Compare commits

...

17 Commits

Author SHA1 Message Date
likelovewant
1c648e512e remove code to support igpu 2024-06-29 22:32:45 +08:00
likelovewant
159dcaa93b Merge branch 'ollama:main' into main 2024-06-29 20:59:45 +08:00
Jeffrey Morgan
717f7229eb Do not shift context for sliding window models (#5368)
* Do not shift context for sliding window models

* truncate prompt > 2/3 tokens

* only target gemma2
2024-06-28 19:39:31 -07:00
royjhan
5f034f5b63 Include Show Info in Interactive (#5342) 2024-06-28 13:15:52 -07:00
royjhan
b910fa9010 Ollama Show: Check for Projector Type (#5307)
* Check exists projtype

* Maintain Ordering
2024-06-28 11:30:16 -07:00
royjhan
6d4219083c Update docs (#5312) 2024-06-28 09:58:14 -07:00
Michael Yang
1ed4f521c4 Merge pull request #5340 from ollama/mxyng/mem
gemma2 graph
2024-06-27 14:26:49 -07:00
Michael Yang
de2163dafd gemma2 graph 2024-06-27 13:34:52 -07:00
Michael
2cc7d05012 update readme for gemma 2 (#5333)
* update readme for gemma 2
2024-06-27 12:45:16 -04:00
likelovewant
b5286d46dc Update gen_windows.ps1 2024-06-27 12:55:18 +08:00
likelovewant
d5fd3ae7ea Merge branch 'ollama:main' into main 2024-06-27 12:44:25 +08:00
Michael Yang
123a722a6f zip: prevent extracting files into parent dirs (#5314) 2024-06-26 21:38:21 -07:00
Jeffrey Morgan
4d311eb731 llm: architecture patch (#5316) 2024-06-26 21:38:12 -07:00
likelovewant
0fc2f9c5f2 Merge branch 'ollama:main' into main 2024-06-25 19:22:17 +08:00
likelovewant
7ef869f2dc Update gen_windows.ps1 2024-06-25 19:21:02 +08:00
Blake Mizerany
cb42e607c5 llm: speed up gguf decoding by a lot (#5246)
Previously, some costly things were causing the loading of GGUF files
and their metadata and tensor information to be VERY slow:

  * Too many allocations when decoding strings
  * Hitting disk for each read of each key and value, resulting in a
    not-okay amount of syscalls/disk I/O.

The show API is now down to 33ms from 800ms+ for llama3 on a macbook pro
m3.

This commit also prevents collecting large arrays of values when
decoding GGUFs (if desired). When such keys are encountered, their
values are null, and are encoded as such in JSON.

Also, this fixes a broken test that was not encoding valid GGUF.
2024-06-24 21:47:52 -07:00
Blake Mizerany
2aa91a937b cmd: defer stating model info until necessary (#5248)
This commit changes the 'ollama run' command to defer fetching model
information until it really needs it. That is, when in interactive mode.

It also removes one such case where the model information is fetch in
duplicate, just before calling generateInteractive and then again, first
thing, in generateInteractive.

This positively impacts the performance of the command:

    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.168 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.220 total
    ; time ./before run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./before run llama3 'hi'  0.02s user 0.01s system 2% cpu 1.217 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 4% cpu 0.652 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 5% cpu 0.498 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with or would you like to chat?

    ./after run llama3 'hi'  0.01s user 0.01s system 3% cpu 0.479 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
    ; time ./after run llama3 'hi'
    Hi! It's nice to meet you. Is there something I can help you with, or would you like to chat?

    ./after run llama3 'hi'  0.02s user 0.01s system 5% cpu 0.507 total
2024-06-24 20:14:03 -07:00
22 changed files with 826 additions and 208 deletions

View File

@@ -71,8 +71,8 @@ Here are some example models that can be downloaded:
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` | | Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` | | Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` | | Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` | | Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` | | Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` | | Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` | | Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` | | Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |

View File

@@ -162,9 +162,6 @@ func tempZipFiles(path string) (string, error) {
} }
defer tempfile.Close() defer tempfile.Close()
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
detectContentType := func(path string) (string, error) { detectContentType := func(path string) (string, error) {
f, err := os.Open(path) f, err := os.Open(path)
if err != nil { if err != nil {
@@ -233,6 +230,9 @@ func tempZipFiles(path string) (string, error) {
files = append(files, tks...) files = append(files, tks...)
} }
zipfile := zip.NewWriter(tempfile)
defer zipfile.Close()
for _, file := range files { for _, file := range files {
f, err := os.Open(file) f, err := os.Open(file)
if err != nil { if err != nil {
@@ -287,38 +287,12 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string) (string, er
} }
func RunHandler(cmd *cobra.Command, args []string) error { func RunHandler(cmd *cobra.Command, args []string) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
name := args[0]
// check if the model exists on the server
show, err := client.Show(cmd.Context(), &api.ShowRequest{Name: name})
var statusError api.StatusError
switch {
case errors.As(err, &statusError) && statusError.StatusCode == http.StatusNotFound:
if err := PullHandler(cmd, []string{name}); err != nil {
return err
}
show, err = client.Show(cmd.Context(), &api.ShowRequest{Name: name})
if err != nil {
return err
}
case err != nil:
return err
}
interactive := true interactive := true
opts := runOptions{ opts := runOptions{
Model: args[0], Model: args[0],
WordWrap: os.Getenv("TERM") == "xterm-256color", WordWrap: os.Getenv("TERM") == "xterm-256color",
Options: map[string]interface{}{}, Options: map[string]interface{}{},
MultiModal: slices.Contains(show.Details.Families, "clip"),
ParentModel: show.Details.ParentModel,
} }
format, err := cmd.Flags().GetString("format") format, err := cmd.Flags().GetString("format")
@@ -362,12 +336,39 @@ func RunHandler(cmd *cobra.Command, args []string) error {
} }
opts.WordWrap = !nowrap opts.WordWrap = !nowrap
if !interactive { // Fill out the rest of the options based on information about the
return generate(cmd, opts) // model.
client, err := api.ClientFromEnvironment()
if err != nil {
return err
} }
name := args[0]
info, err := func() (*api.ShowResponse, error) {
showReq := &api.ShowRequest{Name: name}
info, err := client.Show(cmd.Context(), showReq)
var se api.StatusError
if errors.As(err, &se) && se.StatusCode == http.StatusNotFound {
if err := PullHandler(cmd, []string{name}); err != nil {
return nil, err
}
return client.Show(cmd.Context(), &api.ShowRequest{Name: name})
}
return info, err
}()
if err != nil {
return err
}
opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive {
return generateInteractive(cmd, opts) return generateInteractive(cmd, opts)
} }
return generate(cmd, opts)
}
func errFromUnknownKey(unknownKeyErr error) error { func errFromUnknownKey(unknownKeyErr error) error {
// find SSH public key in the error message // find SSH public key in the error message
@@ -623,13 +624,13 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified") return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
} }
if flagsSet == 1 {
req := api.ShowRequest{Name: args[0]} req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req) resp, err := client.Show(cmd.Context(), &req)
if err != nil { if err != nil {
return err return err
} }
if flagsSet == 1 {
switch showType { switch showType {
case "license": case "license":
fmt.Println(resp.License) fmt.Println(resp.License)
@@ -646,12 +647,12 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil return nil
} }
req := api.ShowRequest{Name: args[0]} showInfo(resp)
resp, err := client.Show(cmd.Context(), &req)
if err != nil { return nil
return err
} }
func showInfo(resp *api.ShowResponse) {
arch := resp.ModelInfo["general.architecture"].(string) arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{ modelData := [][]string{
@@ -671,11 +672,17 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
projectorData := [][]string{ projectorData := [][]string{
{"arch", "clip"}, {"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))}, {"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"projector type", resp.ProjectorInfo["clip.projector_type"].(string)},
{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
} }
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {
projectorData = append(projectorData, []string{"projector type", projectorType.(string)})
}
projectorData = append(projectorData,
[]string{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
[]string{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
)
mainTableData = append(mainTableData, mainTableData = append(mainTableData,
[]string{"Projector"}, []string{"Projector"},
[]string{renderSubTable(projectorData, false)}, []string{renderSubTable(projectorData, false)},
@@ -704,8 +711,6 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
} }
table.Render() table.Render()
return nil
} }
func renderSubTable(data [][]string, file bool) string { func renderSubTable(data [][]string, file bool) string {

View File

@@ -31,41 +31,24 @@ const (
) )
func loadModel(cmd *cobra.Command, opts *runOptions) error { func loadModel(cmd *cobra.Command, opts *runOptions) error {
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
p := progress.NewProgress(os.Stderr) p := progress.NewProgress(os.Stderr)
defer p.StopAndClear() defer p.StopAndClear()
spinner := progress.NewSpinner("") spinner := progress.NewSpinner("")
p.Add("", spinner) p.Add("", spinner)
showReq := api.ShowRequest{Name: opts.Model} client, err := api.ClientFromEnvironment()
showResp, err := client.Show(cmd.Context(), &showReq)
if err != nil { if err != nil {
return err return err
} }
opts.MultiModal = slices.Contains(showResp.Details.Families, "clip")
opts.ParentModel = showResp.Details.ParentModel
if len(showResp.Messages) > 0 {
opts.Messages = append(opts.Messages, showResp.Messages...)
}
chatReq := &api.ChatRequest{ chatReq := &api.ChatRequest{
Model: opts.Model, Model: opts.Model,
Messages: []api.Message{}, KeepAlive: opts.KeepAlive,
} }
if opts.KeepAlive != nil { return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
chatReq.KeepAlive = opts.KeepAlive
}
err = client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear() p.StopAndClear()
if len(opts.Messages) > 0 {
for _, msg := range opts.Messages { for _, msg := range opts.Messages {
switch msg.Role { switch msg.Role {
case "user": case "user":
@@ -77,19 +60,11 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error {
fmt.Println() fmt.Println()
} }
} }
}
return nil return nil
}) })
if err != nil {
return err
}
return nil
} }
func generateInteractive(cmd *cobra.Command, opts runOptions) error { func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = make([]api.Message, 0)
err := loadModel(cmd, &opts) err := loadModel(cmd, &opts)
if err != nil { if err != nil {
return err return err
@@ -429,15 +404,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] { switch args[1] {
case "info": case "info":
fmt.Println("Model details:") showInfo(resp)
if len(resp.Details.Families) > 0 {
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
} else if resp.Details.Family != "" {
fmt.Printf("Family %s\n", resp.Details.Family)
}
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
fmt.Println("")
case "license": case "license":
if resp.License == "" { if resp.License == "" {
fmt.Println("No license was specified for this model.") fmt.Println("No license was specified for this model.")

View File

@@ -104,7 +104,6 @@ curl http://localhost:11434/v1/chat/completions \
#### Notes #### Notes
- `finish_reason` will always be `stop`
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached - `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models ## Models

View File

@@ -93,7 +93,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
//} //}
if gfxOverride == "" { if gfxOverride == "" {
if !slices.Contains[[]string, string](supported, gfx) { if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported) //slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting? // TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage") slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
continue continue
@@ -109,10 +109,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
} }
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library // iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit { //if totalMemory < IGPUMemLimit {
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory)) // slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
continue // continue
} //}
// TODO revisit this once ROCm v6 is available on windows. // TODO revisit this once ROCm v6 is available on windows.
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable // v5.7 only reports VRAM used by this process, so it's completely wrong and unusable

View File

@@ -1650,26 +1650,41 @@ struct llama_server_context
} }
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep); slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
char buf[256];
llama_model_meta_val_str(model, "general.architecture", buf, 256);
bool gemma2 = strcmp(buf, "gemma2") == 0;
int32_t truncate_at = slot.n_ctx;
// truncate at 2/3 of the context length for gemma2 models
// as they do not support context shifts (from the sliding window implementation).
// this way, prompts that almost fit the context length can still generate a full
// response without a sudden stop from hitting the context limit
if (gemma2) {
truncate_at = 2 * slot.n_ctx / 3;
}
// if input prompt is too big, truncate it, if group attention self-extend is disabled // if input prompt is too big, truncate it, if group attention self-extend is disabled
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx) if (slot.ga_n == 1 && slot.n_prompt_tokens >= truncate_at)
{ {
const int n_left = slot.n_ctx - slot.params.n_keep; const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2; const int n_shift = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size; const int n_erase = slot.n_prompt_tokens - slot.params.n_keep - n_shift;
std::vector<llama_token> new_tokens( std::vector<llama_token> new_tokens(
prompt_tokens.begin(), prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep); prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert( new_tokens.insert(
new_tokens.end(), new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.begin() + slot.params.n_keep + n_erase,
prompt_tokens.end()); prompt_tokens.end());
LOG_VERBOSE("input truncated", { LOG_INFO("input truncated", {
{"n_ctx", slot.n_ctx}, {"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep}, {"n_keep", slot.params.n_keep},
{"n_left", n_left}, {"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())}, {"n_shift", n_shift},
{"n_erase", n_erase},
}); });
slot.truncated = true; slot.truncated = true;
prompt_tokens = new_tokens; prompt_tokens = new_tokens;
@@ -1678,6 +1693,19 @@ struct llama_server_context
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx); GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
} }
// Models with sliding window attention do not work with context shifts, so
// limit their prediction to the context length
if (gemma2) {
int32_t limit = slot.n_ctx - slot.n_prompt_tokens;
slot.n_predict = limit;
slot.params.n_predict = limit;
LOG_INFO("model does not support sliding window, limiting generation", {
{"n_ctx", slot.n_ctx},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"n_predict", slot.n_predict}
});
}
if (!slot.params.cache_prompt) if (!slot.params.cache_prompt)
{ {
llama_sampling_reset(slot.ctx_sampling); llama_sampling_reset(slot.ctx_sampling);

View File

@@ -12,7 +12,7 @@ function amdGPUs {
"gfx900" "gfx900"
"gfx902" "gfx902"
"gfx904" "gfx904"
"gfx90c" "gfx90c:xnack-"
"gfx906:xnack-" "gfx906:xnack-"
"gfx908:xnack-" "gfx908:xnack-"
"gfx90a:xnack+" "gfx90a:xnack+"
@@ -22,7 +22,7 @@ function amdGPUs {
"gfx942" "gfx942"
"gfx1010" "gfx1010"
"gfx1011" "gfx1011"
"gfx1012" "gfx1012:xnack-"
"gfx1030" "gfx1030"
"gfx1031" "gfx1031"
"gfx1032" "gfx1032"

View File

@@ -53,7 +53,7 @@ func (llm *ggla) Tensors() Tensors {
return llm.tensors return llm.tensors
} }
func (llm *ggla) decode(rs io.ReadSeeker) error { func (llm *ggla) decode(rs io.ReadSeeker) (retErr error) {
var r uint32 var r uint32
if err := binary.Read(rs, binary.LittleEndian, &r); err != nil { if err := binary.Read(rs, binary.LittleEndian, &r); err != nil {
return err return err
@@ -69,9 +69,18 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
for { for {
var dims uint32 var dims uint32
if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil { if err := binary.Read(rs, binary.LittleEndian, &dims); err != nil {
if errors.Is(err, io.EOF) {
return nil
}
return err return err
} }
defer func() {
if errors.Is(retErr, io.EOF) {
retErr = io.ErrUnexpectedEOF
}
}()
var namesize uint32 var namesize uint32
if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil { if err := binary.Read(rs, binary.LittleEndian, &namesize); err != nil {
return err return err
@@ -108,7 +117,7 @@ func (llm *ggla) decode(rs io.ReadSeeker) error {
return err return err
} }
if _, err := rs.Seek((offset+31)&-32, io.SeekStart); err != nil { if _, err := rs.Seek((offset+31)&-32-offset, io.SeekCurrent); err != nil {
return err return err
} }

View File

@@ -6,6 +6,8 @@ import (
"fmt" "fmt"
"io" "io"
"strings" "strings"
"github.com/ollama/ollama/util/bufioutil"
) )
type GGML struct { type GGML struct {
@@ -278,7 +280,18 @@ func DetectGGMLType(b []byte) string {
} }
} }
func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) { // DecodeGGML decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32 var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err return nil, 0, err
@@ -291,17 +304,15 @@ func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
case FILE_MAGIC_GGLA: case FILE_MAGIC_GGLA:
c = &containerGGLA{} c = &containerGGLA{}
case FILE_MAGIC_GGUF_LE: case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian} c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE: case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian} c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default: default:
return nil, 0, errors.New("invalid file magic") return nil, 0, errors.New("invalid file magic")
} }
model, err := c.Decode(rs) model, err := c.Decode(rs)
if errors.Is(err, io.EOF) { if err != nil {
// noop
} else if err != nil {
return nil, 0, err return nil, 0, err
} }
@@ -321,7 +332,7 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
embedding := llm.KV().EmbeddingLength() embedding := llm.KV().EmbeddingLength()
heads := llm.KV().HeadCount() heads := llm.KV().HeadCount()
headsKV := llm.KV().HeadCountKV() headsKV := llm.KV().HeadCountKV()
vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any))) vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := llm.KV().EmbeddingHeadCount() embeddingHeads := llm.KV().EmbeddingHeadCount()
embeddingHeadsK := llm.KV().EmbeddingHeadCountK() embeddingHeadsK := llm.KV().EmbeddingHeadCountK()
@@ -355,9 +366,18 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16), 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
) )
} }
case "gemma": case "gemma", "gemma2":
fullOffload = 4 * batch * (embedding + vocab) fullOffload = max(
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128 4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
)
partialOffload = max(
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
case "command-r": case "command-r":
fullOffload = max( fullOffload = max(
4*batch*(embedding+vocab), 4*batch*(embedding+vocab),

1
llm/ggml_test.go Normal file
View File

@@ -0,0 +1 @@
package llm

View File

@@ -3,11 +3,10 @@ package llm
import ( import (
"bytes" "bytes"
"encoding/binary" "encoding/binary"
"encoding/json"
"fmt" "fmt"
"io" "io"
"strings" "strings"
"log/slog"
) )
type containerGGUF struct { type containerGGUF struct {
@@ -29,6 +28,12 @@ type containerGGUF struct {
NumTensor uint64 NumTensor uint64
NumKV uint64 NumKV uint64
} }
maxArraySize int
}
func (c *containerGGUF) canCollectArray(size int) bool {
return c.maxArraySize < 0 || size <= c.maxArraySize
} }
func (c *containerGGUF) Name() string { func (c *containerGGUF) Name() string {
@@ -54,7 +59,6 @@ func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
} }
model := newGGUF(c) model := newGGUF(c)
slog.Debug(fmt.Sprintf("model = %#v", model))
if err := model.Decode(rs); err != nil { if err := model.Decode(rs); err != nil {
return nil, err return nil, err
} }
@@ -85,6 +89,8 @@ type gguf struct {
tensors []*Tensor tensors []*Tensor
parameters uint64 parameters uint64
scratch [16 << 10]byte
} }
func newGGUF(container *containerGGUF) *gguf { func newGGUF(container *containerGGUF) *gguf {
@@ -181,34 +187,34 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
} }
// decode tensors // decode tensors
for i := 0; uint64(i) < llm.numTensor(); i++ { for range llm.numTensor() {
name, err := readGGUFString(llm, rs) name, err := readGGUFString(llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor name: %w", err)
} }
// dims is the number of dimensions in the tensor // dims is the number of dimensions in the tensor
dims, err := readGGUF[uint32](llm, rs) dims, err := readGGUF[uint32](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor dimensions: %w", err)
} }
shape := [4]uint64{1, 1, 1, 1} shape := [4]uint64{1, 1, 1, 1}
for i := 0; uint32(i) < dims; i++ { for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs) shape[i], err = readGGUF[uint64](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor shape: %w", err)
} }
} }
kind, err := readGGUF[uint32](llm, rs) kind, err := readGGUF[uint32](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor kind: %w", err)
} }
offset, err := readGGUF[uint64](llm, rs) offset, err := readGGUF[uint64](llm, rs)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to read tensor offset: %w", err)
} }
tensor := Tensor{ tensor := Tensor{
@@ -230,24 +236,19 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
alignment = 32 alignment = 32
} }
for _, tensor := range llm.tensors {
offset, err := rs.Seek(0, io.SeekCurrent) offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil { if err != nil {
return err return fmt.Errorf("failed to get current offset: %w", err)
} }
padding := llm.padding(offset, int64(alignment)) padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil { if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err return fmt.Errorf("failed to seek to init padding: %w", err)
} }
for _, tensor := range llm.tensors {
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil { if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return err return fmt.Errorf("failed to seek to tensor: %w", err)
}
padding := llm.padding(int64(tensor.Size()), int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
} }
} }
@@ -285,22 +286,48 @@ func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
return b.String(), nil return b.String(), nil
} }
func discardGGUFString(llm *gguf, r io.Reader) error {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return err
}
size := int(llm.ByteOrder.Uint64(buf))
for size > 0 {
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
if err != nil {
return err
}
size -= n
}
return nil
}
func readGGUFString(llm *gguf, r io.Reader) (string, error) { func readGGUFString(llm *gguf, r io.Reader) (string, error) {
if llm.Version == 1 { if llm.Version == 1 {
return readGGUFV1String(llm, r) return readGGUFV1String(llm, r)
} }
var length uint64 buf := llm.scratch[:8]
if err := binary.Read(r, llm.ByteOrder, &length); err != nil { _, err := io.ReadFull(r, buf)
if err != nil {
return "", err return "", err
} }
var b bytes.Buffer length := int(llm.ByteOrder.Uint64(buf))
if _, err := io.CopyN(&b, r, int64(length)); err != nil { if length > len(llm.scratch) {
buf = make([]byte, length)
} else {
buf = llm.scratch[:length]
}
clear(buf)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err return "", err
} }
return string(buf), nil
return b.String(), nil
} }
func writeGGUFString(llm *gguf, w io.Writer, s string) error { func writeGGUFString(llm *gguf, w io.Writer, s string) error {
@@ -316,7 +343,16 @@ func writeGGUFString(llm *gguf, w io.Writer, s string) error {
return err return err
} }
func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) { type array struct {
size int
values []any
}
func (a *array) MarshalJSON() ([]byte, error) {
return json.Marshal(a.values)
}
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
t, err := readGGUF[uint32](llm, r) t, err := readGGUF[uint32](llm, r)
if err != nil { if err != nil {
return nil, err return nil, err
@@ -327,7 +363,12 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
for i := 0; uint32(i) < n; i++ { a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, 0, int(n))
}
for i := range n {
var e any var e any
switch t { switch t {
case ggufTypeUint8: case ggufTypeUint8:
@@ -361,13 +402,15 @@ func readGGUFV1Array(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
a = append(a, e) if a.values != nil {
a.values[i] = e
}
} }
return return a, nil
} }
func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) { func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
if llm.Version == 1 { if llm.Version == 1 {
return readGGUFV1Array(llm, r) return readGGUFV1Array(llm, r)
} }
@@ -382,7 +425,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
for i := 0; uint64(i) < n; i++ { a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, int(n))
}
for i := range n {
var e any var e any
switch t { switch t {
case ggufTypeUint8: case ggufTypeUint8:
@@ -408,7 +456,11 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
case ggufTypeBool: case ggufTypeBool:
e, err = readGGUF[bool](llm, r) e, err = readGGUF[bool](llm, r)
case ggufTypeString: case ggufTypeString:
if a.values != nil {
e, err = readGGUFString(llm, r) e, err = readGGUFString(llm, r)
} else {
err = discardGGUFString(llm, r)
}
default: default:
return nil, fmt.Errorf("invalid array type: %d", t) return nil, fmt.Errorf("invalid array type: %d", t)
} }
@@ -416,10 +468,12 @@ func readGGUFArray(llm *gguf, r io.Reader) (a []any, err error) {
return nil, err return nil, err
} }
a = append(a, e) if a.values != nil {
a.values[i] = e
}
} }
return return a, nil
} }
func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error { func writeGGUFArray[S ~[]E, E any](llm *gguf, w io.Writer, t uint32, s S) error {

View File

@@ -22,13 +22,14 @@ func TestEstimateGPULayers(t *testing.T) {
defer f.Close() defer f.Close()
gguf := NewGGUFV3(binary.LittleEndian) gguf := NewGGUFV3(binary.LittleEndian)
inputLayerCount := 5 inputLayerCount := 5
tensors := []Tensor{ tensors := []Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
} }
assert.Len(t, tensors, inputLayerCount+1) assert.Len(t, tensors, inputLayerCount+1)
err = gguf.Encode(f, KV{ err = gguf.Encode(f, KV{
@@ -45,8 +46,10 @@ func TestEstimateGPULayers(t *testing.T) {
}, tensors) }, tensors)
require.NoError(t, err) require.NoError(t, err)
ggml, err := LoadModel(f.Name()) ggml, err := LoadModel(f.Name(), 0)
require.NoError(t, err) if err != nil {
t.Fatal(err)
}
// Simple CPU scenario // Simple CPU scenario
gpus := []gpu.GpuInfo{ gpus := []gpu.GpuInfo{

305
llm/patches/07-gemma.diff Normal file
View File

@@ -0,0 +1,305 @@
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
From: Ollama maintainers <hello@ollama.com>
Date: Wed, 26 Jun 2024 16:18:09 -0700
Subject: [PATCH] Architecture support
---
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 file changed, 193 insertions(+), 1 deletion(-)
diff --git a/llama.cpp b/llama.cpp
index 61948751..3b4196f5 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -217,6 +217,7 @@ enum llm_arch {
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
+ LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
+ { LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -464,10 +466,12 @@ enum llm_tensor {
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
+ LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_GEMMA2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
@@ -1941,6 +1963,8 @@ enum e_model {
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
+ MODEL_9B,
+ MODEL_27B,
};
static const size_t kiB = 1024;
@@ -2114,6 +2138,7 @@ struct llama_layer {
struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm;
+ struct ggml_tensor * attn_post_norm;
// attention
struct ggml_tensor * wq;
@@ -2136,6 +2161,7 @@ struct llama_layer {
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
+ struct ggml_tensor * ffn_post_norm;
struct ggml_tensor * layer_out_norm;
struct ggml_tensor * layer_out_norm_b;
struct ggml_tensor * ffn_norm_exps;
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
}
} break;
case LLM_ARCH_GEMMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 18: model.type = e_model::MODEL_9B; break;
+ case 28: model.type = e_model::MODEL_27B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ const int64_t n_ff = hparams.n_ff;
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+ }
+ } break;
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -10614,6 +10684,123 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_gemma2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_gemma();
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ result = llm.build_gemma2();
+ } break;
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
+ case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_GPTNEOX:
return LLAMA_ROPE_TYPE_NEOX;
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<s>assistant\n";
}
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
--
2.45.2

View File

@@ -60,7 +60,12 @@ type llmServer struct {
sem *semaphore.Weighted sem *semaphore.Weighted
} }
func LoadModel(model string) (*GGML, error) { // LoadModel will load a model from disk. The model must be in the GGML format.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) {
if _, err := os.Stat(model); err != nil { if _, err := os.Stat(model); err != nil {
return nil, err return nil, err
} }
@@ -71,7 +76,7 @@ func LoadModel(model string) (*GGML, error) {
} }
defer f.Close() defer f.Close()
ggml, _, err := DecodeGGML(f) ggml, _, err := DecodeGGML(f, maxArraySize)
return ggml, err return ggml, err
} }
@@ -412,7 +417,7 @@ func projectorMemoryRequirements(filename string) uint64 {
} }
defer file.Close() defer file.Close()
ggml, _, err := DecodeGGML(file) ggml, _, err := DecodeGGML(file, 0)
if err != nil { if err != nil {
return 0 return 0
} }

View File

@@ -423,7 +423,7 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
return err return err
} }
ggml, _, err := llm.DecodeGGML(temp) ggml, _, err := llm.DecodeGGML(temp, 0)
if err != nil { if err != nil {
return err return err
} }

View File

@@ -11,6 +11,7 @@ import (
"net/http" "net/http"
"os" "os"
"path/filepath" "path/filepath"
"strings"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/convert" "github.com/ollama/ollama/convert"
@@ -63,7 +64,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
} }
defer blob.Close() defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob) ggml, _, err := llm.DecodeGGML(blob, 0)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -77,62 +78,80 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil return layers, nil
} }
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error {
stat, err := file.Stat() stat, err := file.Stat()
if err != nil { if err != nil {
return nil, err return err
} }
r, err := zip.NewReader(file, stat.Size()) r, err := zip.NewReader(file, stat.Size())
if err != nil { if err != nil {
return nil, err return err
} }
tempdir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempdir)
fn(api.ProgressResponse{Status: "unpacking model metadata"}) fn(api.ProgressResponse{Status: "unpacking model metadata"})
for _, f := range r.File { for _, f := range r.File {
n := filepath.Join(p, f.Name)
if !strings.HasPrefix(n, p) {
slog.Warn("skipped extracting file outside of context", "name", f.Name)
continue
}
if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil {
return err
}
// TODO(mxyng): this should not write out all files to disk // TODO(mxyng): this should not write out all files to disk
outfile, err := os.Create(filepath.Join(tempdir, f.Name)) outfile, err := os.Create(n)
if err != nil { if err != nil {
return nil, err return err
} }
defer outfile.Close() defer outfile.Close()
infile, err := f.Open() infile, err := f.Open()
if err != nil { if err != nil {
return nil, err return err
} }
defer infile.Close() defer infile.Close()
if _, err = io.Copy(outfile, infile); err != nil { if _, err = io.Copy(outfile, infile); err != nil {
return nil, err return err
} }
if err := outfile.Close(); err != nil { if err := outfile.Close(); err != nil {
return nil, err return err
} }
if err := infile.Close(); err != nil { if err := infile.Close(); err != nil {
return nil, err return err
} }
} }
mf, err := convert.GetModelFormat(tempdir) return nil
}
func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "")
if err != nil {
return nil, err
}
defer os.RemoveAll(tempDir)
if err := extractFromZipFile(tempDir, file, fn); err != nil {
return nil, err
}
mf, err := convert.GetModelFormat(tempDir)
if err != nil { if err != nil {
return nil, err return nil, err
} }
params, err := mf.GetParams(tempdir) params, err := mf.GetParams(tempDir)
if err != nil { if err != nil {
return nil, err return nil, err
} }
mArch, err := mf.GetModelArch("", tempdir, params) mArch, err := mf.GetModelArch("", tempDir, params)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -150,7 +169,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
// TODO(mxyng): this should write directly into a layer // TODO(mxyng): this should write directly into a layer
// e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model") // e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model")
temp, err := os.CreateTemp(tempdir, "fp16") temp, err := os.CreateTemp(tempDir, "fp16")
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -176,7 +195,7 @@ func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(a
} }
defer bin.Close() defer bin.Close()
ggml, _, err := llm.DecodeGGML(bin) ggml, _, err := llm.DecodeGGML(bin, 0)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -210,7 +229,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
var offset int64 var offset int64
for offset < stat.Size() { for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(file) ggml, n, err := llm.DecodeGGML(file, 0)
if errors.Is(err, io.EOF) { if errors.Is(err, io.EOF) {
break break
} else if err != nil { } else if err != nil {

92
server/model_test.go Normal file
View File

@@ -0,0 +1,92 @@
package server
import (
"archive/zip"
"bytes"
"io"
"os"
"path/filepath"
"slices"
"testing"
"github.com/ollama/ollama/api"
)
func createZipFile(t *testing.T, name string) *os.File {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "")
if err != nil {
t.Fatal(err)
}
zf := zip.NewWriter(f)
defer zf.Close()
zh, err := zf.CreateHeader(&zip.FileHeader{Name: name})
if err != nil {
t.Fatal(err)
}
if _, err := io.Copy(zh, bytes.NewReader([]byte(""))); err != nil {
t.Fatal(err)
}
return f
}
func TestExtractFromZipFile(t *testing.T) {
cases := []struct {
name string
expect []string
}{
{
name: "good",
expect: []string{"good"},
},
{
name: filepath.Join("..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "..", "bad"),
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
f := createZipFile(t, tt.name)
defer f.Close()
tempDir := t.TempDir()
if err := extractFromZipFile(tempDir, f, func(api.ProgressResponse) {}); err != nil {
t.Fatal(err)
}
var matches []string
if err := filepath.Walk(tempDir, func(p string, fi os.FileInfo, err error) error {
if err != nil {
return err
}
if !fi.IsDir() {
matches = append(matches, p)
}
return nil
}); err != nil {
t.Fatal(err)
}
var actual []string
for _, match := range matches {
rel, err := filepath.Rel(tempDir, match)
if err != nil {
t.Error(err)
}
actual = append(actual, rel)
}
if !slices.Equal(actual, tt.expect) {
t.Fatalf("expected %d files, got %d", len(tt.expect), len(matches))
}
})
}
}

View File

@@ -754,7 +754,11 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
} }
func getKVData(digest string, verbose bool) (llm.KV, error) { func getKVData(digest string, verbose bool) (llm.KV, error) {
kvData, err := llm.LoadModel(digest) maxArraySize := 0
if verbose {
maxArraySize = -1
}
kvData, err := llm.LoadModel(digest, maxArraySize)
if err != nil { if err != nil {
return nil, err return nil, err
} }
@@ -1101,11 +1105,20 @@ func Serve(ln net.Listener) error {
schedCtx, schedDone := context.WithCancel(ctx) schedCtx, schedDone := context.WithCancel(ctx)
sched := InitScheduler(schedCtx) sched := InitScheduler(schedCtx)
s := &Server{addr: ln.Addr(), sched: sched} s := &Server{addr: ln.Addr(), sched: sched}
r := s.GenerateRoutes()
http.Handle("/", s.GenerateRoutes())
slog.Info(fmt.Sprintf("Listening on %s (version %s)", ln.Addr(), version.Version)) slog.Info(fmt.Sprintf("Listening on %s (version %s)", ln.Addr(), version.Version))
srvr := &http.Server{ srvr := &http.Server{
Handler: r, // Use http.DefaultServeMux so we get net/http/pprof for
// free.
//
// TODO(bmizerany): Decide if we want to make this
// configurable so it is not exposed by default, or allow
// users to bind it to a different port. This was a quick
// and easy way to get pprof, but it may not be the best
// way.
Handler: nil,
} }
// listen for a ctrl+c and stop any loaded llm // listen for a ctrl+c and stop any loaded llm

View File

@@ -144,7 +144,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
} }
// Load model for fitting // Load model for fitting
ggml, err := llm.LoadModel(pending.model.ModelPath) ggml, err := llm.LoadModel(pending.model.ModelPath, 0)
if err != nil { if err != nil {
pending.errCh <- err pending.errCh <- err
break break

View File

@@ -128,14 +128,14 @@ func newScenario(t *testing.T, ctx context.Context, modelName string, estimatedV
"tokenizer.ggml.scores": []float32{0}, "tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0}, "tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{ }, []llm.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: &bytes.Reader{}}, {Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}) })
require.NoError(t, err) require.NoError(t, err)
fname := f.Name() fname := f.Name()
model := &Model{Name: modelName, ModelPath: fname} model := &Model{Name: modelName, ModelPath: fname}
scenario.ggml, err = llm.LoadModel(model.ModelPath) scenario.ggml, err = llm.LoadModel(model.ModelPath, 0)
require.NoError(t, err) require.NoError(t, err)
scenario.req = &LlmRequest{ scenario.req = &LlmRequest{

View File

@@ -0,0 +1,34 @@
package bufioutil
import (
"bufio"
"io"
)
type BufferedSeeker struct {
rs io.ReadSeeker
br *bufio.Reader
}
func NewBufferedSeeker(rs io.ReadSeeker, size int) *BufferedSeeker {
return &BufferedSeeker{
rs: rs,
br: bufio.NewReaderSize(rs, size),
}
}
func (b *BufferedSeeker) Read(p []byte) (int, error) {
return b.br.Read(p)
}
func (b *BufferedSeeker) Seek(offset int64, whence int) (int64, error) {
if whence == io.SeekCurrent {
offset -= int64(b.br.Buffered())
}
n, err := b.rs.Seek(offset, whence)
if err != nil {
return 0, err
}
b.br.Reset(b.rs)
return n, nil
}

View File

@@ -0,0 +1,64 @@
package bufioutil
import (
"bytes"
"io"
"strings"
"testing"
)
func TestBufferedSeeker(t *testing.T) {
const alphabet = "abcdefghijklmnopqrstuvwxyz"
bs := NewBufferedSeeker(strings.NewReader(alphabet), 0) // minReadBufferSize = 16
checkRead := func(buf []byte, expected string) {
t.Helper()
_, err := bs.Read(buf)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf, []byte(expected)) {
t.Fatalf("expected %s, got %s", expected, buf)
}
}
// Read the first 5 bytes
buf := make([]byte, 5)
checkRead(buf, "abcde")
// Seek back to the beginning
_, err := bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
// read 'a'
checkRead(buf[:1], "a")
if bs.br.Buffered() == 0 {
t.Fatalf("totally unexpected sanity check failed")
}
// Seek past 'b'
_, err = bs.Seek(1, io.SeekCurrent)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "cdefg")
// Seek back to the beginning
_, err = bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "abcde")
// Seek to the end
_, err = bs.Seek(-5, io.SeekEnd)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "vwxyz")
}