Build multiple CPU variants and pick the best

This reduces the built-in linux version to not use any vector extensions
which enables the resulting builds to run under Rosetta on MacOS in
Docker.  Then at runtime it checks for the actual CPU vector
extensions and loads the best CPU library available
This commit is contained in:
Daniel Hiltgen
2024-01-07 15:48:05 -08:00
parent 052b33b81b
commit d88c527be3
15 changed files with 202 additions and 66 deletions

View File

@@ -76,6 +76,22 @@ go build .
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
#### Advanced CPU Settings
By default, running `go generate ./...` will compile a few different variations
of the LLM library based on common CPU families and vector math capabilities,
including a lowest-common-denominator which should run on almost any 64 bit CPU
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
load. If you would like to build a CPU-based build customized for your
processor, you can set `OLLAMA_CUSTOM_CPU_DEFS` to the llama.cpp flags you would
like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
go build .
```
#### Containerized Linux Build
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`