Build multiple CPU variants and pick the best

This reduces the built-in linux version to not use any vector extensions
which enables the resulting builds to run under Rosetta on MacOS in
Docker.  Then at runtime it checks for the actual CPU vector
extensions and loads the best CPU library available
This commit is contained in:
Daniel Hiltgen
2024-01-07 15:48:05 -08:00
parent 052b33b81b
commit d88c527be3
15 changed files with 202 additions and 66 deletions

17
llm/ext_server.go Normal file
View File

@@ -0,0 +1,17 @@
//go:build !darwin
package llm
import (
"fmt"
"github.com/jmorganca/ollama/api"
)
func newDefaultExtServer(model string, adapters, projectors []string, opts api.Options) (extServer, error) {
// On windows and linux we always load the llama.cpp libraries dynamically to avoid startup DLL dependencies
// This ensures we can update the PATH at runtime to get everything loaded
// This should never happen as we'll always try to load one or more cpu dynamic libaries before hitting default
return nil, fmt.Errorf("no available default llm library")
}