Compare commits

...

9 Commits

Author SHA1 Message Date
likelovewant
1c648e512e remove code to support igpu 2024-06-29 22:32:45 +08:00
likelovewant
159dcaa93b Merge branch 'ollama:main' into main 2024-06-29 20:59:45 +08:00
Jeffrey Morgan
717f7229eb Do not shift context for sliding window models (#5368)
* Do not shift context for sliding window models

* truncate prompt > 2/3 tokens

* only target gemma2
2024-06-28 19:39:31 -07:00
royjhan
5f034f5b63 Include Show Info in Interactive (#5342) 2024-06-28 13:15:52 -07:00
royjhan
b910fa9010 Ollama Show: Check for Projector Type (#5307)
* Check exists projtype

* Maintain Ordering
2024-06-28 11:30:16 -07:00
royjhan
6d4219083c Update docs (#5312) 2024-06-28 09:58:14 -07:00
Michael Yang
1ed4f521c4 Merge pull request #5340 from ollama/mxyng/mem
gemma2 graph
2024-06-27 14:26:49 -07:00
Michael Yang
de2163dafd gemma2 graph 2024-06-27 13:34:52 -07:00
Michael
2cc7d05012 update readme for gemma 2 (#5333)
* update readme for gemma 2
2024-06-27 12:45:16 -04:00
7 changed files with 77 additions and 45 deletions

View File

@@ -71,8 +71,8 @@ Here are some example models that can be downloaded:
| Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma | 2B | 1.4GB | `ollama run gemma:2b` |
| Gemma | 7B | 4.8GB | `ollama run gemma:7b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |

View File

@@ -624,13 +624,13 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
}
if flagsSet == 1 {
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
if flagsSet == 1 {
switch showType {
case "license":
fmt.Println(resp.License)
@@ -647,12 +647,12 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil
}
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
showInfo(resp)
return nil
}
func showInfo(resp *api.ShowResponse) {
arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{
@@ -672,11 +672,17 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"projector type", resp.ProjectorInfo["clip.projector_type"].(string)},
{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
}
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {
projectorData = append(projectorData, []string{"projector type", projectorType.(string)})
}
projectorData = append(projectorData,
[]string{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
[]string{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
)
mainTableData = append(mainTableData,
[]string{"Projector"},
[]string{renderSubTable(projectorData, false)},
@@ -705,8 +711,6 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
}
table.Render()
return nil
}
func renderSubTable(data [][]string, file bool) string {

View File

@@ -404,15 +404,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
fmt.Println("Model details:")
if len(resp.Details.Families) > 0 {
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
} else if resp.Details.Family != "" {
fmt.Printf("Family %s\n", resp.Details.Family)
}
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
fmt.Println("")
showInfo(resp)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")

View File

@@ -104,7 +104,6 @@ curl http://localhost:11434/v1/chat/completions \
#### Notes
- `finish_reason` will always be `stop`
- `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
## Models

View File

@@ -93,7 +93,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
//}
if gfxOverride == "" {
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
//slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
continue
@@ -109,10 +109,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
continue
}
//if totalMemory < IGPUMemLimit {
// slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
// continue
//}
// TODO revisit this once ROCm v6 is available on windows.
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable

View File

@@ -1650,26 +1650,41 @@ struct llama_server_context
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
char buf[256];
llama_model_meta_val_str(model, "general.architecture", buf, 256);
bool gemma2 = strcmp(buf, "gemma2") == 0;
int32_t truncate_at = slot.n_ctx;
// truncate at 2/3 of the context length for gemma2 models
// as they do not support context shifts (from the sliding window implementation).
// this way, prompts that almost fit the context length can still generate a full
// response without a sudden stop from hitting the context limit
if (gemma2) {
truncate_at = 2 * slot.n_ctx / 3;
}
// if input prompt is too big, truncate it, if group attention self-extend is disabled
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
if (slot.ga_n == 1 && slot.n_prompt_tokens >= truncate_at)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
const int n_shift = n_left / 2;
const int n_erase = slot.n_prompt_tokens - slot.params.n_keep - n_shift;
std::vector<llama_token> new_tokens(
prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(
new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
prompt_tokens.begin() + slot.params.n_keep + n_erase,
prompt_tokens.end());
LOG_VERBOSE("input truncated", {
LOG_INFO("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
{"n_shift", n_shift},
{"n_erase", n_erase},
});
slot.truncated = true;
prompt_tokens = new_tokens;
@@ -1678,6 +1693,19 @@ struct llama_server_context
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
// Models with sliding window attention do not work with context shifts, so
// limit their prediction to the context length
if (gemma2) {
int32_t limit = slot.n_ctx - slot.n_prompt_tokens;
slot.n_predict = limit;
slot.params.n_predict = limit;
LOG_INFO("model does not support sliding window, limiting generation", {
{"n_ctx", slot.n_ctx},
{"n_prompt_tokens", slot.n_prompt_tokens},
{"n_predict", slot.n_predict}
});
}
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);

View File

@@ -366,9 +366,18 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "gemma":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
case "gemma", "gemma2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
)
partialOffload = max(
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),