mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
Merge branch 'ollama:main' into main
This commit is contained in:
@@ -350,6 +350,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
|
||||
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
|
||||
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
|
||||
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
|
||||
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
|
||||
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
|
||||
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
|
||||
|
||||
10
docs/api.md
10
docs/api.md
@@ -250,7 +250,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
#### Request (Reproducible outputs)
|
||||
|
||||
For reproducible outputs, set `temperature` to 0 and `seed` to a number:
|
||||
For reproducible outputs, set `seed` to a number:
|
||||
|
||||
##### Request
|
||||
|
||||
@@ -259,8 +259,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"model": "mistral",
|
||||
"prompt": "Why is the sky blue?",
|
||||
"options": {
|
||||
"seed": 123,
|
||||
"temperature": 0
|
||||
"seed": 123
|
||||
}
|
||||
}'
|
||||
```
|
||||
@@ -1044,11 +1043,10 @@ GET /api/ps
|
||||
|
||||
List models that are currently loaded into memory.
|
||||
|
||||
\* If a model is loaded completely into system memory, `size_vram` is omitted from the response.
|
||||
|
||||
#### Examples
|
||||
|
||||
### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/ps
|
||||
```
|
||||
@@ -1080,4 +1078,4 @@ A single JSON object will be returned.
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
227
docs/import.md
227
docs/import.md
@@ -1,170 +1,99 @@
|
||||
# Import a model
|
||||
# Import
|
||||
|
||||
This guide walks through importing a GGUF, PyTorch or Safetensors model.
|
||||
GGUF models and select Safetensors models can be imported directly into Ollama.
|
||||
|
||||
## Importing (GGUF)
|
||||
## Import GGUF
|
||||
|
||||
### Step 1: Write a `Modelfile`
|
||||
A binary GGUF file can be imported directly into Ollama through a Modelfile.
|
||||
|
||||
Start by creating a `Modelfile`. This file is the blueprint for your model, specifying weights, parameters, prompt templates and more.
|
||||
|
||||
```
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
```dockerfile
|
||||
FROM /path/to/file.gguf
|
||||
```
|
||||
|
||||
(Optional) many chat models require a prompt template in order to answer correctly. A default prompt template can be specified with the `TEMPLATE` instruction in the `Modelfile`:
|
||||
## Import Safetensors
|
||||
|
||||
```
|
||||
FROM ./mistral-7b-v0.1.Q4_0.gguf
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
|
||||
|
||||
- LlamaForCausalLM
|
||||
- MistralForCausalLM
|
||||
- GemmaForCausalLM
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/safetensors/directory
|
||||
```
|
||||
|
||||
### Step 2: Create the Ollama model
|
||||
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
## Automatic Quantization
|
||||
|
||||
> [!NOTE]
|
||||
> Automatic quantization requires v0.1.35 or higher.
|
||||
|
||||
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/f16/model
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 3: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Importing (PyTorch & Safetensors)
|
||||
|
||||
> Importing from PyTorch and Safetensors is a longer process than importing from GGUF. Improvements that make it easier are a work in progress.
|
||||
|
||||
### Setup
|
||||
|
||||
First, clone the `ollama/ollama` repo:
|
||||
|
||||
```
|
||||
git clone git@github.com:ollama/ollama.git ollama
|
||||
cd ollama
|
||||
```
|
||||
|
||||
and then fetch its `llama.cpp` submodule:
|
||||
|
||||
```shell
|
||||
git submodule init
|
||||
git submodule update llm/llama.cpp
|
||||
$ ollama create -q Q4_K_M mymodel
|
||||
transferring model data
|
||||
quantizing F16 model to Q4_K_M
|
||||
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
|
||||
creating new layer sha256:0853f0ad24e5865173bbf9ffcc7b0f5d56b66fd690ab1009867e45e7d2c4db0f
|
||||
writing manifest
|
||||
success
|
||||
```
|
||||
|
||||
Next, install the Python dependencies:
|
||||
### Supported Quantizations
|
||||
|
||||
```
|
||||
python3 -m venv llm/llama.cpp/.venv
|
||||
source llm/llama.cpp/.venv/bin/activate
|
||||
pip install -r llm/llama.cpp/requirements.txt
|
||||
<details>
|
||||
<summary>Legacy Quantization</summary>
|
||||
|
||||
- `Q4_0`
|
||||
- `Q4_1`
|
||||
- `Q5_0`
|
||||
- `Q5_1`
|
||||
- `Q8_0`
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>K-means Quantization</summary>`
|
||||
|
||||
- `Q3_K_S`
|
||||
- `Q3_K_M`
|
||||
- `Q3_K_L`
|
||||
- `Q4_K_S`
|
||||
- `Q4_K_M`
|
||||
- `Q5_K_S`
|
||||
- `Q5_K_M`
|
||||
- `Q6_K`
|
||||
|
||||
</details>
|
||||
|
||||
> [!NOTE]
|
||||
> Activation-aware Weight Quantization (i.e. IQ) are not currently supported for automatic quantization however you can still import the quantized model into Ollama, see [Import GGUF](#import-gguf).
|
||||
|
||||
## Template Detection
|
||||
|
||||
> [!NOTE]
|
||||
> Template detection requires v0.1.42 or higher.
|
||||
|
||||
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
|
||||
|
||||
```dockerfile
|
||||
FROM /path/to/my/gemma/model
|
||||
```
|
||||
|
||||
Then build the `quantize` tool:
|
||||
|
||||
```
|
||||
make -C llm/llama.cpp quantize
|
||||
```shell
|
||||
$ ollama create mymodel
|
||||
transferring model data
|
||||
using autodetected template gemma-instruct
|
||||
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
|
||||
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
|
||||
writing manifest
|
||||
success
|
||||
```
|
||||
|
||||
### Clone the HuggingFace repository (optional)
|
||||
|
||||
If the model is currently hosted in a HuggingFace repository, first clone that repository to download the raw model.
|
||||
|
||||
Install [Git LFS](https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage), verify it's installed, and then clone the model's repository:
|
||||
|
||||
```
|
||||
git lfs install
|
||||
git clone https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1 model
|
||||
```
|
||||
|
||||
### Convert the model
|
||||
|
||||
> Note: some model architectures require using specific convert scripts. For example, Qwen models require running `convert-hf-to-gguf.py` instead of `convert.py`
|
||||
|
||||
```
|
||||
python llm/llama.cpp/convert.py ./model --outtype f16 --outfile converted.bin
|
||||
```
|
||||
|
||||
### Quantize the model
|
||||
|
||||
```
|
||||
llm/llama.cpp/quantize converted.bin quantized.bin q4_0
|
||||
```
|
||||
|
||||
### Step 3: Write a `Modelfile`
|
||||
|
||||
Next, create a `Modelfile` for your model:
|
||||
|
||||
```
|
||||
FROM quantized.bin
|
||||
TEMPLATE "[INST] {{ .Prompt }} [/INST]"
|
||||
```
|
||||
|
||||
### Step 4: Create the Ollama model
|
||||
|
||||
Finally, create a model from your `Modelfile`:
|
||||
|
||||
```
|
||||
ollama create example -f Modelfile
|
||||
```
|
||||
|
||||
### Step 5: Run your model
|
||||
|
||||
Next, test the model with `ollama run`:
|
||||
|
||||
```
|
||||
ollama run example "What is your favourite condiment?"
|
||||
```
|
||||
|
||||
## Publishing your model (optional – early alpha)
|
||||
|
||||
Publishing models is in early alpha. If you'd like to publish your model to share with others, follow these steps:
|
||||
|
||||
1. Create [an account](https://ollama.com/signup)
|
||||
2. Copy your Ollama public key:
|
||||
- macOS: `cat ~/.ollama/id_ed25519.pub | pbcopy`
|
||||
- Windows: `type %USERPROFILE%\.ollama\id_ed25519.pub`
|
||||
- Linux: `cat /usr/share/ollama/.ollama/id_ed25519.pub`
|
||||
3. Add your public key to your [Ollama account](https://ollama.com/settings/keys)
|
||||
|
||||
Next, copy your model to your username's namespace:
|
||||
|
||||
```
|
||||
ollama cp example <your username>/example
|
||||
```
|
||||
|
||||
> Note: model names may only contain lowercase letters, digits, and the characters `.`, `-`, and `_`.
|
||||
|
||||
Then push the model:
|
||||
|
||||
```
|
||||
ollama push <your username>/example
|
||||
```
|
||||
|
||||
After publishing, your model will be available at `https://ollama.com/<your username>/example`.
|
||||
|
||||
## Quantization reference
|
||||
|
||||
The quantization options are as follow (from highest highest to lowest levels of quantization). Note: some architectures such as Falcon do not support K quants.
|
||||
|
||||
- `q2_K`
|
||||
- `q3_K`
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_0` (recommended)
|
||||
- `q4_1`
|
||||
- `q4_K`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q5_K`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
- `q8_0`
|
||||
- `f16`
|
||||
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.
|
||||
|
||||
@@ -100,6 +100,16 @@ sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
|
||||
sudo chmod +x /usr/bin/ollama
|
||||
```
|
||||
|
||||
## Installing specific versions
|
||||
|
||||
Use `OLLAMA_VERSION` environment variable with the install script to install a specific version of Ollama, including pre-releases. You can find the version numbers in the [releases page](https://github.com/ollama/ollama/releases).
|
||||
|
||||
For example:
|
||||
|
||||
```
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.1.32 sh
|
||||
```
|
||||
|
||||
## Viewing logs
|
||||
|
||||
To view logs of Ollama running as a startup service, run:
|
||||
|
||||
@@ -77,13 +77,21 @@ LOADER_MAPPING = {
|
||||
|
||||
|
||||
def load_single_document(file_path: str) -> List[Document]:
|
||||
ext = "." + file_path.rsplit(".", 1)[-1]
|
||||
if ext in LOADER_MAPPING:
|
||||
loader_class, loader_args = LOADER_MAPPING[ext]
|
||||
loader = loader_class(file_path, **loader_args)
|
||||
return loader.load()
|
||||
if os.path.getsize(file_path) != 0:
|
||||
filename, ext = os.path.splitext(file_path)
|
||||
if ext in LOADER_MAPPING:
|
||||
loader_class, loader_args = LOADER_MAPPING[ext]
|
||||
try:
|
||||
loader = loader_class(file_path, **loader_args)
|
||||
if loader:
|
||||
return loader.load()
|
||||
except:
|
||||
print(f"Corrupted file {file_path}. Ignoring it.")
|
||||
else:
|
||||
print(f"Unsupported file {file_path}. Ignoring it.")
|
||||
else:
|
||||
print(f"Empty file {file_path}. Ignoring it.")
|
||||
|
||||
raise ValueError(f"Unsupported file extension '{ext}'")
|
||||
|
||||
def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Document]:
|
||||
"""
|
||||
@@ -100,7 +108,8 @@ def load_documents(source_dir: str, ignored_files: List[str] = []) -> List[Docum
|
||||
results = []
|
||||
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
|
||||
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
|
||||
results.extend(docs)
|
||||
if docs:
|
||||
results.extend(docs)
|
||||
pbar.update()
|
||||
|
||||
return results
|
||||
|
||||
@@ -11,4 +11,5 @@ tabulate==0.9.0
|
||||
pandoc==2.3
|
||||
pypandoc==1.11
|
||||
tqdm==4.66.1
|
||||
sentence_transformers==2.2.2
|
||||
sentence_transformers==2.2.2
|
||||
numpy>=1.22.2 # not directly required, pinned by Snyk to avoid a vulnerability
|
||||
7
llm/ext_server/server.cpp
vendored
7
llm/ext_server/server.cpp
vendored
@@ -359,7 +359,6 @@ struct llama_server_context
|
||||
|
||||
// slots / clients
|
||||
std::vector<server_slot> slots;
|
||||
json default_generation_settings_for_props;
|
||||
|
||||
llama_server_queue queue_tasks;
|
||||
llama_server_response queue_results;
|
||||
@@ -483,9 +482,6 @@ struct llama_server_context
|
||||
slots.push_back(slot);
|
||||
}
|
||||
|
||||
default_generation_settings_for_props = get_formated_generation(slots.front());
|
||||
default_generation_settings_for_props["seed"] = -1;
|
||||
|
||||
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
||||
}
|
||||
|
||||
@@ -584,7 +580,7 @@ struct llama_server_context
|
||||
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
||||
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
|
||||
slot->params.seed = json_value(data, "seed", default_params.seed);
|
||||
slot->sparams.seed = json_value(data, "seed", default_params.seed);
|
||||
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||
@@ -811,7 +807,6 @@ struct llama_server_context
|
||||
llama_sampling_free(slot->ctx_sampling);
|
||||
}
|
||||
slot->ctx_sampling = llama_sampling_init(slot->sparams);
|
||||
llama_set_rng_seed(ctx, slot->params.seed);
|
||||
slot->command = LOAD_PROMPT;
|
||||
|
||||
all_slots_are_idle = false;
|
||||
|
||||
@@ -606,7 +606,7 @@ array ::=
|
||||
|
||||
string ::=
|
||||
"\"" (
|
||||
[^"\\] |
|
||||
[^"\\\x7F\x00-\x1F] |
|
||||
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
|
||||
)* "\"" ws
|
||||
|
||||
|
||||
@@ -3,12 +3,15 @@ package parser
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"strconv"
|
||||
"strings"
|
||||
"unicode"
|
||||
"unicode/utf16"
|
||||
"unicode/utf8"
|
||||
)
|
||||
|
||||
type File struct {
|
||||
@@ -69,33 +72,31 @@ func ParseFile(r io.Reader) (*File, error) {
|
||||
var b bytes.Buffer
|
||||
var role string
|
||||
|
||||
var lineCount int
|
||||
var linePos int
|
||||
|
||||
var utf16 bool
|
||||
|
||||
var f File
|
||||
|
||||
br := bufio.NewReader(r)
|
||||
for {
|
||||
r, _, err := br.ReadRune()
|
||||
if errors.Is(err, io.EOF) {
|
||||
break
|
||||
} else if err != nil {
|
||||
|
||||
var sc scannerDecoder = utf8ScannerDecoder{}
|
||||
if bom, err := br.Peek(2); err != nil {
|
||||
slog.Warn("error reading byte-order mark", "error", err)
|
||||
} else if bytes.Equal(bom, []byte{0xFE, 0xFF}) {
|
||||
sc = utf16ScannerDecoder{binary.LittleEndian}
|
||||
//nolint:errcheck
|
||||
br.Discard(2)
|
||||
} else if bytes.Equal(bom, []byte{0xFF, 0xFE}) {
|
||||
sc = utf16ScannerDecoder{binary.BigEndian}
|
||||
//nolint:errcheck
|
||||
br.Discard(2)
|
||||
}
|
||||
|
||||
scanner := bufio.NewScanner(br)
|
||||
scanner.Split(sc.ScanBytes)
|
||||
for scanner.Scan() {
|
||||
r, err := sc.DecodeRune(scanner.Bytes())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// the utf16 byte order mark will be read as "unreadable" by ReadRune()
|
||||
if isUnreadable(r) && lineCount == 0 && linePos == 0 {
|
||||
utf16 = true
|
||||
continue
|
||||
}
|
||||
|
||||
// skip the second byte if we're reading utf16
|
||||
if utf16 && r == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
next, r, err := parseRuneForState(r, curr)
|
||||
if errors.Is(err, io.ErrUnexpectedEOF) {
|
||||
return nil, fmt.Errorf("%w: %s", err, b.String())
|
||||
@@ -103,13 +104,6 @@ func ParseFile(r io.Reader) (*File, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if isNewline(r) {
|
||||
lineCount++
|
||||
linePos = 0
|
||||
} else {
|
||||
linePos++
|
||||
}
|
||||
|
||||
// process the state transition, some transitions need to be intercepted and redirected
|
||||
if next != curr {
|
||||
switch curr {
|
||||
@@ -309,10 +303,6 @@ func isNewline(r rune) bool {
|
||||
return r == '\r' || r == '\n'
|
||||
}
|
||||
|
||||
func isUnreadable(r rune) bool {
|
||||
return r == unicode.ReplacementChar
|
||||
}
|
||||
|
||||
func isValidMessageRole(role string) bool {
|
||||
return role == "system" || role == "user" || role == "assistant"
|
||||
}
|
||||
@@ -325,3 +315,39 @@ func isValidCommand(cmd string) bool {
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
type scannerDecoder interface {
|
||||
ScanBytes(data []byte, atEOF bool) (advance int, token []byte, err error)
|
||||
DecodeRune([]byte) (rune, error)
|
||||
}
|
||||
|
||||
type utf8ScannerDecoder struct{}
|
||||
|
||||
func (utf8ScannerDecoder) ScanBytes(data []byte, atEOF bool) (advance int, token []byte, err error) {
|
||||
return scanBytesN(data, 1, atEOF)
|
||||
}
|
||||
|
||||
func (utf8ScannerDecoder) DecodeRune(data []byte) (rune, error) {
|
||||
r, _ := utf8.DecodeRune(data)
|
||||
return r, nil
|
||||
}
|
||||
|
||||
type utf16ScannerDecoder struct {
|
||||
binary.ByteOrder
|
||||
}
|
||||
|
||||
func (utf16ScannerDecoder) ScanBytes(data []byte, atEOF bool) (advance int, token []byte, err error) {
|
||||
return scanBytesN(data, 2, atEOF)
|
||||
}
|
||||
|
||||
func (e utf16ScannerDecoder) DecodeRune(data []byte) (rune, error) {
|
||||
return utf16.Decode([]uint16{e.ByteOrder.Uint16(data)})[0], nil
|
||||
}
|
||||
|
||||
func scanBytesN(data []byte, n int, atEOF bool) (int, []byte, error) {
|
||||
if atEOF && len(data) == 0 {
|
||||
return 0, nil, nil
|
||||
}
|
||||
|
||||
return n, data[:n], nil
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@ package server
|
||||
import (
|
||||
"crypto/sha256"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
@@ -43,7 +44,9 @@ func (m *Manifest) Remove() error {
|
||||
|
||||
func (m *Manifest) RemoveLayers() error {
|
||||
for _, layer := range append(m.Layers, m.Config) {
|
||||
if err := layer.Remove(); err != nil {
|
||||
if err := layer.Remove(); errors.Is(err, os.ErrNotExist) {
|
||||
slog.Debug("layer does not exist", "digest", layer.Digest)
|
||||
} else if err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,12 +1,15 @@
|
||||
package server
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestDelete(t *testing.T) {
|
||||
@@ -69,3 +72,33 @@ func TestDelete(t *testing.T) {
|
||||
checkFileExists(t, filepath.Join(p, "manifests", "*", "*", "*", "*"), []string{})
|
||||
checkFileExists(t, filepath.Join(p, "blobs", "*"), []string{})
|
||||
}
|
||||
|
||||
func TestDeleteDuplicateLayers(t *testing.T) {
|
||||
p := t.TempDir()
|
||||
t.Setenv("OLLAMA_MODELS", p)
|
||||
var s Server
|
||||
|
||||
n := model.ParseName("test")
|
||||
|
||||
var b bytes.Buffer
|
||||
if err := json.NewEncoder(&b).Encode(&ConfigV2{}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
config, err := NewLayer(&b, "application/vnd.docker.container.image.v1+json")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
// create a manifest with duplicate layers
|
||||
if err := WriteManifest(n, config, []*Layer{config}); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
w := createRequest(t, s.DeleteModelHandler, api.DeleteRequest{Name: "test"})
|
||||
if w.Code != http.StatusOK {
|
||||
t.Errorf("expected status code 200, actual %d", w.Code)
|
||||
}
|
||||
|
||||
checkFileExists(t, filepath.Join(p, "manifests", "*", "*", "*", "*"), []string{})
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user