This PR detects embedding models and sets batch_size = context_size so the full input fits in a single batch.
Previously, if batch size was smaller than the input, tokens could be split across batches and cause a SIGTRAP crash.
This change ensures all tokens stay in one batch and prevents crashes.
Fixes: #12938#13054
Co-authored-by: Jesse Gross <jesse@ollama.com>
We used to control the way that llama.cpp saw devices using
CUDA_VISIBLE_DEVICES or similar. This would ensure that the layers
offloaded to a device were actually the ones intended. This is
particularly important because we might reorder devices based on
free memory or performance.
When we started explicitly scheduling layers, this logic went
away but the llamarunner didn't have any way to set the correct
order of devices. This meant that the correct number of layers
would be assigned to a device but not necessarily the layers
that were expected. This change sets up the devices correctly
based on the offload information.
Adds logprobs support to Ollama's API including support for Ollama's
OpenAI-compatible API. By specifying the new 'logprobs' boolean parameter
in the API, Ollama will return the log probabilities for each token generated.
'top_logprobs', an integer value can also be specified up to the value 20.
When specified, the API will also provide the number of most likely tokens to
return at each token position
Co-authored-by: Baptiste Jamin <baptiste@crisp.chat>
Currently, checking the length of prompts for embeddings to ensure
they fit in the context window (and possible truncation) occurs in
two places - the Ollama server and runner. This can lead to
inconsistencies in both the checks and reported number of tokens
processed. Since we have to do this processing in the runner, this
consolidates all of the logic there.
Currently, we only record the time for the last batch when processing
the prompt. This results in unrealistically high numbers for the
old llama runner.
Before:
total duration: 31.273112939s
load duration: 4.97054657s
prompt eval count: 32768 token(s)
prompt eval duration: 235.137439ms
prompt eval rate: 139356.80 tokens/s
eval count: 1873 token(s)
eval duration: 18.173182374s
eval rate: 103.06 tokens/s
After:
total duration: 30.024798033s
load duration: 4.758588663s
prompt eval count: 32768 token(s)
prompt eval duration: 7.779621548s
prompt eval rate: 4212.03 tokens/s
eval count: 1769 token(s)
eval duration: 17.148014223s
eval rate: 103.16 tokens/s
* feat: Bump llama.cpp to df1b612
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(mtmd): Correctly encode text chunks during mtmd tokenization
There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* tests: Use MtmdChunk in image_test
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: Fix unnecessary conversion linting
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(ggml): Revert changes to ggml_hip.cpp
These changes were done largely by our code assistant and are likely wrong
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Revert changes in mem_nvml.cpp
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Update sync point to 1deee0
This brings in several more optimization commits and model support for
EmbeddingGemma
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Update patches for 1deee0
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: sync for bump to 1deee0
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Bad patch updates with errant `+`
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Bump llama.cpp/ggml to 7049736
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: format-patches after latest bump
Branch: LlamaCPPBump-GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
this change updates how metrics are collected. until now, performance
metrics, specifically initial input processing and subsequent generation
durations, were collected by taking the timestamp when creating a new
sequence, the first token generation, and completing generation. the
processing duration is taken as first token generation sub sequence
creation while generation is taken as completing generation sub first
token generation.
while this approach is an accurate end-to-end metric of processing and
generation, it's not comparable to other tools which only measure the
active, i.e. decode, duration.
this change updates the metrics to only capture decode duration so it
can be more directly compared to other tools
This revamps how we discover GPUs in the system by leveraging the Ollama
runner. This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs. Now the runner does that implicitly based on the actual
device list. In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.
Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.
Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).
It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.
However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.
This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
No functional change. Many different done reasons can be set at the runner
level, so rather than obsuring them we should return them to the server
process and let it choose what to do with the done reason. This separates
the API concerns from the runner.
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
If we have an error after creating a new sequence but before
finding a slot for it, we return without releasing the semaphore.
This reduces our parallel sequences and eventually leads to deadlock.
In practice this should never happen because once we have acquired
the semaphore, we should always be able to find a slot. However, the
code is clearly not correct.
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
- output backend system info when initializing the backend. this ensures
this information is always present without needing to be called
explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.
Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24
After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.
In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
- Parallel processing
- Memory management for defragmentation and shifting
- Multi-modal modals
Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:
Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve
Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1