_t x, int vl) {
|
||||
const vfloat32m2_t r = __riscv_vfmv_v_f_f32m2(0x1.8p23f, vl);
|
||||
#ifdef __riscv_xtheadvector
|
||||
// workaround for compiler bug (gcc 14.3.0: Error: unrecognized opcode `th.vmv1r.v v2,v4')
|
||||
vfloat32m2_t z = __riscv_vfadd_vf_f32m2(r, 0.0f, vl);
|
||||
z = __riscv_vfmacc_vf_f32m2(z, 0x1.715476p+0f, x, vl);
|
||||
#else
|
||||
const vfloat32m2_t z = __riscv_vfmacc_vf_f32m2(r, 0x1.715476p+0f, x, vl);
|
||||
#endif
|
||||
const vfloat32m2_t n = __riscv_vfsub_vv_f32m2(z, r, vl);
|
||||
const vfloat32m2_t b = __riscv_vfnmsac_vf_f32m2(__riscv_vfnmsac_vf_f32m2(x, 0x1.62e4p-1f, n, vl),
|
||||
0x1.7f7d1cp-20f, n, vl);
|
||||
const vuint32m2_t e = __riscv_vsll_vx_u32m2(__riscv_vreinterpret_v_f32m2_u32m2(z), 23, vl);
|
||||
const vfloat32m2_t k = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(e, 0x3f800000, vl)); // 1.0f
|
||||
const vbool16_t c = __riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 126.0f, vl);
|
||||
const vfloat32m2_t u = __riscv_vfmul_vv_f32m2(b, b, vl);
|
||||
const vfloat32m2_t j = __riscv_vfmacc_vv_f32m2(
|
||||
__riscv_vfmul_vf_f32m2(b, 0x1.ffffecp-1f, vl),
|
||||
__riscv_vfmacc_vv_f32m2(
|
||||
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.fffdb6p-2f, vl), 0x1.555e66p-3f, b, vl),
|
||||
__riscv_vfmacc_vf_f32m2(__riscv_vfmv_v_f_f32m2(0x1.573e2ep-5f, vl), 0x1.0e4020p-7f, b, vl),
|
||||
u, vl), u, vl);
|
||||
if (!__riscv_vcpop_m_b16(c, vl))
|
||||
return __riscv_vfmacc_vv_f32m2(k, j, k, vl);
|
||||
const vbool16_t dm = __riscv_vmfle_vf_f32m2_b16(n, 0.0f, vl);
|
||||
const vuint32m2_t d = __riscv_vmerge_vxm_u32m2(__riscv_vmv_v_x_u32m2(0, vl), 0x82000000, dm, vl);
|
||||
const vfloat32m2_t s1 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vadd_vx_u32m2(d, 0x7f000000, vl));
|
||||
const vfloat32m2_t s2 = __riscv_vreinterpret_v_u32m2_f32m2(__riscv_vsub_vv_u32m2(e, d, vl));
|
||||
const vfloat32m2_t r1 = __riscv_vmerge_vvm_f32m2(
|
||||
__riscv_vfmacc_vv_f32m2(k, k, j, vl),
|
||||
__riscv_vfmul_vv_f32m2(__riscv_vfmacc_vv_f32m2(s2, s2, j, vl), s1, vl),
|
||||
c, vl);
|
||||
return __riscv_vmerge_vvm_f32m2(
|
||||
r1, __riscv_vfmul_vv_f32m2(s1, s1, vl),
|
||||
__riscv_vmfgt_vf_f32m2_b16(__riscv_vfabs_v_f32m2(n, vl), 192.0f, vl),
|
||||
vl);
|
||||
}
|
||||
|
||||
// computes silu x/(1+exp(-x)) in single precision vector
|
||||
inline static vfloat32m2_t ggml_v_silu_m2(vfloat32m2_t x, int vl) {
|
||||
const vfloat32m2_t neg_x = __riscv_vfneg_v_f32m2(x, vl);
|
||||
const vfloat32m2_t exp_neg_x = ggml_v_expf_m2(neg_x, vl);
|
||||
const vfloat32m2_t one_plus_exp_neg_x = __riscv_vfadd_vf_f32m2(exp_neg_x, 1.0f, vl);
|
||||
return __riscv_vfdiv_vv_f32m2(x, one_plus_exp_neg_x, vl);
|
||||
}
|
||||
|
||||
#endif // __ARM_NEON / __AVX2__ / __SSE2__ / __riscv_v_intrinsic
|
||||
|
||||
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
|
||||
for (int i = 0; i < n; ++i) {
|
||||
|
||||
@@ -24,17 +24,15 @@ if (CUDAToolkit_FOUND)
|
||||
# for best performance and to also build real architectures for the most commonly used GPUs.
|
||||
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||
elseif(GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
endif()
|
||||
else()
|
||||
if (CUDAToolkit_VERSION VERSION_LESS "13")
|
||||
list(APPEND CMAKE_CUDA_ARCHITECTURES 50-virtual 61-virtual 70-virtual)
|
||||
endif ()
|
||||
|
||||
list(APPEND CMAKE_CUDA_ARCHITECTURES 75-virtual 80-virtual 86-real)
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
|
||||
list(APPEND CMAKE_CUDA_ARCHITECTURES 89-real)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
@@ -50,6 +48,8 @@ if (CUDAToolkit_FOUND)
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmq*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
file(GLOB SRCS "template-instances/mmf*.cu")
|
||||
list(APPEND GGML_SOURCES_CUDA ${SRCS})
|
||||
|
||||
if (GGML_CUDA_FA_ALL_QUANTS)
|
||||
file(GLOB SRCS "template-instances/fattn-vec*.cu")
|
||||
@@ -91,10 +91,6 @@ if (CUDAToolkit_FOUND)
|
||||
add_compile_definitions(GGML_CUDA_NO_FA)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_NO_PEER_COPY)
|
||||
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
@@ -104,7 +100,11 @@ if (CUDAToolkit_FOUND)
|
||||
# As of 12.3.1 CUDA Toolkit for Windows does not offer a static cublas library
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas)
|
||||
else ()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static)
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "10.1")
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart_static CUDA::cublas_static)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
target_link_libraries(ggml-cuda PRIVATE CUDA::cudart CUDA::cublas)
|
||||
@@ -120,6 +120,10 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
set(CUDA_FLAGS -use_fast_math -extended-lambda)
|
||||
|
||||
if (GGML_CUDA_DEBUG)
|
||||
list(APPEND CUDA_FLAGS -lineinfo)
|
||||
endif()
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
# Options are:
|
||||
# - none (not recommended)
|
||||
|
||||
6
ml/backend/ggml/ggml/src/ggml-cuda/add-id.cu
vendored
6
ml/backend/ggml/ggml/src/ggml-cuda/add-id.cu
vendored
@@ -11,14 +11,14 @@ static __global__ void add_id_kernel(
|
||||
const int64_t i1 = blockIdx.x;
|
||||
const int64_t i2 = blockIdx.y;
|
||||
|
||||
const int i11 = *(int32_t *) ((char *) src2 + i1*sizeof(int32_t) + i2*nb21);
|
||||
const int i11 = *(const int32_t *) ((const char *) src2 + i1*sizeof(int32_t) + i2*nb21);
|
||||
|
||||
const size_t nb1 = ne0 * sizeof(float);
|
||||
const size_t nb2 = ne1 * nb1;
|
||||
|
||||
float * dst_row = (float *)((char *)dst + i1*nb1 + i2*nb2);
|
||||
const float * src0_row = (const float *)((char *)src0 + i1*nb01 + i2*nb02);
|
||||
const float * src1_row = (const float *)((char *)src1 + i11*nb11);
|
||||
const float * src0_row = (const float *)((const char *)src0 + i1*nb01 + i2*nb02);
|
||||
const float * src1_row = (const float *)((const char *)src1 + i11*nb11);
|
||||
|
||||
for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
|
||||
dst_row[i0] = src0_row[i0] + src1_row[i0];
|
||||
|
||||
519
ml/backend/ggml/ggml/src/ggml-cuda/binbcast.cu
vendored
519
ml/backend/ggml/ggml/src/ggml-cuda/binbcast.cu
vendored
@@ -1,5 +1,6 @@
|
||||
#include "binbcast.cuh"
|
||||
#include <cstdint>
|
||||
#include <utility>
|
||||
|
||||
static __device__ __forceinline__ float op_repeat(const float a, const float b) {
|
||||
return b;
|
||||
@@ -22,73 +23,295 @@ static __device__ __forceinline__ float op_div(const float a, const float b) {
|
||||
return a / b;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
const int i0s = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
const int i1 = (blockDim.y*blockIdx.y + threadIdx.y);
|
||||
const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3;
|
||||
const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3;
|
||||
template <float (*bin_op)(const float, const float),
|
||||
typename src0_t,
|
||||
typename src1_t,
|
||||
typename dst_t,
|
||||
typename... src1_ptrs>
|
||||
static __global__ void k_bin_bcast(const src0_t * src0,
|
||||
const src1_t * src1,
|
||||
dst_t * dst,
|
||||
const int ne0,
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const uint3 ne3,
|
||||
const uint3 ne10,
|
||||
const uint3 ne11,
|
||||
const uint3 ne12,
|
||||
const uint3 ne13,
|
||||
/*int s0, */ const int s1,
|
||||
const int s2,
|
||||
const int s3,
|
||||
/*int s00,*/ const int s01,
|
||||
const int s02,
|
||||
const int s03,
|
||||
/*int s10,*/ const int s11,
|
||||
const int s12,
|
||||
const int s13,
|
||||
src1_ptrs... src1s) {
|
||||
const uint32_t i0s = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const uint32_t i1 = (blockDim.y * blockIdx.y + threadIdx.y);
|
||||
const uint32_t i2 = fastdiv((blockDim.z * blockIdx.z + threadIdx.z), ne3);
|
||||
const uint32_t i3 = (blockDim.z * blockIdx.z + threadIdx.z) - (i2 * ne3.z);
|
||||
|
||||
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
if (i0s >= (uint32_t)ne0 || i1 >= (uint32_t)ne1 || i2 >= (uint32_t)ne2 || i3 >= ne3.z) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
const uint32_t i11 = fastmodulo(i1, ne11);
|
||||
const uint32_t i12 = fastmodulo(i2, ne12);
|
||||
const uint32_t i13 = fastmodulo(i3, ne13);
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) {
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
for (int i0 = i0s; i0 < ne0; i0 += blockDim.x * gridDim.x) {
|
||||
const uint32_t i10 = fastmodulo(i0, ne10);
|
||||
|
||||
float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
||||
if constexpr (sizeof...(src1_ptrs) > 0) {
|
||||
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
||||
} else {
|
||||
result = bin_op(result, (float)src1[i_src1 + i10]);
|
||||
}
|
||||
|
||||
dst_row[i0] = (dst_t) result;
|
||||
}
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
||||
int ne0, int ne1, int ne2, int ne3,
|
||||
int ne10, int ne11, int ne12, int ne13,
|
||||
/*int s0, */ int s1, int s2, int s3,
|
||||
/*int s00,*/ int s01, int s02, int s03,
|
||||
/*int s10,*/ int s11, int s12, int s13) {
|
||||
|
||||
template <float (*bin_op)(const float, const float),
|
||||
typename src0_t,
|
||||
typename src1_t,
|
||||
typename dst_t,
|
||||
typename... src1_ptrs>
|
||||
static __global__ void k_bin_bcast_unravel(const src0_t * src0,
|
||||
const src1_t * src1,
|
||||
dst_t * dst,
|
||||
const uint3 ne0,
|
||||
const uint3 ne1,
|
||||
const uint3 ne2,
|
||||
const uint32_t ne3,
|
||||
const uint3 prod_012,
|
||||
const uint3 prod_01,
|
||||
const uint3 ne10,
|
||||
const uint3 ne11,
|
||||
const uint3 ne12,
|
||||
const uint3 ne13,
|
||||
/*int s0, */ const int s1,
|
||||
const int s2,
|
||||
const int s3,
|
||||
/*int s00,*/ const int s01,
|
||||
const int s02,
|
||||
const int s03,
|
||||
/*int s10,*/ const int s11,
|
||||
const int s12,
|
||||
const int s13,
|
||||
src1_ptrs... src1s) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
const int i3 = i/(ne2*ne1*ne0);
|
||||
const int i2 = (i/(ne1*ne0)) % ne2;
|
||||
const int i1 = (i/ne0) % ne1;
|
||||
const int i0 = i % ne0;
|
||||
const uint32_t i3 = fastdiv(i, prod_012);
|
||||
const uint32_t i2 = fastdiv(i - i3 * prod_012.z, prod_01);
|
||||
const uint32_t i1 = fastdiv(i - i3 * prod_012.z - i2 * prod_01.z, ne0);
|
||||
const uint32_t i0 = i - i3 * prod_012.z - i2 * prod_01.z - i1 * ne0.z;
|
||||
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
if (i0 >= ne0.z || i1 >= ne1.z || i2 >= ne2.z || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i11 = i1 % ne11;
|
||||
const int i12 = i2 % ne12;
|
||||
const int i13 = i3 % ne13;
|
||||
const int i11 = fastmodulo(i1, ne11);
|
||||
const int i12 = fastmodulo(i2, ne12);
|
||||
const int i13 = fastmodulo(i3, ne13);
|
||||
|
||||
const size_t i_src0 = i3*s03 + i2*s02 + i1*s01;
|
||||
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
||||
const size_t i_dst = i3*s3 + i2*s2 + i1*s1;
|
||||
|
||||
const src0_t * src0_row = src0 + i_src0;
|
||||
const src1_t * src1_row = src1 + i_src1;
|
||||
const src0_t * src0_row = src0 ? (src0 + i_src0) : nullptr;
|
||||
dst_t * dst_row = dst + i_dst;
|
||||
|
||||
const int i10 = i0 % ne10;
|
||||
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
||||
const int i10 = fastmodulo(i0, ne10);
|
||||
|
||||
float result = src0_row ? (float) src0_row[i0] : 0.0f;
|
||||
if constexpr (sizeof...(src1_ptrs) > 0) {
|
||||
result = (..., (result = bin_op(result, (float)src1s[i_src1 + i10])));
|
||||
} else {
|
||||
result = bin_op(result, (float)src1[i_src1 + i10]);
|
||||
}
|
||||
|
||||
dst_row[i0] = (dst_t) result;
|
||||
}
|
||||
|
||||
template <float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t, size_t... I>
|
||||
static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream, std::index_sequence<I...>) {
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10 / ne0;
|
||||
int nr1 = ne11 / ne1;
|
||||
int nr2 = ne12 / ne2;
|
||||
int nr3 = ne13 / ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
int64_t cne[] = { ne0, ne1, ne2, ne3 };
|
||||
int64_t cne0[] = { ne00, ne01, ne02, ne03 };
|
||||
int64_t cne1[] = { ne10, ne11, ne12, ne13 };
|
||||
|
||||
size_t cnb[] = { nb0, nb1, nb2, nb3 };
|
||||
size_t cnb0[] = { nb00, nb01, nb02, nb03 };
|
||||
size_t cnb1[] = { nb10, nb11, nb12, nb13 };
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0 / 2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2 * ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums((hne0 + block_dims.x - 1) / block_dims.x, (ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2 * ne3 + block_dims.z - 1) / block_dims.z);
|
||||
|
||||
const uint3 ne10 = init_fastdiv_values((uint32_t) cne1[0]);
|
||||
const uint3 ne11 = init_fastdiv_values((uint32_t) cne1[1]);
|
||||
const uint3 ne12 = init_fastdiv_values((uint32_t) cne1[2]);
|
||||
const uint3 ne13 = init_fastdiv_values((uint32_t) cne1[3]);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
|
||||
const uint3 prod_012 = init_fastdiv_values((uint32_t) (ne0 * ne1 * ne2));
|
||||
const uint3 prod_01 = init_fastdiv_values((uint32_t) (ne0 * ne1));
|
||||
const uint3 ne0_fastdiv = init_fastdiv_values((uint32_t) ne0);
|
||||
const uint3 ne1_fastdiv = init_fastdiv_values((uint32_t) ne1);
|
||||
const uint3 ne2_fastdiv = init_fastdiv_values((uint32_t) ne2);
|
||||
|
||||
if constexpr (sizeof...(I) > 0) {
|
||||
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd, ne0_fastdiv, ne1_fastdiv, ne2_fastdiv, ne3, prod_012, prod_01, ne10, ne11,
|
||||
ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12, s13, (const src1_t *) dst->src[I + 1]->data...);
|
||||
} else {
|
||||
k_bin_bcast_unravel<bin_op, src0_t, src1_t, dst_t>
|
||||
<<<block_num, block_size, 0, stream>>>(src0_dd, src1_dd, dst_dd, ne0_fastdiv, ne1_fastdiv,
|
||||
ne2_fastdiv, ne3, prod_012, prod_01, ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12, s13);
|
||||
}
|
||||
} else {
|
||||
const uint3 ne3_fastdiv = init_fastdiv_values((uint32_t) ne3);
|
||||
if constexpr (sizeof...(I) > 0) {
|
||||
k_bin_bcast<bin_op, src0_t, src1_t, dst_t><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3_fastdiv, ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12, s13, (const src1_t *) dst->src[I + 1]->data...);
|
||||
} else {
|
||||
k_bin_bcast<bin_op, src0_t, src1_t, dst_t><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3_fastdiv, ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00,*/ s01, s02, s03,
|
||||
/* s10,*/ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@@ -120,160 +343,14 @@ static __global__ void k_repeat_back(
|
||||
dst[tid3*ne2*ne1*ne0 + tid2*ne1*ne0 + tid1*ne0 + tid0] = sum;
|
||||
}
|
||||
|
||||
template<float (*bin_op)(const float, const float)>
|
||||
template <float (*bin_op)(const float, const float), int n_fuse = 1>
|
||||
struct bin_bcast_cuda {
|
||||
template<typename src0_t, typename src1_t, typename dst_t>
|
||||
void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst,
|
||||
const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd,
|
||||
cudaStream_t stream) {
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
int nr0 = ne10/ne0;
|
||||
int nr1 = ne11/ne1;
|
||||
int nr2 = ne12/ne2;
|
||||
int nr3 = ne13/ne3;
|
||||
|
||||
int nr[4] = { nr0, nr1, nr2, nr3 };
|
||||
|
||||
// collapse dimensions until first broadcast dimension
|
||||
int64_t cne[] = {ne0, ne1, ne2, ne3};
|
||||
int64_t cne0[] = {ne00, ne01, ne02, ne03};
|
||||
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
||||
|
||||
size_t cnb[] = {nb0, nb1, nb2, nb3};
|
||||
size_t cnb0[] = {nb00, nb01, nb02, nb03};
|
||||
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
||||
|
||||
auto collapse = [](int64_t cne[]) {
|
||||
cne[0] *= cne[1];
|
||||
cne[1] = cne[2];
|
||||
cne[2] = cne[3];
|
||||
cne[3] = 1;
|
||||
};
|
||||
|
||||
auto collapse_nb = [](size_t cnb[], const int64_t cne[]) {
|
||||
cnb[1] *= cne[1];
|
||||
cnb[2] *= cne[2];
|
||||
cnb[3] *= cne[3];
|
||||
};
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
if (nr[i] != 1) {
|
||||
break;
|
||||
}
|
||||
if (i > 0) {
|
||||
collapse_nb(cnb, cne);
|
||||
collapse_nb(cnb0, cne0);
|
||||
collapse_nb(cnb1, cne1);
|
||||
collapse(cne);
|
||||
collapse(cne0);
|
||||
collapse(cne1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
int64_t ne0 = cne[0];
|
||||
int64_t ne1 = cne[1];
|
||||
int64_t ne2 = cne[2];
|
||||
int64_t ne3 = cne[3];
|
||||
|
||||
//int64_t ne00 = cne0[0]; GGML_UNUSED(ne00);
|
||||
//int64_t ne01 = cne0[1]; GGML_UNUSED(ne01);
|
||||
//int64_t ne02 = cne0[2]; GGML_UNUSED(ne02);
|
||||
//int64_t ne03 = cne0[3]; GGML_UNUSED(ne03);
|
||||
|
||||
int64_t ne10 = cne1[0];
|
||||
int64_t ne11 = cne1[1];
|
||||
int64_t ne12 = cne1[2];
|
||||
int64_t ne13 = cne1[3];
|
||||
|
||||
size_t nb0 = cnb[0];
|
||||
size_t nb1 = cnb[1];
|
||||
size_t nb2 = cnb[2];
|
||||
size_t nb3 = cnb[3];
|
||||
|
||||
size_t nb00 = cnb0[0];
|
||||
size_t nb01 = cnb0[1];
|
||||
size_t nb02 = cnb0[2];
|
||||
size_t nb03 = cnb0[3];
|
||||
|
||||
size_t nb10 = cnb1[0];
|
||||
size_t nb11 = cnb1[1];
|
||||
size_t nb12 = cnb1[2];
|
||||
size_t nb13 = cnb1[3];
|
||||
|
||||
size_t s0 = nb0 / sizeof(dst_t);
|
||||
size_t s1 = nb1 / sizeof(dst_t);
|
||||
size_t s2 = nb2 / sizeof(dst_t);
|
||||
size_t s3 = nb3 / sizeof(dst_t);
|
||||
|
||||
size_t s10 = nb10 / sizeof(src1_t);
|
||||
size_t s11 = nb11 / sizeof(src1_t);
|
||||
size_t s12 = nb12 / sizeof(src1_t);
|
||||
size_t s13 = nb13 / sizeof(src1_t);
|
||||
|
||||
size_t s00 = nb00 / sizeof(src0_t);
|
||||
size_t s01 = nb01 / sizeof(src0_t);
|
||||
size_t s02 = nb02 / sizeof(src0_t);
|
||||
size_t s03 = nb03 / sizeof(src0_t);
|
||||
|
||||
GGML_ASSERT(nb0 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb1 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb2 % sizeof(dst_t) == 0);
|
||||
GGML_ASSERT(nb3 % sizeof(dst_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb00 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb01 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb02 % sizeof(src0_t) == 0);
|
||||
GGML_ASSERT(nb03 % sizeof(src0_t) == 0);
|
||||
|
||||
GGML_ASSERT(nb10 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb11 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb12 % sizeof(src1_t) == 0);
|
||||
GGML_ASSERT(nb13 % sizeof(src1_t) == 0);
|
||||
|
||||
GGML_ASSERT(s0 == 1);
|
||||
GGML_ASSERT(s00 == 1);
|
||||
GGML_ASSERT(s10 == 1);
|
||||
|
||||
const int block_size = 128;
|
||||
|
||||
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
||||
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min<unsigned int>(hne0, block_size);
|
||||
block_dims.y = std::min<unsigned int>(ne1, block_size / block_dims.x);
|
||||
block_dims.z = std::min(std::min<unsigned int>(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U);
|
||||
|
||||
dim3 block_nums(
|
||||
(hne0 + block_dims.x - 1) / block_dims.x,
|
||||
(ne1 + block_dims.y - 1) / block_dims.y,
|
||||
(ne2*ne3 + block_dims.z - 1) / block_dims.z
|
||||
);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
// this is the maximum number of blocks in z dimension, fallback to 1D grid kernel
|
||||
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
||||
k_bin_bcast_unravel<bin_op><<<block_num, block_size, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
} else {
|
||||
k_bin_bcast<bin_op><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_dd, src1_dd, dst_dd,
|
||||
ne0, ne1, ne2, ne3,
|
||||
ne10, ne11, ne12, ne13,
|
||||
/* s0, */ s1, s2, s3,
|
||||
/* s00, */ s01, s02, s03,
|
||||
/* s10, */ s11, s12, s13);
|
||||
}
|
||||
}
|
||||
launch_bin_bcast_pack<bin_op, src0_t, src1_t, dst_t>(
|
||||
src0, src1, dst, src0_dd, src1_dd, dst_dd, stream, std::make_index_sequence<n_fuse>{});
|
||||
}
|
||||
};
|
||||
|
||||
@@ -312,7 +389,7 @@ static void ggml_cuda_op_bin_bcast(
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat, 0>>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -331,6 +408,68 @@ void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_div>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
template <float (*op)(const float, const float), int n_fuse>
|
||||
static void ggml_cuda_op_fused_binbcast_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
launch_bin_bcast_pack<op, float, float, float>(src0, src1, dst,
|
||||
(const float *) src0->data, (const float *) src1->data, (float *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
||||
launch_bin_bcast_pack<op, half, half, half>(src0, src1, dst,
|
||||
(const half *) src0->data, (const half *) src1->data, (half *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
||||
launch_bin_bcast_pack<op, half, float, half>(src0, src1, dst,
|
||||
(const half *) src0->data, (const float *) src1->data, (half *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||
launch_bin_bcast_pack<op, half, float, float>(src0, src1, dst,
|
||||
(const half *) src0->data, (const float *) src1->data, (float *) dst->data,
|
||||
stream, std::make_index_sequence<n_fuse>{});
|
||||
} else {
|
||||
fprintf(stderr,
|
||||
"%s: unsupported types for fusion: dst: %s, src0: %s, src1: %s\n",
|
||||
__func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse) {
|
||||
GGML_ASSERT(2 <= n_fuse && n_fuse <= 8);
|
||||
|
||||
switch (n_fuse) {
|
||||
case 2:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 2>(ctx, dst);
|
||||
break;
|
||||
case 3:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 3>(ctx, dst);
|
||||
break;
|
||||
case 4:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 4>(ctx, dst);
|
||||
break;
|
||||
case 5:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 5>(ctx, dst);
|
||||
break;
|
||||
case 6:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 6>(ctx, dst);
|
||||
break;
|
||||
case 7:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 7>(ctx, dst);
|
||||
break;
|
||||
case 8:
|
||||
ggml_cuda_op_fused_binbcast_impl<op_add, 8>(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "Unsupported n_fuse value");
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
|
||||
@@ -7,3 +7,5 @@ void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_fused_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst, int n_fuse);
|
||||
|
||||
209
ml/backend/ggml/ggml/src/ggml-cuda/common.cuh
vendored
209
ml/backend/ggml/ggml/src/ggml-cuda/common.cuh
vendored
@@ -100,9 +100,13 @@ static cudaError_t cudaMemcpy2DAsyncReserve ( void* dst, size_t dpitch, const vo
|
||||
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
|
||||
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA1)
|
||||
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_RDNA1)
|
||||
#define GGML_CUDA_CC_IS_CDNA1(cc) (cc >= GGML_CUDA_CC_CDNA1 && cc < GGML_CUDA_CC_CDNA2)
|
||||
#define GGML_CUDA_CC_IS_CDNA2(cc) (cc >= GGML_CUDA_CC_CDNA2 && cc < GGML_CUDA_CC_CDNA3)
|
||||
#define GGML_CUDA_CC_IS_CDNA3(cc) (cc >= GGML_CUDA_CC_CDNA3 && cc < GGML_CUDA_CC_RDNA1)
|
||||
|
||||
// Moore Threads
|
||||
#define MUSART_HMASK 40300 // MUSA rc4.3, min. ver. for half2 -> uint mask comparisons
|
||||
|
||||
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
|
||||
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
|
||||
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
|
||||
@@ -112,6 +116,10 @@ static cudaError_t cudaMemcpy2DAsyncReserve ( void* dst, size_t dpitch, const vo
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
|
||||
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
# define GGML_CUDA_USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
|
||||
#ifdef __CUDA_ARCH_LIST__
|
||||
constexpr bool ggml_cuda_has_arch_impl(int) {
|
||||
return false;
|
||||
@@ -126,9 +134,9 @@ constexpr bool ggml_cuda_has_arch(const int arch) {
|
||||
return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
|
||||
}
|
||||
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) {
|
||||
constexpr int ggml_cuda_highest_compiled_arch_impl(const int /*arch*/, const int cur) {
|
||||
if (cur == 0) {
|
||||
GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch);
|
||||
return -1;
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
@@ -225,14 +233,6 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define GGML_CUDA_ASSUME(x)
|
||||
#endif // CUDART_VERSION >= 11010
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
typedef half dfloat; // dequantize float
|
||||
typedef half2 dfloat2;
|
||||
#else
|
||||
typedef float dfloat; // dequantize float
|
||||
typedef float2 dfloat2;
|
||||
#endif // GGML_CUDA_F16
|
||||
|
||||
#if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
#define GGML_USE_VMM
|
||||
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
@@ -337,11 +337,11 @@ static bool turing_mma_available(const int cc) {
|
||||
}
|
||||
|
||||
static bool ampere_mma_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
||||
}
|
||||
|
||||
static bool cp_async_available(const int cc) {
|
||||
return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
@@ -352,6 +352,20 @@ static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
|
||||
#endif // defined(GGML_USE_HIP) && (defined(__GFX9__) || defined(__GFX8__))
|
||||
}
|
||||
|
||||
// Maximum number of bytes that can be copied in a single instruction.
|
||||
static constexpr __device__ int ggml_cuda_get_max_cpy_bytes() {
|
||||
#ifdef GGML_USE_HIP
|
||||
return 16;
|
||||
#else
|
||||
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
return 16;
|
||||
#else
|
||||
return 8;
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
|
||||
[[noreturn]]
|
||||
static __device__ void no_device_code(
|
||||
const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
|
||||
@@ -445,38 +459,30 @@ static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
|
||||
template<bool norm>
|
||||
static __global__ void reduce_rows_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
for (int i = col; i < ncols; i += blockDim.x) {
|
||||
sum += x[row * ncols + i];
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_all(int x) {
|
||||
if (width == ggml_cuda_get_physical_warp_size()) {
|
||||
return __all_sync(0xffffffff, x);
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = __shfl_xor_sync(0xffffffff, x, offset, width) && x;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
if (col != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[row] = norm ? sum / ncols : sum;
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ int warp_reduce_all(int x) {
|
||||
#ifdef GGML_USE_HIP
|
||||
static __device__ __forceinline__ int warp_reduce_any(int x) {
|
||||
if (width == ggml_cuda_get_physical_warp_size()) {
|
||||
return __any_sync(0xffffffff, x);
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = x && __shfl_xor_sync(0xffffffff, x, offset, width);
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = __shfl_xor_sync(0xffffffff, x, offset, width) || x;
|
||||
}
|
||||
return x;
|
||||
}
|
||||
return x;
|
||||
#else
|
||||
static_assert(width == WARP_SIZE, "width != WARP_SIZE not implemented");
|
||||
return __all_sync(0xffffffff, x);
|
||||
#endif // GGML_USE_HIP
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
@@ -505,25 +511,21 @@ static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
|
||||
#if defined(GGML_USE_HIP) && HIP_VERSION >= 50700000
|
||||
#if defined(GGML_USE_HIP)
|
||||
return half2(__hmax(a.x, b.x), __hmax(a.y, b.y));
|
||||
#elif !defined(GGML_USE_HIP) && CUDART_VERSION >= CUDART_HMAX
|
||||
#elif CUDART_VERSION >= CUDART_HMAX
|
||||
return __hmax2(a, b);
|
||||
#elif !defined(GGML_USE_HIP)
|
||||
#else
|
||||
half2 ret;
|
||||
reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
|
||||
reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
|
||||
return ret;
|
||||
#else
|
||||
GGML_UNUSED(a);
|
||||
GGML_UNUSED(b);
|
||||
NO_DEVICE_CODE;
|
||||
#endif
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
|
||||
#pragma unroll
|
||||
for (int offset = width/2; offset > 0; offset >>= 1) {
|
||||
x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
|
||||
@@ -532,16 +534,17 @@ static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
|
||||
#else
|
||||
GGML_UNUSED(x);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
#if CUDART_VERSION < CUDART_HMASK
|
||||
#if (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || \
|
||||
(defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
|
||||
static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
|
||||
const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
|
||||
const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
|
||||
return mask_low | mask_high;
|
||||
}
|
||||
#endif // CUDART_VERSION < CUDART_HMASK
|
||||
#endif // (defined(CUDART_VERSION) && CUDART_VERSION < CUDART_HMASK) || defined(GGML_USE_HIP) || (defined(MUSART_VERSION) && MUSART_VERSION < MUSART_HMASK)
|
||||
|
||||
static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
|
||||
#if defined(GGML_USE_HIP)
|
||||
@@ -583,6 +586,70 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float v, const float u) {
|
||||
acc += v*u;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v, const float2 u) {
|
||||
acc += v.x*u.x;
|
||||
acc += v.y*u.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
|
||||
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
|
||||
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const float2 tmp = __half22float2(v*u);
|
||||
acc += tmp.x + tmp.y;
|
||||
#else
|
||||
const float2 tmpv = __half22float2(v);
|
||||
const float2 tmpu = __half22float2(u);
|
||||
acc += tmpv.x * tmpu.x;
|
||||
acc += tmpv.y * tmpu.y;
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
acc += v*u;
|
||||
#else
|
||||
const float2 tmpv = __half22float2(v);
|
||||
const float2 tmpu = __half22float2(u);
|
||||
float2 tmpacc = __half22float2(acc);
|
||||
tmpacc.x += tmpv.x * tmpu.x;
|
||||
tmpacc.y += tmpv.y * tmpu.y;
|
||||
acc = make_half2(tmpacc.x, tmpacc.y);
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
|
||||
template <int nbytes, int alignment = 0>
|
||||
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
|
||||
if constexpr (alignment != 0) {
|
||||
static_assert(nbytes % alignment == 0, "bad alignment");
|
||||
}
|
||||
constexpr int nb_per_cpy = alignment == 0 ? nbytes : alignment;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < nbytes/nb_per_cpy; ++i) {
|
||||
if constexpr (nb_per_cpy == 1) {
|
||||
((char *) dst)[i] = ((const char *) src)[i];
|
||||
} else if constexpr (nb_per_cpy == 2) {
|
||||
((short *) dst)[i] = ((const short *) src)[i];
|
||||
} else if constexpr (nb_per_cpy == 4) {
|
||||
((int *) dst)[i] = ((const int *) src)[i];
|
||||
} else if constexpr (nb_per_cpy == 8) {
|
||||
((int2 *) dst)[i] = ((const int2 *) src)[i];
|
||||
} else if constexpr (nb_per_cpy == 16) {
|
||||
((int4 *) dst)[i] = ((const int4 *) src)[i];
|
||||
} else {
|
||||
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
#if CUDART_VERSION >= 12080
|
||||
const nv_bfloat16 e = __nv_cvt_e8m0_to_bf16raw(x);
|
||||
@@ -601,7 +668,49 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
#endif // CUDART_VERSION >= 12050
|
||||
}
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
||||
// Precompute mp (m' in the paper) and L such that division
|
||||
// can be computed using a multiply (high 32b of 64b result)
|
||||
// and a shift:
|
||||
//
|
||||
// n/d = (mulhi(n, mp) + n) >> L;
|
||||
static const uint3 init_fastdiv_values(uint32_t d) {
|
||||
GGML_ASSERT(d != 0);
|
||||
|
||||
// compute L = ceil(log2(d));
|
||||
uint32_t L = 0;
|
||||
while (L < 32 && (uint32_t{ 1 } << L) < d) {
|
||||
L++;
|
||||
}
|
||||
|
||||
uint32_t mp = (uint32_t) ((uint64_t{ 1 } << 32) * ((uint64_t{ 1 } << L) - d) / d + 1);
|
||||
// pack divisor as well to reduce error surface
|
||||
return make_uint3(mp, L, d);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastdiv(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z>
|
||||
// fastdiv_values.z is unused and optimized away by the compiler.
|
||||
// Compute high 32 bits of n * mp
|
||||
const uint32_t hi = __umulhi(n, fastdiv_values.x);
|
||||
// add n, apply bit shift
|
||||
return (hi + n) >> fastdiv_values.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ uint32_t fastmodulo(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
||||
return n - fastdiv(n, fastdiv_values) * fastdiv_values.z;
|
||||
}
|
||||
|
||||
// Calculate both division and modulo at once, returns <n/divisor, n%divisor>
|
||||
static __device__ __forceinline__ uint2 fast_div_modulo(uint32_t n, const uint3 fastdiv_values) {
|
||||
// expects fastdiv_values to contain <mp, L, divisor> in <x, y, z> (see init_fastdiv_values)
|
||||
const uint32_t div_val = fastdiv(n, fastdiv_values);
|
||||
const uint32_t mod_val = n - div_val * fastdiv_values.z;
|
||||
return make_uint2(div_val, mod_val);
|
||||
}
|
||||
|
||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, float2 & v);
|
||||
|
||||
static __device__ __forceinline__ float get_alibi_slope(
|
||||
const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
|
||||
|
||||
@@ -34,10 +34,7 @@ static __global__ void conv_transpose_1d_kernel(
|
||||
}
|
||||
}
|
||||
dst[global_index] = accumulator;
|
||||
GGML_UNUSED(p0); GGML_UNUSED(d0); GGML_UNUSED(src0_ne3);
|
||||
GGML_UNUSED(src1_ne3); GGML_UNUSED(dst_ne3);
|
||||
GGML_UNUSED(src1_ne1); GGML_UNUSED(dst_ne1);
|
||||
GGML_UNUSED(src1_ne2); GGML_UNUSED(dst_ne2);
|
||||
GGML_UNUSED_VARS(p0, d0, src0_ne3, src1_ne3, dst_ne3, src1_ne1, dst_ne1, src1_ne2, dst_ne2);
|
||||
}
|
||||
|
||||
static void conv_transpose_1d_f32_f32_cuda(
|
||||
|
||||
166
ml/backend/ggml/ggml/src/ggml-cuda/conv2d.cu
vendored
Normal file
166
ml/backend/ggml/ggml/src/ggml-cuda/conv2d.cu
vendored
Normal file
@@ -0,0 +1,166 @@
|
||||
#include "conv2d.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
struct conv_params {
|
||||
const int64_t IW, IH;
|
||||
const int64_t OW, OH;
|
||||
const int64_t KW, KH;
|
||||
const int64_t ST_X, ST_Y;
|
||||
const int64_t PD_X, PD_Y;
|
||||
const int64_t DL_X, DL_Y;
|
||||
const int64_t IC, OC;
|
||||
const int64_t B;
|
||||
const int64_t TOTAL;
|
||||
};
|
||||
|
||||
struct kernel_bounds {
|
||||
int64_t y_min, y_max;
|
||||
int64_t x_min, x_max;
|
||||
};
|
||||
|
||||
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) {
|
||||
return (a > b) ? a : b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) {
|
||||
return (a < b) ? a : b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) {
|
||||
kernel_bounds bounds;
|
||||
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y);
|
||||
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X);
|
||||
return bounds;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord,
|
||||
int64_t kern_coord,
|
||||
int64_t stride,
|
||||
int64_t dilation,
|
||||
int64_t padding) {
|
||||
return out_coord * stride + kern_coord * dilation - padding;
|
||||
}
|
||||
|
||||
struct whcn_layout {
|
||||
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x;
|
||||
}
|
||||
|
||||
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) {
|
||||
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx;
|
||||
}
|
||||
|
||||
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) {
|
||||
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x;
|
||||
}
|
||||
|
||||
__device__ static void unpack_indices(int64_t global_idx,
|
||||
const conv_params & P,
|
||||
int64_t & n,
|
||||
int64_t & c,
|
||||
int64_t & out_y,
|
||||
int64_t & out_x) {
|
||||
out_x = global_idx % P.OW;
|
||||
out_y = (global_idx / P.OW) % P.OH;
|
||||
c = (global_idx / (P.OW * P.OH)) % P.OC;
|
||||
n = global_idx / (P.OW * P.OH * P.OC);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename Layout>
|
||||
static __global__ void conv2d_kernel(const float * __restrict__ input,
|
||||
const T * __restrict__ kernel,
|
||||
float * __restrict__ output,
|
||||
const conv_params P) {
|
||||
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (global_idx >= P.TOTAL) {
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t n, c_out, out_y, out_x;
|
||||
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x);
|
||||
|
||||
float acc = 0.0f;
|
||||
|
||||
for (int64_t c_in = 0; c_in < P.IC; ++c_in) {
|
||||
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P);
|
||||
|
||||
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) {
|
||||
const int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y);
|
||||
|
||||
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) {
|
||||
const int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X);
|
||||
|
||||
const float input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)];
|
||||
const T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)];
|
||||
acc += (input_val * ggml_cuda_cast<float>(kernel_val));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// [N, OC, OH, OW]
|
||||
output[Layout::output_index(n, c_out, out_y, out_x, P)] = acc;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE;
|
||||
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P);
|
||||
}
|
||||
|
||||
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
conv2d_cuda<half>(X_D, K_D, Y_D, P, st);
|
||||
}
|
||||
|
||||
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) {
|
||||
conv2d_cuda<float>(X_D, K_D, Y_D, P, st);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * kernel = dst->src[0];
|
||||
const ggml_tensor * input = dst->src[1];
|
||||
float * K_D = (float *) kernel->data;
|
||||
const float * X_D = (const float *) input->data;
|
||||
float * Y_D = (float *) dst->data;
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(kernel));
|
||||
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32);
|
||||
|
||||
// same number of input channels
|
||||
GGML_ASSERT(input->ne[2] == kernel->ne[2]);
|
||||
|
||||
cudaStream_t st = ctx.stream();
|
||||
|
||||
const int32_t * p = (const int32_t *) dst->op_params;
|
||||
const int ST_X = p[0]; // stride_x
|
||||
const int ST_Y = p[1]; // stride_y
|
||||
const int PD_X = p[2]; // padding_x
|
||||
const int PD_Y = p[3]; // padding_y
|
||||
const int DL_X = p[4]; // dilation_x
|
||||
const int DL_Y = p[5]; // dilation_y
|
||||
|
||||
// No cwhn
|
||||
GGML_ASSERT(p[6] == false);
|
||||
|
||||
const int IW = input->ne[0]; // input_w
|
||||
const int IH = input->ne[1]; // input_h
|
||||
const int OW = dst->ne[0]; // output_w
|
||||
const int OH = dst->ne[1]; // output_h
|
||||
const int KW = kernel->ne[0]; // kernel_w
|
||||
const int KH = kernel->ne[1]; // kernel_h
|
||||
const int IC = input->ne[2]; // input_channels
|
||||
const int OC = kernel->ne[3]; // ouptut_chanles
|
||||
const int B = input->ne[3]; // n_batches
|
||||
|
||||
const int64_t total = B * OC * OH * OW;
|
||||
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total };
|
||||
|
||||
if (kernel->type == GGML_TYPE_F16) {
|
||||
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st);
|
||||
} else {
|
||||
conv2d_cuda_f32(X_D, K_D, Y_D, params, st);
|
||||
}
|
||||
}
|
||||
5
ml/backend/ggml/ggml/src/ggml-cuda/conv2d.cuh
vendored
Normal file
5
ml/backend/ggml/ggml/src/ggml-cuda/conv2d.cuh
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
#pragma once
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_CONV2D_BLOCK_SIZE 256
|
||||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
12
ml/backend/ggml/ggml/src/ggml-cuda/convert.cu
vendored
12
ml/backend/ggml/ggml/src/ggml-cuda/convert.cu
vendored
@@ -27,12 +27,12 @@ static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __
|
||||
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
float2 v;
|
||||
dequantize_kernel(vx, ib, iqs, v);
|
||||
|
||||
const int64_t iy0 = ((i03*ne02 + i02)*ne01 + i01)*ne00 + iybs + iqs;
|
||||
y[iy0 + 0] = float(v.x);
|
||||
y[iy0 + y_offset] = float(v.y);
|
||||
y[iy0 + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
y[iy0 + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
}
|
||||
|
||||
template <bool need_check>
|
||||
@@ -71,9 +71,7 @@ static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, h
|
||||
y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(vx);
|
||||
GGML_UNUSED(y);
|
||||
GGML_UNUSED(k);
|
||||
GGML_UNUSED_VARS(vx, y, k);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
}
|
||||
@@ -630,7 +628,7 @@ static __global__ void convert_unary(
|
||||
|
||||
const int64_t ix = i03*s03 + i02*s02 + i01*s01 + i00;
|
||||
const int64_t iy = ((i03*ne02 + i02)*ne01 + i01)*ne00 + i00;
|
||||
y[iy] = float(x[ix]);
|
||||
y[iy] = ggml_cuda_cast<dst_t>(x[ix]);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
|
||||
15
ml/backend/ggml/ggml/src/ggml-cuda/convert.cuh
vendored
15
ml/backend/ggml/ggml/src/ggml-cuda/convert.cuh
vendored
@@ -29,3 +29,18 @@ typedef to_t_nc_cuda_t<nv_bfloat16> to_bf16_nc_cuda_t;
|
||||
to_fp32_nc_cuda_t ggml_get_to_fp32_nc_cuda(ggml_type type);
|
||||
to_fp16_nc_cuda_t ggml_get_to_fp16_nc_cuda(ggml_type type);
|
||||
to_bf16_nc_cuda_t ggml_get_to_bf16_nc_cuda(ggml_type type);
|
||||
|
||||
template<typename dst_t, typename src_t>
|
||||
__host__ __device__ inline dst_t ggml_cuda_cast(src_t x) {
|
||||
if constexpr (std::is_same_v<dst_t, src_t>) {
|
||||
return x;
|
||||
} else if constexpr(std::is_same_v<dst_t, nv_bfloat16>) {
|
||||
return __float2bfloat16(float(x));
|
||||
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
|
||||
return __bfloat162float(x);
|
||||
} else if constexpr(std::is_same_v<dst_t, int32_t>) {
|
||||
return int32_t(x);
|
||||
} else {
|
||||
return float(x);
|
||||
}
|
||||
}
|
||||
|
||||
12
ml/backend/ggml/ggml/src/ggml-cuda/cpy-utils.cuh
vendored
12
ml/backend/ggml/ggml/src/ggml-cuda/cpy-utils.cuh
vendored
@@ -1,15 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-common.h"
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __device__ __forceinline__ void convert_flt(const src_t * src, dst_t * dst) {
|
||||
if constexpr (std::is_same_v<src_t, dst_t>) {
|
||||
*dst = *src;
|
||||
} else {
|
||||
*dst = float(*src);
|
||||
}
|
||||
}
|
||||
#include "convert.cuh"
|
||||
|
||||
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
|
||||
if (x <= val[0]) return 0;
|
||||
@@ -221,7 +213,7 @@ static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __device__ void cpy_1_flt(const char * cxi, char * cdsti) {
|
||||
convert_flt((const src_t *)cxi, (dst_t *)cdsti);
|
||||
*(dst_t *) cdsti = ggml_cuda_cast<dst_t>(*(const src_t *) cxi);
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||||
|
||||
29
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
29
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
@@ -42,7 +42,7 @@ static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < QK8_0; j += 2) {
|
||||
dfloat2 dq;
|
||||
float2 dq;
|
||||
dequantize_q8_0(cxi, 0, j, dq);
|
||||
*(cdstf + j) = dq.x;
|
||||
*(cdstf + j + 1) = dq.y;
|
||||
@@ -55,7 +55,7 @@ static __device__ void cpy_blck_q_f32(const char * cxi, char * cdsti) {
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < qk/2; j++) {
|
||||
dfloat2 dq;
|
||||
float2 dq;
|
||||
dequant(cxi, 0, j, dq);
|
||||
*(cdstf + j) = dq.x;
|
||||
*(cdstf + j + qk/2) = dq.y;
|
||||
@@ -134,8 +134,7 @@ void ggml_cuda_cpy_dest_ptrs_copy(ggml_cuda_graph * cuda_graph, char ** host_des
|
||||
CUDA_CHECK(cudaMemcpyAsync(cuda_graph->dest_ptrs_d, host_dest_ptrs, host_dest_ptrs_size*sizeof(char *), cudaMemcpyHostToDevice, stream));
|
||||
cuda_graph->graph_cpynode_index = 0; // reset index
|
||||
#else
|
||||
GGML_UNUSED(cuda_graph); GGML_UNUSED(host_dest_ptrs);
|
||||
GGML_UNUSED(host_dest_ptrs_size); GGML_UNUSED(stream);
|
||||
GGML_UNUSED_VARS(cuda_graph, host_dest_ptrs, host_dest_ptrs_size, stream);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -371,7 +370,11 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
} else
|
||||
#endif // GGML_USE_MUSA && GGML_MUSA_MUDNN_COPY
|
||||
{
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
}
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
@@ -418,6 +421,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@@ -440,7 +447,13 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
return nullptr;
|
||||
// Prioritize CUDA graph compatibility over direct memory copy optimization.
|
||||
// Using copy kernels here maintains graph indirection support, preventing performance regression from disabled CUDA graphs.
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, float>>;
|
||||
} else {
|
||||
return nullptr;
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, float>>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
||||
@@ -481,6 +494,10 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return (void*) cpy_flt<cpy_1_flt<nv_bfloat16, nv_bfloat16>>;
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<nv_bfloat16, float>>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, int32_t>>;
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<int32_t, float>>;
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
||||
@@ -1,48 +1,37 @@
|
||||
#include "common.cuh"
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, float2 & v){
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
const float d = x[ib].d;
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x = vui & 0xF;
|
||||
v.y = vui >> 4;
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hsub2(v, {8.0f, 8.0f});
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x = (v.x - 8.0f) * d;
|
||||
v.y = (v.y - 8.0f) * d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, float2 & v){
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const dfloat d = __low2half(x[ib].dm);
|
||||
const dfloat m = __high2half(x[ib].dm);
|
||||
const float2 dm = __half22float2(x[ib].dm);
|
||||
|
||||
const int vui = x[ib].qs[iqs];
|
||||
|
||||
v.x = vui & 0xF;
|
||||
v.y = vui >> 4;
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
v = __hadd2(v, {m, m});
|
||||
#else
|
||||
v.x = (v.x * d) + m;
|
||||
v.y = (v.y * d) + m;
|
||||
#endif // GGML_CUDA_F16
|
||||
v.x = (v.x * dm.x) + dm.y;
|
||||
v.y = (v.y * dm.x) + dm.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, float2 & v){
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
const float d = x[ib].d;
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
@@ -53,20 +42,14 @@ static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const in
|
||||
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hsub2(v, {16.0f, 16.0f});
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x = (v.x - 16.0f) * d;
|
||||
v.y = (v.y - 16.0f) * d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, float2 & v){
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const dfloat d = __low2half(x[ib].dm);
|
||||
const dfloat m = __high2half(x[ib].dm);
|
||||
const float2 dm = __half22float2(x[ib].dm);
|
||||
|
||||
uint32_t qh;
|
||||
memcpy(&qh, x[ib].qh, sizeof(qh));
|
||||
@@ -77,27 +60,18 @@ static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const in
|
||||
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
||||
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
v = __hadd2(v, {m, m});
|
||||
#else
|
||||
v.x = (v.x * d) + m;
|
||||
v.y = (v.y * d) + m;
|
||||
#endif // GGML_CUDA_F16
|
||||
v.x = (v.x * dm.x) + dm.y;
|
||||
v.y = (v.y * dm.x) + dm.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
||||
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, float2 & v){
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const dfloat d = x[ib].d;
|
||||
const float d = x[ib].d;
|
||||
|
||||
v.x = x[ib].qs[iqs + 0];
|
||||
v.y = x[ib].qs[iqs + 1];
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
v = __hmul2(v, {d, d});
|
||||
#else
|
||||
v.x *= d;
|
||||
v.y *= d;
|
||||
#endif // GGML_CUDA_F16
|
||||
}
|
||||
|
||||
836
ml/backend/ggml/ggml/src/ggml-cuda/fattn-common.cuh
vendored
836
ml/backend/ggml/ggml/src/ggml-cuda/fattn-common.cuh
vendored
@@ -33,276 +33,230 @@ typedef void (* fattn_kernel_t)(
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33);
|
||||
|
||||
typedef half (*vec_dot_KQ_f16_t)(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
||||
typedef float (*vec_dot_KQ_f32_t)(
|
||||
typedef float (*vec_dot_KQ_t)(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
|
||||
|
||||
template<typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI4_0;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||
const int u = Q_q8[k_KQ_0/warp_size];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||
|
||||
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/warp_size];
|
||||
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
{
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
|
||||
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (8/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI4_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||
const int u = Q_q8[k_KQ_0/warp_size];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||
|
||||
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/warp_size];
|
||||
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
|
||||
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
{
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
|
||||
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
|
||||
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
|
||||
|
||||
sum += (T) (sumid4d8 + m4s8scaled);
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI5_0;
|
||||
const int iqs8 = k_KQ % QI8_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||
const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
|
||||
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||
|
||||
const int u = Q_q8[k_KQ_0/warp_size];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||
|
||||
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/warp_size];
|
||||
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
{
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
|
||||
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (16/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI5_1;
|
||||
const int iqs8 = k_KQ % QI8_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
|
||||
const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
|
||||
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||
|
||||
const int u = Q_q8[k_KQ_0/warp_size];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||
|
||||
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/warp_size];
|
||||
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
|
||||
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
{
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
|
||||
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
|
||||
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
|
||||
|
||||
sum += (T) (sumid5d8 + m5s8scaled);
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
T sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const int ib = k_KQ / QI8_0;
|
||||
const int iqs = k_KQ % QI8_0;
|
||||
|
||||
const int v = get_int_b2(K_q8_0[ib].qs, iqs);
|
||||
|
||||
T Q_d;
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_ds = (const half2 *) Q_ds_v;
|
||||
Q_d = __low2half(Q_ds[k_KQ_0/warp_size]);
|
||||
} else {
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
Q_d = Q_ds[k_KQ_0/warp_size].x;
|
||||
}
|
||||
|
||||
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/warp_size], K_q8_0[ib].d, Q_d);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <typename T, int D, int warp_size>
|
||||
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
|
||||
template <int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_f16(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const half2 * K_h2 = (const half2 *) K_c;
|
||||
GGML_UNUSED(Q_q8);
|
||||
GGML_UNUSED(Q_ds_v);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
const half2 * Q_h2 = (const half2 *) Q_v;
|
||||
|
||||
half2 sum2 = make_half2(0.0f, 0.0f);
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[k_KQ];
|
||||
sum2 += K_ik * Q_h2[k_KQ_0/warp_size];
|
||||
}
|
||||
|
||||
return __low2half(sum2) + __high2half(sum2);
|
||||
}
|
||||
#endif // FP16_AVAILABLE
|
||||
|
||||
const float2 * Q_f2 = (const float2 *) Q_v;
|
||||
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
|
||||
constexpr int cpy_ne = cpy_nb / 4;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
const half2 K_ik = K_h2[k_KQ];
|
||||
sum += __low2float(K_ik) * Q_f2[k_KQ_0/warp_size].x;
|
||||
sum += __high2float(K_ik) * Q_f2[k_KQ_0/warp_size].y;
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += nthreads*cpy_ne) {
|
||||
half2 tmp[cpy_ne];
|
||||
ggml_cuda_memcpy_1<sizeof(tmp)>(tmp, K_h2 + k_KQ_0 + (threadIdx.x % nthreads)*cpy_ne);
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < cpy_ne; ++k_KQ_1) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
ggml_cuda_mad(sum, tmp[k_KQ_1] , ((const half2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
|
||||
#else
|
||||
ggml_cuda_mad(sum, __half22float2(tmp[k_KQ_1]), ((const float2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <typename Tds>
|
||||
template<int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q4_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
|
||||
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI4_0;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v;
|
||||
ggml_cuda_memcpy_1<sizeof(int), 2>(&v, K_q4_0[ib].qs + sizeof(int)*iqs4);
|
||||
v = (v >> shift) & 0x0F0F0F0F;
|
||||
const int u = Q_q8[k_KQ_0/nthreads];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
|
||||
sum += __half2float(K_q4_0[ib].d) * (sumi*Q_ds.x - (8/QI8_1)*Q_ds.y);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q4_1(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
|
||||
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI4_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v;
|
||||
ggml_cuda_memcpy_1<sizeof(int)>(&v, K_q4_1[ib].qs + sizeof(int)*iqs4);
|
||||
v = (v >> shift) & 0x0F0F0F0F;
|
||||
const int u = Q_q8[k_KQ_0/nthreads];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
const float2 K_dm = __half22float2(K_q4_1[ib].dm);
|
||||
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
|
||||
|
||||
sum += K_dm.x*Q_ds.x*sumi + K_dm.y*Q_ds.y/QI8_1;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q5_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
|
||||
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI5_0;
|
||||
const int iqs8 = k_KQ % QI8_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v;
|
||||
ggml_cuda_memcpy_1<sizeof(int), 2>(&v, K_q5_0[ib].qs + sizeof(int)*iqs4);
|
||||
v = (v >> shift) & 0x0F0F0F0F;
|
||||
|
||||
{
|
||||
int vh;
|
||||
ggml_cuda_memcpy_1<sizeof(int), 2>(&vh, K_q5_0[ib].qh);
|
||||
vh >>= iqs8 * QI5_0;
|
||||
|
||||
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||
}
|
||||
|
||||
const int u = Q_q8[k_KQ_0/nthreads];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
|
||||
|
||||
sum += __half2float(K_q5_0[ib].d) * (sumi*Q_ds.x - (16/QI8_1)*Q_ds.y);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template<int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q5_1(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
|
||||
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
|
||||
|
||||
const int ib = k_KQ / QI8_1;
|
||||
const int iqs4 = k_KQ % QI5_1;
|
||||
const int iqs8 = k_KQ % QI8_1;
|
||||
const int shift = k_KQ & (QI8_1/2);
|
||||
|
||||
int v;
|
||||
ggml_cuda_memcpy_1<sizeof(int)>(&v, K_q5_1[ib].qs + sizeof(int)*iqs4);
|
||||
v = (v >> shift) & 0x0F0F0F0F;
|
||||
|
||||
{
|
||||
int vh;
|
||||
ggml_cuda_memcpy_1<sizeof(int)>(&vh, K_q5_1[ib].qh);
|
||||
vh >>= iqs8 * QI5_0;
|
||||
|
||||
v |= (vh << 4) & 0x00000010; // 0 -> 4
|
||||
v |= (vh << 11) & 0x00001000; // 1 -> 12
|
||||
v |= (vh << 18) & 0x00100000; // 2 -> 20
|
||||
v |= (vh << 25) & 0x10000000; // 3 -> 28
|
||||
}
|
||||
|
||||
const int u = Q_q8[k_KQ_0/nthreads];
|
||||
|
||||
const int sumi = ggml_cuda_dp4a(v, u, 0);
|
||||
|
||||
const float2 K_dm = __half22float2(K_q5_1[ib].dm);
|
||||
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
|
||||
|
||||
sum += K_dm.x*Q_ds.x*sumi + K_dm.y*Q_ds.y/QI8_1;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <int D, int nthreads>
|
||||
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q8_0(
|
||||
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
|
||||
|
||||
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
|
||||
GGML_UNUSED(Q_v);
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
|
||||
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
|
||||
|
||||
const int ib = k_KQ / QI8_0;
|
||||
const int iqs = k_KQ % QI8_0;
|
||||
|
||||
int v;
|
||||
ggml_cuda_memcpy_1<sizeof(v), 2>(&v, K_q8_0[ib].qs + 4*iqs);
|
||||
|
||||
const float2 * Q_ds = (const float2 *) Q_ds_v;
|
||||
const float Q_d = Q_ds[k_KQ_0/nthreads].x;
|
||||
|
||||
sum += vec_dot_q8_0_q8_1_impl<float, 1>(&v, &Q_q8[k_KQ_0/nthreads], K_q8_0[ib].d, Q_d);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
template <typename Tds, int ni>
|
||||
static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
|
||||
|
||||
float vals[sizeof(int)] = {0.0f};
|
||||
#pragma unroll
|
||||
for (int l = 0; l < int(sizeof(int)); ++l) {
|
||||
vals[l] = scale * x[4*threadIdx.x + l];
|
||||
vals[l] = (ni == WARP_SIZE || threadIdx.x < ni) ? scale * x[4*threadIdx.x + l] : 0.0f;
|
||||
}
|
||||
|
||||
float amax = fabsf(vals[0]);
|
||||
@@ -330,7 +284,7 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||
}
|
||||
|
||||
yq32[threadIdx.x] = q32;
|
||||
if (threadIdx.x % QI8_1 == 0) {
|
||||
if (threadIdx.x % QI8_1 == 0 && (ni == WARP_SIZE || threadIdx.x < ni)) {
|
||||
if (std::is_same<Tds, half2>::value) {
|
||||
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
|
||||
} else {
|
||||
@@ -339,167 +293,276 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
|
||||
}
|
||||
}
|
||||
|
||||
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
|
||||
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
|
||||
typedef void (*dequantize_V_t)(const void *, void *, const int64_t);
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_f16(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
if constexpr (std::is_same_v<T, half>) {
|
||||
ggml_cuda_memcpy_1<ne*sizeof(half)>(dst, (const half *) vx + i0);
|
||||
} else if constexpr (std::is_same_v<T, float>) {
|
||||
static_assert(ne % 2 == 0, "bad ne");
|
||||
half2 tmp[ne/2];
|
||||
ggml_cuda_memcpy_1<ne*sizeof(half)>(tmp, (const half *) vx + i0);
|
||||
float2 * dst_f2 = (float2 *) dst;
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne/2; ++l) {
|
||||
dst_f2[l] = __half22float2(tmp[l]);
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_q4_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
const block_q4_0 * x = (const block_q4_0 *) vx;
|
||||
|
||||
const int64_t ib = i / QK4_0;
|
||||
const int iqs = i % (QK4_0/2);
|
||||
const int shift = (i % QK4_0) / (QK4_0/2);
|
||||
const int64_t ib = i0 / QK4_0;
|
||||
const int iqs = i0 % (QK4_0/2);
|
||||
const int shift = (i0 % QK4_0) / (QK4_0/2);
|
||||
|
||||
const T d = x[ib].d;
|
||||
const int q0 = x[ib].qs[iqs];
|
||||
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
|
||||
int q;
|
||||
static_assert(ne == 2 || ne == 4, "bad ne");
|
||||
ggml_cuda_memcpy_1<ne, 2>(&q, x[ib].qs + iqs);
|
||||
q >>= 4*shift;
|
||||
q &= 0x0F0F0F0F;
|
||||
q = __vsubss4(q, 0x08080808);
|
||||
|
||||
const int8_t * q8 = (const int8_t *) &q;
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
return ((half) d)*((half) q);
|
||||
}
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, half>) {
|
||||
const half2 d = __half2half2(x[ib].d);
|
||||
|
||||
return ((float) d)*((float) q);
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < ne; l0 += 2) {
|
||||
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]);
|
||||
}
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
const float d = x[ib].d;
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
((float *) dst)[l] = d * q8[l];
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "bad type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_q4_1(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
const block_q4_1 * x = (const block_q4_1 *) vx;
|
||||
|
||||
const int64_t ib = i / QK4_1;
|
||||
const int iqs = i % (QK4_1/2);
|
||||
const int shift = (i % QK4_1) / (QK4_1/2);
|
||||
const int64_t ib = i0 / QK4_1;
|
||||
const int iqs = i0 % (QK4_1/2);
|
||||
const int shift = (i0 % QK4_1) / (QK4_1/2);
|
||||
|
||||
const half2 dm = x[ib].dm;
|
||||
const int q0 = x[ib].qs[iqs];
|
||||
const int q = ((q0 >> (4*shift)) & 0x0F);
|
||||
int q;
|
||||
static_assert(ne == 2 || ne == 4, "bad ne");
|
||||
ggml_cuda_memcpy_1<ne>(&q, x[ib].qs + iqs);
|
||||
q >>= 4*shift;
|
||||
q &= 0x0F0F0F0F;
|
||||
|
||||
const int8_t * q8 = (const int8_t *) &q;
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
return __low2half(dm)*((half) q) + __high2half(dm);
|
||||
}
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, half>) {
|
||||
const half2 dm = x[ib].dm;
|
||||
const half2 d = __half2half2( __low2half(dm));
|
||||
const half2 m = __half2half2(__high2half(dm));
|
||||
|
||||
return __low2float(dm)*((float) q) + __high2float(dm);
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < ne; l0 += 2) {
|
||||
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]) + m;
|
||||
}
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
const float2 dm = __half22float2(x[ib].dm);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
((float *) dst)[l] = dm.x * q8[l] + dm.y;
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "bad type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_q5_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
const block_q5_0 * x = (const block_q5_0 *) vx;
|
||||
|
||||
const int64_t ib = i / QK5_0;
|
||||
const int idq = i % QK5_0;
|
||||
const int iqs = i % (QK5_0/2);
|
||||
const int shift = (i % QK5_0) / (QK5_0/2);
|
||||
const int64_t ib = i0 / QK5_0;
|
||||
const int idq = i0 % QK5_0;
|
||||
const int iqs = i0 % (QK5_0/2);
|
||||
const int shift = (i0 % QK5_0) / (QK5_0/2);
|
||||
|
||||
const T d = x[ib].d;
|
||||
const int ql0 = x[ib].qs[iqs];
|
||||
const int qh0 = get_int_b2(x[ib].qh, 0);
|
||||
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
||||
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
||||
const int q = (ql | qh) - 16;
|
||||
int q;
|
||||
static_assert(ne == 2 || ne == 4, "bad ne");
|
||||
ggml_cuda_memcpy_1<ne, 2>(&q, x[ib].qs + iqs);
|
||||
q >>= 4*shift;
|
||||
q &= 0x0F0F0F0F;
|
||||
|
||||
{
|
||||
int qh;
|
||||
ggml_cuda_memcpy_1<ne, 2>(&qh, x[ib].qh);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
q |= ((qh >> (idq + l)) & 0x00000001) << (8*l + 4);
|
||||
}
|
||||
}
|
||||
|
||||
q = __vsubss4(q, 0x10101010);
|
||||
|
||||
const int8_t * q8 = (const int8_t *) &q;
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
return ((half) d)*((half) q);
|
||||
}
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, half>) {
|
||||
const half2 d = __half2half2(x[ib].d);
|
||||
|
||||
return ((float) d)*((float) q);
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < ne; l0 += 2) {
|
||||
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]);
|
||||
}
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
const float d = x[ib].d;
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
((float *) dst)[l] = d * q8[l];
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "bad type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_q5_1(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
const block_q5_1 * x = (const block_q5_1 *) vx;
|
||||
|
||||
const int64_t ib = i / QK5_1;
|
||||
const int idq = i % QK5_1;
|
||||
const int iqs = i % (QK5_1/2);
|
||||
const int shift = (i % QK5_1) / (QK5_1/2);
|
||||
const int64_t ib = i0 / QK5_1;
|
||||
const int idq = i0 % QK5_1;
|
||||
const int iqs = i0 % (QK5_1/2);
|
||||
const int shift = (i0 % QK5_1) / (QK5_1/2);
|
||||
|
||||
const half2 dm = x[ib].dm;
|
||||
const int ql0 = x[ib].qs[iqs];
|
||||
const int qh0 = get_int_b4(x[ib].qh, 0);
|
||||
const int ql = ((ql0 >> (4*shift)) & 0x0F);
|
||||
const int qh = ((qh0 >> idq) << 4) & 0x10;
|
||||
const int q = (ql | qh);
|
||||
int q;
|
||||
static_assert(ne == 2 || ne == 4, "bad ne");
|
||||
ggml_cuda_memcpy_1<ne>(&q, x[ib].qs + iqs);
|
||||
q >>= 4*shift;
|
||||
q &= 0x0F0F0F0F;
|
||||
|
||||
{
|
||||
int qh;
|
||||
ggml_cuda_memcpy_1<ne>(&qh, x[ib].qh);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
q |= ((qh >> (idq + l)) & 0x00000001) << (8*l + 4);
|
||||
}
|
||||
}
|
||||
|
||||
const int8_t * q8 = (const int8_t *) &q;
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
return __low2half(dm)*((half) q) + __high2half(dm);
|
||||
}
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, half>) {
|
||||
const half2 dm = x[ib].dm;
|
||||
const half2 d = __half2half2( __low2half(dm));
|
||||
const half2 m = __half2half2(__high2half(dm));
|
||||
|
||||
return __low2float(dm)*((float) q) + __high2float(dm);
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < ne; l0 += 2) {
|
||||
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]) + m;
|
||||
}
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
const float2 dm = __half22float2(x[ib].dm);
|
||||
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
((float *) dst)[l] = dm.x * q8[l] + dm.y;
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "bad type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
|
||||
template <typename T, int ne>
|
||||
static __device__ __forceinline__ void dequantize_V_q8_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
|
||||
const block_q8_0 * x = (const block_q8_0 *) vx;
|
||||
|
||||
const int64_t ib = i / QK8_0;
|
||||
const int iqs = i % QK8_0;
|
||||
const int64_t ib = i0 / QK8_0;
|
||||
const int iqs = i0 % QK8_0;
|
||||
|
||||
const T d = x[ib].d;
|
||||
const int q = x[ib].qs[iqs];
|
||||
static_assert(ne % 2 == 0, "bad ne");
|
||||
int8_t qs[ne];
|
||||
ggml_cuda_memcpy_1<ne, 2>(qs, x[ib].qs + iqs);
|
||||
|
||||
#ifdef FP16_AVAILABLE
|
||||
if (std::is_same<T, half>::value) {
|
||||
return ((half) d)*((half) q);
|
||||
}
|
||||
if constexpr (std::is_same<T, half>::value) {
|
||||
const half2 d = __half2half2(x[ib].d);
|
||||
|
||||
#pragma unroll
|
||||
for (int l0 = 0; l0 < ne; l0 += 2) {
|
||||
((half2 *) dst)[l0/2] = d * make_half2(qs[l0 + 0], qs[l0 + 1]);
|
||||
}
|
||||
} else
|
||||
#endif // FP16_AVAILABLE
|
||||
if constexpr (std::is_same<T, float>::value) {
|
||||
const float d = x[ib].d;
|
||||
|
||||
return ((float) d)*((float) q);
|
||||
#pragma unroll
|
||||
for (int l = 0; l < ne; ++l) {
|
||||
((float *) dst)[l] = d * qs[l];
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
|
||||
const half * x = (const half *) vx;
|
||||
|
||||
return x[i];
|
||||
template <ggml_type type_K, int D, int nthreads>
|
||||
constexpr __device__ vec_dot_KQ_t get_vec_dot_KQ() {
|
||||
if constexpr (type_K == GGML_TYPE_F16) {
|
||||
return vec_dot_fattn_vec_KQ_f16<D, nthreads>;
|
||||
} else if constexpr (type_K == GGML_TYPE_Q4_0) {
|
||||
return vec_dot_fattn_vec_KQ_q4_0<D, nthreads>;
|
||||
} else if constexpr (type_K == GGML_TYPE_Q4_1) {
|
||||
return vec_dot_fattn_vec_KQ_q4_1<D, nthreads>;
|
||||
} else if constexpr (type_K == GGML_TYPE_Q5_0) {
|
||||
return vec_dot_fattn_vec_KQ_q5_0<D, nthreads>;
|
||||
} else if constexpr (type_K == GGML_TYPE_Q5_1) {
|
||||
return vec_dot_fattn_vec_KQ_q5_1<D, nthreads>;
|
||||
} else if constexpr (type_K == GGML_TYPE_Q8_0) {
|
||||
return vec_dot_fattn_vec_KQ_q8_0<D, nthreads>;
|
||||
} else {
|
||||
static_assert(type_K == -1, "bad type");
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int warp_size = WARP_SIZE>
|
||||
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
|
||||
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D, warp_size> :
|
||||
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D, warp_size> :
|
||||
nullptr;
|
||||
}
|
||||
|
||||
template <int D, int warp_size = WARP_SIZE>
|
||||
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
|
||||
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D, warp_size> :
|
||||
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D, warp_size> :
|
||||
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D, warp_size> :
|
||||
nullptr;
|
||||
}
|
||||
|
||||
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
|
||||
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
|
||||
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
|
||||
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
|
||||
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
|
||||
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
|
||||
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
|
||||
nullptr;
|
||||
}
|
||||
|
||||
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
|
||||
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
|
||||
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
|
||||
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
|
||||
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
|
||||
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
|
||||
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
|
||||
nullptr;
|
||||
template <ggml_type type_V, typename T, int ne>
|
||||
constexpr __device__ dequantize_V_t get_dequantize_V() {
|
||||
if constexpr (type_V == GGML_TYPE_F16) {
|
||||
return dequantize_V_f16<T, ne>;
|
||||
} else if constexpr (type_V == GGML_TYPE_Q4_0) {
|
||||
return dequantize_V_q4_0<T, ne>;
|
||||
} else if constexpr (type_V == GGML_TYPE_Q4_1) {
|
||||
return dequantize_V_q4_1<T, ne>;
|
||||
} else if constexpr (type_V == GGML_TYPE_Q5_0) {
|
||||
return dequantize_V_q5_0<T, ne>;
|
||||
} else if constexpr (type_V == GGML_TYPE_Q5_1) {
|
||||
return dequantize_V_q5_1<T, ne>;
|
||||
} else if constexpr (type_V == GGML_TYPE_Q8_0) {
|
||||
return dequantize_V_q8_0<T, ne>;
|
||||
} else {
|
||||
static_assert(type_V == -1, "bad type");
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <int ncols1>
|
||||
@@ -539,11 +602,15 @@ static __global__ void flash_attn_mask_to_KV_max(
|
||||
all_inf = warp_reduce_all(all_inf);
|
||||
|
||||
if (!all_inf) {
|
||||
KV_max_sj += FATTN_KQ_STRIDE;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If the break in the loop was not triggered, KV_max_sj is now -FATTN_KQ_STRIDE.
|
||||
// If the break was triggered it's the lower edge of the tile with the first non-masked values.
|
||||
// In either case, walk back the decrementation by FATTN_KQ_STRIDE.
|
||||
KV_max_sj += FATTN_KQ_STRIDE;
|
||||
|
||||
if (threadIdx.x != 0) {
|
||||
return;
|
||||
}
|
||||
@@ -643,9 +710,7 @@ static __global__ void flash_attn_stream_k_fixup(
|
||||
}
|
||||
|
||||
template<int D> // D == head size
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_combine_results(
|
||||
const float * __restrict__ VKQ_parts,
|
||||
const float2 * __restrict__ VKQ_meta,
|
||||
@@ -688,10 +753,7 @@ static __global__ void flash_attn_combine_results(
|
||||
float VKQ_numerator = 0.0f;
|
||||
float VKQ_denominator = 0.0f;
|
||||
for (int l = 0; l < parallel_blocks; ++l) {
|
||||
const float diff = meta[l].x - kqmax;
|
||||
float KQ_max_scale = expf(diff);
|
||||
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
|
||||
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
|
||||
const float KQ_max_scale = expf(meta[l].x - kqmax);
|
||||
|
||||
VKQ_numerator += KQ_max_scale * VKQ_parts[l*D + tid];
|
||||
VKQ_denominator += KQ_max_scale * meta[l].y;
|
||||
@@ -700,28 +762,6 @@ static __global__ void flash_attn_combine_results(
|
||||
dst[tid] = VKQ_numerator / VKQ_denominator;
|
||||
}
|
||||
|
||||
[[noreturn]]
|
||||
static void on_no_fattn_vec_case(const int D) {
|
||||
if (D == 64) {
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
|
||||
fprintf(stderr, "By default only f16 KV cache is supported.\n");
|
||||
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
|
||||
GGML_ABORT("fatal error");
|
||||
} else if (D == 128) {
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
|
||||
fprintf(stderr, "Supported combinations:\n");
|
||||
fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
|
||||
fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
|
||||
fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
|
||||
fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
|
||||
GGML_ABORT("fatal error");
|
||||
} else {
|
||||
fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D);
|
||||
fprintf(stderr, "Only f16 is supported.\n");
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
template <int DV, int ncols1, int ncols2>
|
||||
void launch_fattn(
|
||||
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
|
||||
@@ -854,11 +894,10 @@ void launch_fattn(
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
int parallel_blocks = 1;
|
||||
|
||||
const dim3 block_dim(warp_size, nwarps, 1);
|
||||
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
|
||||
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
|
||||
int parallel_blocks = max_blocks_per_sm;
|
||||
|
||||
dim3 blocks_num;
|
||||
if (stream_k) {
|
||||
@@ -880,9 +919,6 @@ void launch_fattn(
|
||||
GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
|
||||
const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
|
||||
|
||||
// parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
|
||||
parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1);
|
||||
|
||||
// parallel_blocks must not be larger than what the tensor size allows:
|
||||
parallel_blocks = std::min(parallel_blocks, ntiles_KQ);
|
||||
|
||||
@@ -897,7 +933,7 @@ void launch_fattn(
|
||||
const int efficiency_percent = 100 * nblocks_total / (nwaves*blocks_per_wave);
|
||||
|
||||
// Stop trying configurations with more waves if we already have good efficiency to avoid excessive overhead.
|
||||
if (efficiency_percent_best >= 90 && nwaves > nwaves_best) {
|
||||
if (efficiency_percent_best >= 95 && nwaves > nwaves_best) {
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
@@ -767,14 +767,11 @@ static __device__ __forceinline__ void flash_attn_ext_f16_iter(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2);
|
||||
GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V);
|
||||
GGML_UNUSED(stride_mask); GGML_UNUSED(tile_K);
|
||||
GGML_UNUSED(tile_V); GGML_UNUSED(tile_mask); GGML_UNUSED(Q_B);
|
||||
GGML_UNUSED(VKQ_C); GGML_UNUSED(KQ_max); GGML_UNUSED(KQ_rowsum);
|
||||
GGML_UNUSED(kb0); GGML_UNUSED(tile_Q);
|
||||
GGML_UNUSED_VARS(Q_f2, K_h2, V_h2, mask_h2, dstk, dstk_fixup,
|
||||
scale, slope, logit_softcap, ne01, ne02,
|
||||
stride_K, stride_V, stride_mask,
|
||||
tile_Q, tile_K, tile_V, tile_mask,
|
||||
Q_B, VKQ_C, KQ_max, KQ_rowsum, kb0);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -1236,12 +1233,10 @@ static __device__ __forceinline__ void flash_attn_ext_f16_process_tile(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q_f2); GGML_UNUSED(K_h2); GGML_UNUSED(V_h2);
|
||||
GGML_UNUSED(mask_h2); GGML_UNUSED(dstk); GGML_UNUSED(dstk_fixup);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(slope); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(stride_Q1);
|
||||
GGML_UNUSED(stride_Q2); GGML_UNUSED(stride_K); GGML_UNUSED(stride_V); GGML_UNUSED(stride_mask);
|
||||
GGML_UNUSED(jt); GGML_UNUSED(kb0_start); GGML_UNUSED(kb0_stop);
|
||||
GGML_UNUSED_VARS(Q_f2, K_h2, V_h2, mask_h2, sinks_f, dstk, dstk_fixup,
|
||||
scale, slope, logit_softcap, ne01, ne02,
|
||||
stride_Q1, stride_Q2, stride_K, stride_V, stride_mask,
|
||||
jt, kb0_start, kb0_stop);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -1395,17 +1390,15 @@ static __global__ void flash_attn_ext_f16(
|
||||
(Q_f2, K_h2, V_h2, mask_h2, sinks_f, dstk, dst_meta, scale, slope, logit_softcap,
|
||||
ne01, ne02, stride_Q1, stride_Q2, stride_K, stride_V, stride_mask, jt, kb0_start_kernel, kb0_stop_kernel);
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(TURING_MMA_AVAILABLE)
|
||||
}
|
||||
|
||||
347
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile-f16.cu
vendored
347
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile-f16.cu
vendored
@@ -1,347 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
|
||||
|
||||
half kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -HALF_MAX_HALF;
|
||||
}
|
||||
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||
|
||||
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ half2 Q_h2[ncols][D/2];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F16; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F16) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
half kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||
|
||||
KV_tmp[i_KQ][k_KQ] = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
|
||||
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
|
||||
half2 Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
half sum;
|
||||
if (use_logit_softcap) {
|
||||
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
sum = logit_softcap * tanhf(tmp.x + tmp.y);
|
||||
} else {
|
||||
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
|
||||
const half2 val = h2exp(diff);
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
|
||||
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
KV_tmp[k][i] = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
|
||||
half2 V_k[(D/2)/WARP_SIZE][2];
|
||||
half2 KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
|
||||
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float2 * dst2 = (float2 *) dst;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||
kqsum_j = warp_reduce_sum((float)kqsum_j);
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
|
||||
const int i0 = i00 + threadIdx.x;
|
||||
|
||||
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
|
||||
if (gridDim.y == 1) {
|
||||
dst_val /= __half2half2(kqsum_j);
|
||||
}
|
||||
dst2[j_dst_unrolled*(D/2) + i0] = __half22float2(dst_val);
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
|
||||
template <int cols_per_block, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F16, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
@@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
355
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile-f32.cu
vendored
355
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile-f32.cu
vendored
@@ -1,355 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, bool use_logit_softcap> // D == head size
|
||||
#if !defined(GGML_USE_HIP)
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 2)
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
static __global__ void flash_attn_tile_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float2 * Q_f2 = (const float2 *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
|
||||
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||||
|
||||
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||||
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||||
|
||||
float kqmax[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float kqsum[ncols/nwarps] = {0.0f};
|
||||
|
||||
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||
|
||||
// Convert Q to half2 and store in registers:
|
||||
__shared__ float Q_f[ncols][D];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
|
||||
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*FATTN_KQ_STRIDE_TILE_F32; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*FATTN_KQ_STRIDE_TILE_F32) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float kqmax_new[ncols/nwarps];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||
kqmax_new[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||||
const half2 tmp = K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||||
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||||
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||||
|
||||
#pragma unroll
|
||||
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||||
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||||
float Q_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
|
||||
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||
|
||||
float kqsum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||||
const float val = expf(diff);
|
||||
kqsum_add += val;
|
||||
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||||
}
|
||||
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||||
const int k = k0 + threadIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const half2 tmp = V_h2[int64_t(k_VKQ_0 + k)*stride_KV2 + i];
|
||||
KV_tmp2[k*(D/2) + i].x = __low2float(tmp);
|
||||
KV_tmp2[k*(D/2) + i].y = __high2float(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||||
float2 V_k[(D/2)/WARP_SIZE];
|
||||
float KQ_k[ncols/nwarps];
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||||
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float2 * dst2 = (float2 *) dst;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#pragma unroll
|
||||
for (int i00 = 0; i00 < D/2; i00 += WARP_SIZE) {
|
||||
const int i0 = i00 + threadIdx.x;
|
||||
|
||||
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/WARP_SIZE];
|
||||
if (gridDim.y == 1) {
|
||||
dst_val.x /= kqsum_j;
|
||||
dst_val.y /= kqsum_j;
|
||||
}
|
||||
dst2[j_dst_unrolled*(D/2) + i0] = dst_val;
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
template <int cols_per_block, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, use_logit_softcap>;
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, FATTN_KQ_STRIDE_TILE_F32, true, true, false);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
@@ -1,3 +0,0 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
755
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile.cu
vendored
Normal file
755
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile.cu
vendored
Normal file
@@ -0,0 +1,755 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-tile.cuh"
|
||||
|
||||
// kq_stride == number of KQ rows to process per iteration
|
||||
// kq_nbatch == number of K columns to load in parallel for KQ calculation
|
||||
|
||||
static int fattn_tile_get_kq_stride_host(const int D, const int ncols, const int cc, const int warp_size) {
|
||||
if (GGML_CUDA_CC_IS_AMD(cc)) {
|
||||
if (GGML_CUDA_CC_IS_RDNA(cc)) {
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 128;
|
||||
case 128:
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols == 32 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols == 32 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if (fast_fp16_available(cc)) {
|
||||
switch (D) {
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
return -1;
|
||||
}
|
||||
GGML_UNUSED(warp_size);
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_kq_stride_device(int D, int ncols, int warp_size) {
|
||||
#ifdef GGML_USE_HIP
|
||||
#ifdef RDNA
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 128;
|
||||
case 128:
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols == 32 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols == 32 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#endif // RDNA
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
switch (D) {
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
switch (D) {
|
||||
case 64:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
case 128:
|
||||
return ncols <= 16 ? 64 : 32;
|
||||
case 256:
|
||||
return 32;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // GGML_USE_HIP
|
||||
GGML_UNUSED_VARS(ncols, warp_size);
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_kq_nbatch_device(int D, int ncols, int warp_size) {
|
||||
#ifdef GGML_USE_HIP
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
case 256:
|
||||
return 128;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
case 256:
|
||||
return 128;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#else
|
||||
switch (D) {
|
||||
case 64:
|
||||
return 64;
|
||||
case 128:
|
||||
return 128;
|
||||
case 256:
|
||||
return ncols <= 16 ? 128 : 64;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // GGML_USE_HIP
|
||||
GGML_UNUSED_VARS(ncols, warp_size);
|
||||
}
|
||||
|
||||
static int fattn_tile_get_nthreads_host(const int cc, const int ncols) {
|
||||
return 256;
|
||||
GGML_UNUSED_VARS(cc, ncols);
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_nthreads_device(int ncols) {
|
||||
return 256;
|
||||
GGML_UNUSED(ncols);
|
||||
}
|
||||
|
||||
static constexpr __device__ int fattn_tile_get_occupancy_device(int ncols) {
|
||||
#ifdef RDNA
|
||||
return 3;
|
||||
#else
|
||||
return ncols <= 16 ? 3 : 2;
|
||||
#endif // RDNA
|
||||
GGML_UNUSED(ncols);
|
||||
}
|
||||
|
||||
template<int D, int ncols, bool use_logit_softcap> // D == head size
|
||||
__launch_bounds__(fattn_tile_get_nthreads_device(ncols), fattn_tile_get_occupancy_device(ncols))
|
||||
static __global__ void flash_attn_tile(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int warp_size = 32;
|
||||
constexpr int nwarps = fattn_tile_get_nthreads_device(ncols) / warp_size;
|
||||
constexpr int kq_stride = fattn_tile_get_kq_stride_device(D, ncols, warp_size);
|
||||
static_assert(kq_stride % warp_size == 0, "kq_stride not divisable by warp_size.");
|
||||
constexpr int kq_nbatch = fattn_tile_get_kq_nbatch_device(D, ncols, warp_size);
|
||||
static_assert(kq_nbatch % (2*warp_size) == 0, "bad kq_nbatch");
|
||||
|
||||
// In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half2 * K_h2 = (const half2 *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half2 * V_h2 = (const half2 *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const int stride_KV2 = nb11 / sizeof(half2);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
|
||||
constexpr int cpy_ne = cpy_nb / 4;
|
||||
|
||||
constexpr int cpw = ncols/nwarps; // cols per warp
|
||||
|
||||
// softmax_iter_j == number of KQ columns for which to calculate softmax in parallel.
|
||||
// KQ is originall 2D but uses a Z-shaped memory pattern for larger reads/writes.
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
constexpr int softmax_iter_j = cpw < 2*cpy_ne ? cpw : 2*cpy_ne;
|
||||
|
||||
__shared__ half KQ[ncols/softmax_iter_j][kq_stride][softmax_iter_j];
|
||||
__shared__ half2 Q_tmp[ncols][D/2];
|
||||
__shared__ half2 KV_tmp[kq_stride * (kq_nbatch/2 + cpy_ne)]; // Padded to avoid memory bank conflicts.
|
||||
half2 VKQ[cpw][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
|
||||
#else
|
||||
constexpr int softmax_iter_j = cpw < 1*cpy_ne ? cpw : 1*cpy_ne;
|
||||
|
||||
__shared__ float KQ[ncols/softmax_iter_j][kq_stride][softmax_iter_j];
|
||||
__shared__ float Q_tmp[ncols][D];
|
||||
__shared__ float KV_tmp[kq_stride * (kq_nbatch + cpy_ne)]; // Padded to avoid memory bank conflicts.
|
||||
float2 VKQ[cpw][D/(2*warp_size)] = {{{0.0f, 0.0f}}};
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
static_assert(cpw % softmax_iter_j == 0, "bad softmax_iter_j");
|
||||
|
||||
float KQ_max[cpw];
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
KQ_max[j0/nwarps] = -FLT_MAX/2.0f;
|
||||
}
|
||||
float KQ_sum[cpw] = {0.0f};
|
||||
|
||||
// Load Q data, convert to FP16 if fast.
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; ++j0) {
|
||||
const int j = j0 + threadIdx.y*cpw;
|
||||
|
||||
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
|
||||
float tmp_f[cpy_ne_D] = {0.0f};
|
||||
if (ic0 + j < ne01) {
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_f)>(tmp_f, &Q_f[j*(nb01/sizeof(float)) + i0 + threadIdx.x*cpy_ne_D]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
|
||||
tmp_f[i1] *= scale;
|
||||
}
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 tmp_h2[cpy_ne_D/2];
|
||||
#pragma unroll
|
||||
for (int i1 = 0; i1 < cpy_ne_D; i1 += 2) {
|
||||
tmp_h2[i1/2] = make_half2(tmp_f[i1 + 0], tmp_f[i1 + 1]);
|
||||
}
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(&Q_tmp[j][i0/2 + threadIdx.x*(cpy_ne_D/2)], tmp_h2);
|
||||
#else
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_f)> (&Q_tmp[j][i0 + threadIdx.x* cpy_ne_D], tmp_f);
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Main loop over KV cache:
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
for (int k_VKQ_0 = blockIdx.y*kq_stride; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*kq_stride) {
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
float KQ_max_new[cpw];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < cpw; ++j) {
|
||||
KQ_max_new[j] = KQ_max[j];
|
||||
}
|
||||
|
||||
float KQ_acc[kq_stride/warp_size][cpw] = {{0.0f}}; // Accumulators for KQ matrix multiplication.
|
||||
|
||||
// KQ = K @ Q matrix multiplication:
|
||||
#pragma unroll
|
||||
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += kq_nbatch) {
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
constexpr int cpy_ne_kqnb = cpy_ne < kq_nbatch/(2*warp_size) ? cpy_ne : kq_nbatch/(2*warp_size);
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += warp_size*cpy_ne_kqnb) {
|
||||
ggml_cuda_memcpy_1<cpy_ne_kqnb*4>(
|
||||
&KV_tmp[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1 + threadIdx.x*cpy_ne_kqnb],
|
||||
&K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1 + threadIdx.x*cpy_ne_kqnb]);
|
||||
}
|
||||
#else
|
||||
constexpr int cpy_ne_kqnb = cpy_ne < kq_nbatch/warp_size ? cpy_ne : kq_nbatch/warp_size;
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += warp_size*cpy_ne_kqnb) {
|
||||
half2 tmp_h2[cpy_ne_kqnb/2];
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
|
||||
tmp_h2, &K_h2[int64_t(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + k_KQ_1/2 + threadIdx.x*(cpy_ne_kqnb/2)]);
|
||||
|
||||
float2 tmp_f2[cpy_ne_kqnb/2];
|
||||
#pragma unroll
|
||||
for (int k_KQ_2 = 0; k_KQ_2 < cpy_ne_kqnb/2; ++k_KQ_2) {
|
||||
tmp_f2[k_KQ_2] = __half22float2(tmp_h2[k_KQ_2]);
|
||||
}
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_f2)>(
|
||||
&KV_tmp[i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1 + threadIdx.x*cpy_ne_kqnb], tmp_f2);
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch/2; k_KQ_1 += cpy_ne) {
|
||||
half2 K_k[kq_stride/warp_size][cpy_ne];
|
||||
half2 Q_k[cpw][cpy_ne];
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int k_KQ_1 = 0; k_KQ_1 < kq_nbatch; k_KQ_1 += cpy_ne) {
|
||||
float K_k[kq_stride/warp_size][cpy_ne];
|
||||
float Q_k[cpw][cpy_ne];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp[i_KQ*(kq_nbatch/2 + cpy_ne) + k_KQ_1]);
|
||||
#else
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&K_k[i_KQ_0/warp_size], &KV_tmp[i_KQ*(kq_nbatch + cpy_ne) + k_KQ_1]);
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y*cpw;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0], &Q_tmp[j_KQ][k_KQ_0/2 + k_KQ_1]);
|
||||
#else
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&Q_k[j_KQ_0], &Q_tmp[j_KQ][k_KQ_0 + k_KQ_1]);
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
|
||||
#pragma unroll
|
||||
for (int k = 0; k < cpy_ne; ++k) {
|
||||
ggml_cuda_mad(KQ_acc[i_KQ_0/warp_size][j_KQ_0], K_k[i_KQ_0/warp_size][k], Q_k[j_KQ_0][k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (k_KQ_0 + kq_nbatch < D) {
|
||||
__syncthreads(); // Sync not needed on last iteration.
|
||||
}
|
||||
}
|
||||
|
||||
// Apply logit softcap, mask, update KQ_max:
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < kq_stride; i_KQ_0 += warp_size) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||
|
||||
#pragma unroll
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < cpw; ++j_KQ_0) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y*cpw;
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_acc[i_KQ_0/warp_size][j_KQ_0] = logit_softcap * tanhf(KQ_acc[i_KQ_0/warp_size][j_KQ_0]);
|
||||
}
|
||||
|
||||
KQ_acc[i_KQ_0/warp_size][j_KQ_0] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
KQ_max_new[j_KQ_0] = fmaxf(KQ_max_new[j_KQ_0], KQ_acc[i_KQ_0/warp_size][j_KQ_0]);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Calculate KQ softmax, write to shared KQ buffer, re-scale VKQ accumulators:
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half tmp[kq_stride/warp_size][softmax_iter_j];
|
||||
#else
|
||||
float tmp[kq_stride/warp_size][softmax_iter_j];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
#pragma unroll
|
||||
for (int j1 = 0; j1 < softmax_iter_j; ++j1) {
|
||||
KQ_max_new[j0+j1] = warp_reduce_max<warp_size>(KQ_max_new[j0+j1]);
|
||||
const float KQ_max_scale = expf(KQ_max[j0+j1] - KQ_max_new[j0+j1]);
|
||||
KQ_max[j0+j1] = KQ_max_new[j0+j1];
|
||||
|
||||
float KQ_sum_add = 0.0f;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
|
||||
const float val = expf(KQ_acc[i0/warp_size][j0+j1] - KQ_max[j0+j1]);
|
||||
KQ_sum_add += val;
|
||||
tmp[i0/warp_size][j1] = val;
|
||||
}
|
||||
KQ_sum[j0+j1] = KQ_sum[j0+j1]*KQ_max_scale + KQ_sum_add;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0+j1][i0/warp_size] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0+j1][i0/warp_size].x *= KQ_max_scale;
|
||||
VKQ[j0+j1][i0/warp_size].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < kq_stride; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
ggml_cuda_memcpy_1<sizeof(tmp[0])>(
|
||||
KQ[j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j)][i], tmp[i0/warp_size]);
|
||||
}
|
||||
}
|
||||
|
||||
// VKQ = V @ KQ matrix multiplication:
|
||||
constexpr int V_cols_per_iter = kq_stride*kq_nbatch / D; // Number of V columns that fit in SRAM for K.
|
||||
static_assert(kq_stride % V_cols_per_iter == 0, "bad V_cols_per_iter");
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < kq_stride; k0 += V_cols_per_iter) {
|
||||
#pragma unroll
|
||||
for (int k1 = 0; k1 < V_cols_per_iter; k1 += nwarps) {
|
||||
const int k_tile = k1 + threadIdx.y;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
constexpr int cpy_ne_D = cpy_ne < D/(2*warp_size) ? cpy_ne : D/(2*warp_size);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
|
||||
ggml_cuda_memcpy_1<cpy_ne_D*4>(
|
||||
&KV_tmp[k_tile*(D/2) + i0 + threadIdx.x*cpy_ne_D],
|
||||
&V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i0 + threadIdx.x*cpy_ne_D]);
|
||||
}
|
||||
#else
|
||||
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
|
||||
half2 tmp_h2[cpy_ne_D/2];
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
|
||||
tmp_h2, &V_h2[int64_t(k_VKQ_0 + k0 + k_tile)*stride_KV2 + i0/2 + threadIdx.x*(cpy_ne_D/2)]);
|
||||
|
||||
float2 tmp_f2[cpy_ne_D/2];
|
||||
#pragma unroll
|
||||
for (int i1 = 0; i1 < cpy_ne_D/2; ++i1) {
|
||||
tmp_f2[i1] = __half22float2(tmp_h2[i1]);
|
||||
}
|
||||
ggml_cuda_memcpy_1<sizeof(tmp_f2)>(
|
||||
&KV_tmp[k_tile*D + i0 + threadIdx.x*cpy_ne_D], tmp_f2);
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
#pragma unroll
|
||||
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
|
||||
half2 V_k[(D/2)/warp_size];
|
||||
half2 KQ_k[cpw];
|
||||
|
||||
constexpr int cpy_ne_D = cpy_ne/2 < (D/2)/warp_size ? cpy_ne/2 : (D/2)/warp_size;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
|
||||
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/warp_size], &KV_tmp[k1*(D/2) + i0 + threadIdx.x*cpy_ne_D]);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
|
||||
const int j = j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j);
|
||||
|
||||
half tmp[softmax_iter_j];
|
||||
ggml_cuda_memcpy_1<softmax_iter_j*sizeof(half)>(
|
||||
&tmp, KQ[j][k0 + k1]);
|
||||
#pragma unroll
|
||||
for (int j1 = 0; j1 < softmax_iter_j; ++j1) {
|
||||
KQ_k[j0+j1] = __half2half2(tmp[j1]);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; ++j0) {
|
||||
VKQ[j0][i0/warp_size] += V_k[i0/warp_size]*KQ_k[j0];
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int k1 = 0; k1 < V_cols_per_iter; ++k1) {
|
||||
float2 V_k[(D/2)/warp_size];
|
||||
float KQ_k[cpw];
|
||||
|
||||
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
|
||||
ggml_cuda_memcpy_1<cpy_ne_D*4>(&V_k[i0/(2*warp_size)], &KV_tmp[k1*D + i0 + threadIdx.x*cpy_ne_D]);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; j0 += softmax_iter_j) {
|
||||
const int j = j0/softmax_iter_j + threadIdx.y*(cpw/softmax_iter_j);
|
||||
|
||||
ggml_cuda_memcpy_1<softmax_iter_j*sizeof(float)>(
|
||||
&KQ_k[j0], KQ[j][k0 + k1]);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; ++j0) {
|
||||
VKQ[j0][i0/warp_size].x += V_k[i0/warp_size].x*KQ_k[j0];
|
||||
VKQ[j0][i0/warp_size].y += V_k[i0/warp_size].y*KQ_k[j0];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Attention sink: adjust running max and sum once per head
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const float sink = sinksf[head];
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cpw; ++j0) {
|
||||
float KQ_max_new_j = fmaxf(KQ_max[j0], sink);
|
||||
KQ_max_new_j = warp_reduce_max<warp_size>(KQ_max_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(KQ_max[j0] - KQ_max_new_j);
|
||||
KQ_max[j0] = KQ_max_new_j;
|
||||
|
||||
const float val = expf(sink - KQ_max[j0]);
|
||||
KQ_sum[j0] = KQ_sum[j0] * KQ_max_scale;
|
||||
if (threadIdx.x == 0) {
|
||||
KQ_sum[j0] += val;
|
||||
}
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0][i0/warp_size] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
VKQ[j0][i0/warp_size].x *= KQ_max_scale;
|
||||
VKQ[j0][i0/warp_size].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
|
||||
KQ_sum[j_VKQ_0] = warp_reduce_sum<warp_size>(KQ_sum[j_VKQ_0]);
|
||||
}
|
||||
if (gridDim.y == 1) {
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_sum_j_inv = make_half2(1.0f/KQ_sum[j_VKQ_0], 1.0f/KQ_sum[j_VKQ_0]);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < (D/2)/warp_size; ++i) {
|
||||
VKQ[j_VKQ_0][i] *= KQ_sum_j_inv;
|
||||
}
|
||||
#else
|
||||
const float KQ_sum_j_inv = 1.0f/KQ_sum[j_VKQ_0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < (D/2)/warp_size; ++i) {
|
||||
VKQ[j_VKQ_0][i].x *= KQ_sum_j_inv;
|
||||
VKQ[j_VKQ_0][i].y *= KQ_sum_j_inv;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
// Write back results:
|
||||
#pragma unroll
|
||||
for (int j_VKQ_0 = 0; j_VKQ_0 < cpw; ++j_VKQ_0) {
|
||||
const int j_VKQ = j_VKQ_0 + threadIdx.y*cpw;
|
||||
|
||||
if (ic0 + j_VKQ >= ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
constexpr int cpy_ne_D = cpy_ne/2 < (D/2)/warp_size ? cpy_ne/2 : (D/2)/warp_size;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size*cpy_ne_D) {
|
||||
float2 tmp[cpy_ne_D];
|
||||
#pragma unroll
|
||||
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
|
||||
tmp[i1] = __half22float2(VKQ[j_VKQ_0][i0/warp_size + i1]);
|
||||
}
|
||||
ggml_cuda_memcpy_1<sizeof(tmp)>(&dst[j_dst_unrolled*D + 2*i0 + threadIdx.x*(2*cpy_ne_D)], tmp);
|
||||
}
|
||||
#else
|
||||
constexpr int cpy_ne_D = cpy_ne < D/warp_size ? cpy_ne : D/warp_size;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += warp_size*cpy_ne_D) {
|
||||
ggml_cuda_memcpy_1<cpy_ne_D*4>(
|
||||
&dst[j_dst_unrolled*D + i0 + threadIdx.x*cpy_ne_D], &VKQ[j_VKQ_0][i0/(2*warp_size)]);
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
if (gridDim.y != 1 && threadIdx.x == 0) {
|
||||
dst_meta[j_dst_unrolled] = make_float2(KQ_max[j_VKQ_0], KQ_sum[j_VKQ_0]);
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, bool use_logit_softcap>
|
||||
static void launch_fattn_tile_switch_ncols(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = 32;
|
||||
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
|
||||
#ifdef GGML_USE_HIP
|
||||
if constexpr (D <= 128) {
|
||||
if (Q->ne[1] > 32) {
|
||||
constexpr int cols_per_block = 64;
|
||||
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
|
||||
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif // GGML_USE_HIP
|
||||
|
||||
if (Q->ne[1] > 16) {
|
||||
constexpr int cols_per_block = 32;
|
||||
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
|
||||
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 16;
|
||||
const int nwarps = fattn_tile_get_nthreads_host(cc, cols_per_block) / warp_size;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile<D, cols_per_block, use_logit_softcap>;
|
||||
const int kq_stride = fattn_tile_get_kq_stride_host(D, cols_per_block, cc, warp_size);
|
||||
launch_fattn<D, cols_per_block, 1>
|
||||
(ctx, dst, fattn_kernel, nwarps, nbytes_shared, kq_stride, true, true, false, warp_size);
|
||||
}
|
||||
|
||||
template <bool use_logit_softcap>
|
||||
static void launch_fattn_tile_switch_head_size(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
launch_fattn_tile_switch_ncols< 64, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
case 128: {
|
||||
launch_fattn_tile_switch_ncols<128, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
case 256: {
|
||||
launch_fattn_tile_switch_ncols<256, use_logit_softcap>(ctx, dst);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("Unsupported head size");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_switch_head_size<use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
3
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile.cuh
vendored
Normal file
3
ml/backend/ggml/ggml/src/ggml-cuda/fattn-tile.cuh
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
497
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec-f16.cuh
vendored
497
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec-f16.cuh
vendored
@@ -1,497 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
// Currenlty llvm with the amdgcn target dose not support unrolling loops
|
||||
// that contain a break that can not be resolved at compile time.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // GGML_USE_HIP
|
||||
static __global__ void flash_attn_vec_ext_f16(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
if (ncols > 1) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
||||
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
Q += nb03*sequence + nb02* head + nb01*ic0;
|
||||
K += nb13*sequence + nb12*(head / gqa_ratio);
|
||||
V += nb23*sequence + nb22*(head / gqa_ratio);
|
||||
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
const half slopeh = __float2half(slopef);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ half KQ[ncols*D];
|
||||
half2 * KQ2 = (half2 *) KQ;
|
||||
|
||||
half kqmax[ncols];
|
||||
half kqsum[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -HALF_MAX_HALF;
|
||||
kqsum[j] = 0.0f;
|
||||
}
|
||||
|
||||
__shared__ half kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ half kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ half maskh_shared[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskh_shared[j*D + tid] = 0.0f;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
|
||||
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
|
||||
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||
if (Q_q8_1) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > ncols && j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
// Set memory to zero if out of bounds:
|
||||
if (ncols > 2 && ic0 + j >= ne01) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
tmp_q_i32[i] = 0;
|
||||
}
|
||||
if (threadIdx.x < D/QK8_1) {
|
||||
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
const float * Q_f = (const float *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -HALF_MAX_HALF;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
half2 VKQ[ncols] = {{0.0f, 0.0f}};
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
K += blockIdx.y*D * nb11;
|
||||
V += blockIdx.y*D * nb21;
|
||||
maskh += blockIdx.y*D;
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
|
||||
// Increment pointers after each loop:
|
||||
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
|
||||
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
|
||||
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
|
||||
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
|
||||
half kqmax_new = kqmax[0];
|
||||
half kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half sum = vec_dot_KQ(K + i_KQ*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
||||
sum = warp_reduce_sum((float)sum);
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += maskh_shared[j*D + i_KQ];
|
||||
|
||||
if (ncols == 1) {
|
||||
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
|
||||
} else {
|
||||
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < D; k0 += 2) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
half2 V_k;
|
||||
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k0 + 0)*nb21, tid);
|
||||
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k0 + 1)*nb21, tid);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const half sink = __float2half(sinksf[head]);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const half val = hexp(sink - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale;
|
||||
|
||||
if (tid == 0) {
|
||||
kqsum[j] += val;
|
||||
}
|
||||
|
||||
VKQ[j] *= __half2half2(KQ_max_scale);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum((float)kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||
break;
|
||||
}
|
||||
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum((float)kqsum[j_VKQ]);
|
||||
|
||||
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
|
||||
if (gridDim.y == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta);
|
||||
GGML_UNUSED(scale); GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
GGML_ASSERT(K->type == type_K);
|
||||
GGML_ASSERT(V->type == type_V);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
template void ggml_cuda_flash_attn_ext_vec_f16_case \
|
||||
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
|
||||
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
490
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec-f32.cuh
vendored
490
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec-f32.cuh
vendored
@@ -1,490 +0,0 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
// Currenlty llvm with the amdgcn target dose not support unrolling loops
|
||||
// that contain a break that can not be resolved at compile time.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#ifndef GGML_USE_HIP
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // GGML_USE_HIP
|
||||
static __global__ void flash_attn_vec_ext_f32(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
|
||||
GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
|
||||
GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
|
||||
GGML_UNUSED(nb23);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
if (ncols > 1) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
|
||||
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||
constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
Q += nb03*sequence + nb02* head + nb01*ic0;
|
||||
K += nb13*sequence + nb12*(head / gqa_ratio);
|
||||
V += nb23*sequence + nb22*(head / gqa_ratio);
|
||||
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const float * sinksf = (const float *) (sinks);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = D / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < D);
|
||||
|
||||
__shared__ float KQ[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ[j*D + tid] = -FLT_MAX/2.0f;
|
||||
}
|
||||
|
||||
float kqmax[ncols];
|
||||
float kqsum[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax[j] = -FLT_MAX/2.0f;
|
||||
kqsum[j] = 0.0f;
|
||||
}
|
||||
|
||||
__shared__ float kqmax_shared[ncols][WARP_SIZE];
|
||||
__shared__ float kqsum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||
kqsum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ float maskf_shared[ncols*D];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskf_shared[j*D + tid] = 0.0f;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
|
||||
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
|
||||
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
|
||||
if (Q_q8_1) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > ncols && j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
// Set memory to zero if out of bounds:
|
||||
if (ncols > 2 && ic0 + j >= ne01) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
tmp_q_i32[i] = 0;
|
||||
}
|
||||
if (threadIdx.x < D/QK8_1) {
|
||||
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
const float * Q_f = (const float *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
|
||||
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
|
||||
Q_f2[j][i0/WARP_SIZE].x *= scale;
|
||||
Q_f2[j][i0/WARP_SIZE].y *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float VKQ[ncols] = {0.0f};
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
K += blockIdx.y*D * nb11;
|
||||
V += blockIdx.y*D * nb21;
|
||||
maskh += blockIdx.y*D;
|
||||
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
|
||||
// Increment pointers after each loop:
|
||||
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
|
||||
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
|
||||
if (mask) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float kqmax_new_arr[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqmax_new_arr[j] = kqmax[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
|
||||
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||
|
||||
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
|
||||
break;
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float sum = vec_dot_KQ(K + i_KQ*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += maskf_shared[j*D + i_KQ];
|
||||
|
||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
KQ[j*D + i_KQ] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_new_arr[j];
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const float val = expf(KQ[j*D + tid] - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale + val;
|
||||
KQ[j*D + tid] = val;
|
||||
|
||||
VKQ[j] *= KQ_max_scale;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < D; ++k) {
|
||||
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const float V_ki = dequantize_1_v(V + k*nb21, tid);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j] += V_ki*KQ[j*D + k];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const float sink = sinksf[head];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.x == 0) {
|
||||
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
|
||||
kqmax_new_j = warp_reduce_max(kqmax_new_j);
|
||||
|
||||
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
|
||||
kqmax[j] = kqmax_new_j;
|
||||
|
||||
const float val = expf(sink - kqmax[j]);
|
||||
kqsum[j] = kqsum[j]*KQ_max_scale;
|
||||
|
||||
if (tid == 0) {
|
||||
kqsum[j] += val;
|
||||
}
|
||||
|
||||
VKQ[j] *= KQ_max_scale;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
kqsum[j] = warp_reduce_sum(kqsum[j]);
|
||||
if (threadIdx.x == 0) {
|
||||
kqsum_shared[j][threadIdx.y] = kqsum[j];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
|
||||
break;
|
||||
}
|
||||
|
||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||
|
||||
float dst_val = VKQ[j_VKQ];
|
||||
if (gridDim.y == 1) {
|
||||
dst_val /= kqsum[j_VKQ];
|
||||
}
|
||||
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
|
||||
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
|
||||
GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
|
||||
GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
|
||||
GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
GGML_ASSERT(K->type == type_K);
|
||||
GGML_ASSERT(V->type == type_V);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||
template void ggml_cuda_flash_attn_ext_vec_f32_case \
|
||||
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
|
||||
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
|
||||
extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
593
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec.cuh
vendored
Normal file
593
ml/backend/ggml/ggml/src/ggml-cuda/fattn-vec.cuh
vendored
Normal file
@@ -0,0 +1,593 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
static int ggml_cuda_fattn_vec_get_nthreads_host(const int cc) {
|
||||
return 128;
|
||||
GGML_UNUSED(cc);
|
||||
}
|
||||
|
||||
static constexpr __device__ int ggml_cuda_fattn_vec_get_nthreads_device() {
|
||||
return 128;
|
||||
}
|
||||
|
||||
// Currenlty llvm with the amdgcn target dose not support unrolling loops
|
||||
// that contain a break that can not be resolved at compile time.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
__launch_bounds__(ggml_cuda_fattn_vec_get_nthreads_device(), 1)
|
||||
static __global__ void flash_attn_ext_vec(
|
||||
const char * __restrict__ Q,
|
||||
const char * __restrict__ K,
|
||||
const char * __restrict__ V,
|
||||
const char * __restrict__ mask,
|
||||
const char * __restrict__ sinks,
|
||||
const int * __restrict__ KV_max,
|
||||
float * __restrict__ dst,
|
||||
float2 * __restrict__ dst_meta,
|
||||
const float scale,
|
||||
const float max_bias,
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
|
||||
const int32_t nb01, const int32_t nb02, const int32_t nb03,
|
||||
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
|
||||
const int32_t nb11, const int32_t nb12, const int64_t nb13,
|
||||
const int32_t nb21, const int32_t nb22, const int64_t nb23,
|
||||
const int32_t ne31, const int32_t ne32, const int32_t ne33,
|
||||
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
|
||||
#ifdef FLASH_ATTN_AVAILABLE
|
||||
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
|
||||
constexpr int cpy_ne = cpy_nb / 4;
|
||||
|
||||
#ifdef GGML_USE_HIP
|
||||
#ifdef RDNA
|
||||
constexpr int nthreads_KQ_q = 2;
|
||||
#else
|
||||
constexpr int nthreads_KQ_q = 4;
|
||||
#endif // RDNA
|
||||
constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
|
||||
#else
|
||||
constexpr int nthreads_KQ_q = (D/4 < 32 ? D/4 : 32);
|
||||
constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
|
||||
#endif // GGML_USE_HIP
|
||||
|
||||
constexpr int nthreads = ggml_cuda_fattn_vec_get_nthreads_device();
|
||||
constexpr int nthreads_KQ = type_K == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_KQ_q;
|
||||
constexpr int nthreads_V = type_V == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_V_q;
|
||||
|
||||
static_assert(WARP_SIZE % nthreads_KQ == 0, "bad nthreads_K");
|
||||
static_assert(WARP_SIZE % nthreads_V == 0, "bad nthreads_V");
|
||||
|
||||
constexpr int V_rows_per_thread = type_V == GGML_TYPE_F16 ? 2*cpy_ne : 4;
|
||||
constexpr int V_cols_per_iter = WARP_SIZE / nthreads_V;
|
||||
|
||||
constexpr vec_dot_KQ_t vec_dot_KQ = get_vec_dot_KQ<type_K, D, nthreads_KQ>();
|
||||
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, half, V_rows_per_thread>();
|
||||
#else
|
||||
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, float, V_rows_per_thread>();
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
|
||||
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
Q += nb03*sequence + nb02* head + nb01*ic0;
|
||||
K += nb13*sequence + nb12*(head / gqa_ratio);
|
||||
V += nb23*sequence + nb22*(head / gqa_ratio);
|
||||
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
|
||||
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
|
||||
|
||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||
constexpr int nwarps = nthreads / WARP_SIZE;
|
||||
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
||||
__builtin_assume(tid < nthreads);
|
||||
|
||||
constexpr int ne_KQ = ncols*D;
|
||||
constexpr int ne_combine = nwarps*V_cols_per_iter*D;
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
|
||||
__shared__ half KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
|
||||
#else
|
||||
float2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
|
||||
__shared__ float KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
float KQ_max[ncols];
|
||||
float KQ_sum[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ_max[j] = -FLT_MAX/2.0f;
|
||||
KQ_sum[j] = 0.0f;
|
||||
}
|
||||
|
||||
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 Q_reg[ncols][(D/2)/nthreads_KQ]; // Will be initialized completely.
|
||||
#else
|
||||
float2 Q_reg[ncols][(D/2)/nthreads_KQ] = {{{0.0f, 0.0f}}}; // May be only partially initialized.
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
int Q_i32[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
|
||||
float2 Q_ds[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
|
||||
if constexpr (Q_q8_1) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > ncols && j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Reuse KQ as temporary storage for converting Q to q8_1:
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
// Set memory to zero if out of bounds:
|
||||
if (ncols > 1 && ic0 + j >= ne01) {
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
if (i0 + WARP_SIZE <= D/sizeof(int) || i < D/sizeof(int)) {
|
||||
tmp_q_i32[i] = 0;
|
||||
}
|
||||
}
|
||||
if (threadIdx.x < D/QK8_1) {
|
||||
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
|
||||
}
|
||||
} else {
|
||||
const float * Q_f = (const float *) (Q + j*nb01);
|
||||
constexpr int nthreads_quantize = D/sizeof(int) < WARP_SIZE ? D/sizeof(int) : WARP_SIZE;
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_quantize) {
|
||||
quantize_q8_1_to_shared<float2, nthreads_quantize>
|
||||
(Q_f + i0*sizeof(int), scale, tmp_q_i32 + i0, tmp_q_ds + i0/QI8_1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
int * tmp_q_i32 = (int *) &KQ[j*D];
|
||||
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_KQ) {
|
||||
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ);
|
||||
|
||||
Q_i32[j][i0/nthreads_KQ] = tmp_q_i32[i];
|
||||
Q_ds[j][i0/nthreads_KQ] = tmp_q_ds[i/QI8_1];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
} else {
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 scale_h2 = make_half2(scale, scale);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
const float2 * Q_j = (const float2 *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
|
||||
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
|
||||
|
||||
float2 tmp[cpy_ne] = {{0.0f, 0.0f}};
|
||||
if (ncols == 1 || ic0 + j < ne01) {
|
||||
ggml_cuda_memcpy_1<cpy_nb>(tmp, &Q_j[i]);
|
||||
ggml_cuda_memcpy_1<cpy_nb>(tmp + cpy_ne/2, &Q_j[i + cpy_ne/2]);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i1 = 0; i1 < cpy_ne; ++i1) {
|
||||
Q_reg[j][i0/nthreads_KQ + i1] = make_half2(tmp[i1].x, tmp[i1].y);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
|
||||
Q_reg[j][k] *= scale_h2;
|
||||
}
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
const float2 * Q_j = (const float2 *) (Q + j*nb01);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
|
||||
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
|
||||
if (ncols == 1 || ic0 + j < ne01) {
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ], &Q_j[i]);
|
||||
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ + cpy_ne/2], &Q_j[i + cpy_ne/2]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
|
||||
Q_reg[j][k].x *= scale;
|
||||
Q_reg[j][k].y *= scale;
|
||||
}
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
|
||||
K += blockIdx.y*nthreads * nb11;
|
||||
V += blockIdx.y*nthreads * nb21;
|
||||
maskh += blockIdx.y*nthreads;
|
||||
for (int k_VKQ_0 = blockIdx.y*nthreads; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nthreads,
|
||||
// Increment pointers after each loop:
|
||||
K += gridDim.y*nthreads*nb11, V += gridDim.y*nthreads*nb21, maskh += gridDim.y*nthreads) {
|
||||
|
||||
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||
float KQ_reg[ncols]; // KQ in registers.
|
||||
|
||||
float KQ_max_new[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ_max_new[j] = KQ_max[j];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i_KQ_0 = 0; i_KQ_0 < nthreads_KQ; ++i_KQ_0) {
|
||||
const int i_KQ = threadIdx.y*WARP_SIZE + (nthreads_KQ == WARP_SIZE ? 0 : (threadIdx.x & ~(nthreads_KQ-1))) + i_KQ_0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float sum = vec_dot_KQ(K + i_KQ*nb11, Q_reg[j], Q_i32[j], Q_ds[j]);
|
||||
sum = warp_reduce_sum<nthreads_KQ>(sum);
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
if (mask) {
|
||||
sum += slope*__half2float(maskh[j*ne11 + i_KQ]);
|
||||
}
|
||||
|
||||
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
|
||||
|
||||
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == i_KQ_0) {
|
||||
KQ_reg[j] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
#pragma unroll
|
||||
for (int offset = nthreads_KQ; offset < WARP_SIZE; offset <<= 1) {
|
||||
KQ_max_new[j] = fmaxf(KQ_max_new[j], __shfl_xor_sync(0xFFFFFFFF, KQ_max_new[j], offset, WARP_SIZE));
|
||||
}
|
||||
const float KQ_max_scale = expf(KQ_max[j] - KQ_max_new[j]);
|
||||
KQ_max[j] = KQ_max_new[j];
|
||||
|
||||
KQ_reg[j] = expf(KQ_reg[j] - KQ_max[j]);
|
||||
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + KQ_reg[j];
|
||||
KQ[j*nthreads + tid] = KQ_reg[j];
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
|
||||
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
|
||||
#ifndef GGML_USE_HIP
|
||||
__syncwarp();
|
||||
#endif // GGML_USE_HIP
|
||||
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < WARP_SIZE; k0 += V_cols_per_iter) {
|
||||
const int k = threadIdx.y*WARP_SIZE + k0 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V);
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 KQ_k[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ_k[j] = __half2half2(KQ[j*nthreads + k]);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
|
||||
half2 tmp[V_rows_per_thread/2];
|
||||
dequantize_V(V + k*nb21, tmp,
|
||||
2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
|
||||
#pragma unroll
|
||||
for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1] += tmp[i_VKQ_1]*KQ_k[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
float KQ_k[ncols];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
KQ_k[j] = KQ[j*nthreads + k];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
|
||||
float2 tmp[V_rows_per_thread/2];
|
||||
dequantize_V(V + k*nb21, tmp,
|
||||
2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
|
||||
#pragma unroll
|
||||
for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].x += tmp[i_VKQ_1].x*KQ_k[j];
|
||||
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].y += tmp[i_VKQ_1].y*KQ_k[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
if (sinks && blockIdx.y == 0) {
|
||||
const float sink = ((const float *) sinks)[head];
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > ncols && j >= ncols) {
|
||||
break;
|
||||
}
|
||||
|
||||
const float kqmax_new_j = fmaxf(sink, KQ_max[j]);
|
||||
const float KQ_max_scale = expf(KQ_max[j] - kqmax_new_j);
|
||||
KQ_max[j] = kqmax_new_j;
|
||||
|
||||
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + (threadIdx.x == 0 ? expf(sink - KQ_max[j]) : 0.0f);
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
|
||||
}
|
||||
#else
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
|
||||
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ float KQ_max_shared[ncols][WARP_SIZE];
|
||||
__shared__ float KQ_sum_shared[ncols][WARP_SIZE];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.y == 0) {
|
||||
KQ_max_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
|
||||
KQ_sum_shared[j][threadIdx.x] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
if (threadIdx.x == 0) {
|
||||
KQ_max_shared[j][threadIdx.y] = KQ_max[j];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||
if (ncols > 1 && ic0 + j_VKQ >= ne01) {
|
||||
break;
|
||||
}
|
||||
|
||||
float kqmax_new = KQ_max_shared[j_VKQ][threadIdx.x];
|
||||
kqmax_new = warp_reduce_max(kqmax_new);
|
||||
const float kqmax_scale = expf(KQ_max[j_VKQ] - kqmax_new);
|
||||
KQ_max[j_VKQ] = kqmax_new;
|
||||
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
half2 * VKQ_tmp = (half2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
|
||||
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
|
||||
|
||||
const half2 kqmax_scale_h2 = make_half2(kqmax_scale, kqmax_scale);
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j_VKQ][i_VKQ_0/nthreads_V] *= kqmax_scale_h2;
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
|
||||
const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
|
||||
|
||||
ggml_cuda_memcpy_1<V_rows_per_thread*sizeof(half)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
|
||||
}
|
||||
#else
|
||||
float2 * VKQ_tmp = (float2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
|
||||
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
|
||||
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
|
||||
VKQ[j_VKQ][i_VKQ_0/nthreads_V].x *= kqmax_scale;
|
||||
VKQ[j_VKQ][i_VKQ_0/nthreads_V].y *= kqmax_scale;
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
|
||||
const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
|
||||
|
||||
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
|
||||
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ + V_rows_per_thread/4, &VKQ[j_VKQ][i_VKQ_0/nthreads_V + V_rows_per_thread/4]);
|
||||
}
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
|
||||
KQ_sum[j_VKQ] *= kqmax_scale;
|
||||
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
|
||||
if (threadIdx.x == 0) {
|
||||
KQ_sum_shared[j_VKQ][threadIdx.y] = KQ_sum[j_VKQ];
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (nthreads <= D || tid < D) {
|
||||
KQ_sum[j_VKQ] = KQ_sum_shared[j_VKQ][threadIdx.x];
|
||||
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D; i0 += nthreads) {
|
||||
float dst_val = 0;
|
||||
#pragma unroll
|
||||
for (int w = 0; w < nwarps; ++w) {
|
||||
#pragma unroll
|
||||
for (int v = 0; v < V_cols_per_iter; ++v) {
|
||||
dst_val += float(KQ[w*V_cols_per_iter*D + v*D + i0 + tid]);
|
||||
}
|
||||
}
|
||||
if (gridDim.y == 1) {
|
||||
dst_val /= KQ_sum[j_VKQ];
|
||||
}
|
||||
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
|
||||
}
|
||||
}
|
||||
|
||||
if (j_VKQ < ncols-1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < ne01)) {
|
||||
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
const int nthreads = ggml_cuda_fattn_vec_get_nthreads_host(cc);
|
||||
const int nwarps = nthreads / WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_vec<D, cols_per_block, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = false;
|
||||
constexpr bool need_f16_V = false;
|
||||
constexpr size_t nbytes_shared = 0;
|
||||
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
|
||||
}
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
GGML_ASSERT(K->type == type_K);
|
||||
GGML_ASSERT(V->type == type_V);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 2;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_FATTN_VEC_CASE(D, type_K, type_V) \
|
||||
template void ggml_cuda_flash_attn_ext_vec_case \
|
||||
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
|
||||
|
||||
#define EXTERN_DECL_FATTN_VEC_CASES(D, type_K) \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_F16); \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_0); \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_1); \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_0); \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_1); \
|
||||
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q8_0); \
|
||||
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_F16)
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q8_0)
|
||||
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_F16)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q8_0)
|
||||
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_F16)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_0)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_1)
|
||||
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q8_0)
|
||||
@@ -15,7 +15,6 @@ namespace wmma = mtmusa::wmma;
|
||||
namespace wmma = nvcuda::wmma;
|
||||
#endif // GGML_USE_MUSA
|
||||
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
|
||||
#undef HIP_ENABLE_WARP_SYNC_BUILTINS // conflicts with rocWMMA headers
|
||||
#include <rocwmma/rocwmma.hpp>
|
||||
namespace wmma = rocwmma;
|
||||
#endif // !defined(GGML_USE_HIP)
|
||||
@@ -82,11 +81,12 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int sequence = blockIdx.z / ne02;
|
||||
const int head = blockIdx.z - sequence*ne02;
|
||||
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const half2 * mask2 = (const half2 *) maskh;
|
||||
const float * Q_f = (const float *) (Q + nb03* sequence + nb02* head + nb01*ic0);
|
||||
const half * K_h = (const half *) (K + nb13* sequence + nb12*(head / gqa_ratio));
|
||||
const half * V_h = (const half *) (V + nb13* sequence + nb12*(head / gqa_ratio)); // K and V have same shape
|
||||
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
|
||||
const half2 * mask2 = (const half2 *) maskh;
|
||||
const float * sinksf = (const float *) sinks;
|
||||
|
||||
const int stride_Q = nb01 / sizeof(float);
|
||||
const int stride_KV = nb11 / sizeof(half);
|
||||
@@ -381,6 +381,53 @@ static __global__ void flash_attn_ext_f16(
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Apply attention sinks
|
||||
if (sinksf && blockIdx.y == 0) {
|
||||
const float sinkf = sinksf[head];
|
||||
const half sinkh = __float2half(sinkf);
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (std::is_same<KQ_acc_t, float>::value) {
|
||||
float kqmax_new = fmaxf(KQ_max_f[j0/nwarps], sinkf);
|
||||
|
||||
const float KQ_max_scale = expf(KQ_max_f[j0/nwarps] - kqmax_new);
|
||||
KQ_max_f[j0/nwarps] = kqmax_new;
|
||||
|
||||
KQ_rowsum_f[j0/nwarps] = KQ_rowsum_f[j0/nwarps] * KQ_max_scale + expf(sinkf - KQ_max_f[j0/nwarps]);
|
||||
|
||||
const half2 scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + warp_size > D/2 && i >= D/2) break;
|
||||
VKQ2[j*(D_padded/2) + i] *= scale_h2;
|
||||
}
|
||||
} else {
|
||||
half kqmax_old = __low2half(KQ_max_h2[j0/nwarps]);
|
||||
half kqmax_new = fmaxf(kqmax_old, sinkh);
|
||||
KQ_max_h2[j0/nwarps] = __half2half2(kqmax_new);
|
||||
|
||||
const half KQ_max_scale_h = hexp(kqmax_old - kqmax_new);
|
||||
const half2 KQ_max_scale = __half2half2(KQ_max_scale_h);
|
||||
|
||||
KQ_rowsum_h2[j0/nwarps] = KQ_rowsum_h2[j0/nwarps] * KQ_max_scale;
|
||||
const half val = hexp(sinkh - kqmax_new);
|
||||
KQ_rowsum_h2[j0/nwarps].x = __hadd(KQ_rowsum_h2[j0/nwarps].x, val);
|
||||
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < D/2; i0 += warp_size) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
if (i0 + warp_size > D/2 && i >= D/2) break;
|
||||
VKQ2[j*(D_padded/2) + i] *= KQ_max_scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||
const int j_VKQ = j0 + threadIdx.y;
|
||||
@@ -424,16 +471,15 @@ static __global__ void flash_attn_ext_f16(
|
||||
dst_meta[j_dst_unrolled] = dst_meta_val;
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask); GGML_UNUSED(sinks);
|
||||
GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
|
||||
GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
|
||||
GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
|
||||
GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
|
||||
GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
|
||||
GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33); GGML_UNUSED(nb31);
|
||||
GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
|
||||
GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
|
||||
GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
|
||||
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
|
||||
max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
ne00, ne01, ne02, ne03,
|
||||
nb01, nb02, nb03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
nb11, nb12, nb13,
|
||||
nb21, nb22, nb23,
|
||||
ne31, ne32, ne33,
|
||||
nb31, nb32, nb33);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
|
||||
}
|
||||
|
||||
378
ml/backend/ggml/ggml/src/ggml-cuda/fattn.cu
vendored
378
ml/backend/ggml/ggml/src/ggml-cuda/fattn.cu
vendored
@@ -1,10 +1,8 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
#include "fattn-mma-f16.cuh"
|
||||
#include "fattn-tile-f16.cuh"
|
||||
#include "fattn-tile-f32.cuh"
|
||||
#include "fattn-vec-f16.cuh"
|
||||
#include "fattn-vec-f32.cuh"
|
||||
#include "fattn-tile.cuh"
|
||||
#include "fattn-vec.cuh"
|
||||
#include "fattn-wmma-f16.cuh"
|
||||
#include "fattn.cuh"
|
||||
|
||||
@@ -118,232 +116,218 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
|
||||
}
|
||||
}
|
||||
|
||||
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
||||
return; \
|
||||
} \
|
||||
#define FATTN_VEC_CASE(D, type_K, type_V) \
|
||||
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||
ggml_cuda_flash_attn_ext_vec_case<D, type_K, type_V>(ctx, dst); \
|
||||
return; \
|
||||
} \
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
#define FATTN_VEC_CASES_ALL_D(type_K, type_V) \
|
||||
FATTN_VEC_CASE( 64, type_K, type_V) \
|
||||
FATTN_VEC_CASE(128, type_K, type_V) \
|
||||
FATTN_VEC_CASE(256, type_K, type_V) \
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_vec(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * Q = dst->src[0];
|
||||
ggml_tensor * K = dst->src[1];
|
||||
ggml_tensor * V = dst->src[2];
|
||||
|
||||
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
|
||||
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
#else
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
|
||||
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
on_no_fattn_vec_case(Q->ne[0]);
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
|
||||
return; \
|
||||
} \
|
||||
// Best FlashAttention kernel for a specific GPU:
|
||||
enum best_fattn_kernel {
|
||||
BEST_FATTN_KERNEL_NONE = 0,
|
||||
BEST_FATTN_KERNEL_TILE = 200,
|
||||
BEST_FATTN_KERNEL_VEC = 100,
|
||||
BEST_FATTN_KERNEL_WMMA_F16 = 300,
|
||||
BEST_FATTN_KERNEL_MMA_F16 = 400,
|
||||
};
|
||||
|
||||
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * Q = dst->src[0];
|
||||
ggml_tensor * K = dst->src[1];
|
||||
ggml_tensor * V = dst->src[2];
|
||||
static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const ggml_tensor * dst) {
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
GGML_UNUSED(device); GGML_UNUSED(dst);
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
#endif// FLASH_ATTN_AVAILABLE
|
||||
|
||||
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
|
||||
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
#else
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
||||
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
||||
|
||||
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
on_no_fattn_vec_case(Q->ne[0]);
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
const ggml_tensor * mask = dst->src[3];
|
||||
const ggml_tensor * sinks = dst->src[4];
|
||||
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[ggml_cuda_get_device()].warp_size;
|
||||
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
|
||||
const int gqa_ratio = Q->ne[2] / K->ne[2];
|
||||
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
|
||||
|
||||
// TODO: currently only vec implementation for sinks is supported [TAG_ATTN_SINKS]
|
||||
if (sinks && !fp16_mma_available(cc)) {
|
||||
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
const int cc = ggml_cuda_info().devices[device].cc;
|
||||
|
||||
#if defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
if (GGML_CUDA_CC_IS_AMD(cc) && fp16_mma_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
return;
|
||||
}
|
||||
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
|
||||
|
||||
if (!fast_fp16_available(cc)) {
|
||||
if (Q->ne[1] <= 8 || Q->ne[0] == 256) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!fp16_mma_available(cc)) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 8 || Q->ne[0] == 256) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||
switch (K->ne[0]) {
|
||||
case 64:
|
||||
case 128:
|
||||
case 256:
|
||||
if (V->ne[0] != K->ne[0]) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
} else {
|
||||
if (Q->ne[1] <= 8 || Q->ne[0] == 256) {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
break;
|
||||
case 80:
|
||||
case 96:
|
||||
case 112:
|
||||
if (V->ne[0] != K->ne[0]) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
if (!fp16_mma_available(cc) && !turing_mma_available(cc)) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
break;
|
||||
case 576:
|
||||
if (V->ne[0] != 512) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
if (!turing_mma_available(cc) || gqa_ratio % 16 != 0) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
|
||||
#ifndef GGML_CUDA_FA_ALL_QUANTS
|
||||
if (K->type != V->type) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||
|
||||
switch (K->type) {
|
||||
case GGML_TYPE_F16:
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
#ifndef GGML_CUDA_FA_ALL_QUANTS
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
#endif // GGML_CUDA_FA_ALL_QUANTS
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q8_0:
|
||||
break;
|
||||
default:
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
|
||||
if (mask && mask->ne[2] != 1) {
|
||||
return BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
|
||||
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0;
|
||||
|
||||
// If Turing tensor cores available, use them except for some cases with batch size 1:
|
||||
if (turing_mma_available(cc)) {
|
||||
best_fattn_kernel best = BEST_FATTN_KERNEL_MMA_F16;
|
||||
|
||||
if (can_use_vector_kernel) {
|
||||
if (K->type == GGML_TYPE_F16 && V->type == GGML_TYPE_F16) {
|
||||
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
|
||||
best = BEST_FATTN_KERNEL_VEC;
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
|
||||
if (Q->ne[1] <= 2) {
|
||||
best = BEST_FATTN_KERNEL_VEC;
|
||||
}
|
||||
} else {
|
||||
if (Q->ne[1] == 1) {
|
||||
best = BEST_FATTN_KERNEL_VEC;
|
||||
}
|
||||
}
|
||||
}
|
||||
if ((gqa_ratio % 2 != 0 || !mask) && Q->ne[1] == 1) {
|
||||
best = BEST_FATTN_KERNEL_VEC; // GQA-specific optimizations in the mma kernel do not apply.
|
||||
}
|
||||
}
|
||||
return;
|
||||
|
||||
return best;
|
||||
}
|
||||
|
||||
const bool gqa_opt_applies = ((Q->ne[2] / K->ne[2]) % 2 == 0) && mask; // The mma-based kernels have GQA-specific optimizations
|
||||
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
|
||||
const bool mma_faster_for_rtx4000 = Q->ne[3] > 1 || (Q->ne[2] > 4*K->ne[2] && K->ne[1] >= 8192);
|
||||
const bool mma_faster_for_bs1 = turing_mma_available(cc) && gqa_opt_applies && !mma_needs_data_conversion &&
|
||||
(cc < GGML_CUDA_CC_ADA_LOVELACE || mma_faster_for_rtx4000);
|
||||
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
|
||||
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||
} else {
|
||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||
}
|
||||
return;
|
||||
// Use kernels specialized for small batch sizes if possible:
|
||||
if (Q->ne[1] <= 8 && can_use_vector_kernel) {
|
||||
return BEST_FATTN_KERNEL_VEC;
|
||||
}
|
||||
|
||||
// The MMA implementation needs Turing or newer, use the old WMMA code for Volta:
|
||||
if (fp16_mma_available(cc) && !turing_mma_available(cc)) {
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
return;
|
||||
// For large batch sizes, use the WMMA kernel if possible:
|
||||
if (fp16_mma_available(cc)) {
|
||||
return BEST_FATTN_KERNEL_WMMA_F16;
|
||||
}
|
||||
|
||||
ggml_cuda_flash_attn_ext_mma_f16(ctx, dst);
|
||||
// If there is no suitable kernel for tensor cores or small batch sizes, use the generic kernel for large batch sizes:
|
||||
return BEST_FATTN_KERNEL_TILE;
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
switch (ggml_cuda_get_best_fattn_kernel(ggml_cuda_get_device(), dst)) {
|
||||
case BEST_FATTN_KERNEL_NONE:
|
||||
GGML_ABORT("fatal error");
|
||||
case BEST_FATTN_KERNEL_TILE:
|
||||
ggml_cuda_flash_attn_ext_tile(ctx, dst);
|
||||
break;
|
||||
case BEST_FATTN_KERNEL_VEC:
|
||||
ggml_cuda_flash_attn_ext_vec(ctx, dst);
|
||||
break;
|
||||
case BEST_FATTN_KERNEL_WMMA_F16:
|
||||
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
||||
break;
|
||||
case BEST_FATTN_KERNEL_MMA_F16:
|
||||
ggml_cuda_flash_attn_ext_mma_f16(ctx, dst);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_flash_attn_ext_supported(int device, const ggml_tensor * dst) {
|
||||
return ggml_cuda_get_best_fattn_kernel(device, dst) != BEST_FATTN_KERNEL_NONE;
|
||||
}
|
||||
|
||||
2
ml/backend/ggml/ggml/src/ggml-cuda/fattn.cuh
vendored
2
ml/backend/ggml/ggml/src/ggml-cuda/fattn.cuh
vendored
@@ -1,3 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
bool ggml_cuda_flash_attn_ext_supported(int device, const ggml_tensor * dst);
|
||||
|
||||
91
ml/backend/ggml/ggml/src/ggml-cuda/getrows.cu
vendored
91
ml/backend/ggml/ggml/src/ggml-cuda/getrows.cu
vendored
@@ -1,68 +1,71 @@
|
||||
#include "getrows.cuh"
|
||||
#include "dequantize.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
||||
static __global__ void k_get_rows(
|
||||
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = (blockIdx.y * blockDim.x + threadIdx.x)*2;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
|
||||
for (int64_t i00 = 2*(blockIdx.y*blockDim.x + threadIdx.x); i00 < ne00; i00 += gridDim.y*blockDim.x) {
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = z / ne12; // TODO fastdiv
|
||||
const int i12 = z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
float2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = ggml_cuda_cast<dst_t>(v.x);
|
||||
dst_row[iybs + iqs + y_offset] = ggml_cuda_cast<dst_t>(v.y);
|
||||
}
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
||||
|
||||
const int ib = i00/qk; // block index
|
||||
const int iqs = (i00%qk)/qr; // quant index
|
||||
const int iybs = i00 - i00%qk; // dst block start index
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
// dequantize
|
||||
dfloat2 v;
|
||||
dequantize_kernel(src0_row, ib, iqs, v);
|
||||
|
||||
dst_row[iybs + iqs + 0] = float(v.x);
|
||||
dst_row[iybs + iqs + y_offset] = float(v.y);
|
||||
}
|
||||
|
||||
template<typename src0_t, typename dst_t>
|
||||
static __global__ void k_get_rows_float(
|
||||
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
|
||||
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const int64_t ne10,*/ const int64_t ne11, const int64_t ne12, /*const int64_t ne13,*/
|
||||
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
|
||||
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
|
||||
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i00 = blockIdx.y * blockDim.x + threadIdx.x;
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = blockIdx.z / ne12;
|
||||
const int i12 = blockIdx.z % ne12;
|
||||
for (int64_t z = blockIdx.z; z < ne11*ne12; z += gridDim.z) {
|
||||
for (int64_t i00 = blockIdx.y*blockDim.x + threadIdx.x; i00 < ne00; i00 += gridDim.y*blockDim.x) {
|
||||
// The x and y dimensions of the grid are swapped because the maximum allowed grid size for x is higher.
|
||||
const int i10 = blockIdx.x;
|
||||
const int i11 = z / ne12; // TODO fastdiv
|
||||
const int i12 = z % ne12;
|
||||
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
if (i00 >= ne00) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
|
||||
}
|
||||
}
|
||||
|
||||
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
||||
|
||||
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
||||
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
||||
|
||||
dst_row[i00] = float(src0_row[i00]);
|
||||
}
|
||||
|
||||
template<typename grad_t, typename dst_t>
|
||||
@@ -97,7 +100,7 @@ static void get_rows_cuda_q(
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_y = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
@@ -115,7 +118,7 @@ static void get_rows_cuda_q(
|
||||
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/*ne10,*/ ne11, ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
@@ -130,7 +133,7 @@ static void get_rows_cuda_float(
|
||||
cudaStream_t stream) {
|
||||
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
||||
const int block_num_y = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
||||
const dim3 block_nums(ne10, block_num_y, ne11*ne12);
|
||||
const dim3 block_nums(ne10, MIN(block_num_y, UINT16_MAX), MIN(ne11*ne12, UINT16_MAX));
|
||||
|
||||
// strides in elements
|
||||
// const size_t s0 = nb0 / sizeof(dst_t);
|
||||
@@ -146,7 +149,7 @@ static void get_rows_cuda_float(
|
||||
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, /*ne01, ne02, ne03,*/
|
||||
/*ne10, ne11,*/ ne12, /*ne13,*/
|
||||
/*ne10,*/ ne11, ne12, /*ne13,*/
|
||||
/* s0,*/ s1, s2, s3,
|
||||
/* nb00,*/ nb01, nb02, nb03,
|
||||
s10, s11, s12/*, s13*/);
|
||||
|
||||
291
ml/backend/ggml/ggml/src/ggml-cuda/ggml-cuda.cu
vendored
291
ml/backend/ggml/ggml/src/ggml-cuda/ggml-cuda.cu
vendored
@@ -12,6 +12,7 @@
|
||||
#include "ggml-cuda/clamp.cuh"
|
||||
#include "ggml-cuda/concat.cuh"
|
||||
#include "ggml-cuda/conv-transpose-1d.cuh"
|
||||
#include "ggml-cuda/conv2d.cuh"
|
||||
#include "ggml-cuda/conv2d-dw.cuh"
|
||||
#include "ggml-cuda/conv2d-transpose.cuh"
|
||||
#include "ggml-cuda/convert.cuh"
|
||||
@@ -28,6 +29,7 @@
|
||||
#include "ggml-cuda/mmvq.cuh"
|
||||
#include "ggml-cuda/norm.cuh"
|
||||
#include "ggml-cuda/opt-step-adamw.cuh"
|
||||
#include "ggml-cuda/opt-step-sgd.cuh"
|
||||
#include "ggml-cuda/out-prod.cuh"
|
||||
#include "ggml-cuda/pad.cuh"
|
||||
#include "ggml-cuda/pool2d.cuh"
|
||||
@@ -43,11 +45,13 @@
|
||||
#include "ggml-cuda/sumrows.cuh"
|
||||
#include "ggml-cuda/mean.cuh"
|
||||
#include "ggml-cuda/tsembd.cuh"
|
||||
#include "ggml-cuda/topk-moe.cuh"
|
||||
#include "ggml-cuda/unary.cuh"
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv.cuh"
|
||||
#include "ggml-cuda/gla.cuh"
|
||||
#include "ggml-cuda/set-rows.cuh"
|
||||
#include "ggml-cuda/pad_reflect_1d.cuh"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -230,30 +234,6 @@ static std::string ggml_cuda_parse_uuid(cudaDeviceProp prop, int device_num) {
|
||||
}
|
||||
|
||||
static ggml_cuda_device_info ggml_cuda_init() {
|
||||
#if defined(GGML_USE_HIP)
|
||||
// Workaround for a rocBLAS bug when using multiple graphics cards:
|
||||
// https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
|
||||
{
|
||||
int major_version = 0;
|
||||
size_t version_length = 0;
|
||||
if (rocblas_get_version_string_size(&version_length) == rocblas_status_success) {
|
||||
std::vector<char> version(version_length+1, '\0');
|
||||
if (rocblas_get_version_string(version.data(), version.size()) == rocblas_status_success) {
|
||||
version.resize(::strlen(version.data()));
|
||||
int parsed_value = 0;
|
||||
if (std::from_chars(version.data(), version.data() + version.size(), parsed_value).ec == std::errc()) {
|
||||
major_version = parsed_value;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (major_version < 4) {
|
||||
GGML_LOG_DEBUG(GGML_CUDA_NAME " calling rocblas_initialize as a workaround for a rocBLAS bug\n");
|
||||
rocblas_initialize();
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_cuda_device_info info = {};
|
||||
|
||||
cudaError_t err = cudaGetDeviceCount(&info.device_count);
|
||||
@@ -276,6 +256,8 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
|
||||
#endif // GGML_CUDA_FORCE_CUBLAS
|
||||
GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
||||
|
||||
std::vector<std::pair<int, std::string>> turing_devices_without_mma;
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
int device_vmm = 0;
|
||||
|
||||
@@ -350,8 +332,25 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
||||
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
|
||||
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
|
||||
ggml_cuda_parse_uuid(prop, id).c_str());
|
||||
std::string device_name(prop.name);
|
||||
if (device_name == "NVIDIA GeForce MX450") {
|
||||
turing_devices_without_mma.push_back({ id, device_name });
|
||||
} else if (device_name == "NVIDIA GeForce MX550") {
|
||||
turing_devices_without_mma.push_back({ id, device_name });
|
||||
} else if (device_name.substr(0, 21) == "NVIDIA GeForce GTX 16") {
|
||||
turing_devices_without_mma.push_back({ id, device_name });
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
}
|
||||
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
if (ggml_cuda_highest_compiled_arch(GGML_CUDA_CC_TURING) >= GGML_CUDA_CC_TURING && !turing_devices_without_mma.empty()) {
|
||||
GGML_LOG_INFO("The following devices will have suboptimal performance due to a lack of tensor cores:\n");
|
||||
for (size_t device_pos = 0; device_pos < turing_devices_without_mma.size(); device_pos++) {
|
||||
GGML_LOG_INFO(
|
||||
" Device %d: %s\n", turing_devices_without_mma[device_pos].first, turing_devices_without_mma[device_pos].second.c_str());
|
||||
}
|
||||
GGML_LOG_INFO(
|
||||
"Consider compiling with CMAKE_CUDA_ARCHITECTURES=61-virtual;80-virtual and DGGML_CUDA_FORCE_MMQ to force the use of the Pascal code for Turing.\n");
|
||||
}
|
||||
|
||||
for (int id = 0; id < info.device_count; ++id) {
|
||||
@@ -1484,9 +1483,7 @@ static void ggml_cuda_op_mul_mat_cublas(
|
||||
&beta, dst_dd_i, ldc));
|
||||
}
|
||||
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddq_i);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
GGML_UNUSED_VARS(dst, src1_ddq_i, src1_padded_row_size);
|
||||
}
|
||||
|
||||
static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
|
||||
@@ -2166,7 +2163,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
@@ -2174,7 +2171,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
@@ -2245,6 +2242,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
ggml_cuda_mul_mat_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2], /*mul_mat_id=*/true)) {
|
||||
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
@@ -2510,6 +2512,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_PAD:
|
||||
ggml_cuda_op_pad(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
ggml_cuda_op_pad_reflect_1d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_ARANGE:
|
||||
ggml_cuda_op_arange(ctx, dst);
|
||||
break;
|
||||
@@ -2585,6 +2590,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_IM2COL:
|
||||
ggml_cuda_op_im2col(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_IM2COL_3D:
|
||||
ggml_cuda_op_im2col_3d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_2D:
|
||||
ggml_cuda_op_conv2d(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
ggml_cuda_op_conv2d_dw(ctx, dst);
|
||||
break;
|
||||
@@ -2636,6 +2647,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
ggml_cuda_opt_step_adamw(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
ggml_cuda_opt_step_sgd(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -2770,6 +2784,8 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
||||
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
|
||||
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
|
||||
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
|
||||
const std::string nemotron_h_block_out_prefix = "nemotron_h_block_out";
|
||||
const std::string mamba2_y_add_d_prefix = "mamba2_y_add_d";
|
||||
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
@@ -2805,7 +2821,9 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
|
||||
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
|
||||
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
|
||||
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
|
||||
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0) {
|
||||
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0 &&
|
||||
strncmp(node->name, nemotron_h_block_out_prefix.c_str(), nemotron_h_block_out_prefix.size()) != 0 &&
|
||||
strncmp(node->name, mamba2_y_add_d_prefix.c_str(), mamba2_y_add_d_prefix.size()) != 0) {
|
||||
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
|
||||
// by means of matching node names. See
|
||||
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
|
||||
@@ -2962,13 +2980,56 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
GGML_ASSERT(unary_ops.size() == num_unary);
|
||||
#endif
|
||||
|
||||
//TODO: remove special case once ggml_can_fuse can handle empty nodes
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops = ggml_cuda_topk_moe_ops(false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = ggml_cuda_topk_moe_ops(true);
|
||||
|
||||
if (ops.size() == topk_moe_ops_with_norm.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops_with_norm.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops_with_norm.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops_with_norm.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops_with_norm.begin()[i]) return false;
|
||||
}
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+8];
|
||||
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops.begin()[i]) return false;
|
||||
}
|
||||
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+4];
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ops.size() == 2 && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
|
||||
if ((ops.size() == 2 || ops.size() == 3) && ops.begin()[0] == GGML_OP_RMS_NORM && ops.begin()[1] == GGML_OP_MUL) {
|
||||
const ggml_tensor *rms_norm = cgraph->nodes[node_idx];
|
||||
const ggml_tensor *mul = cgraph->nodes[node_idx+1];
|
||||
const ggml_tensor *add = nullptr;
|
||||
|
||||
if (ops.size() == 3 && ops.begin()[2] == GGML_OP_ADD) {
|
||||
add = cgraph->nodes[node_idx+2];
|
||||
}
|
||||
|
||||
GGML_ASSERT(rms_norm->src[0]->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(rms_norm->type == GGML_TYPE_F32);
|
||||
@@ -2980,6 +3041,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (add && (add->src[0]->type != GGML_TYPE_F32 ||
|
||||
add->src[1]->type != GGML_TYPE_F32 ||
|
||||
add->type != GGML_TYPE_F32) ) {
|
||||
return false;
|
||||
}
|
||||
|
||||
//if rms norm is the B operand, then we don't handle broadcast
|
||||
if (rms_norm == mul->src[1] && !ggml_are_same_shape(mul->src[0], rms_norm->src[1])) {
|
||||
return false;
|
||||
@@ -2990,6 +3057,10 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
return false;
|
||||
}
|
||||
|
||||
if (add && (!ggml_is_contiguous(add->src[0]) || !ggml_is_contiguous_rows(add->src[1]))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -3042,7 +3113,62 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
|
||||
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
|
||||
if (!disable_fusion) {
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL }, {})) {
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+8];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ true);
|
||||
i += 8;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+4];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ false);
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD) {
|
||||
int n_fuse = 0;
|
||||
ggml_op ops[8];
|
||||
std::fill(ops, ops + 8, GGML_OP_ADD);
|
||||
|
||||
for (; n_fuse <= 6; ++n_fuse){
|
||||
if (!ggml_can_fuse(cgraph, i + n_fuse, ops + n_fuse, 2)) {
|
||||
break;
|
||||
}
|
||||
if (cgraph->nodes[i + n_fuse] != cgraph->nodes[i + n_fuse + 1]->src[0]) {
|
||||
break;
|
||||
}
|
||||
if (!ggml_are_same_layout(cgraph->nodes[i + n_fuse]->src[1], cgraph->nodes[i + n_fuse + 1]->src[1])) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
n_fuse++;
|
||||
|
||||
if (n_fuse > 1) {
|
||||
for (int j = 0; j < n_fuse - 1; ++j) {
|
||||
node->src[j + 2] = cgraph->nodes[i + j + 1]->src[1];
|
||||
}
|
||||
cgraph->nodes[i + n_fuse - 1]->data = node->data;
|
||||
ggml_cuda_op_fused_add(*cuda_ctx, node, n_fuse);
|
||||
i += n_fuse - 1;
|
||||
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
i += 2;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused(*cuda_ctx, node, cgraph->nodes[i+1]);
|
||||
i++;
|
||||
continue;
|
||||
@@ -3295,6 +3421,7 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
/* .graph_optimize = */ NULL,
|
||||
/* .graph_reserve = */ ggml_backend_cuda_graph_reserve,
|
||||
/* .buffer_size = */ ggml_backend_cuda_buffer_size,
|
||||
/* .reset = */ ggml_backend_cuda_reset,
|
||||
@@ -3330,7 +3457,7 @@ bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
|
||||
#if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA) || defined(GGML_USE_HIP)
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
@@ -3367,15 +3494,16 @@ struct ggml_backend_cuda_device_context {
|
||||
int device;
|
||||
std::string name;
|
||||
std::string description;
|
||||
std::string pci_bus_id;
|
||||
std::string id;
|
||||
int major;
|
||||
int minor;
|
||||
int driver_major;
|
||||
int driver_minor;
|
||||
int integrated;
|
||||
int pci_bus_id;
|
||||
int pci_device_id;
|
||||
int pci_domain_id;
|
||||
int pciBusID;
|
||||
int pciDeviceID;
|
||||
int pciDomainID;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
@@ -3399,7 +3527,7 @@ static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t *
|
||||
|
||||
#if defined(GGML_USE_HIP)
|
||||
if (ggml_hip_mgmt_init() == 0) {
|
||||
int status = ggml_hip_get_device_memory(ctx->pci_bus_id, ctx->pci_device_id, free, total);
|
||||
int status = ggml_hip_get_device_memory(ctx->pciBusID, ctx->pciDeviceID, free, total);
|
||||
if (status == 0) {
|
||||
GGML_LOG_DEBUG("%s utilizing ADLX memory reporting free: %zu total: %zu\n", __func__, *free, *total);
|
||||
ggml_hip_mgmt_release();
|
||||
@@ -3428,16 +3556,18 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
|
||||
|
||||
#define GGML_HIP_NAME "HIP"
|
||||
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
|
||||
props->name = ggml_backend_cuda_device_get_name(dev);
|
||||
props->description = ggml_backend_cuda_device_get_description(dev);
|
||||
props->id = ggml_backend_cuda_device_get_id(dev);
|
||||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
props->device_id = ctx->pci_bus_id.empty() ? nullptr : ctx->pci_bus_id.c_str();
|
||||
|
||||
// Memory reporting is disabled to avoid allocation of a CUDA primary context (~300 MB per device).
|
||||
// If you need the memory data, call ggml_backend_dev_memory() explicitly.
|
||||
props->memory_total = props->memory_free = 0;
|
||||
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
#if defined(GGML_USE_HIP)
|
||||
int cc = ggml_cuda_info().devices[ctx->device].cc - GGML_CUDA_CC_OFFSET_AMD;
|
||||
props->compute_major = cc / 0x100;
|
||||
@@ -3449,9 +3579,9 @@ static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_back
|
||||
props->driver_major = ctx->driver_major;
|
||||
props->driver_minor = ctx->driver_minor;
|
||||
props->integrated = ctx->integrated;
|
||||
props->pci_bus_id = ctx->pci_bus_id;
|
||||
props->pci_device_id = ctx->pci_device_id;
|
||||
props->pci_domain_id = ctx->pci_domain_id;
|
||||
props->pci_bus_id = ctx->pciBusID;
|
||||
props->pci_device_id = ctx->pciDeviceID;
|
||||
props->pci_domain_id = ctx->pciDomainID;
|
||||
props->library = GGML_CUDA_NAME;
|
||||
|
||||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
@@ -3638,7 +3768,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
op->type == GGML_TYPE_Q4_0 || op->type == GGML_TYPE_Q4_1 || op->type == GGML_TYPE_Q5_0 ||
|
||||
op->type == GGML_TYPE_Q5_1 || op->type == GGML_TYPE_Q8_0 || op->type == GGML_TYPE_IQ4_NL) &&
|
||||
op->src[0]->type == GGML_TYPE_F32 &&
|
||||
op->src[1]->type == GGML_TYPE_I64;
|
||||
(op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
@@ -3682,6 +3812,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_I32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_I32 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
|
||||
return true;
|
||||
}
|
||||
@@ -3783,19 +3919,24 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
return op->src[0]->nb[0] == ggml_type_size(op->src[0]->type) && ggml_is_contiguous_2(op->src[0]);
|
||||
}
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_IM2COL_3D:
|
||||
case GGML_OP_CONV_2D:
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
case GGML_OP_ARGSORT:
|
||||
// TODO: Support arbitrary column width
|
||||
return op->src[0]->ne[0] <= 1024;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_PAD:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@@ -3803,47 +3944,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_GATED_LINEAR_ATTN:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
return true;
|
||||
case GGML_OP_FLASH_ATTN_EXT: {
|
||||
#ifndef FLASH_ATTN_AVAILABLE
|
||||
return false;
|
||||
#endif // FLASH_ATTN_AVAILABLE
|
||||
if (op->src[1]->ne[0] != op->src[2]->ne[0]) {
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
if (!turing_mma_available(cc)) {
|
||||
return false;
|
||||
}
|
||||
const int gqa_ratio = op->src[0]->ne[2] / op->src[1]->ne[2];
|
||||
return op->src[1]->ne[0] == 576 && op->src[2]->ne[0] == 512 && op->src[3] && gqa_ratio % 16 == 0;
|
||||
}
|
||||
// TODO: more general-purpose attention sink support [TAG_ATTN_SINKS]
|
||||
if (op->src[4] && !fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc)
|
||||
&& op->src[0]->ne[0] != 64 && op->src[0]->ne[0] != 128) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 192) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[1]->type == GGML_TYPE_BF16 || op->src[2]->type == GGML_TYPE_BF16) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 128) {
|
||||
return true;
|
||||
}
|
||||
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (op->src[3] && op->src[3]->ne[2] != 1) {
|
||||
return false;
|
||||
}
|
||||
return fp16_mma_available(ggml_cuda_info().devices[dev_ctx->device].cc) &&
|
||||
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
}
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
return ggml_cuda_flash_attn_ext_supported(dev_ctx->device, op);
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
@@ -3981,10 +4087,6 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
|
||||
features.push_back({ "NO_PEER_COPY", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_F16
|
||||
features.push_back({ "F16", "1" });
|
||||
#endif
|
||||
|
||||
#ifdef GGML_CUDA_USE_GRAPHS
|
||||
features.push_back({ "USE_GRAPHS", "1" });
|
||||
#endif
|
||||
@@ -4056,14 +4158,19 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
|
||||
dev_ctx->description = prop.name;
|
||||
dev_ctx->id = ggml_cuda_parse_uuid(prop, i);
|
||||
|
||||
char pci_bus_id[16] = {};
|
||||
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
|
||||
dev_ctx->pci_bus_id = pci_bus_id;
|
||||
|
||||
dev_ctx->major = prop.major;
|
||||
dev_ctx->minor = prop.minor;
|
||||
dev_ctx->driver_major = driverVersion / 1000;
|
||||
dev_ctx->driver_minor = (driverVersion - (dev_ctx->driver_major * 1000)) / 10;
|
||||
dev_ctx->integrated = prop.integrated;
|
||||
dev_ctx->pci_bus_id = prop.pciBusID;
|
||||
dev_ctx->pci_device_id = prop.pciDeviceID;
|
||||
dev_ctx->pci_domain_id = prop.pciDomainID;
|
||||
dev_ctx->pciBusID = prop.pciBusID;
|
||||
dev_ctx->pciDeviceID = prop.pciDeviceID;
|
||||
dev_ctx->pciDomainID = prop.pciDomainID;
|
||||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||||
/* .iface = */ ggml_backend_cuda_device_interface,
|
||||
/* .reg = */ ®,
|
||||
|
||||
150
ml/backend/ggml/ggml/src/ggml-cuda/im2col.cu
vendored
150
ml/backend/ggml/ggml/src/ggml-cuda/im2col.cu
vendored
@@ -112,3 +112,153 @@ void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, N, IC_IH_IW, IH_IW, s0, s1, p0, p1, d0, d1, stream);
|
||||
}
|
||||
}
|
||||
|
||||
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
template <typename T>
|
||||
static __global__ void im2col_3d_kernel(
|
||||
const float * src, T * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int64_t OH_OW, int64_t KD_KH_KW, int64_t ID_IH_IW, int64_t KH_KW, int64_t IH_IW, int64_t IC_ID_IH_IW,
|
||||
int64_t IC_KD_KH_KW, int64_t OW_KD_KH_KW, int64_t OD_OH_OW_IC_KD_KH_KW, int64_t OH_OW_IC_KD_KH_KW,
|
||||
int64_t OW_IC_KD_KH_KW, int64_t N_OD_OH, int64_t OD_OH,
|
||||
int64_t stride_q, int64_t stride_z, int64_t stride_y, int64_t stride_x,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2) {
|
||||
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (i >= IC_KD_KH_KW) {
|
||||
return;
|
||||
}
|
||||
GGML_UNUSED(N); GGML_UNUSED(OC); GGML_UNUSED(OH_OW); GGML_UNUSED(OD); GGML_UNUSED(OW); GGML_UNUSED(KD); GGML_UNUSED(KH);
|
||||
GGML_UNUSED(ID_IH_IW); GGML_UNUSED(IH_IW); GGML_UNUSED(IC_ID_IH_IW); GGML_UNUSED(OW_KD_KH_KW);
|
||||
|
||||
const int64_t iic = i / KD_KH_KW;
|
||||
const int64_t ikd = (i - iic * KD_KH_KW) / KH_KW;
|
||||
const int64_t ikh = (i - iic * KD_KH_KW - ikd * KH_KW) / KW;
|
||||
const int64_t ikw = i % KW;
|
||||
|
||||
const int64_t iow = blockIdx.y;
|
||||
for (int64_t iz = blockIdx.z; iz < N_OD_OH; iz+=MAX_GRIDDIM_Z) {
|
||||
const int64_t in = iz / OD_OH;
|
||||
const int64_t iod = (iz - in*OD_OH) / OH;
|
||||
const int64_t ioh = iz % OH;
|
||||
|
||||
const int64_t iiw = iow * s0 + ikw * d0 - p0;
|
||||
const int64_t iih = ioh * s1 + ikh * d1 - p1;
|
||||
const int64_t iid = iod * s2 + ikd * d2 - p2;
|
||||
|
||||
const int64_t offset_dst = in*OD_OH_OW_IC_KD_KH_KW + iod*OH_OW_IC_KD_KH_KW + ioh*OW_IC_KD_KH_KW + iow*IC_KD_KH_KW + iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw;
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int64_t offset_src = ((in * IC + iic) * stride_q) + (iid * stride_z) + (iih * stride_y) + (iiw * stride_x);
|
||||
dst[offset_dst] = src[offset_src];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
|
||||
template <typename T>
|
||||
static void im2col_3d_cuda(const float * src, T* dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int64_t stride_q, int64_t stride_z, int64_t stride_y, int64_t stride_x,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
const int64_t OH_OW = OH*OW;
|
||||
const int64_t KD_KH_KW = KD*KH*KW;
|
||||
const int64_t ID_IH_IW = ID*IH*IW;
|
||||
const int64_t KH_KW = KH*KW;
|
||||
const int64_t IH_IW = IH*IW;
|
||||
const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
|
||||
const int64_t OW_KD_KH_KW = OW*KD*KH*KW;
|
||||
const int64_t N_OD_OH = N*OD*OH;
|
||||
const int64_t OD_OH = OD*OH;
|
||||
const int64_t IC_ID_IH_IW = IC*ID*IH*IW;
|
||||
const int64_t OD_OH_OW_IC_KD_KH_KW = OD*OH*OW*IC*KD*KH*KW;
|
||||
const int64_t OH_OW_IC_KD_KH_KW = OH*OW*IC*KD*KH*KW;
|
||||
const int64_t OW_IC_KD_KH_KW = OW*IC*KD*KH*KW;
|
||||
const int64_t num_blocks = (IC_KD_KH_KW + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks, OW, MIN(N_OD_OH, MAX_GRIDDIM_Z));
|
||||
im2col_3d_kernel<<<block_nums, MIN(IC_KD_KH_KW, CUDA_IM2COL_BLOCK_SIZE) , 0, stream>>>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
OH_OW, KD_KH_KW, ID_IH_IW, KH_KW, IH_IW, IC_ID_IH_IW,
|
||||
IC_KD_KH_KW, OW_KD_KH_KW, OD_OH_OW_IC_KD_KH_KW,
|
||||
OH_OW_IC_KD_KH_KW, OW_IC_KD_KH_KW, N_OD_OH, OD_OH,
|
||||
stride_q, stride_z, stride_y, stride_x,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2);
|
||||
}
|
||||
|
||||
static void im2col_3d_cuda_f16(const float * src, half * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int64_t stride_q, int64_t stride_z, int64_t stride_y, int64_t stride_x,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
|
||||
im2col_3d_cuda<half>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
stride_q, stride_z, stride_y, stride_x,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
|
||||
static void im2col_3d_cuda_f32(const float * src, float * dst,
|
||||
int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, int64_t OC,
|
||||
int64_t KD, int64_t KH, int64_t KW, int64_t OD, int64_t OH, int64_t OW,
|
||||
int64_t stride_q, int64_t stride_z, int64_t stride_y, int64_t stride_x,
|
||||
int s0, int s1, int s2, int p0, int p1, int p2, int d0, int d1, int d2, cudaStream_t stream) {
|
||||
|
||||
im2col_3d_cuda<float>(src, dst, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
stride_q, stride_z, stride_y, stride_x,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
const float * src1_d = (const float *)src1->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
|
||||
const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
|
||||
const int32_t IC = ((const int32_t *)(dst->op_params))[9];
|
||||
|
||||
const int64_t N = ne13 / IC;
|
||||
const int64_t ID = ne12;
|
||||
const int64_t IH = ne11;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t OC = ne03 / IC;
|
||||
const int64_t KD = ne02;
|
||||
const int64_t KH = ne01;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OD = ne3 / N;
|
||||
const int64_t OH = ne2;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
const size_t es = ggml_element_size(src1);
|
||||
const int64_t stride_x = src1->nb[0] / es;
|
||||
const int64_t stride_y = src1->nb[1] / es;
|
||||
const int64_t stride_z = src1->nb[2] / es;
|
||||
const int64_t stride_q = src1->nb[3] / es;
|
||||
|
||||
if(dst->type == GGML_TYPE_F16) {
|
||||
im2col_3d_cuda_f16(src1_d, (half *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
stride_q, stride_z, stride_y, stride_x,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
} else {
|
||||
im2col_3d_cuda_f32(src1_d, (float *) dst_d, N, IC, ID, IH, IW, OC, KD, KH, KW, OD, OH, OW,
|
||||
stride_q, stride_z, stride_y, stride_x,
|
||||
s0, s1, s2, p0, p1, p2, d0, d1, d2, stream);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,3 +3,4 @@
|
||||
#define CUDA_IM2COL_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_im2col_3d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
58
ml/backend/ggml/ggml/src/ggml-cuda/mean.cu
vendored
58
ml/backend/ggml/ggml/src/ggml-cuda/mean.cu
vendored
@@ -1,4 +1,14 @@
|
||||
#include "mean.cuh"
|
||||
#include "reduce_rows.cuh"
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
template <typename T> __global__ void divide_by_count(T * result, size_t count) {
|
||||
*result /= static_cast<T>(count);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
@@ -13,7 +23,51 @@ void ggml_cuda_op_mean(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
// Special case for reducing vectors
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
cudaStreamCaptureStatus iscapturing;
|
||||
CUDA_CHECK(cudaStreamIsCapturing(stream, &iscapturing));
|
||||
#endif // USE_CUDA_GRAPH
|
||||
if ((nrows == 1) &&
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
// CUDA_GRAPHS_DISABLED
|
||||
((ncols > 65536) &&
|
||||
((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
|
||||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
|
||||
ctx.cuda_graph->disable_due_to_failed_graph_capture)) ||
|
||||
// CUDA_GRAPHS ENABLED
|
||||
((ncols > 32768) &&
|
||||
!((ctx.cuda_graph->instance == nullptr) && (iscapturing == cudaStreamCaptureStatusNone) ||
|
||||
ctx.cuda_graph->disable_due_to_gpu_arch || ctx.cuda_graph->disable_due_to_too_many_updates ||
|
||||
ctx.cuda_graph->disable_due_to_failed_graph_capture))) {
|
||||
#else
|
||||
(ncols > 65536)) {
|
||||
#endif // USE_CUDA_GRAPH
|
||||
// Single row - use device-wide reduction
|
||||
size_t tmp_size = 0;
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
|
||||
DeviceReduce::Sum(nullptr, tmp_size, src0_d, dst_d, ncols, stream);
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
DeviceReduce::Sum(tmp_alloc.ptr, tmp_size, src0_d, dst_d, ncols, stream);
|
||||
|
||||
// Divide by ncols
|
||||
divide_by_count<float><<<1, 1, 0, stream>>>(dst_d, ncols);
|
||||
return;
|
||||
}
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
reduce_rows_f32</*norm*/ true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
if ((nrows / nsm) < 2) {
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
} else {
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/true><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
}
|
||||
}
|
||||
|
||||
45
ml/backend/ggml/ggml/src/ggml-cuda/mma.cuh
vendored
45
ml/backend/ggml/ggml/src/ggml-cuda/mma.cuh
vendored
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
// This file contains primitives that expose the tensor core PTX instructions for CUDA code.
|
||||
// The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout.
|
||||
// The documentation for the PTX instructions can be found under:
|
||||
@@ -291,9 +292,7 @@ namespace ggml_cuda_mma {
|
||||
: "=r"(xi[0]), "=r"(xi[2]), "=r"(xi[1]), "=r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
GGML_UNUSED(t);
|
||||
GGML_UNUSED(xs0);
|
||||
GGML_UNUSED(stride);
|
||||
GGML_UNUSED_VARS(t, xs0, stride);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -315,9 +314,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(A.x[1]), "r"(B.x[0]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -345,9 +342,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(A.x[3]), "r"(B.x[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -372,9 +367,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -408,9 +401,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -425,9 +416,7 @@ namespace ggml_cuda_mma {
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMPERE_MMA_AVAILABLE
|
||||
}
|
||||
@@ -452,9 +441,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -469,9 +456,7 @@ namespace ggml_cuda_mma {
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMPERE_MMA_AVAILABLE
|
||||
}
|
||||
@@ -505,9 +490,7 @@ namespace ggml_cuda_mma {
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
@@ -533,9 +516,7 @@ namespace ggml_cuda_mma {
|
||||
0, 0, 0);
|
||||
#endif // defined(CDNA3)
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
@@ -561,9 +542,7 @@ namespace ggml_cuda_mma {
|
||||
0, 0, 0);
|
||||
#endif // defined(CDNA3)
|
||||
#else
|
||||
GGML_UNUSED(D);
|
||||
GGML_UNUSED(A);
|
||||
GGML_UNUSED(B);
|
||||
GGML_UNUSED_VARS(D, A, B);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
|
||||
398
ml/backend/ggml/ggml/src/ggml-cuda/mmf.cu
vendored
398
ml/backend/ggml/ggml/src/ggml-cuda/mmf.cu
vendored
@@ -1,344 +1,12 @@
|
||||
#include "ggml.h"
|
||||
#include "common.cuh"
|
||||
#include "mma.cuh"
|
||||
#include "mmf.cuh"
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
#define MMF_ROWS_PER_BLOCK 32
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
static __global__ void mul_mat_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols, const int nchannels_y, const int stride_row, const int stride_col_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
constexpr int ntA = rows_per_block / tile_A::I;
|
||||
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
|
||||
|
||||
const int row0 = blockIdx.x * rows_per_block;
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = channel_dst / channel_ratio;
|
||||
const int channel_y = channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row ;
|
||||
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
|
||||
tile_C C[ntA][ntB];
|
||||
|
||||
T * tile_xy = (T *) data_mmv + threadIdx.y*(tile_A::I * tile_k_padded);
|
||||
|
||||
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
|
||||
tile_A A[ntA][warp_size / tile_A::J];
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < tile_A::I; ++i) {
|
||||
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
|
||||
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
|
||||
}
|
||||
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
|
||||
tile_B B;
|
||||
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float * buf_iw = (float *) data_mmv;
|
||||
constexpr int kiw = nwarps*rows_per_block + 4;
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
|
||||
const int j = itB*tile_C::J + tile_C::get_j(l);
|
||||
buf_iw[j*kiw + i] = C[itA][itB].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
static_assert(rows_per_block == warp_size, "need loop/check");
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
sum += buf_iw[j*kiw + i];
|
||||
}
|
||||
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(ids); GGML_UNUSED(dst);
|
||||
GGML_UNUSED(ncols); GGML_UNUSED(nchannels_y); GGML_UNUSED(stride_row); GGML_UNUSED(stride_col_y); GGML_UNUSED(stride_col_dst);
|
||||
GGML_UNUSED(channel_ratio); GGML_UNUSED(stride_channel_x); GGML_UNUSED(stride_channel_y); GGML_UNUSED(stride_channel_dst);
|
||||
GGML_UNUSED(sample_ratio); GGML_UNUSED(stride_sample_x); GGML_UNUSED(stride_sample_y); GGML_UNUSED(stride_sample_dst);
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
template <typename T, int cols_per_block>
|
||||
static void mul_mat_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
|
||||
GGML_ASSERT(!ids && "mul_mat_id not implemented");
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
int64_t niter_best = (ncols_x + warp_size*2 - 1) / (warp_size*2);
|
||||
int64_t max_block_size = 256;
|
||||
for (int64_t nwarps = 2; nwarps <= max_block_size/warp_size; nwarps++) {
|
||||
const int64_t niter = (ncols_x + nwarps*warp_size*2 - 1) / (nwarps*warp_size*2);
|
||||
if (niter < niter_best) {
|
||||
niter_best = niter;
|
||||
nwarps_best = nwarps;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const dim3 block_nums(nrows_x/rows_per_block, nchannels_dst, nsamples_dst);
|
||||
const dim3 block_dims(warp_size, nwarps_best, 1);
|
||||
switch (nwarps_best) {
|
||||
case 1: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 1><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 2><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 3><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 4><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 5><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 6><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 7><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f<T, rows_per_block, cols_per_block, 8><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols_x, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void mul_mat_f_switch_cols_per_block(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 9: {
|
||||
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 10: {
|
||||
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 11: {
|
||||
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 12: {
|
||||
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 13: {
|
||||
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 14: {
|
||||
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 15: {
|
||||
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 16: {
|
||||
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
|
||||
GGML_ASSERT( src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const size_t ts_src0 = ggml_type_size(src0->type);
|
||||
@@ -352,9 +20,6 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
|
||||
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
|
||||
GGML_ASSERT( nb0 == ts_dst);
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
|
||||
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
@@ -369,55 +34,82 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
|
||||
const int64_t s13 = src1->nb[3] / ts_src1;
|
||||
const int64_t s3 = dst->nb[3] / ts_dst;
|
||||
|
||||
const int64_t ids_s0 = ids ? ids->nb[0] / ggml_type_size(ids->type) : 0;
|
||||
const int64_t ids_s1 = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
// For MUL_MAT_ID the memory layout is different than for MUL_MAT:
|
||||
const int64_t ncols_dst = ids ? ne2 : ne1;
|
||||
const int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
const int64_t stride_col_dst = ids ? s2 : s1;
|
||||
const int64_t stride_col_y = ids ? s12 : s11;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
|
||||
int64_t stride_channel_y = ids ? s11 : s12;
|
||||
int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
|
||||
//mul_mat_id: handle broadcast
|
||||
if (ids && nchannels_y == 1) {
|
||||
stride_channel_y = 0;
|
||||
nchannels_y = ids->ne[0];
|
||||
}
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
constexpr int vals_per_T = 1;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half2 * src0_d = (const half2 *) src0->data;
|
||||
constexpr int vals_per_T = 2;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat162 * src0_d = (const nv_bfloat162 *) src0->data;
|
||||
constexpr int vals_per_T = 2;
|
||||
mul_mat_f_switch_cols_per_block(
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, s11/vals_per_T, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
src0_d, src1_d, ids_d, dst_d, ne00/vals_per_T, ne01, ncols_dst, s01/vals_per_T, stride_col_y/vals_per_T, stride_col_dst,
|
||||
ids_s0, ids_s1, ne02, nchannels_y, nchannels_dst, s02/vals_per_T, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03/vals_per_T, s13, s3, ctx.stream());
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, int64_t ne11) {
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols, bool mul_mat_id) {
|
||||
|
||||
if (ggml_is_quantized(type)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src0_ne[0] % (warp_size * (4/ggml_type_size(type))) != 0) {
|
||||
return false;
|
||||
}
|
||||
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
|
||||
return false;
|
||||
}
|
||||
if (ne11 > 16) {
|
||||
return false;
|
||||
|
||||
if (mul_mat_id) {
|
||||
if (type == GGML_TYPE_F32 && src1_ncols > 32) {
|
||||
return false;
|
||||
}
|
||||
if ((type == GGML_TYPE_F16 || type == GGML_TYPE_BF16) && src1_ncols > 64) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (src1_ncols > 16) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
return ampere_mma_available(cc);
|
||||
|
||||
493
ml/backend/ggml/ggml/src/ggml-cuda/mmf.cuh
vendored
493
ml/backend/ggml/ggml/src/ggml-cuda/mmf.cuh
vendored
@@ -1,5 +1,496 @@
|
||||
#pragma once
|
||||
|
||||
#include "mma.cuh"
|
||||
#include "common.cuh"
|
||||
|
||||
using namespace ggml_cuda_mma;
|
||||
|
||||
#define MMF_ROWS_PER_BLOCK 32
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, int64_t ne11);
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols, bool mul_mat_id);
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps, bool has_ids>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
static __global__ void mul_mat_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols, const int ncols_dst_total, const int nchannels_dst, const int stride_row, const int stride_col_y, const int stride_col_dst,
|
||||
const int stride_col_id, const int stride_row_id,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
constexpr int ntA = rows_per_block / tile_A::I;
|
||||
constexpr int ntB = (cols_per_block + tile_B::I - 1) / tile_B::I;
|
||||
|
||||
const int row0 = blockIdx.x * rows_per_block;
|
||||
|
||||
int expert_idx = 0;
|
||||
int col_base = 0;
|
||||
|
||||
const int channel_dst = has_ids ? 0 : blockIdx.y;
|
||||
|
||||
if constexpr (has_ids) {
|
||||
// experts + tiles of ncols_dst are packed in the y dimension
|
||||
int col_tiles = (ncols_dst_total + cols_per_block - 1) / cols_per_block;
|
||||
const int nchannels_x = gridDim.y / col_tiles;
|
||||
const int tile_idx = blockIdx.y / nchannels_x;
|
||||
expert_idx = blockIdx.y - tile_idx * nchannels_x;
|
||||
col_base = tile_idx * cols_per_block;
|
||||
}
|
||||
|
||||
const int channel_x = has_ids ? expert_idx : (channel_dst / channel_ratio);
|
||||
const int channel_y = channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row0*stride_row ;
|
||||
y += int64_t(sample_y) *stride_sample_y + (has_ids ? 0 : channel_y *stride_channel_y);
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + (has_ids ? 0 : channel_dst*stride_channel_dst);
|
||||
|
||||
if constexpr (has_ids) {
|
||||
constexpr int y_stride_scale = std::is_same_v<T, float> ? 1 : 2;
|
||||
const int64_t col_offset = col_base;
|
||||
y += col_offset * stride_col_y * y_stride_scale;
|
||||
dst += col_offset * stride_col_dst;
|
||||
ids += col_offset * stride_row_id;
|
||||
}
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
|
||||
char * shmem_base = data_mmv;
|
||||
int * slot_map = (int *) shmem_base;
|
||||
char * compute_base = has_ids ? (shmem_base + GGML_PAD(cols_per_block, 16) * sizeof(int)) : shmem_base;
|
||||
|
||||
tile_C C[ntA][ntB];
|
||||
|
||||
T * tile_xy = (T *) compute_base + threadIdx.y*(tile_A::I * tile_k_padded);
|
||||
|
||||
if constexpr (has_ids) {
|
||||
int found = 0;
|
||||
|
||||
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
slot_map[j] = -1;
|
||||
}
|
||||
|
||||
if (col_base + j >= ncols_dst_total) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const int32_t * __restrict__ id_row = ids + j*stride_row_id;
|
||||
|
||||
for (int k = threadIdx.x; k < nchannels_dst; k += warp_size) {
|
||||
int match = id_row[k*stride_col_id] == expert_idx;
|
||||
|
||||
if (match) {
|
||||
slot_map[j] = k;
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!__syncthreads_or(found)) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (int col = threadIdx.y*warp_size + threadIdx.x; col < ncols; col += nwarps*warp_size) {
|
||||
tile_A A[ntA][warp_size / tile_A::J];
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < tile_A::I; ++i) {
|
||||
tile_xy[i*tile_k_padded + threadIdx.x] = x[(itA*tile_A::I + i)*stride_row + col];
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_A::J) {
|
||||
load_ldmatrix(A[itA][k0/tile_A::J], tile_xy + k0, tile_k_padded);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
|
||||
} else {
|
||||
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = valid ? y[slot_map[j]*stride_channel_y + j*stride_col_y + col] : 0.0f;
|
||||
}
|
||||
}
|
||||
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < tile_B::I; ++j0) {
|
||||
const int j = j0 + itB*tile_B::I;
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
} else {
|
||||
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
|
||||
float2 tmp = valid ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f);
|
||||
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
|
||||
}
|
||||
}
|
||||
} else {
|
||||
static_assert(std::is_same_v<T, void>, "unsupported type");
|
||||
}
|
||||
#pragma unroll
|
||||
for (int k0 = 0; k0 < warp_size; k0 += tile_B::J) {
|
||||
tile_B B;
|
||||
load_ldmatrix(B, tile_xy + k0, tile_k_padded);
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
mma(C[itA][itB], A[itA][k0/tile_B::J], B);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float * buf_iw = (float *) compute_base;
|
||||
constexpr int kiw = nwarps*rows_per_block + 4;
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
#pragma unroll
|
||||
for (int itB = 0; itB < ntB; ++itB) {
|
||||
#pragma unroll
|
||||
for (int itA = 0; itA < ntA; ++itA) {
|
||||
#pragma unroll
|
||||
for (int l = 0; l < tile_C::ne; ++l) {
|
||||
const int i = threadIdx.y*rows_per_block + itA*tile_C::I + tile_C::get_i(l);
|
||||
const int j = itB*tile_C::J + tile_C::get_j(l);
|
||||
buf_iw[j*kiw + i] = C[itA][itB].x[l];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (nwarps > 1) {
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
|
||||
const int j = j0 + threadIdx.y;
|
||||
|
||||
if (j0 + nwarps > cols_per_block && j >= cols_per_block) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
static_assert(rows_per_block == warp_size, "need loop/check");
|
||||
#pragma unroll
|
||||
for (int i0 = 0; i0 < nwarps*rows_per_block; i0 += rows_per_block) {
|
||||
const int i = i0 + threadIdx.x;
|
||||
|
||||
sum += buf_iw[j*kiw + i];
|
||||
}
|
||||
|
||||
if constexpr (!has_ids) {
|
||||
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
} else {
|
||||
const int slot = (j < cols_per_block) ? slot_map[j] : -1;
|
||||
if (slot >= 0 && (col_base + j) < ncols_dst_total) {
|
||||
dst[slot*stride_channel_dst + j*stride_col_dst + row0 + threadIdx.x] = sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED_VARS(x, y, ids, dst,
|
||||
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
template<typename T, int cols_per_block, int nwarps>
|
||||
static inline void mul_mat_f_switch_ids(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t ncols_dst, const int64_t nchannels_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int64_t stride_row_id,
|
||||
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
||||
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared_total, cudaStream_t stream) {
|
||||
if (ids) {
|
||||
const int64_t col_tiles = (ncols_dst + cols_per_block - 1) / cols_per_block;
|
||||
dim3 block_nums_ids = block_nums;
|
||||
block_nums_ids.y *= col_tiles;
|
||||
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, true><<<block_nums_ids, block_dims, nbytes_shared_total, stream>>>
|
||||
(x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} else {
|
||||
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, false><<<block_nums, block_dims, nbytes_shared_total, stream>>>
|
||||
(x, y, ids, dst, ncols_x, cols_per_block, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int cols_per_block>
|
||||
void mul_mat_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int64_t stride_row_id,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
int64_t niter_best = (ncols_x + warp_size*2 - 1) / (warp_size*2);
|
||||
int64_t max_block_size = 256;
|
||||
for (int64_t nwarps = 2; nwarps <= max_block_size/warp_size; nwarps++) {
|
||||
const int64_t niter = (ncols_x + nwarps*warp_size*2 - 1) / (nwarps*warp_size*2);
|
||||
if (niter < niter_best) {
|
||||
niter_best = niter;
|
||||
nwarps_best = nwarps;
|
||||
}
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
|
||||
const int nbytes_shared_total = nbytes_shared + nbytes_slotmap;
|
||||
const int64_t grid_y = ids ? nchannels_x : nchannels_dst; // per expert when ids present
|
||||
|
||||
const dim3 block_nums(nrows_x/rows_per_block, grid_y, nsamples_dst);
|
||||
const dim3 block_dims(warp_size, nwarps_best, 1);
|
||||
|
||||
switch (nwarps_best) {
|
||||
case 1: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 1>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 2>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 3>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 4>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 5>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 6>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 7>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_switch_ids<T, cols_per_block, 8>(
|
||||
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
|
||||
GGML_UNUSED_VARS(nchannels_y);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void mul_mat_f_switch_cols_per_block(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t stride_col_id, const int stride_row_id,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
|
||||
const int ncols_case = (ids && ncols_dst > 16) ? 16 : ncols_dst;
|
||||
|
||||
GGML_ASSERT(ids || ncols_dst <= 16);
|
||||
|
||||
switch (ncols_case) {
|
||||
case 1: {
|
||||
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 9: {
|
||||
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 10: {
|
||||
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 11: {
|
||||
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 12: {
|
||||
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 13: {
|
||||
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 14: {
|
||||
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 15: {
|
||||
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
case 16: {
|
||||
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_MMF_CASE_HELPER(T, ncols_dst) \
|
||||
template void mul_mat_f_cuda<T, ncols_dst>( \
|
||||
const T * x, const float * y, const int32_t * ids, float * dst, \
|
||||
const int64_t ncols_x, const int64_t nrows_x, int64_t ncols_dst_total, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, \
|
||||
const int64_t stride_col_id, const int64_t stride_row_id, \
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, \
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,\
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst, \
|
||||
cudaStream_t stream);
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
#define DECL_MMF_CASE_EXTERN(ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(float, ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(half2, ncols_dst) \
|
||||
extern DECL_MMF_CASE_HELPER(nv_bfloat162, ncols_dst)
|
||||
|
||||
#define DECL_MMF_CASE(ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(float, ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(half2, ncols_dst) \
|
||||
DECL_MMF_CASE_HELPER(nv_bfloat162, ncols_dst)
|
||||
|
||||
DECL_MMF_CASE_EXTERN(1);
|
||||
DECL_MMF_CASE_EXTERN(2);
|
||||
DECL_MMF_CASE_EXTERN(3);
|
||||
DECL_MMF_CASE_EXTERN(4);
|
||||
DECL_MMF_CASE_EXTERN(5);
|
||||
DECL_MMF_CASE_EXTERN(6);
|
||||
DECL_MMF_CASE_EXTERN(7);
|
||||
DECL_MMF_CASE_EXTERN(8);
|
||||
DECL_MMF_CASE_EXTERN(9);
|
||||
DECL_MMF_CASE_EXTERN(10);
|
||||
DECL_MMF_CASE_EXTERN(11);
|
||||
DECL_MMF_CASE_EXTERN(12);
|
||||
DECL_MMF_CASE_EXTERN(13);
|
||||
DECL_MMF_CASE_EXTERN(14);
|
||||
DECL_MMF_CASE_EXTERN(15);
|
||||
DECL_MMF_CASE_EXTERN(16);
|
||||
#else
|
||||
#define DECL_MMF_CASE(ncols_dst)
|
||||
#endif
|
||||
|
||||
229
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
229
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cu
vendored
@@ -3,6 +3,140 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
// To reduce shared memory use, store "it" and "iex_used" with 22/10 bits each.
|
||||
struct mmq_ids_helper_store {
|
||||
uint32_t data;
|
||||
|
||||
__device__ mmq_ids_helper_store(const uint32_t it, const uint32_t iex_used) {
|
||||
data = (it & 0x003FFFFF) | (iex_used << 22);
|
||||
}
|
||||
|
||||
__device__ uint32_t it() const {
|
||||
return data & 0x003FFFFF;
|
||||
}
|
||||
|
||||
__device__ uint32_t iex_used() const {
|
||||
return data >> 22;
|
||||
}
|
||||
};
|
||||
static_assert(sizeof(mmq_ids_helper_store) == 4, "unexpected size for mmq_ids_helper_store");
|
||||
|
||||
// Helper function for mul_mat_id, converts ids to a more convenient format.
|
||||
// ids_src1 describes how to permute the flattened column indices of src1 in order to get a compact src1 tensor sorted by expert.
|
||||
// ids_dst describes the same mapping but for the dst tensor.
|
||||
// The upper and lower bounds for the ith expert in the compact src1 tensor are stored in expert_bounds[i:i+1].
|
||||
template <int n_expert_used_template>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mmq_ids_helper(
|
||||
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
|
||||
const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1) {
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
const int n_expert_used = n_expert_used_template == 0 ? n_expert_used_var : n_expert_used_template;
|
||||
const int expert = blockIdx.x;
|
||||
|
||||
extern __shared__ char data_mmq_ids_helper[];
|
||||
mmq_ids_helper_store * store = (mmq_ids_helper_store *) data_mmq_ids_helper;
|
||||
|
||||
int nex_prev = 0; // Number of columns for experts with a lower index.
|
||||
int it_compact = 0; // Running index for the compact slice of this expert.
|
||||
|
||||
if constexpr (n_expert_used_template == 0) {
|
||||
// Generic implementation:
|
||||
for (int it = 0; it < n_tokens; ++it) {
|
||||
int iex_used = -1; // The index at which the expert is used, if any.
|
||||
for (int iex = threadIdx.x; iex < n_expert_used; iex += warp_size) {
|
||||
const int expert_used = ids[it*si1 + iex];
|
||||
nex_prev += expert_used < expert;
|
||||
if (expert_used == expert) {
|
||||
iex_used = iex;
|
||||
}
|
||||
}
|
||||
|
||||
if (iex_used != -1) {
|
||||
store[it_compact] = mmq_ids_helper_store(it, iex_used);
|
||||
}
|
||||
|
||||
if (warp_reduce_any<warp_size>(iex_used != -1)) {
|
||||
it_compact++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// Implementation optimized for specific numbers of experts used:
|
||||
static_assert(n_expert_used == 6 || warp_size % n_expert_used == 0, "bad n_expert_used");
|
||||
const int neu_padded = n_expert_used == 6 ? 8 : n_expert_used; // Padded to next higher power of 2.
|
||||
for (int it0 = 0; it0 < n_tokens; it0 += warp_size/neu_padded) {
|
||||
const int it = it0 + threadIdx.x / neu_padded;
|
||||
|
||||
const int iex = threadIdx.x % neu_padded; // The index at which the expert is used, if any.
|
||||
const int expert_used = (neu_padded == n_expert_used || iex < n_expert_used) && it < n_tokens ?
|
||||
ids[it*si1 + iex] : INT_MAX;
|
||||
const int iex_used = expert_used == expert ? iex : -1;
|
||||
nex_prev += expert_used < expert;
|
||||
|
||||
// Whether the threads at this token position have used the expert:
|
||||
const int it_compact_add_self = warp_reduce_any<neu_padded>(iex_used != -1);
|
||||
|
||||
// Do a scan over threads at lower token positions in warp to get the correct index for writing data:
|
||||
int it_compact_add_lower = 0;
|
||||
#pragma unroll
|
||||
for (int offset = neu_padded; offset < warp_size; offset += neu_padded) {
|
||||
const int tmp = __shfl_up_sync(0xFFFFFFFF, it_compact_add_self, offset, warp_size);
|
||||
if (threadIdx.x >= static_cast<unsigned int>(offset)) {
|
||||
it_compact_add_lower += tmp;
|
||||
}
|
||||
}
|
||||
|
||||
if (iex_used != -1) {
|
||||
store[it_compact + it_compact_add_lower] = mmq_ids_helper_store(it, iex_used);
|
||||
}
|
||||
|
||||
// The thread with the highest index in the warp always has the sum over the whole warp, use it to increment all threads:
|
||||
it_compact += __shfl_sync(0xFFFFFFFF, it_compact_add_lower + it_compact_add_self, warp_size - 1, warp_size);
|
||||
}
|
||||
}
|
||||
nex_prev = warp_reduce_sum<warp_size>(nex_prev);
|
||||
|
||||
for (int itc = threadIdx.x; itc < it_compact; itc += warp_size) {
|
||||
const mmq_ids_helper_store store_it = store[itc];
|
||||
const int it = store_it.it();
|
||||
const int iex_used = store_it.iex_used();
|
||||
ids_src1[nex_prev + itc] = it*sis1 + iex_used % nchannels_y;
|
||||
ids_dst [nex_prev + itc] = it*n_expert_used + iex_used;
|
||||
}
|
||||
|
||||
if (threadIdx.x != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
expert_bounds[expert] = nex_prev;
|
||||
|
||||
if (expert < static_cast<int>(gridDim.x) - 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
expert_bounds[gridDim.x] = nex_prev + it_compact;
|
||||
}
|
||||
|
||||
template <int n_expert_used_template>
|
||||
static void launch_mmq_ids_helper(
|
||||
const int32_t * __restrict__ ids, int32_t * __restrict__ ids_src1, int32_t * __restrict__ ids_dst, int32_t * __restrict__ expert_bounds,
|
||||
const int n_experts, const int n_tokens, const int n_expert_used_var, const int nchannels_y, const int si1, const int sis1, cudaStream_t stream) {
|
||||
GGML_ASSERT(n_tokens < (1 << 22) && "too few bits in mmq_ids_helper_store");
|
||||
GGML_ASSERT(n_expert_used_var < (1 << 10) && "too few bits in mmq_ids_helper_store");
|
||||
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
|
||||
CUDA_SET_SHARED_MEMORY_LIMIT(mmq_ids_helper<n_expert_used_template>, smpbo);
|
||||
|
||||
const dim3 num_blocks(n_experts, 1, 1);
|
||||
const dim3 block_size(warp_size, 1, 1);
|
||||
const size_t nbytes_shared = n_tokens*sizeof(mmq_ids_helper_store);
|
||||
GGML_ASSERT(nbytes_shared <= smpbo);
|
||||
mmq_ids_helper<n_expert_used_template><<<num_blocks, block_size, nbytes_shared, stream>>>
|
||||
(ids, ids_src1, ids_dst, expert_bounds, n_tokens, n_expert_used_var, nchannels_y, si1, sis1);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_q_switch_type(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) {
|
||||
switch (args.type_x) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
@@ -137,7 +271,7 @@ void ggml_cuda_mul_mat_q(
|
||||
ne00, ne01, ne1, s01, ne11, s1,
|
||||
ne02, ne12, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
use_stream_k, ne1};
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
return;
|
||||
}
|
||||
@@ -148,54 +282,50 @@ void ggml_cuda_mul_mat_q(
|
||||
|
||||
const int64_t n_expert_used = ids->ne[0];
|
||||
const int64_t ne_get_rows = ne12 * n_expert_used;
|
||||
GGML_ASSERT(ne1 == n_expert_used);
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
std::vector<int32_t> ids_src1_host;
|
||||
ids_src1_host.reserve(ne_get_rows);
|
||||
std::vector<int32_t> ids_dst_host;
|
||||
ids_dst_host.reserve(ne_get_rows);
|
||||
std::vector<int32_t> tokens_per_expert_host(ne02);
|
||||
std::vector<int32_t> expert_bounds_host(ne02 + 1);
|
||||
ggml_cuda_pool_alloc<int32_t> ids_buf_dev(ctx.pool());
|
||||
ggml_cuda_pool_alloc<int32_t> ids_src1(ctx.pool(), ne_get_rows);
|
||||
ggml_cuda_pool_alloc<int32_t> ids_dst(ctx.pool(), ne_get_rows);
|
||||
ggml_cuda_pool_alloc<int32_t> expert_bounds(ctx.pool(), ne02 + 1);
|
||||
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids->data, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
{
|
||||
GGML_ASSERT(ids->nb[0] == ggml_element_size(ids));
|
||||
const int si1 = ids->nb[1] / ggml_element_size(ids);
|
||||
const int sis1 = nb12 / nb11;
|
||||
|
||||
for (int64_t i02 = 0; i02 < ne02; ++i02) { // expert matrices
|
||||
for (int64_t i12 = 0; i12 < ne12; ++i12) { // tokens
|
||||
for (int64_t iex = 0; iex < n_expert_used; ++iex) {
|
||||
const int32_t expert_to_use = *(const int32_t *)(ids_host.data() + i12*ids->nb[1] + iex*ids->nb[0]);
|
||||
assert(expert_to_use >= 0 && expert_to_use < ne02);
|
||||
if (expert_to_use == i02) {
|
||||
ids_src1_host.push_back(i12*(nb12/nb11) + iex % ne11);
|
||||
ids_dst_host.push_back(i12*ne1 + iex);
|
||||
tokens_per_expert_host[i02]++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
switch (n_expert_used) {
|
||||
case 2:
|
||||
launch_mmq_ids_helper< 2> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
case 4:
|
||||
launch_mmq_ids_helper< 4> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
case 6:
|
||||
launch_mmq_ids_helper< 6> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
case 8:
|
||||
launch_mmq_ids_helper< 8> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
case 16:
|
||||
launch_mmq_ids_helper<16> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
case 32:
|
||||
launch_mmq_ids_helper<32> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
default:
|
||||
launch_mmq_ids_helper< 0> ((const int32_t *) ids->data, ids_src1.get(), ids_dst.get(), expert_bounds.get(),
|
||||
ne02, ne12, n_expert_used, ne11, si1, sis1, stream);
|
||||
break;
|
||||
}
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
int32_t cumsum = 0;
|
||||
for (int64_t i = 0; i < ne02; ++i) {
|
||||
expert_bounds_host[i] = cumsum;
|
||||
cumsum += tokens_per_expert_host[i];
|
||||
}
|
||||
expert_bounds_host[ne02] = cumsum;
|
||||
|
||||
std::vector<int32_t> ids_buf_host;
|
||||
ids_buf_host.reserve(ids_src1_host.size() + ids_dst_host.size() + expert_bounds_host.size());
|
||||
ids_buf_host.insert(ids_buf_host.end(), ids_src1_host.begin(), ids_src1_host.end());
|
||||
ids_buf_host.insert(ids_buf_host.end(), ids_dst_host.begin(), ids_dst_host.end());
|
||||
ids_buf_host.insert(ids_buf_host.end(), expert_bounds_host.begin(), expert_bounds_host.end());
|
||||
ids_buf_dev.alloc(ids_buf_host.size() + get_mmq_x_max_host(cc)); // Expert bounds are padded on device.
|
||||
CUDA_CHECK(cudaMemcpyAsync(ids_buf_dev.ptr, ids_buf_host.data(), ids_buf_host.size()*sizeof(int32_t), cudaMemcpyHostToDevice, stream));
|
||||
CUDA_CHECK(cudaStreamSynchronize(stream));
|
||||
|
||||
const int32_t * ids_src1_dev = ids_buf_dev.ptr;
|
||||
const int32_t * ids_dst_dev = ids_src1_dev + ids_src1_host.size();
|
||||
const int32_t * expert_bounds_dev = ids_dst_dev + ids_dst_host.size();
|
||||
|
||||
const size_t nbytes_src1_q8_1 = ne12*n_expert_used*ne10_padded * sizeof(block_q8_1)/QK8_1 +
|
||||
get_mmq_x_max_host(cc)*sizeof(block_q8_1_mmq);
|
||||
ggml_cuda_pool_alloc<char> src1_q8_1(ctx.pool(), nbytes_src1_q8_1);
|
||||
@@ -208,7 +338,7 @@ void ggml_cuda_mul_mat_q(
|
||||
const int64_t s11 = src1->nb[1] / ts_src1;
|
||||
const int64_t s12 = src1->nb[2] / ts_src1;
|
||||
const int64_t s13 = src1->nb[2] / ts_src1;
|
||||
quantize_mmq_q8_1_cuda(src1_d, ids_src1_dev, src1_q8_1.get(), src0->type,
|
||||
quantize_mmq_q8_1_cuda(src1_d, ids_src1.get(), src1_q8_1.get(), src0->type,
|
||||
ne10, s11, s12, s13, ne10_padded, ne11_flat, ne12_flat, ne13_flat, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
@@ -218,11 +348,11 @@ void ggml_cuda_mul_mat_q(
|
||||
|
||||
// Note that ne02 is used instead of ne12 because the number of y channels determines the z dimension of the CUDA grid.
|
||||
const mmq_args args = {
|
||||
src0_d, src0->type, (const int *) src1_q8_1.ptr, ids_dst_dev, expert_bounds_dev, dst_d,
|
||||
src0_d, src0->type, (const int *) src1_q8_1.get(), ids_dst.get(), expert_bounds.get(), dst_d,
|
||||
ne00, ne01, ne_get_rows, s01, ne_get_rows, s1,
|
||||
ne02, ne02, s02, s12, s2,
|
||||
ne03, ne13, s03, s13, s3,
|
||||
use_stream_k};
|
||||
use_stream_k, ne12};
|
||||
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
}
|
||||
@@ -262,14 +392,11 @@ void ggml_cuda_op_mul_mat_q(
|
||||
ne00, row_diff, src1_ncols, stride01, ne11, nrows_dst,
|
||||
1, 1, 0, 0, 0,
|
||||
1, 1, 0, 0, 0,
|
||||
use_stream_k};
|
||||
use_stream_k, src1_ncols};
|
||||
|
||||
ggml_cuda_mul_mat_q_switch_type(ctx, args, stream);
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddf_i);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
|
||||
|
||||
44
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
44
ml/backend/ggml/ggml/src/ggml-cuda/mmq.cuh
vendored
@@ -1255,7 +1255,7 @@ static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
|
||||
GGML_UNUSED_VARS(x, y, sum, k00);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
@@ -1572,7 +1572,7 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
|
||||
GGML_UNUSED_VARS(x, y, sum, k00);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
@@ -2301,7 +2301,7 @@ static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma(
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); GGML_UNUSED(k00);
|
||||
GGML_UNUSED_VARS(x, y, sum, k00);
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
@@ -2855,12 +2855,14 @@ static __device__ __forceinline__ void mmq_write_back_mma(
|
||||
#else
|
||||
typedef tile<16, 8, int> tile_C;
|
||||
constexpr int rows_per_warp = 2 * granularity;
|
||||
#endif
|
||||
#endif // defined(AMD_MFMA_AVAILABLE)
|
||||
constexpr int ntx = rows_per_warp/tile_C::I; // Number of x minitiles per warp.
|
||||
|
||||
const int i0 = (threadIdx.y / ntx) * (ntx*tile_C::I);
|
||||
#if defined(TURING_MMA_AVAILABLE) || defined(AMD_MFMA_AVAILABLE)
|
||||
static_assert(nwarps*tile_C::I == mmq_y, "nwarps*tile_C::I != mmq_y");
|
||||
#else
|
||||
GGML_UNUSED(nwarps);
|
||||
#endif // defined(AMD_MFMA_AVAILABLE) || defined(TURING_MMA_AVAILABLE)
|
||||
|
||||
#pragma unroll
|
||||
@@ -3136,7 +3138,8 @@ static __global__ void mul_mat_q(
|
||||
const int32_t * __restrict__ expert_bounds, float * __restrict__ dst, float * __restrict__ tmp_fixup,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_row_x, const int ncols_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int nchannels_y, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
const int sample_ratio, const int nsamples_y, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
|
||||
// Skip unused template specializations for faster compilation:
|
||||
if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) {
|
||||
@@ -3150,7 +3153,7 @@ static __global__ void mul_mat_q(
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int ntx = (ncols_max + mmq_x - 1) / mmq_x; // Number of tiles x
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y; // Number of tiles y
|
||||
|
||||
// Initialize the ids for writing back data with just the index.
|
||||
@@ -3374,7 +3377,8 @@ template <ggml_type type, int mmq_x, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst) {
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int blocks_per_iter = MMQ_ITER_K / qk;
|
||||
@@ -3385,7 +3389,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
|
||||
float sum[mmq_x*mmq_y / (nwarps*warp_size)] = {0.0f};
|
||||
|
||||
const int ntx = (ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int ntx = (ncols_max + mmq_x - 1) / mmq_x;
|
||||
const int nty = (nrows_x + mmq_y - 1) / mmq_y;
|
||||
|
||||
const int bidx0 = blockIdx.x;
|
||||
@@ -3526,7 +3530,7 @@ struct mmq_args {
|
||||
int64_t ncols_x; int64_t nrows_x; int64_t ncols_dst; int64_t stride_row_x; int64_t ncols_y; int64_t nrows_dst;
|
||||
int64_t nchannels_x; int64_t nchannels_y; int64_t stride_channel_x; int64_t stride_channel_y; int64_t stride_channel_dst;
|
||||
int64_t nsamples_x; int64_t nsamples_y; int64_t stride_sample_x; int64_t stride_sample_y; int64_t stride_sample_dst;
|
||||
bool use_stream_k;
|
||||
bool use_stream_k; int64_t ncols_max;
|
||||
};
|
||||
|
||||
template<ggml_type type>
|
||||
@@ -3556,7 +3560,7 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
CUDA_SET_SHARED_MEMORY_LIMIT((mul_mat_q<type, mmq_x, true>), nbytes_shared);
|
||||
|
||||
const int nty = (args.nrows_x + mmq_y - 1) / mmq_y;
|
||||
const int ntx = (args.ncols_dst + mmq_x - 1) / mmq_x;
|
||||
const int ntx = (args.ncols_max + mmq_x - 1) / mmq_x;
|
||||
const int ntzw = args.nchannels_y * args.nsamples_y;
|
||||
const dim3 block_nums_xy_tiling(nty, ntx, ntzw);
|
||||
|
||||
@@ -3572,14 +3576,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, need_check><<<block_nums_xy_tiling, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, nullptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
}
|
||||
return;
|
||||
}
|
||||
@@ -3599,7 +3605,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
|
||||
if (!fixup_needed) {
|
||||
return;
|
||||
@@ -3607,14 +3614,16 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
} else {
|
||||
constexpr bool need_check = true;
|
||||
mul_mat_q<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, nbytes_shared, stream>>>
|
||||
(args.x, args.y, args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr,
|
||||
args.ncols_x, args.nrows_x, args.ncols_dst, args.stride_row_x, args.ncols_y, args.nrows_dst,
|
||||
channel_ratio, args.nchannels_y, args.stride_channel_x, args.stride_channel_y, args.stride_channel_dst,
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst);
|
||||
sample_ratio, args.nsamples_y, args.stride_sample_x, args.stride_sample_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
|
||||
if (!fixup_needed) {
|
||||
return;
|
||||
@@ -3622,7 +3631,8 @@ static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & a
|
||||
|
||||
mul_mat_q_stream_k_fixup<type, mmq_x, need_check><<<block_nums_stream_k, block_dims, 0, stream>>>
|
||||
(args.ids_dst, args.expert_bounds, args.dst, tmp_fixup.ptr, args.ncols_x, args.nrows_x, args.ncols_dst,
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst);
|
||||
args.nrows_dst, args.nchannels_y, args.stride_channel_dst, args.nsamples_y, args.stride_sample_dst,
|
||||
args.ncols_max);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3647,7 +3657,7 @@ void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cuda
|
||||
continue;
|
||||
}
|
||||
|
||||
const int ntiles_x = (args.ncols_y + mmq_x - 1) / mmq_x;
|
||||
const int ntiles_x = (args.ncols_max + mmq_x - 1) / mmq_x;
|
||||
|
||||
if (ntiles_x < ntiles_x_best) {
|
||||
mmq_x_best = mmq_x;
|
||||
|
||||
12
ml/backend/ggml/ggml/src/ggml-cuda/mmvf.cu
vendored
12
ml/backend/ggml/ggml/src/ggml-cuda/mmvf.cu
vendored
@@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "common.cuh"
|
||||
#include "convert.cuh"
|
||||
#include "mmvf.cuh"
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
@@ -93,8 +94,8 @@ static __global__ void mul_mat_vec_f(
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
sumf[j] += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
|
||||
sumf[j] += float(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
|
||||
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[0]) * tmpy.x;
|
||||
sumf[j] += ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]) * tmpy.y;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@@ -432,12 +433,7 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
}
|
||||
|
||||
GGML_UNUSED(ctx);
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddq_i);
|
||||
GGML_UNUSED(src1_ncols);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
GGML_UNUSED_VARS(ctx, src1, dst, src1_ddq_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) {
|
||||
|
||||
128
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
128
ml/backend/ggml/ggml/src/ggml-cuda/mmvq.cu
vendored
@@ -141,9 +141,10 @@ template <ggml_type type, int ncols_dst>
|
||||
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const int ncols_x, const int nchannels_y, const int stride_row_x, const int stride_col_y, const int stride_col_dst,
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
@@ -161,12 +162,12 @@ static __global__ void mul_mat_vec_q(
|
||||
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
|
||||
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : channel_dst / channel_ratio;
|
||||
const int channel_y = ncols_dst == 1 && ids ? channel_dst % nchannels_y : channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int sample_x = sample_dst / sample_ratio;
|
||||
const int sample_y = sample_dst;
|
||||
const uint32_t channel_dst = blockIdx.y;
|
||||
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
const uint32_t sample_dst = blockIdx.z;
|
||||
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
|
||||
const uint32_t sample_y = sample_dst;
|
||||
|
||||
// partial sum for each thread
|
||||
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
@@ -219,7 +220,7 @@ static __global__ void mul_mat_vec_q(
|
||||
tmp[j][i] = warp_reduce_sum<warp_size>(tmp[j][i]);
|
||||
}
|
||||
|
||||
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + int(threadIdx.x) < stride_col_dst)) {
|
||||
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
|
||||
dst[j*stride_col_dst + threadIdx.x] = tmp[j][threadIdx.x];
|
||||
}
|
||||
}
|
||||
@@ -247,8 +248,9 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
||||
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
||||
const int channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int sample_ratio = nsamples_dst / nsamples_x;
|
||||
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
|
||||
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
|
||||
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
@@ -256,86 +258,70 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
{
|
||||
case 1: {
|
||||
constexpr int c_ncols_dst = 1;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 2:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 2: {
|
||||
constexpr int c_ncols_dst = 2;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 3:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 3: {
|
||||
constexpr int c_ncols_dst = 3;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 4:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 4: {
|
||||
constexpr int c_ncols_dst = 4;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 5:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 5: {
|
||||
constexpr int c_ncols_dst = 5;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 6:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 6: {
|
||||
constexpr int c_ncols_dst = 6;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 7:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 7: {
|
||||
constexpr int c_ncols_dst = 7;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
case 8:
|
||||
{
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
case 8: {
|
||||
constexpr int c_ncols_dst = 8;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
break;
|
||||
}
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
@@ -596,9 +582,5 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
src0_dd_i, src0->type, src1_ddq_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
|
||||
|
||||
GGML_UNUSED(src1);
|
||||
GGML_UNUSED(dst);
|
||||
GGML_UNUSED(src1_ddf_i);
|
||||
GGML_UNUSED(src1_ncols);
|
||||
GGML_UNUSED(src1_padded_row_size);
|
||||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
||||
247
ml/backend/ggml/ggml/src/ggml-cuda/norm.cu
vendored
247
ml/backend/ggml/ggml/src/ggml-cuda/norm.cu
vendored
@@ -104,12 +104,30 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
|
||||
}
|
||||
}
|
||||
|
||||
template <int block_size, bool do_multiply = false>
|
||||
static __global__ void rms_norm_f32(
|
||||
const float * x, float * dst, const int ncols, const int64_t stride_row, const int64_t stride_channel,
|
||||
const int64_t stride_sample, const float eps, const float * mul = nullptr, const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0, const int64_t mul_stride_sample = 0, const int mul_ncols = 0,
|
||||
const int mul_nrows = 0, const int mul_nchannels = 0, const int mul_nsamples = 0) {
|
||||
template <int block_size, bool do_multiply = false, bool do_add = false>
|
||||
static __global__ void rms_norm_f32(const float * x,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const float eps,
|
||||
const float * mul = nullptr,
|
||||
const int64_t mul_stride_row = 0,
|
||||
const int64_t mul_stride_channel = 0,
|
||||
const int64_t mul_stride_sample = 0,
|
||||
const uint3 mul_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 mul_nsamples_packed = make_uint3(0, 0, 0),
|
||||
const float * add = nullptr,
|
||||
const int64_t add_stride_row = 0,
|
||||
const int64_t add_stride_channel = 0,
|
||||
const int64_t add_stride_sample = 0,
|
||||
const uint3 add_ncols_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nrows_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nchannels_packed = make_uint3(0, 0, 0),
|
||||
const uint3 add_nsamples_packed = make_uint3(0, 0, 0)) {
|
||||
const int nrows = gridDim.x;
|
||||
const int nchannels = gridDim.y;
|
||||
|
||||
@@ -118,14 +136,23 @@ static __global__ void rms_norm_f32(
|
||||
const int sample = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
static_assert(!do_add || do_multiply, "fusing add is not supported without multiplying");
|
||||
|
||||
x += sample*stride_sample + channel*stride_channel + row*stride_row;
|
||||
dst += ((sample*nchannels + channel)*nrows + row)*ncols;
|
||||
|
||||
if constexpr (do_multiply) {
|
||||
const int mul_row = row % mul_nrows;
|
||||
const int mul_channel = channel % mul_nchannels;
|
||||
const int mul_sample = sample % mul_nsamples;
|
||||
mul += mul_sample*mul_stride_sample + mul_channel*mul_stride_channel + mul_row*mul_stride_row;
|
||||
const uint32_t mul_row = fastmodulo(row, mul_nrows_packed);
|
||||
const uint32_t mul_channel = fastmodulo(channel, mul_nchannels_packed);
|
||||
const uint32_t mul_sample = fastmodulo(sample, mul_nsamples_packed);
|
||||
mul += mul_sample * mul_stride_sample + mul_channel * mul_stride_channel + mul_row * mul_stride_row;
|
||||
}
|
||||
|
||||
if constexpr (do_add) {
|
||||
const int add_row = fastmodulo(row, add_nrows_packed);
|
||||
const int add_channel = fastmodulo(channel, add_nchannels_packed);
|
||||
const int add_sample = fastmodulo(sample, add_nsamples_packed);
|
||||
add += add_sample * add_stride_sample + add_channel * add_stride_channel + add_row * add_stride_row;
|
||||
}
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
@@ -138,15 +165,18 @@ static __global__ void rms_norm_f32(
|
||||
// sum up partial sums
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
if constexpr (block_size > WARP_SIZE) {
|
||||
static_assert(block_size == 1024, "unexpected block_size");
|
||||
static_assert((block_size <= 1024) && (block_size % 32 == 0), "unexpected block_size");
|
||||
__shared__ float s_sum[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
const int warp_id = tid / WARP_SIZE;
|
||||
const int lane_id = tid % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = tmp;
|
||||
}
|
||||
__syncthreads();
|
||||
tmp = s_sum[lane_id];
|
||||
tmp = 0.0f;
|
||||
if (lane_id < (block_size / WARP_SIZE)) {
|
||||
tmp = s_sum[lane_id];
|
||||
}
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
}
|
||||
|
||||
@@ -154,9 +184,13 @@ static __global__ void rms_norm_f32(
|
||||
const float scale = rsqrtf(mean + eps);
|
||||
|
||||
for (int col = tid; col < ncols; col += block_size) {
|
||||
if constexpr (do_multiply) {
|
||||
const int mul_col = col % mul_ncols;
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
if constexpr (do_multiply && do_add) {
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
const int add_col = fastmodulo(col, add_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col] + add[add_col];
|
||||
} else if constexpr (do_multiply) {
|
||||
const int mul_col = fastmodulo(col, mul_ncols_packed);
|
||||
dst[col] = scale * x[col] * mul[mul_col];
|
||||
} else {
|
||||
dst[col] = scale * x[col];
|
||||
}
|
||||
@@ -323,31 +357,87 @@ static void rms_norm_f32_cuda(
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample, const float eps, cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, false><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps);
|
||||
}
|
||||
}
|
||||
|
||||
static void rms_norm_mul_f32_cuda(
|
||||
const float * x, const float * mul, float * dst, const int ncols, const int nrows, const int nchannels, const int nsamples,
|
||||
const int64_t stride_row, const int64_t stride_channel, const int64_t stride_sample,
|
||||
const int64_t mul_stride_row, const int64_t mul_stride_channel, const int64_t mul_stride_sample,
|
||||
const int mul_ncols, const int mul_nrows, const int mul_nchannels, const int mul_nsamples,
|
||||
const float eps, cudaStream_t stream) {
|
||||
static void rms_norm_mul_f32_cuda(const float * x,
|
||||
const float * mul,
|
||||
const float * add,
|
||||
float * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
const int nchannels,
|
||||
const int nsamples,
|
||||
const int64_t stride_row,
|
||||
const int64_t stride_channel,
|
||||
const int64_t stride_sample,
|
||||
const int64_t mul_stride_row,
|
||||
const int64_t mul_stride_channel,
|
||||
const int64_t mul_stride_sample,
|
||||
const uint32_t mul_ncols,
|
||||
const uint32_t mul_nrows,
|
||||
const uint32_t mul_nchannels,
|
||||
const uint32_t mul_nsamples,
|
||||
const int64_t add_stride_row,
|
||||
const int64_t add_stride_channel,
|
||||
const int64_t add_stride_sample,
|
||||
const uint32_t add_ncols,
|
||||
const uint32_t add_nrows,
|
||||
const uint32_t add_nchannels,
|
||||
const uint32_t add_nsamples,
|
||||
const float eps,
|
||||
cudaStream_t stream) {
|
||||
const dim3 blocks_num(nrows, nchannels, nsamples);
|
||||
if (mul == nullptr) {
|
||||
rms_norm_f32_cuda(x, dst, ncols, nrows, nchannels, nsamples, stride_row, stride_channel, stride_sample, eps, stream);
|
||||
return;
|
||||
}
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<WARP_SIZE, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
if (add == nullptr) {
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed);
|
||||
}
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true><<<blocks_num, block_dims, 0, stream>>>(x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel, mul_stride_sample, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples);
|
||||
const uint3 mul_ncols_packed = init_fastdiv_values(mul_ncols);
|
||||
const uint3 mul_nrows_packed = init_fastdiv_values(mul_nrows);
|
||||
const uint3 mul_nchannels_packed = init_fastdiv_values(mul_nchannels);
|
||||
const uint3 mul_nsamples_packed = init_fastdiv_values(mul_nsamples);
|
||||
|
||||
const uint3 add_ncols_packed = init_fastdiv_values(add_ncols);
|
||||
const uint3 add_nrows_packed = init_fastdiv_values(add_nrows);
|
||||
const uint3 add_nchannels_packed = init_fastdiv_values(add_nchannels);
|
||||
const uint3 add_nsamples_packed = init_fastdiv_values(add_nsamples);
|
||||
if (ncols < 1024) {
|
||||
const dim3 block_dims(256, 1, 1);
|
||||
rms_norm_f32<256, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
} else {
|
||||
const dim3 block_dims(1024, 1, 1);
|
||||
rms_norm_f32<1024, true, true><<<blocks_num, block_dims, 0, stream>>>(
|
||||
x, dst, ncols, stride_row, stride_channel, stride_sample, eps, mul, mul_stride_row, mul_stride_channel,
|
||||
mul_stride_sample, mul_ncols_packed, mul_nrows_packed, mul_nchannels_packed, mul_nsamples_packed, add,
|
||||
add_stride_row, add_stride_channel, add_stride_sample, add_ncols_packed, add_nrows_packed,
|
||||
add_nchannels_packed, add_nsamples_packed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -491,7 +581,102 @@ void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
const int mul_nchannels = mul_src->ne[2];
|
||||
const int mul_nsamples = mul_src->ne[3];
|
||||
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d, dst_d, ne00, ne01, ne02, ne03, s01, s02, s03, mul_s01, mul_s02, mul_s03, mul_ncols, mul_nrows, mul_nchannels, mul_nsamples, eps, stream);
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d, nullptr, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
/*s00*/ s01, s02, s03,
|
||||
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
/*add_s00*/ 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
ggml_tensor * mul_tensor,
|
||||
ggml_tensor * add_tensor) {
|
||||
const ggml_tensor * rms_norm_src = (ggml_tensor *) dst->src[0];
|
||||
float eps = 0.0f;
|
||||
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
const float * src0_d = (const float *) rms_norm_src->data;
|
||||
const float * mul_d = nullptr;
|
||||
const ggml_tensor * mul_src = nullptr;
|
||||
|
||||
if (mul_tensor->src[0] == dst) {
|
||||
mul_d = (float *) mul_tensor->src[1]->data;
|
||||
mul_src = mul_tensor->src[1];
|
||||
} else if (mul_tensor->src[1] == dst) {
|
||||
mul_d = (float *) mul_tensor->src[0]->data;
|
||||
mul_src = mul_tensor->src[0];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
const float * add_d = nullptr;
|
||||
const ggml_tensor * add_src = nullptr;
|
||||
|
||||
if (add_tensor->src[0] == mul_tensor) {
|
||||
add_d = (float *) add_tensor->src[1]->data;
|
||||
add_src = add_tensor->src[1];
|
||||
} else if (add_tensor->src[1] == mul_tensor) {
|
||||
add_d = (float *) add_tensor->src[0]->data;
|
||||
add_src = add_tensor->src[0];
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
float * dst_d = (float *) add_tensor->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(rms_norm_src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(mul_tensor->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(add_tensor->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(eps >= 0.0f);
|
||||
|
||||
const int64_t ne00 = rms_norm_src->ne[0];
|
||||
const int64_t ne01 = rms_norm_src->ne[1];
|
||||
const int64_t ne02 = rms_norm_src->ne[2];
|
||||
const int64_t ne03 = rms_norm_src->ne[3];
|
||||
|
||||
const size_t ts0 = ggml_type_size(rms_norm_src->type);
|
||||
GGML_ASSERT(rms_norm_src->nb[0] == ts0);
|
||||
const int64_t s01 = rms_norm_src->nb[1] / ts0;
|
||||
const int64_t s02 = rms_norm_src->nb[2] / ts0;
|
||||
const int64_t s03 = rms_norm_src->nb[3] / ts0;
|
||||
|
||||
const size_t ts_mul = ggml_type_size(mul_src->type);
|
||||
GGML_ASSERT(mul_src->nb[0] == ts_mul);
|
||||
const int64_t mul_s01 = mul_src->nb[1] / ts_mul;
|
||||
const int64_t mul_s02 = mul_src->nb[2] / ts_mul;
|
||||
const int64_t mul_s03 = mul_src->nb[3] / ts_mul;
|
||||
|
||||
const int mul_ncols = mul_src->ne[0];
|
||||
const int mul_nrows = mul_src->ne[1];
|
||||
const int mul_nchannels = mul_src->ne[2];
|
||||
const int mul_nsamples = mul_src->ne[3];
|
||||
|
||||
const size_t ts_add = ggml_type_size(add_src->type);
|
||||
GGML_ASSERT(add_src->nb[0] == ts_add);
|
||||
const int64_t add_s01 = add_src->nb[1] / ts_add;
|
||||
const int64_t add_s02 = add_src->nb[2] / ts_add;
|
||||
const int64_t add_s03 = add_src->nb[3] / ts_add;
|
||||
|
||||
const int add_ncols = add_src->ne[0];
|
||||
const int add_nrows = add_src->ne[1];
|
||||
const int add_nchannels = add_src->ne[2];
|
||||
const int add_nsamples = add_src->ne[3];
|
||||
|
||||
rms_norm_mul_f32_cuda(src0_d, mul_d,add_d,dst_d,
|
||||
ne00,ne01, ne02, ne03,
|
||||
/*s00*/ s01, s02, s03,
|
||||
/*mul_s00*/ mul_s01, mul_s02, mul_s03,
|
||||
mul_ncols, mul_nrows, mul_nchannels, mul_nsamples,
|
||||
/*add_s00*/ add_s01, add_s02, add_s03,
|
||||
add_ncols, add_nrows, add_nchannels, add_nsamples,
|
||||
eps, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
5
ml/backend/ggml/ggml/src/ggml-cuda/norm.cuh
vendored
5
ml/backend/ggml/ggml/src/ggml-cuda/norm.cuh
vendored
@@ -8,6 +8,11 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused(ggml_backend_cuda_context & ctx, ggml_tensor * dst, ggml_tensor * mul_tensor);
|
||||
|
||||
void ggml_cuda_op_rms_norm_fused_add(ggml_backend_cuda_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
ggml_tensor * mul_tensor,
|
||||
ggml_tensor * add_tensor);
|
||||
|
||||
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_l2_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
49
ml/backend/ggml/ggml/src/ggml-cuda/opt-step-sgd.cu
vendored
Normal file
49
ml/backend/ggml/ggml/src/ggml-cuda/opt-step-sgd.cu
vendored
Normal file
@@ -0,0 +1,49 @@
|
||||
#include "ggml-impl.h"
|
||||
#include "opt-step-sgd.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
static __global__ void opt_step_sgd_f32(
|
||||
float * __restrict__ x, const float * __restrict__ g,
|
||||
const float * __restrict__ pars, const int64_t k) {
|
||||
|
||||
const int64_t i = (int64_t) blockIdx.x*blockDim.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
x[i] = x[i] * (1.0f - pars[0] * pars[1]) - pars[0] * g[i];
|
||||
}
|
||||
|
||||
static void opt_step_sgd_f32_cuda(
|
||||
float * x, const float * g, const float * __restrict__ pars, const int64_t k, cudaStream_t stream) {
|
||||
|
||||
const dim3 block_dims(CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1);
|
||||
const dim3 block_nums((k + CUDA_OPT_STEP_SGD_BLOCK_SIZE - 1) / CUDA_OPT_STEP_SGD_BLOCK_SIZE, 1, 1);
|
||||
opt_step_sgd_f32<<<block_nums, block_dims, 0, stream>>>(x, g, pars, k);
|
||||
}
|
||||
|
||||
void ggml_cuda_opt_step_sgd(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src0_grad = dst->src[1];
|
||||
const ggml_tensor * params = dst->src[2];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0_grad->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(params->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0_grad));
|
||||
GGML_ASSERT(ggml_is_contiguous(params));
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
|
||||
GGML_ASSERT(ggml_nelements(params) == 2);
|
||||
|
||||
float * src0_d = (float *) src0->data;
|
||||
const float * src0_grad_d = (const float *) src0_grad->data;
|
||||
const float * params_d = (const float *) params->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
|
||||
opt_step_sgd_f32_cuda(src0_d, src0_grad_d, params_d, ne, stream);
|
||||
}
|
||||
5
ml/backend/ggml/ggml/src/ggml-cuda/opt-step-sgd.cuh
vendored
Normal file
5
ml/backend/ggml/ggml/src/ggml-cuda/opt-step-sgd.cuh
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_OPT_STEP_SGD_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_opt_step_sgd(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
69
ml/backend/ggml/ggml/src/ggml-cuda/pad.cu
vendored
69
ml/backend/ggml/ggml/src/ggml-cuda/pad.cu
vendored
@@ -1,36 +1,50 @@
|
||||
#include "pad.cuh"
|
||||
|
||||
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
||||
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
||||
// blockIdx.y: idx of ne1
|
||||
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (nidx >= ne0) {
|
||||
static __global__ void pad_f32(const float * src, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3) {
|
||||
// blockIdx.z: i3*ne2+i2
|
||||
// blockIdx.y: i1
|
||||
// blockIDx.x: i0 / CUDA_PAD_BLOCK_SIZE
|
||||
// gridDim.y: ne1
|
||||
int i0 = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
int i1 = blockIdx.y;
|
||||
int i2 = blockIdx.z % ne2;
|
||||
int i3 = blockIdx.z / ne2;
|
||||
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
||||
return;
|
||||
}
|
||||
|
||||
// operation
|
||||
int offset_dst =
|
||||
nidx +
|
||||
blockIdx.y * ne0 +
|
||||
blockIdx.z * ne0 * gridDim.y;
|
||||
if (nidx < ne00 && blockIdx.y < (unsigned)ne01 && blockIdx.z < (unsigned)(ne02*ne03)) {
|
||||
int offset_src =
|
||||
nidx +
|
||||
blockIdx.y * ne00 +
|
||||
blockIdx.z * ne00 * ne01;
|
||||
dst[offset_dst] = x[offset_src];
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) &&
|
||||
(i1 >= lp1 && i1 < ne1 - rp1) &&
|
||||
(i2 >= lp2 && i2 < ne2 - rp2) &&
|
||||
(i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t i00 = i0 - lp0;
|
||||
const int64_t i01 = i1 - lp1;
|
||||
const int64_t i02 = i2 - lp2;
|
||||
const int64_t i03 = i3 - lp3;
|
||||
const int64_t ne02 = ne2 - lp2 - rp2;
|
||||
const int64_t ne01 = ne1 - lp1 - rp1;
|
||||
const int64_t ne00 = ne0 - lp0 - rp0;
|
||||
|
||||
const int64_t src_idx = i03*(ne00*ne01*ne02) + i02*(ne00*ne01) + i01*ne00 + i00;
|
||||
|
||||
dst[dst_idx] = src[src_idx];
|
||||
} else {
|
||||
dst[offset_dst] = 0.0f;
|
||||
dst[dst_idx] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
static void pad_f32_cuda(const float * x, float * dst,
|
||||
const int ne00, const int ne01, const int ne02, const int ne03,
|
||||
static void pad_f32_cuda(const float * src, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, dst, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, ne0, ne1, ne2, ne3);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -41,9 +55,18 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int32_t lp0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t rp0 = ((const int32_t*)(dst->op_params))[1];
|
||||
const int32_t lp1 = ((const int32_t*)(dst->op_params))[2];
|
||||
const int32_t rp1 = ((const int32_t*)(dst->op_params))[3];
|
||||
const int32_t lp2 = ((const int32_t*)(dst->op_params))[4];
|
||||
const int32_t rp2 = ((const int32_t*)(dst->op_params))[5];
|
||||
const int32_t lp3 = ((const int32_t*)(dst->op_params))[6];
|
||||
const int32_t rp3 = ((const int32_t*)(dst->op_params))[7];
|
||||
|
||||
pad_f32_cuda(src0_d, dst_d,
|
||||
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
||||
}
|
||||
|
||||
91
ml/backend/ggml/ggml/src/ggml-cuda/pad_reflect_1d.cu
vendored
Normal file
91
ml/backend/ggml/ggml/src/ggml-cuda/pad_reflect_1d.cu
vendored
Normal file
@@ -0,0 +1,91 @@
|
||||
#include "pad_reflect_1d.cuh"
|
||||
|
||||
static __global__ __launch_bounds__(CUDA_PAD_REFLECT_1D_BLOCK_SIZE, 1) void
|
||||
pad_reflect_1d_kernel_f32(
|
||||
const void * __restrict__ src0,
|
||||
void * __restrict__ dst,
|
||||
const int64_t ne0,
|
||||
const int64_t ne00,
|
||||
const uint3 ne01,
|
||||
const int64_t ne02,
|
||||
const int64_t ne03,
|
||||
const int64_t nb00,
|
||||
const int64_t nb01,
|
||||
const int64_t nb02,
|
||||
const int64_t nb03,
|
||||
const int64_t nb0,
|
||||
const int64_t nb1,
|
||||
const int64_t nb2,
|
||||
const int64_t nb3,
|
||||
const int p0,
|
||||
const int p1) {
|
||||
const int64_t i3 = blockIdx.z;
|
||||
const int64_t i2 = blockIdx.y;
|
||||
|
||||
const uint2 div_mod_packed = fast_div_modulo(blockIdx.x, ne01);
|
||||
const int64_t tile1 = div_mod_packed.y; // i1
|
||||
const int64_t tile0 = div_mod_packed.x; // nth i0 tile
|
||||
const int64_t i1 = tile1;
|
||||
const int64_t i0 = threadIdx.x + tile0 * blockDim.x;
|
||||
|
||||
// ne01.z is original value of unpacked ne01 (see init_fastdiv_values in common.cuh)
|
||||
if (i0 >= ne0 || i1 >= ne01.z || i2 >= ne02 || i3 >= ne03) {
|
||||
return;
|
||||
}
|
||||
|
||||
const char * src0_ptr = (const char *) src0 + i3 * nb03 + i2 * nb02 + i1 * nb01;
|
||||
char * dst_ptr = (char *) dst + i3 * nb3 + i2 * nb2 + i1 * nb1;
|
||||
|
||||
const int64_t rel_i0 = i0 - p0; // relative i0 in src0
|
||||
int64_t src_idx;
|
||||
|
||||
if (rel_i0 < 0) {
|
||||
// Left padding - reflect
|
||||
src_idx = -rel_i0;
|
||||
} else if (rel_i0 < ne00) {
|
||||
// Middle - copy
|
||||
src_idx = rel_i0;
|
||||
} else {
|
||||
// Right padding - reflect
|
||||
src_idx = 2 * ne00 - 2 - rel_i0;
|
||||
}
|
||||
const float value = *(const float *) (src0_ptr + src_idx * nb00);
|
||||
*(float *) (dst_ptr + i0 * nb0) = value;
|
||||
|
||||
GGML_UNUSED(p1);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_pad_reflect_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t * opts = (const int32_t *) dst->op_params;
|
||||
const int p0 = opts[0];
|
||||
const int p1 = opts[1];
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const uint3 ne01_packed = init_fastdiv_values(ne01);
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
|
||||
// sanity: padded length matches
|
||||
GGML_ASSERT(ne0 == ne00 + p0 + p1);
|
||||
|
||||
constexpr int64_t bx = CUDA_PAD_REFLECT_1D_BLOCK_SIZE; // threads per block (x)
|
||||
const int64_t tiles0 = (ne0 + bx - 1) / bx; // number of tiles along i0
|
||||
// grid.x covers i1 and all tiles of i0: [ne01 * tiles0]
|
||||
// grid.y covers i2: [ne02]
|
||||
// grid.z covers i3: [ne03]
|
||||
const dim3 grid_dims((unsigned) (ne01 * tiles0), (unsigned) ne02, (unsigned) ne03);
|
||||
const dim3 block_dims((unsigned) bx, 1, 1);
|
||||
|
||||
pad_reflect_1d_kernel_f32<<<grid_dims, block_dims, 0, stream>>>(
|
||||
src0->data, dst->data, ne0, ne00, ne01_packed, ne02, ne03, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], p0, p1);
|
||||
}
|
||||
5
ml/backend/ggml/ggml/src/ggml-cuda/pad_reflect_1d.cuh
vendored
Normal file
5
ml/backend/ggml/ggml/src/ggml-cuda/pad_reflect_1d.cuh
vendored
Normal file
@@ -0,0 +1,5 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_PAD_REFLECT_1D_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_pad_reflect_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
22
ml/backend/ggml/ggml/src/ggml-cuda/quantize.cu
vendored
22
ml/backend/ggml/ggml/src/ggml-cuda/quantize.cu
vendored
@@ -1,26 +1,27 @@
|
||||
#include "quantize.cuh"
|
||||
#include <cstdint>
|
||||
|
||||
__launch_bounds__(CUDA_QUANTIZE_BLOCK_SIZE, 1)
|
||||
static __global__ void quantize_q8_1(
|
||||
const float * __restrict__ x, void * __restrict__ vy,
|
||||
const int64_t ne00, const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t ne0, const int ne1, const int ne2) {
|
||||
const int64_t ne0, const uint32_t ne1, const uint3 ne2) {
|
||||
const int64_t i0 = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i0 >= ne0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i3 = fastdiv(blockIdx.z, ne2);
|
||||
const int64_t i2 = blockIdx.z - i3*ne2.z;
|
||||
const int64_t i1 = blockIdx.y;
|
||||
const int64_t i2 = blockIdx.z % ne2;
|
||||
const int64_t i3 = blockIdx.z / ne2;
|
||||
|
||||
const int64_t & i00 = i0;
|
||||
const int64_t & i01 = i1;
|
||||
const int64_t & i02 = i2;
|
||||
const int64_t & i03 = i3;
|
||||
|
||||
const int64_t i_cont = ((i3*ne2 + i2) * ne1 + i1) * ne0 + i0;
|
||||
const int64_t i_cont = ((i3*ne2.z + i2) * ne1 + i1) * ne0 + i0;
|
||||
|
||||
block_q8_1 * y = (block_q8_1 *) vy;
|
||||
|
||||
@@ -31,10 +32,10 @@ static __global__ void quantize_q8_1(
|
||||
float amax = fabsf(xi);
|
||||
float sum = xi;
|
||||
|
||||
amax = warp_reduce_max(amax);
|
||||
sum = warp_reduce_sum(sum);
|
||||
amax = warp_reduce_max<QK8_1>(amax);
|
||||
sum = warp_reduce_sum<QK8_1>(sum);
|
||||
|
||||
const float d = amax / 127;
|
||||
const float d = amax / 127.0f;
|
||||
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
|
||||
|
||||
y[ib].qs[iqs] = q;
|
||||
@@ -43,8 +44,7 @@ static __global__ void quantize_q8_1(
|
||||
return;
|
||||
}
|
||||
|
||||
reinterpret_cast<half&>(y[ib].ds.x) = d;
|
||||
reinterpret_cast<half&>(y[ib].ds.y) = sum;
|
||||
y[ib].ds = make_half2(d, sum);
|
||||
}
|
||||
|
||||
template <mmq_q8_1_ds_layout ds_layout>
|
||||
@@ -152,10 +152,12 @@ void quantize_row_q8_1_cuda(
|
||||
GGML_ASSERT(!ids);
|
||||
GGML_ASSERT(ne0 % QK8_1 == 0);
|
||||
|
||||
const uint3 ne2_fastdiv = init_fastdiv_values(ne2);
|
||||
|
||||
const int64_t block_num_x = (ne0 + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
||||
const dim3 num_blocks(block_num_x, ne1, ne2*ne3);
|
||||
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
|
||||
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2);
|
||||
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, ne00, s01, s02, s03, ne0, ne1, ne2_fastdiv);
|
||||
GGML_UNUSED(type_src0);
|
||||
}
|
||||
|
||||
|
||||
53
ml/backend/ggml/ggml/src/ggml-cuda/reduce_rows.cuh
vendored
Normal file
53
ml/backend/ggml/ggml/src/ggml-cuda/reduce_rows.cuh
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
#include "common.cuh"
|
||||
|
||||
// Row reduction kernel template - compute sum (norm=false) or mean (norm=true)
|
||||
template <bool norm>
|
||||
static __global__ void reduce_rows_f32(const float * __restrict__ x, float * __restrict__ dst, const int ncols) {
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
const int num_unroll = 8;
|
||||
float temp[num_unroll];
|
||||
float sum_temp[num_unroll] = { 0.0f };
|
||||
for (int i = col; i < ncols;) {
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
if (i < ncols) {
|
||||
temp[j] = x[row * ncols + i];
|
||||
} else {
|
||||
temp[j] = 0;
|
||||
}
|
||||
i += blockDim.x;
|
||||
}
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
sum_temp[j] += temp[j];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < num_unroll; ++j) {
|
||||
sum += sum_temp[j];
|
||||
}
|
||||
|
||||
// sum up partial sums
|
||||
sum = warp_reduce_sum(sum);
|
||||
if (blockDim.x > WARP_SIZE) {
|
||||
assert((blockDim.x <= 1024) && (blockDim.x % WARP_SIZE) == 0);
|
||||
__shared__ float s_sum[32];
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||
if (lane_id == 0) {
|
||||
s_sum[warp_id] = sum;
|
||||
}
|
||||
__syncthreads();
|
||||
sum = 0.0f;
|
||||
if (lane_id < (static_cast<int>(blockDim.x) / WARP_SIZE)) {
|
||||
sum = s_sum[lane_id];
|
||||
}
|
||||
sum = warp_reduce_sum(sum);
|
||||
}
|
||||
|
||||
if (col != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[row] = norm ? sum / ncols : sum;
|
||||
}
|
||||
81
ml/backend/ggml/ggml/src/ggml-cuda/set-rows.cu
vendored
81
ml/backend/ggml/ggml/src/ggml-cuda/set-rows.cu
vendored
@@ -3,15 +3,10 @@
|
||||
|
||||
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
__device__ __forceinline__ void set_rows_1(const src_t * src_f, dst_t * dst_f) {
|
||||
convert_flt(src_f, dst_f);
|
||||
}
|
||||
|
||||
// Generic quantized set_rows kernel template
|
||||
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
template<typename idx_t, typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
static __global__ void k_set_rows_quant(
|
||||
const float * __restrict__ src0, const int64_t * __restrict__ src1, block_type * __restrict__ dst,
|
||||
const float * __restrict__ src0, const idx_t * __restrict__ src1, block_type * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
@@ -50,9 +45,9 @@ static __global__ void k_set_rows_quant(
|
||||
}
|
||||
|
||||
// Template dispatch function for quantized set_rows
|
||||
template<typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
template<typename idx_t, typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
static void set_rows_cuda_quant(
|
||||
const float * src0_d, const int64_t * src1_d, block_type * dst_d,
|
||||
const float * src0_d, const idx_t * src1_d, block_type * dst_d,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
@@ -69,15 +64,15 @@ static void set_rows_cuda_quant(
|
||||
const int64_t s01 = nb01/sizeof(float);
|
||||
const int64_t s02 = nb02/sizeof(float);
|
||||
const int64_t s03 = nb03/sizeof(float);
|
||||
const int64_t s10 = nb10/sizeof(int64_t);
|
||||
const int64_t s11 = nb11/sizeof(int64_t);
|
||||
const int64_t s12 = nb12/sizeof(int64_t);
|
||||
const int64_t s10 = nb10/sizeof(idx_t);
|
||||
const int64_t s11 = nb11/sizeof(idx_t);
|
||||
const int64_t s12 = nb12/sizeof(idx_t);
|
||||
const int64_t s1 = nb1;
|
||||
const int64_t s2 = nb2;
|
||||
const int64_t s3 = nb3;
|
||||
|
||||
if (ne_total > 0) {
|
||||
k_set_rows_quant<block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
||||
k_set_rows_quant<idx_t, block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -87,9 +82,9 @@ static void set_rows_cuda_quant(
|
||||
}
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
template<typename src_t, typename idx_t, typename dst_t>
|
||||
static __global__ void k_set_rows(
|
||||
const src_t * __restrict__ src0, const int64_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const src_t * __restrict__ src0, const idx_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
@@ -117,17 +112,15 @@ static __global__ void k_set_rows(
|
||||
const src_t * src0_row = src0 + i01*s01 + i02*s02 + i03*s03;
|
||||
dst_t * dst_row_ptr = dst + dst_row*s1 + i02*s2 + i03*s3;
|
||||
|
||||
const src_t* src_elem = src0_row + i00;
|
||||
dst_t* dst_elem = dst_row_ptr + i00;
|
||||
set_rows_1(src_elem, dst_elem);
|
||||
dst_row_ptr[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
|
||||
|
||||
GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne13);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
template<typename src_t, typename idx_t, typename dst_t>
|
||||
static void set_rows_cuda(
|
||||
const src_t * src0_d, const int64_t * src1_d, dst_t * dst_d,
|
||||
const src_t * src0_d, const idx_t * src1_d, dst_t * dst_d,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const size_t nb01, const size_t nb02, const size_t nb03,
|
||||
@@ -144,9 +137,9 @@ static void set_rows_cuda(
|
||||
const int64_t s01 = nb01/sizeof(src_t);
|
||||
const int64_t s02 = nb02/sizeof(src_t);
|
||||
const int64_t s03 = nb03/sizeof(src_t);
|
||||
const int64_t s10 = nb10/sizeof(int64_t);
|
||||
const int64_t s11 = nb11/sizeof(int64_t);
|
||||
const int64_t s12 = nb12/sizeof(int64_t);
|
||||
const int64_t s10 = nb10/sizeof(idx_t);
|
||||
const int64_t s11 = nb11/sizeof(idx_t);
|
||||
const int64_t s12 = nb12/sizeof(idx_t);
|
||||
const int64_t s1 = nb1/sizeof(dst_t);
|
||||
const int64_t s2 = nb2/sizeof(dst_t);
|
||||
const int64_t s3 = nb3/sizeof(dst_t);
|
||||
@@ -162,23 +155,16 @@ static void set_rows_cuda(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I64);
|
||||
template<typename src_t, typename idx_t>
|
||||
static void set_rows_cuda(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const src_t * src0_d = (const src_t *)src0->data;
|
||||
const idx_t * src1_d = (const idx_t *)src1->data;
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
const int64_t * src1_d = (const int64_t *)src1->data;
|
||||
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
|
||||
|
||||
if (dst->type == GGML_TYPE_F32) {
|
||||
set_rows_cuda(
|
||||
src0_d, src1_d, (float*)dst->data,
|
||||
@@ -210,7 +196,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q4_0) {
|
||||
set_rows_cuda_quant<block_q4_0, QK4_0, quantize_f32_q4_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q4_0, QK4_0, quantize_f32_q4_0_block>(
|
||||
src0_d, src1_d, (block_q4_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -220,7 +206,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q4_1) {
|
||||
set_rows_cuda_quant<block_q4_1, QK4_1, quantize_f32_q4_1_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q4_1, QK4_1, quantize_f32_q4_1_block>(
|
||||
src0_d, src1_d, (block_q4_1*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -230,7 +216,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q5_0) {
|
||||
set_rows_cuda_quant<block_q5_0, QK5_0, quantize_f32_q5_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q5_0, QK5_0, quantize_f32_q5_0_block>(
|
||||
src0_d, src1_d, (block_q5_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -240,7 +226,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q5_1) {
|
||||
set_rows_cuda_quant<block_q5_1, QK5_1, quantize_f32_q5_1_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q5_1, QK5_1, quantize_f32_q5_1_block>(
|
||||
src0_d, src1_d, (block_q5_1*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -250,7 +236,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_Q8_0) {
|
||||
set_rows_cuda_quant<block_q8_0, QK8_0, quantize_f32_q8_0_block>(
|
||||
set_rows_cuda_quant<idx_t, block_q8_0, QK8_0, quantize_f32_q8_0_block>(
|
||||
src0_d, src1_d, (block_q8_0*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -260,7 +246,7 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
stream
|
||||
);
|
||||
} else if (dst->type == GGML_TYPE_IQ4_NL) {
|
||||
set_rows_cuda_quant<block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
|
||||
set_rows_cuda_quant<idx_t, block_iq4_nl, QK4_NL, quantize_f32_iq4_nl_block>(
|
||||
src0_d, src1_d, (block_iq4_nl*)dst->data,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
@@ -273,3 +259,18 @@ void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
GGML_ABORT("unsupported type %s", ggml_type_name(dst->type));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_set_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I64 || src1->type == GGML_TYPE_I32);
|
||||
|
||||
if (src1->type == GGML_TYPE_I64) {
|
||||
set_rows_cuda<float, int64_t>(ctx, src0, src1, dst);
|
||||
} else {
|
||||
set_rows_cuda<float, int32_t>(ctx, src0, src1, dst);
|
||||
}
|
||||
}
|
||||
|
||||
226
ml/backend/ggml/ggml/src/ggml-cuda/ssm-scan.cu
vendored
226
ml/backend/ggml/ggml/src/ggml-cuda/ssm-scan.cu
vendored
@@ -1,87 +1,117 @@
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
|
||||
#ifdef USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // USE_CUB
|
||||
|
||||
#include "ssm-scan.cuh"
|
||||
|
||||
template <size_t splitD, size_t N>
|
||||
__global__ void __launch_bounds__(splitD, 2)
|
||||
ssm_scan_f32(const float * __restrict__ src0, const float * __restrict__ src1, const float * __restrict__ src2,
|
||||
const float * __restrict__ src3, const float * __restrict__ src4, const float * __restrict__ src5,
|
||||
// We would like to keep pragma unroll for cases where L_template is not 0,
|
||||
// so we suppress the clang transformation warning.
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wpass-failed"
|
||||
#endif // __clang__
|
||||
template <size_t splitD, size_t N, size_t L_template>
|
||||
__global__ void __launch_bounds__(splitD, 1)
|
||||
ssm_scan_f32(const float *__restrict__ src0, const float *__restrict__ src1, const float *__restrict__ src2,
|
||||
const float *__restrict__ src3, const float *__restrict__ src4, const float *__restrict__ src5,
|
||||
const int32_t * __restrict__ src6, float * __restrict__ dst,
|
||||
const int src0_nb2, const int src0_nb3, const int src1_nb2, const int src1_nb3,
|
||||
const int src2_nb1, const int src2_nb2, const int src3_nb1,
|
||||
const int src4_nb2, const int src4_nb3, const int src5_nb2, const int src5_nb3,
|
||||
const int64_t s_off, const int64_t d_inner, const int64_t L) {
|
||||
const int64_t s_off, const int64_t d_inner, const int64_t L_param)
|
||||
{
|
||||
const size_t L = L_template == 0 ? L_param : L_template;
|
||||
const float *s0_block = (const float *)((const char *)src0 + src6[blockIdx.x] * src0_nb3 + blockIdx.y * splitD * src0_nb2);
|
||||
const float *x_block = (const float *)((const char *)src1 + (blockIdx.x * src1_nb3) + blockIdx.y * splitD * sizeof(float));
|
||||
const float *dt_block = (const float *)((const char *)src2 + (blockIdx.x * src2_nb2) + blockIdx.y * splitD * sizeof(float));
|
||||
const float *A_block = (const float *)((const char *)src3 + blockIdx.y * splitD * src3_nb1);
|
||||
const float *B_block = (const float *)((const char *)src4 + (blockIdx.x * src4_nb3));
|
||||
const float *C_block = (const float *)((const char *)src5 + (blockIdx.x * src5_nb3));
|
||||
float *y_block = (float *)((char *)dst + (blockIdx.x * d_inner * L * sizeof(float)) + blockIdx.y * splitD * sizeof(float));
|
||||
float *s_block = (float *)((char *)dst + s_off + blockIdx.x * src0_nb3 + blockIdx.y * splitD * src0_nb2);
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
const int bidx = blockIdx.x; // split along B (sequences)
|
||||
const int bidy = blockIdx.y; // split along D (d_inner)
|
||||
const int tid = threadIdx.x;
|
||||
const int wid = tid / 32;
|
||||
const int wtid = tid % 32;
|
||||
|
||||
extern __shared__ float smem[];
|
||||
const int stride_sA = N + 1;
|
||||
const int stride_ss0 = N + 1;
|
||||
float * smem_A = smem;
|
||||
float * smem_s0 = smem_A + splitD * stride_sA;
|
||||
|
||||
const float * s0_block = (const float *) ((const char *) src0 + src6[bidx] * src0_nb3 + bidy * splitD * src0_nb2);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (bidx * src1_nb3) + bidy * splitD * sizeof(float));
|
||||
const float * dt_block = (const float *) ((const char *) src2 + (bidx * src2_nb2) + bidy * splitD * sizeof(float));
|
||||
const float * A_block = (const float *) ((const char *) src3 + bidy * splitD * src3_nb1);
|
||||
const float * B_block = (const float *) ((const char *) src4 + (bidx * src4_nb3));
|
||||
const float * C_block = (const float *) ((const char *) src5 + (bidx * src5_nb3));
|
||||
float * y_block = (float *) ((char *) dst + (bidx * d_inner * L * sizeof(float)) + bidy * splitD * sizeof(float));
|
||||
float * s_block = (float *) ((char *) dst + s_off + bidx * src0_nb3 + bidy * splitD * src0_nb2);
|
||||
|
||||
const int stride_s0 = src0_nb2 / sizeof(float);
|
||||
const int stride_x = src1_nb2 / sizeof(float);
|
||||
const int stride_x = src1_nb2 / sizeof(float);
|
||||
const int stride_dt = src2_nb1 / sizeof(float);
|
||||
const int stride_A = src3_nb1 / sizeof(float);
|
||||
const int stride_B = src4_nb2 / sizeof(float);
|
||||
const int stride_C = src5_nb2 / sizeof(float);
|
||||
const int stride_s = stride_s0;
|
||||
const int stride_y = d_inner;
|
||||
const int stride_B = src4_nb2 / sizeof(float);
|
||||
const int stride_C = src5_nb2 / sizeof(float);
|
||||
const int stride_y = d_inner;
|
||||
|
||||
// can N not be 16? for example 32?
|
||||
if (N == 16) {
|
||||
float regA[N];
|
||||
float regs0[N];
|
||||
|
||||
__shared__ float smemB[N];
|
||||
__shared__ float smemC[N];
|
||||
|
||||
#ifdef USE_CUB
|
||||
using BlockLoad = cub::BlockLoad<float, splitD, N, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
|
||||
using BlockStore = cub::BlockStore<float, splitD, N, cub::BLOCK_STORE_WARP_TRANSPOSE>;
|
||||
|
||||
union CubTempStorage {
|
||||
typename BlockLoad::TempStorage load_temp;
|
||||
typename BlockStore::TempStorage store_temp;
|
||||
};
|
||||
__shared__ CubTempStorage cub_temp_storage;
|
||||
|
||||
BlockLoad(cub_temp_storage.load_temp).Load(A_block, regA);
|
||||
BlockLoad(cub_temp_storage.load_temp).Load(s0_block, regs0);
|
||||
#else
|
||||
const int stride_s0 = src0_nb2 / sizeof(float);
|
||||
const int stride_A = src3_nb1 / sizeof(float);
|
||||
#pragma unroll
|
||||
for (size_t i = 0; i < splitD / 4; i += 2) {
|
||||
float value = A_block[(wid * warp_size + i) * stride_A + wtid];
|
||||
// todo: bank conflict
|
||||
// I am always confused with how to use the swizzling method to solve
|
||||
// bank conflit. Hoping somebody can tell me.
|
||||
smem_A[(wid * warp_size + i) * stride_sA + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
|
||||
}
|
||||
#pragma unroll
|
||||
for (size_t i = 0; i < splitD / 4; i += 2) {
|
||||
float value = s0_block[(wid * warp_size + i) * stride_s0 + wtid];
|
||||
smem_s0[(wid * warp_size + i) * stride_ss0 + wtid + ((wtid / 16) > 0 ? 1 : 0)] = value;
|
||||
}
|
||||
for (size_t n = 0; n < N; ++n)
|
||||
{
|
||||
regA[n] = A_block[threadIdx.x * stride_A + n];
|
||||
regs0[n] = s0_block[threadIdx.x * stride_s0 + n];
|
||||
}
|
||||
#endif
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int64_t i = 0; i < L; i++) {
|
||||
float dt_soft_plus = dt_block[i * stride_dt + tid];
|
||||
if (dt_soft_plus <= 20.0f) {
|
||||
dt_soft_plus = log1pf(exp(dt_soft_plus));
|
||||
}
|
||||
float x_dt = x_block[i * stride_x + tid] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
#pragma unroll
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
float state = (smem_s0[tid * stride_ss0 + j] * expf(dt_soft_plus * smem_A[tid * stride_sA + j])) +
|
||||
(B_block[i * stride_B + j] * x_dt);
|
||||
sumf += state * C_block[i * stride_C + j];
|
||||
if (i == L - 1) {
|
||||
s_block[tid * stride_s + j] = state;
|
||||
} else {
|
||||
smem_s0[tid * stride_ss0 + j] = state;
|
||||
}
|
||||
for (size_t i = 0; i < L; i++)
|
||||
{
|
||||
if (threadIdx.x < N)
|
||||
{
|
||||
smemB[threadIdx.x] = B_block[i * stride_B + threadIdx.x];
|
||||
smemC[threadIdx.x] = C_block[i * stride_C + threadIdx.x];
|
||||
}
|
||||
__syncthreads();
|
||||
y_block[i * stride_y + tid] = sumf;
|
||||
|
||||
float dt_soft_plus = dt_block[i * stride_dt + threadIdx.x];
|
||||
if (dt_soft_plus <= 20.0f)
|
||||
{
|
||||
dt_soft_plus = log1pf(expf(dt_soft_plus));
|
||||
}
|
||||
float x_dt = x_block[i * stride_x + threadIdx.x] * dt_soft_plus;
|
||||
|
||||
float sumf = 0.0f;
|
||||
#pragma unroll
|
||||
for (size_t n = 0; n < N; n++)
|
||||
{
|
||||
float state = regs0[n] * expf(dt_soft_plus * regA[n]) + smemB[n] * x_dt;
|
||||
sumf += state * smemC[n];
|
||||
regs0[n] = state;
|
||||
}
|
||||
y_block[i * stride_y + threadIdx.x] = sumf;
|
||||
}
|
||||
|
||||
#ifdef USE_CUB
|
||||
BlockStore(cub_temp_storage.store_temp).Store(s_block, regs0);
|
||||
#else
|
||||
const int stride_s = stride_s0;
|
||||
#pragma unroll
|
||||
for (size_t n = 0; n < N; ++n)
|
||||
{
|
||||
s_block[threadIdx.x * stride_s + n] = regs0[n];
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#ifdef __clang__
|
||||
#pragma clang diagnostic pop
|
||||
#endif // __clang__
|
||||
|
||||
// assumes as many threads as d_state
|
||||
template <int splitH, int d_state>
|
||||
@@ -99,7 +129,7 @@ __global__ void __launch_bounds__(d_state, 1)
|
||||
const int head_off = ((blockIdx.x * splitH) % d_head) * sizeof(float);
|
||||
const int seq_idx = blockIdx.y;
|
||||
|
||||
const int group_off = (head_idx & (n_group - 1)) * d_state * sizeof(float);
|
||||
const int group_off = (head_idx / (n_head / n_group)) * d_state * sizeof(float);
|
||||
|
||||
const float * s0_block = (const float *) ((const char *) src0 + src6[seq_idx] * src0_nb3 + head_idx * src0_nb2 + head_off * d_state);
|
||||
const float * x_block = (const float *) ((const char *) src1 + (seq_idx * src1_nb3) + blockIdx.x * splitH * sizeof(float));
|
||||
@@ -201,11 +231,11 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
|
||||
const int src5_nb3, const int64_t s_off, const int64_t d_state, const int64_t head_dim,
|
||||
const int64_t n_head, const int64_t n_group, const int64_t n_tok, const int64_t n_seq,
|
||||
cudaStream_t stream) {
|
||||
const int threads = 128;
|
||||
// NOTE: if you change conditions here, be sure to update the corresponding supports_op condition!
|
||||
if (src3_nb1 == sizeof(float)) {
|
||||
// Mamba-2
|
||||
if (d_state == 128) {
|
||||
const int threads = 128;
|
||||
GGML_ASSERT(d_state % threads == 0);
|
||||
// NOTE: can be any power of two between 4 and 64
|
||||
const int splitH = 16;
|
||||
@@ -229,7 +259,6 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
|
||||
GGML_ABORT("doesn't support d_state!=(128 or 256).");
|
||||
}
|
||||
} else {
|
||||
const int threads = 128;
|
||||
// Mamba-1
|
||||
GGML_ASSERT(n_head % threads == 0);
|
||||
GGML_ASSERT(head_dim == 1);
|
||||
@@ -237,10 +266,63 @@ static void ssm_scan_f32_cuda(const float * src0, const float * src1, const floa
|
||||
const dim3 blocks(n_seq, (n_head + threads - 1) / threads, 1);
|
||||
const int smem_size = (threads * (d_state + 1) * 2) * sizeof(float);
|
||||
if (d_state == 16) {
|
||||
ssm_scan_f32<128, 16><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
switch (n_tok)
|
||||
{
|
||||
case 1:
|
||||
ssm_scan_f32<threads, 16, 1><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 2:
|
||||
ssm_scan_f32<threads, 16, 2><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 3:
|
||||
ssm_scan_f32<threads, 16, 3><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 4:
|
||||
ssm_scan_f32<threads, 16, 4><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 5:
|
||||
ssm_scan_f32<threads, 16, 5><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 6:
|
||||
ssm_scan_f32<threads, 16, 6><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 7:
|
||||
ssm_scan_f32<threads, 16, 7><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
case 8:
|
||||
ssm_scan_f32<threads, 16, 8><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
default:
|
||||
ssm_scan_f32<threads, 16, 0><<<blocks, threads, smem_size, stream>>>(
|
||||
src0, src1, src2, src3, src4, src5, src6, dst,
|
||||
src0_nb2, src0_nb3, src1_nb2, src1_nb3, src2_nb1, src2_nb2,
|
||||
src3_nb1, src4_nb2, src4_nb3, src5_nb2, src5_nb3, s_off, n_head, n_tok);
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("doesn't support d_state!=16.");
|
||||
}
|
||||
|
||||
16
ml/backend/ggml/ggml/src/ggml-cuda/sum.cu
vendored
16
ml/backend/ggml/ggml/src/ggml-cuda/sum.cu
vendored
@@ -1,19 +1,15 @@
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#define USE_CUB
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
#include "sum.cuh"
|
||||
#include "sumrows.cuh"
|
||||
|
||||
#ifdef USE_CUB
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
#include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // USE_CUB
|
||||
|
||||
#include "sumrows.cuh"
|
||||
#include "sum.cuh"
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int64_t ne, cudaStream_t stream) {
|
||||
#ifdef USE_CUB
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
size_t tmp_size = 0;
|
||||
DeviceReduce::Sum(nullptr, tmp_size, x, dst, ne, stream);
|
||||
ggml_cuda_pool_alloc<uint8_t> tmp_alloc(pool, tmp_size);
|
||||
@@ -23,7 +19,7 @@ void sum_f32_cuda(ggml_cuda_pool & pool, const float * x, float * dst, const int
|
||||
// For AMD there is rocPRIM which could be used as a drop-in replacement via hipcub but this would require C++11 -> C++14.
|
||||
sum_rows_f32_cuda(x, dst, ne, 1, stream);
|
||||
GGML_UNUSED(pool);
|
||||
#endif // USE_CUB
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
25
ml/backend/ggml/ggml/src/ggml-cuda/sumrows.cu
vendored
25
ml/backend/ggml/ggml/src/ggml-cuda/sumrows.cu
vendored
@@ -1,9 +1,17 @@
|
||||
#include "reduce_rows.cuh"
|
||||
#include "sumrows.cuh"
|
||||
|
||||
void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
reduce_rows_f32</*norm*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
if ((nrows / nsm) < 2) {
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
} else {
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
@@ -19,8 +27,17 @@ void ggml_cuda_op_sum_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int64_t ncols = src0->ne[0];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
const int id = ggml_cuda_get_device();
|
||||
const int nsm = ggml_cuda_info().devices[id].nsm;
|
||||
if ((nrows / nsm) < 2) {
|
||||
// Increase num threads to 512 for small nrows to better hide the latency
|
||||
const dim3 block_dims(512, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
} else {
|
||||
// Enough active SMs to hide latency, use smaller blocks to allow better scheduling
|
||||
const dim3 block_dims(ncols < 1024 ? 32 : 128, 1, 1);
|
||||
reduce_rows_f32</*norm=*/false><<<block_nums, block_dims, 0, stream>>>(src0_d, dst_d, ncols);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
|
||||
@@ -1,5 +0,0 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-vec-f16.cuh"
|
||||
|
||||
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user