Compare commits

..

1 Commits

Author SHA1 Message Date
likelovewant
4f1a191422 simple udpate , nothing chaged 2024-06-27 13:21:17 +08:00
275 changed files with 4432 additions and 10671 deletions

View File

@@ -31,7 +31,7 @@ jobs:
security set-keychain-settings -lut 3600 build.keychain security set-keychain-settings -lut 3600 build.keychain
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: Build Darwin - name: Build Darwin
env: env:
@@ -87,7 +87,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get ./... - run: go get ./...
- run: | - run: |
@@ -141,13 +141,13 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install ROCm' - name: 'Install ROCm'
run: | run: |
$ErrorActionPreference = "Stop" $ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer" write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe" Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP" write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP" write-host "Completed AMD HIP"
@@ -218,7 +218,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install CUDA' - name: 'Install CUDA'
run: | run: |
@@ -306,7 +306,7 @@ jobs:
write-host "plugin installed" write-host "plugin installed"
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get - run: go get
- uses: actions/download-artifact@v4 - uses: actions/download-artifact@v4

View File

@@ -58,12 +58,11 @@ jobs:
runs-on: ${{ matrix.os }} runs-on: ${{ matrix.os }}
env: env:
GOARCH: ${{ matrix.arch }} GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
steps: steps:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: go get ./... - run: go get ./...
- run: | - run: |
@@ -80,7 +79,6 @@ jobs:
- run: go generate -x ./... - run: go generate -x ./...
if: ${{ ! startsWith(matrix.os, 'windows-') }} if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: 'Unix Go Generate' name: 'Unix Go Generate'
- run: go build .
- uses: actions/upload-artifact@v4 - uses: actions/upload-artifact@v4
with: with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
@@ -126,7 +124,7 @@ jobs:
strategy: strategy:
matrix: matrix:
rocm-version: rocm-version:
- '6.1.2' - '6.1.1'
runs-on: linux runs-on: linux
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }} container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
steps: steps:
@@ -163,13 +161,13 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install ROCm' - name: 'Install ROCm'
run: | run: |
$ErrorActionPreference = "Stop" $ErrorActionPreference = "Stop"
write-host "downloading AMD HIP Installer" write-host "downloading AMD HIP Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe" Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP" write-host "Installing AMD HIP"
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP" write-host "Completed AMD HIP"
@@ -200,7 +198,7 @@ jobs:
- uses: actions/checkout@v4 - uses: actions/checkout@v4
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- name: 'Install CUDA' - name: 'Install CUDA'
run: | run: |
@@ -255,7 +253,7 @@ jobs:
submodules: recursive submodules: recursive
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: false cache: false
- run: | - run: |
case ${{ matrix.arch }} in case ${{ matrix.arch }} in
@@ -297,7 +295,7 @@ jobs:
submodules: recursive submodules: recursive
- uses: actions/setup-go@v5 - uses: actions/setup-go@v5
with: with:
go-version: "stable" go-version-file: go.mod
cache: true cache: true
- run: | - run: |
case ${{ matrix.arch }} in case ${{ matrix.arch }} in

3
.gitignore vendored
View File

@@ -1,10 +1,9 @@
.DS_Store .DS_Store
.vscode .vscode
.vs/ .vs
.env .env
.venv .venv
.swp .swp
0
dist dist
ollama ollama
ggml-metal.metal ggml-metal.metal

1
.gitmodules vendored
View File

@@ -2,4 +2,3 @@
path = llm/llama.cpp path = llm/llama.cpp
url = https://github.com/ggerganov/llama.cpp.git url = https://github.com/ggerganov/llama.cpp.git
shallow = true shallow = true

View File

@@ -0,0 +1,3 @@
{
"enableCMake": false
}

3
.vs/ProjectSettings.json Normal file
View File

@@ -0,0 +1,3 @@
{
"CurrentProjectSetting": "\u65E0\u914D\u7F6E"
}

View File

@@ -0,0 +1,6 @@
{
"ExpandedNodes": [
""
],
"PreviewInSolutionExplorer": false
}

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,73 @@
{
"Version": 1,
"WorkspaceRootPath": "D:\\ollama-for-amd\\",
"Documents": [
{
"AbsoluteMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|D:\\ollama-for-amd\\version\\version.go||{3B902123-F8A7-4915-9F01-361F908088D0}",
"RelativeMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|solutionrelative:version\\version.go||{3B902123-F8A7-4915-9F01-361F908088D0}"
},
{
"AbsoluteMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|D:\\ollama-for-amd\\llm\\generate\\gen_windows.ps1||{3B902123-F8A7-4915-9F01-361F908088D0}",
"RelativeMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|solutionrelative:llm\\generate\\gen_windows.ps1||{3B902123-F8A7-4915-9F01-361F908088D0}"
},
{
"AbsoluteMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|D:\\ollama-for-amd\\llm\\llm_windows.go||{3B902123-F8A7-4915-9F01-361F908088D0}",
"RelativeMoniker": "D:0:0:{A2FE74E1-B743-11D0-AE1A-00A0C90FFFC3}|\u003CMiscFiles\u003E|solutionrelative:llm\\llm_windows.go||{3B902123-F8A7-4915-9F01-361F908088D0}"
}
],
"DocumentGroupContainers": [
{
"Orientation": 0,
"VerticalTabListWidth": 256,
"DocumentGroups": [
{
"DockedWidth": 200,
"SelectedChildIndex": 0,
"Children": [
{
"$type": "Document",
"DocumentIndex": 0,
"Title": "version.go",
"DocumentMoniker": "D:\\ollama-for-amd\\version\\version.go",
"RelativeDocumentMoniker": "version\\version.go",
"ToolTip": "D:\\ollama-for-amd\\version\\version.go",
"RelativeToolTip": "version\\version.go",
"ViewState": "AQIAAAAAAAAAAAAAAAAAAAIAAAAaAAAA",
"Icon": "ae27a6b0-e345-4288-96df-5eaf394ee369.001001|",
"WhenOpened": "2024-05-08T07:03:06.844Z",
"EditorCaption": ""
},
{
"$type": "Document",
"DocumentIndex": 1,
"Title": "gen_windows.ps1",
"DocumentMoniker": "D:\\ollama-for-amd\\llm\\generate\\gen_windows.ps1",
"RelativeDocumentMoniker": "llm\\generate\\gen_windows.ps1",
"ToolTip": "D:\\ollama-for-amd\\llm\\generate\\gen_windows.ps1",
"RelativeToolTip": "llm\\generate\\gen_windows.ps1",
"ViewState": "AQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"Icon": "ae27a6b0-e345-4288-96df-5eaf394ee369.001001|",
"WhenOpened": "2024-05-08T07:02:18.423Z"
},
{
"$type": "Document",
"DocumentIndex": 2,
"Title": "llm_windows.go",
"DocumentMoniker": "D:\\ollama-for-amd\\llm\\llm_windows.go",
"RelativeDocumentMoniker": "llm\\llm_windows.go",
"ToolTip": "D:\\ollama-for-amd\\llm\\llm_windows.go",
"RelativeToolTip": "llm\\llm_windows.go",
"ViewState": "AQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"Icon": "ae27a6b0-e345-4288-96df-5eaf394ee369.001001|",
"WhenOpened": "2024-05-08T07:01:58.602Z"
},
{
"$type": "Bookmark",
"Name": "ST:0:0:{cce594b6-0c39-4442-ba28-10c64ac7e89f}"
}
]
}
]
}
]
}

Binary file not shown.

BIN
.vs/slnx.sqlite Normal file

Binary file not shown.

BIN
0 Normal file

Binary file not shown.

View File

@@ -1,8 +1,8 @@
ARG GOLANG_VERSION=1.22.5 ARG GOLANG_VERSION=1.22.1
ARG CMAKE_VERSION=3.22.1 ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md # this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1 ARG CUDA_VERSION=11.3.1
ARG ROCM_VERSION=6.1.2 ARG ROCM_VERSION=6.1.1
# Copy the minimal context we need to run the generate scripts # Copy the minimal context we need to run the generate scripts
FROM scratch AS llm-code FROM scratch AS llm-code
@@ -70,12 +70,12 @@ RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64 FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64 FROM --platform=linux/arm64 centos:7 AS cpu-builder-arm64
ARG CMAKE_VERSION ARG CMAKE_VERSION
ARG GOLANG_VERSION ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh / COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/ COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS ARG CGO_CFLAGS

View File

@@ -26,7 +26,7 @@ Please download from ollama [official](https://ollama.com/download/OllamaSetup.e
Example extra list add on this repo. Example extra list add on this repo.
``` ```
"gfx803" "gfx902" "gfx90c:xnack-" "gfx904" "gfx940" "gfx941" "gfx942" "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1033" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx803" "gfx902" "gfx904""gfx940" "gfx941" "gfx942" "gfx1010" "gfx1011" "gfx1012" "gfx1031" "gfx1032""gfx1034" "gfx1035" "gfx1036" "gfx1103"
``` ```
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version. Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
@@ -53,10 +53,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart ## Quickstart
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1): To run and chat with [Llama 3](https://ollama.com/library/llama3):
``` ```
ollama run llama3.1 ollama run llama3
``` ```
## Model library ## Model library
@@ -67,13 +67,12 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download | | Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ | | ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` | | Llama 3 | 8B | 4.7GB | `ollama run llama3` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` | | Llama 3 | 70B | 40GB | `ollama run llama3:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` | | Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` | | Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` | | Gemma | 2B | 1.4GB | `ollama run gemma:2b` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` | | Gemma | 7B | 4.8GB | `ollama run gemma:7b` |
| Mistral | 7B | 4.1GB | `ollama run mistral` | | Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` | | Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` | | Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -83,8 +82,7 @@ Here are some example models that can be downloaded:
| LLaVA | 7B | 4.5GB | `ollama run llava` | | LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` | | Solar | 10.7B | 6.1GB | `ollama run solar` |
> [!NOTE] > Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
## Customize a model ## Customize a model
@@ -116,16 +114,16 @@ See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt ### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model: Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3` model:
``` ```
ollama pull llama3.1 ollama pull llama3
``` ```
Create a `Modelfile`: Create a `Modelfile`:
``` ```
FROM llama3.1 FROM llama3
# set the temperature to 1 [higher is more creative, lower is more coherent] # set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1 PARAMETER temperature 1
@@ -160,7 +158,7 @@ ollama create mymodel -f ./Modelfile
### Pull a model ### Pull a model
``` ```
ollama pull llama3.1 ollama pull llama3
``` ```
> This command can also be used to update a local model. Only the diff will be pulled. > This command can also be used to update a local model. Only the diff will be pulled.
@@ -168,13 +166,13 @@ ollama pull llama3.1
### Remove a model ### Remove a model
``` ```
ollama rm llama3.1 ollama rm llama3
``` ```
### Copy a model ### Copy a model
``` ```
ollama cp llama3.1 my-model ollama cp llama3 my-model
``` ```
### Multiline input ### Multiline input
@@ -191,21 +189,21 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
### Multimodal models ### Multimodal models
``` ```
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png" >>> What's in this image? /Users/jmorgan/Desktop/smile.png
The image features a yellow smiley face, which is likely the central focus of the picture. The image features a yellow smiley face, which is likely the central focus of the picture.
``` ```
### Pass the prompt as an argument ### Pass the prompt as an argument
``` ```
$ ollama run llama3.1 "Summarize this file: $(cat README.md)" $ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
``` ```
### Show model information ### Show model information
``` ```
ollama show llama3.1 ollama show llama3
``` ```
### List models on your computer ### List models on your computer
@@ -233,7 +231,7 @@ Next, start the server:
Finally, in a separate shell, run a model: Finally, in a separate shell, run a model:
``` ```
./ollama run llama3.1 ./ollama run llama3
``` ```
## REST API ## REST API
@@ -244,7 +242,7 @@ Ollama has a REST API for running and managing models.
``` ```
curl http://localhost:11434/api/generate -d '{ curl http://localhost:11434/api/generate -d '{
"model": "llama3.1", "model": "llama3",
"prompt":"Why is the sky blue?" "prompt":"Why is the sky blue?"
}' }'
``` ```
@@ -253,7 +251,7 @@ curl http://localhost:11434/api/generate -d '{
``` ```
curl http://localhost:11434/api/chat -d '{ curl http://localhost:11434/api/chat -d '{
"model": "llama3.1", "model": "llama3",
"messages": [ "messages": [
{ "role": "user", "content": "why is the sky blue?" } { "role": "user", "content": "why is the sky blue?" }
] ]
@@ -312,12 +310,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama) - [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS) - [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama) - [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
### Terminal ### Terminal
@@ -356,7 +348,6 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Libraries ### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa) - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example) - [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java) - [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs) - [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
@@ -410,7 +401,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama) - [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot) - [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama) - [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face) - [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and HuggingFace)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension) - [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend) - [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support) - [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)

View File

@@ -1,25 +0,0 @@
# Security
The Ollama maintainer team takes security seriously and will actively work to resolve security issues.
## Reporting a vulnerability
If you discover a security vulnerability, please do not open a public issue. Instead, please report it by emailing hello@ollama.com. We ask that you give us sufficient time to investigate and address the vulnerability before disclosing it publicly.
Please include the following details in your report:
- A description of the vulnerability
- Steps to reproduce the issue
- Your assessment of the potential impact
- Any possible mitigations
## Security best practices
While the maintainer team does their best to secure Ollama, users are encouraged to implement their own security best practices, such as:
- Regularly updating to the latest version of Ollama
- Securing access to hosted instances of Ollama
- Monitoring systems for unusual activity
## Contact
For any other questions or concerns related to security, please contact us at hello@ollama.com

View File

@@ -20,6 +20,7 @@ import (
"encoding/json" "encoding/json"
"fmt" "fmt"
"io" "io"
"net"
"net/http" "net/http"
"net/url" "net/url"
"runtime" "runtime"
@@ -62,8 +63,13 @@ func checkError(resp *http.Response, body []byte) error {
// If the variable is not specified, a default ollama host and port will be // If the variable is not specified, a default ollama host and port will be
// used. // used.
func ClientFromEnvironment() (*Client, error) { func ClientFromEnvironment() (*Client, error) {
ollamaHost := envconfig.Host
return &Client{ return &Client{
base: envconfig.Host(), base: &url.URL{
Scheme: ollamaHost.Scheme,
Host: net.JoinHostPort(ollamaHost.Host, ollamaHost.Port),
},
http: http.DefaultClient, http: http.DefaultClient,
}, nil }, nil
} }
@@ -341,16 +347,7 @@ func (c *Client) Heartbeat(ctx context.Context) error {
return nil return nil
} }
// Embed generates embeddings from a model. // Embeddings generates embeddings from a model.
func (c *Client) Embed(ctx context.Context, req *EmbedRequest) (*EmbedResponse, error) {
var resp EmbedResponse
if err := c.do(ctx, http.MethodPost, "/api/embed", req, &resp); err != nil {
return nil, err
}
return &resp, nil
}
// Embeddings generates an embedding from a model.
func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) { func (c *Client) Embeddings(ctx context.Context, req *EmbeddingRequest) (*EmbeddingResponse, error) {
var resp EmbeddingResponse var resp EmbeddingResponse
if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil { if err := c.do(ctx, http.MethodPost, "/api/embeddings", req, &resp); err != nil {

View File

@@ -2,6 +2,8 @@ package api
import ( import (
"testing" "testing"
"github.com/ollama/ollama/envconfig"
) )
func TestClientFromEnvironment(t *testing.T) { func TestClientFromEnvironment(t *testing.T) {
@@ -31,6 +33,7 @@ func TestClientFromEnvironment(t *testing.T) {
for k, v := range testCases { for k, v := range testCases {
t.Run(k, func(t *testing.T) { t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", v.value) t.Setenv("OLLAMA_HOST", v.value)
envconfig.LoadConfig()
client, err := ClientFromEnvironment() client, err := ClientFromEnvironment()
if err != v.err { if err != v.err {

View File

@@ -47,9 +47,6 @@ type GenerateRequest struct {
// Prompt is the textual prompt to send to the model. // Prompt is the textual prompt to send to the model.
Prompt string `json:"prompt"` Prompt string `json:"prompt"`
// Suffix is the text that comes after the inserted text.
Suffix string `json:"suffix"`
// System overrides the model's default system message/prompt. // System overrides the model's default system message/prompt.
System string `json:"system"` System string `json:"system"`
@@ -100,85 +97,17 @@ type ChatRequest struct {
// followin the request. // followin the request.
KeepAlive *Duration `json:"keep_alive,omitempty"` KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
Tools `json:"tools,omitempty"`
// Options lists model-specific options. // Options lists model-specific options.
Options map[string]interface{} `json:"options"` Options map[string]interface{} `json:"options"`
} }
type Tools []Tool
func (t Tools) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
func (t Tool) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
// Message is a single message in a chat sequence. The message contains the // Message is a single message in a chat sequence. The message contains the
// role ("system", "user", or "assistant"), the content and an optional list // role ("system", "user", or "assistant"), the content and an optional list
// of images. // of images.
type Message struct { type Message struct {
Role string `json:"role"` Role string `json:"role"`
Content string `json:"content"` Content string `json:"content"`
Images []ImageData `json:"images,omitempty"` Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
type Alias Message
var a Alias
if err := json.Unmarshal(b, &a); err != nil {
return err
}
*m = Message(a)
m.Role = strings.ToLower(m.Role)
return nil
}
type ToolCall struct {
Function ToolCallFunction `json:"function"`
}
type ToolCallFunction struct {
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
type ToolCallFunctionArguments map[string]any
func (t *ToolCallFunctionArguments) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type Tool struct {
Type string `json:"type"`
Function ToolFunction `json:"function"`
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
}
func (t *ToolFunction) String() string {
bts, _ := json.Marshal(t)
return string(bts)
} }
// ChatResponse is the response returned by [Client.Chat]. Its fields are // ChatResponse is the response returned by [Client.Chat]. Its fields are
@@ -214,7 +143,6 @@ type Options struct {
NumPredict int `json:"num_predict,omitempty"` NumPredict int `json:"num_predict,omitempty"`
TopK int `json:"top_k,omitempty"` TopK int `json:"top_k,omitempty"`
TopP float32 `json:"top_p,omitempty"` TopP float32 `json:"top_p,omitempty"`
MinP float32 `json:"min_p,omitempty"`
TFSZ float32 `json:"tfs_z,omitempty"` TFSZ float32 `json:"tfs_z,omitempty"`
TypicalP float32 `json:"typical_p,omitempty"` TypicalP float32 `json:"typical_p,omitempty"`
RepeatLastN int `json:"repeat_last_n,omitempty"` RepeatLastN int `json:"repeat_last_n,omitempty"`
@@ -231,46 +159,49 @@ type Options struct {
// Runner options which must be set when the model is loaded into memory // Runner options which must be set when the model is loaded into memory
type Runner struct { type Runner struct {
UseNUMA bool `json:"numa,omitempty"` UseNUMA bool `json:"numa,omitempty"`
NumCtx int `json:"num_ctx,omitempty"` NumCtx int `json:"num_ctx,omitempty"`
NumBatch int `json:"num_batch,omitempty"` NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"` NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"` MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"` LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` F16KV bool `json:"f16_kv,omitempty"`
LogitsAll bool `json:"logits_all,omitempty"` LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"` VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"` UseMMap TriState `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"` UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"` NumThread int `json:"num_thread,omitempty"`
} }
// EmbedRequest is the request passed to [Client.Embed]. type TriState int
type EmbedRequest struct {
// Model is the model name.
Model string `json:"model"`
// Input is the input to embed. const (
Input any `json:"input"` TriStateUndefined TriState = -1
TriStateFalse TriState = 0
TriStateTrue TriState = 1
)
// KeepAlive controls how long the model will stay loaded in memory following func (b *TriState) UnmarshalJSON(data []byte) error {
// this request. var v bool
KeepAlive *Duration `json:"keep_alive,omitempty"` if err := json.Unmarshal(data, &v); err != nil {
return err
Truncate *bool `json:"truncate,omitempty"` }
if v {
// Options lists model-specific options. *b = TriStateTrue
Options map[string]interface{} `json:"options"` }
*b = TriStateFalse
return nil
} }
// EmbedResponse is the response from [Client.Embed]. func (b *TriState) MarshalJSON() ([]byte, error) {
type EmbedResponse struct { if *b == TriStateUndefined {
Model string `json:"model"` return nil, nil
Embeddings [][]float32 `json:"embeddings"` }
var v bool
TotalDuration time.Duration `json:"total_duration,omitempty"` if *b == TriStateTrue {
LoadDuration time.Duration `json:"load_duration,omitempty"` v = true
PromptEvalCount int `json:"prompt_eval_count,omitempty"` }
return json.Marshal(v)
} }
// EmbeddingRequest is the request passed to [Client.Embeddings]. // EmbeddingRequest is the request passed to [Client.Embeddings].
@@ -319,10 +250,8 @@ type DeleteRequest struct {
// ShowRequest is the request passed to [Client.Show]. // ShowRequest is the request passed to [Client.Show].
type ShowRequest struct { type ShowRequest struct {
Model string `json:"model"` Model string `json:"model"`
System string `json:"system"` System string `json:"system"`
// Template is deprecated
Template string `json:"template"` Template string `json:"template"`
Verbose bool `json:"verbose"` Verbose bool `json:"verbose"`
@@ -416,13 +345,6 @@ type ProcessModelResponse struct {
SizeVRAM int64 `json:"size_vram"` SizeVRAM int64 `json:"size_vram"`
} }
type RetrieveModelResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
OwnedBy string `json:"owned_by"`
}
type TokenResponse struct { type TokenResponse struct {
Token string `json:"token"` Token string `json:"token"`
} }
@@ -515,6 +437,19 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
continue continue
} }
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
if val {
field.SetInt(int64(TriStateTrue))
} else {
field.SetInt(int64(TriStateFalse))
}
continue
}
switch field.Kind() { switch field.Kind() {
case reflect.Int: case reflect.Int:
switch t := val.(type) { switch t := val.(type) {
@@ -561,17 +496,6 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
slice[i] = str slice[i] = str
} }
field.Set(reflect.ValueOf(slice)) field.Set(reflect.ValueOf(slice))
case reflect.Pointer:
var b bool
if field.Type() == reflect.TypeOf(&b) {
val, ok := val.(bool)
if !ok {
return fmt.Errorf("option %q must be of type boolean", key)
}
field.Set(reflect.ValueOf(&val))
} else {
return fmt.Errorf("unknown type loading config params: %v %v", field.Kind(), field.Type())
}
default: default:
return fmt.Errorf("unknown type loading config params: %v", field.Kind()) return fmt.Errorf("unknown type loading config params: %v", field.Kind())
} }
@@ -614,7 +538,7 @@ func DefaultOptions() Options {
LowVRAM: false, LowVRAM: false,
F16KV: true, F16KV: true,
UseMLock: false, UseMLock: false,
UseMMap: nil, UseMMap: TriStateUndefined,
UseNUMA: false, UseNUMA: false,
}, },
} }
@@ -684,6 +608,19 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
} else { } else {
field := valueOpts.FieldByName(opt.Name) field := valueOpts.FieldByName(opt.Name)
if field.IsValid() && field.CanSet() { if field.IsValid() && field.CanSet() {
if reflect.PointerTo(field.Type()) == reflect.TypeOf((*TriState)(nil)) {
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
if boolVal {
out[key] = TriStateTrue
} else {
out[key] = TriStateFalse
}
continue
}
switch field.Kind() { switch field.Kind() {
case reflect.Float32: case reflect.Float32:
floatVal, err := strconv.ParseFloat(vals[0], 32) floatVal, err := strconv.ParseFloat(vals[0], 32)
@@ -711,17 +648,6 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
case reflect.Slice: case reflect.Slice:
// TODO: only string slices are supported right now // TODO: only string slices are supported right now
out[key] = vals out[key] = vals
case reflect.Pointer:
var b bool
if field.Type() == reflect.TypeOf(&b) {
boolVal, err := strconv.ParseBool(vals[0])
if err != nil {
return nil, fmt.Errorf("invalid bool value %s", vals)
}
out[key] = &boolVal
} else {
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
}
default: default:
return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key) return nil, fmt.Errorf("unknown type %s for %s", field.Kind(), key)
} }

View File

@@ -108,27 +108,25 @@ func TestDurationMarshalUnmarshal(t *testing.T) {
} }
func TestUseMmapParsingFromJSON(t *testing.T) { func TestUseMmapParsingFromJSON(t *testing.T) {
tr := true
fa := false
tests := []struct { tests := []struct {
name string name string
req string req string
exp *bool exp TriState
}{ }{
{ {
name: "Undefined", name: "Undefined",
req: `{ }`, req: `{ }`,
exp: nil, exp: TriStateUndefined,
}, },
{ {
name: "True", name: "True",
req: `{ "use_mmap": true }`, req: `{ "use_mmap": true }`,
exp: &tr, exp: TriStateTrue,
}, },
{ {
name: "False", name: "False",
req: `{ "use_mmap": false }`, req: `{ "use_mmap": false }`,
exp: &fa, exp: TriStateFalse,
}, },
} }
@@ -146,52 +144,50 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
} }
func TestUseMmapFormatParams(t *testing.T) { func TestUseMmapFormatParams(t *testing.T) {
tr := true
fa := false
tests := []struct { tests := []struct {
name string name string
req map[string][]string req map[string][]string
exp *bool exp TriState
err error err error
}{ }{
{ {
name: "True", name: "True",
req: map[string][]string{ req: map[string][]string{
"use_mmap": {"true"}, "use_mmap": []string{"true"},
}, },
exp: &tr, exp: TriStateTrue,
err: nil, err: nil,
}, },
{ {
name: "False", name: "False",
req: map[string][]string{ req: map[string][]string{
"use_mmap": {"false"}, "use_mmap": []string{"false"},
}, },
exp: &fa, exp: TriStateFalse,
err: nil, err: nil,
}, },
{ {
name: "Numeric True", name: "Numeric True",
req: map[string][]string{ req: map[string][]string{
"use_mmap": {"1"}, "use_mmap": []string{"1"},
}, },
exp: &tr, exp: TriStateTrue,
err: nil, err: nil,
}, },
{ {
name: "Numeric False", name: "Numeric False",
req: map[string][]string{ req: map[string][]string{
"use_mmap": {"0"}, "use_mmap": []string{"0"},
}, },
exp: &fa, exp: TriStateFalse,
err: nil, err: nil,
}, },
{ {
name: "invalid string", name: "invalid string",
req: map[string][]string{ req: map[string][]string{
"use_mmap": {"foo"}, "use_mmap": []string{"foo"},
}, },
exp: nil, exp: TriStateUndefined,
err: fmt.Errorf("invalid bool value [foo]"), err: fmt.Errorf("invalid bool value [foo]"),
}, },
} }
@@ -199,35 +195,12 @@ func TestUseMmapFormatParams(t *testing.T) {
for _, test := range tests { for _, test := range tests {
t.Run(test.name, func(t *testing.T) { t.Run(test.name, func(t *testing.T) {
resp, err := FormatParams(test.req) resp, err := FormatParams(test.req)
require.Equal(t, test.err, err) require.Equal(t, err, test.err)
respVal, ok := resp["use_mmap"] respVal, ok := resp["use_mmap"]
if test.exp != nil { if test.exp != TriStateUndefined {
assert.True(t, ok, "resp: %v", resp) assert.True(t, ok, "resp: %v", resp)
assert.Equal(t, *test.exp, *respVal.(*bool)) assert.Equal(t, test.exp, respVal)
} }
}) })
} }
} }
func TestMessage_UnmarshalJSON(t *testing.T) {
tests := []struct {
input string
expected string
}{
{`{"role": "USER", "content": "Hello!"}`, "user"},
{`{"role": "System", "content": "Initialization complete."}`, "system"},
{`{"role": "assistant", "content": "How can I help you?"}`, "assistant"},
{`{"role": "TOOl", "content": "Access granted."}`, "tool"},
}
for _, test := range tests {
var msg Message
if err := json.Unmarshal([]byte(test.input), &msg); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if msg.Role != test.expected {
t.Errorf("role not lowercased: got %v, expected %v", msg.Role, test.expected)
}
}
}

View File

@@ -14,7 +14,7 @@ import (
func InitLogging() { func InitLogging() {
level := slog.LevelInfo level := slog.LevelInfo
if envconfig.Debug() { if envconfig.Debug {
level = slog.LevelDebug level = slog.LevelDebug
} }

View File

@@ -23,7 +23,7 @@ import (
) )
var ( var (
UpdateCheckURLBase = "https://api.github.com/repos/likelovewant/ollama-for-amd/releases/:id" UpdateCheckURLBase = "https://ollama.com/api/update"
UpdateDownloaded = false UpdateDownloaded = false
UpdateCheckInterval = 60 * 60 * time.Second UpdateCheckInterval = 60 * 60 * time.Second
) )

View File

@@ -127,10 +127,6 @@ Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\models"
Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history" Type: filesandordirs; Name: "{%USERPROFILE}\.ollama\history"
; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved ; NOTE: if the user has a custom OLLAMA_MODELS it will be preserved
[InstallDelete]
Type: filesandordirs; Name: "{%TEMP}\ollama*"
Type: filesandordirs; Name: "{%LOCALAPPDATA}\Programs\Ollama"
[Messages] [Messages]
WizardReady=Ollama Windows Preview WizardReady=Ollama Windows Preview
ReadyLabel1=%nLet's get you up and running with your own large language models. ReadyLabel1=%nLet's get you up and running with your own large language models.
@@ -138,7 +134,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
;FinishedHeadingLabel=Run your first model ;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1 ;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3
;ClickFinish=%n ;ClickFinish=%n
[Registry] [Registry]

View File

@@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
write-host "" write-host ""
write-host "Run your first model:" write-host "Run your first model:"
write-host "" write-host ""
write-host "`tollama run llama3.1" write-host "`tollama run llama3"
write-host "" write-host ""

View File

@@ -362,24 +362,9 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.MultiModal = slices.Contains(info.Details.Families, "clip") opts.MultiModal = slices.Contains(info.Details.Families, "clip")
opts.ParentModel = info.Details.ParentModel opts.ParentModel = info.Details.ParentModel
opts.Messages = append(opts.Messages, info.Messages...)
if interactive { if interactive {
if err := loadModel(cmd, &opts); err != nil {
return err
}
for _, msg := range info.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return generateInteractive(cmd, opts) return generateInteractive(cmd, opts)
} }
return generate(cmd, opts) return generate(cmd, opts)
@@ -639,13 +624,13 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified") return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
} }
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
if flagsSet == 1 { if flagsSet == 1 {
req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
switch showType { switch showType {
case "license": case "license":
fmt.Println(resp.License) fmt.Println(resp.License)
@@ -662,12 +647,12 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil return nil
} }
showInfo(resp) req := api.ShowRequest{Name: args[0]}
resp, err := client.Show(cmd.Context(), &req)
if err != nil {
return err
}
return nil
}
func showInfo(resp *api.ShowResponse) {
arch := resp.ModelInfo["general.architecture"].(string) arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{ modelData := [][]string{
@@ -687,17 +672,11 @@ func showInfo(resp *api.ShowResponse) {
projectorData := [][]string{ projectorData := [][]string{
{"arch", "clip"}, {"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))}, {"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
{"projector type", resp.ProjectorInfo["clip.projector_type"].(string)},
{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
} }
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {
projectorData = append(projectorData, []string{"projector type", projectorType.(string)})
}
projectorData = append(projectorData,
[]string{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
[]string{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
)
mainTableData = append(mainTableData, mainTableData = append(mainTableData,
[]string{"Projector"}, []string{"Projector"},
[]string{renderSubTable(projectorData, false)}, []string{renderSubTable(projectorData, false)},
@@ -726,6 +705,8 @@ func showInfo(resp *api.ShowResponse) {
} }
table.Render() table.Render()
return nil
} }
func renderSubTable(data [][]string, file bool) string { func renderSubTable(data [][]string, file bool) string {
@@ -858,6 +839,7 @@ type runOptions struct {
WordWrap bool WordWrap bool
Format string Format string
System string System string
Template string
Images []api.ImageData Images []api.ImageData
Options map[string]interface{} Options map[string]interface{}
MultiModal bool MultiModal bool
@@ -1051,6 +1033,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
Images: opts.Images, Images: opts.Images,
Format: opts.Format, Format: opts.Format,
System: opts.System, System: opts.System,
Template: opts.Template,
Options: opts.Options, Options: opts.Options,
KeepAlive: opts.KeepAlive, KeepAlive: opts.KeepAlive,
} }
@@ -1091,7 +1074,7 @@ func RunServer(cmd *cobra.Command, _ []string) error {
return err return err
} }
ln, err := net.Listen("tcp", envconfig.Host().Host) ln, err := net.Listen("tcp", net.JoinHostPort(envconfig.Host.Host, envconfig.Host.Port))
if err != nil { if err != nil {
return err return err
} }
@@ -1356,10 +1339,10 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_NUM_PARALLEL"], envVars["OLLAMA_NUM_PARALLEL"],
envVars["OLLAMA_NOPRUNE"], envVars["OLLAMA_NOPRUNE"],
envVars["OLLAMA_ORIGINS"], envVars["OLLAMA_ORIGINS"],
envVars["OLLAMA_SCHED_SPREAD"],
envVars["OLLAMA_TMPDIR"], envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"], envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"], envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_MAX_VRAM"],
}) })
default: default:
appendEnvDocs(cmd, envs) appendEnvDocs(cmd, envs)

View File

@@ -1,7 +1,6 @@
package cmd package cmd
import ( import (
"cmp"
"errors" "errors"
"fmt" "fmt"
"io" "io"
@@ -10,14 +9,13 @@ import (
"path/filepath" "path/filepath"
"regexp" "regexp"
"slices" "slices"
"sort"
"strings" "strings"
"github.com/spf13/cobra" "github.com/spf13/cobra"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress" "github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline" "github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes" "github.com/ollama/ollama/types/errtypes"
@@ -29,6 +27,7 @@ const (
MultilineNone MultilineState = iota MultilineNone MultilineState = iota
MultilinePrompt MultilinePrompt
MultilineSystem MultilineSystem
MultilineTemplate
) )
func loadModel(cmd *cobra.Command, opts *runOptions) error { func loadModel(cmd *cobra.Command, opts *runOptions) error {
@@ -48,10 +47,29 @@ func loadModel(cmd *cobra.Command, opts *runOptions) error {
KeepAlive: opts.KeepAlive, KeepAlive: opts.KeepAlive,
} }
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil }) return client.Chat(cmd.Context(), chatReq, func(resp api.ChatResponse) error {
p.StopAndClear()
for _, msg := range opts.Messages {
switch msg.Role {
case "user":
fmt.Printf(">>> %s\n", msg.Content)
case "assistant":
state := &displayResponseState{}
displayResponse(msg.Content, opts.WordWrap, state)
fmt.Println()
fmt.Println()
}
}
return nil
})
} }
func generateInteractive(cmd *cobra.Command, opts runOptions) error { func generateInteractive(cmd *cobra.Command, opts runOptions) error {
err := loadModel(cmd, &opts)
if err != nil {
return err
}
usage := func() { usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:") fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set Set session variables") fmt.Fprintln(os.Stderr, " /set Set session variables")
@@ -76,6 +94,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Available Commands:") fmt.Fprintln(os.Stderr, "Available Commands:")
fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter") fmt.Fprintln(os.Stderr, " /set parameter ... Set a parameter")
fmt.Fprintln(os.Stderr, " /set system <string> Set system message") fmt.Fprintln(os.Stderr, " /set system <string> Set system message")
fmt.Fprintln(os.Stderr, " /set template <string> Set prompt template")
fmt.Fprintln(os.Stderr, " /set history Enable history") fmt.Fprintln(os.Stderr, " /set history Enable history")
fmt.Fprintln(os.Stderr, " /set nohistory Disable history") fmt.Fprintln(os.Stderr, " /set nohistory Disable history")
fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap") fmt.Fprintln(os.Stderr, " /set wordwrap Enable wordwrap")
@@ -121,7 +140,6 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict") fmt.Fprintln(os.Stderr, " /set parameter num_predict <int> Max number of tokens to predict")
fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens") fmt.Fprintln(os.Stderr, " /set parameter top_k <int> Pick from top k num of tokens")
fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities") fmt.Fprintln(os.Stderr, " /set parameter top_p <float> Pick token based on sum of probabilities")
fmt.Fprintln(os.Stderr, " /set parameter min_p <float> Pick token based on top token probability * min_p")
fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size") fmt.Fprintln(os.Stderr, " /set parameter num_ctx <int> Set the context size")
fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level") fmt.Fprintln(os.Stderr, " /set parameter temperature <float> Set creativity level")
fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions") fmt.Fprintln(os.Stderr, " /set parameter repeat_penalty <float> How strongly to penalize repetitions")
@@ -141,7 +159,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err return err
} }
if envconfig.NoHistory() { if envconfig.NoHistory {
scanner.HistoryDisable() scanner.HistoryDisable()
} }
@@ -186,6 +204,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System}) opts.Messages = append(opts.Messages, api.Message{Role: "system", Content: opts.System})
fmt.Println("Set system message.") fmt.Println("Set system message.")
sb.Reset() sb.Reset()
case MultilineTemplate:
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
} }
multiline = MultilineNone multiline = MultilineNone
@@ -304,13 +326,17 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
} }
fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", ")) fmt.Printf("Set parameter '%s' to '%s'\n", args[2], strings.Join(params, ", "))
opts.Options[args[2]] = fp[args[2]] opts.Options[args[2]] = fp[args[2]]
case "system": case "system", "template":
if len(args) < 3 { if len(args) < 3 {
usageSet() usageSet()
continue continue
} }
multiline = MultilineSystem if args[1] == "system" {
multiline = MultilineSystem
} else if args[1] == "template" {
multiline = MultilineTemplate
}
line := strings.Join(args[2:], " ") line := strings.Join(args[2:], " ")
line, ok := strings.CutPrefix(line, `"""`) line, ok := strings.CutPrefix(line, `"""`)
@@ -330,17 +356,23 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
continue continue
} }
opts.System = sb.String() // for display in modelfile if args[1] == "system" {
newMessage := api.Message{Role: "system", Content: sb.String()} opts.System = sb.String() // for display in modelfile
// Check if the slice is not empty and the last message is from 'system' newMessage := api.Message{Role: "system", Content: sb.String()}
if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" { // Check if the slice is not empty and the last message is from 'system'
// Replace the last message if len(opts.Messages) > 0 && opts.Messages[len(opts.Messages)-1].Role == "system" {
opts.Messages[len(opts.Messages)-1] = newMessage // Replace the last message
} else { opts.Messages[len(opts.Messages)-1] = newMessage
opts.Messages = append(opts.Messages, newMessage) } else {
opts.Messages = append(opts.Messages, newMessage)
}
fmt.Println("Set system message.")
sb.Reset()
} else if args[1] == "template" {
opts.Template = sb.String()
fmt.Println("Set prompt template.")
sb.Reset()
} }
fmt.Println("Set system message.")
sb.Reset()
sb.Reset() sb.Reset()
continue continue
@@ -359,9 +391,10 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err return err
} }
req := &api.ShowRequest{ req := &api.ShowRequest{
Name: opts.Model, Name: opts.Model,
System: opts.System, System: opts.System,
Options: opts.Options, Template: opts.Template,
Options: opts.Options,
} }
resp, err := client.Show(cmd.Context(), req) resp, err := client.Show(cmd.Context(), req)
if err != nil { if err != nil {
@@ -371,7 +404,15 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] { switch args[1] {
case "info": case "info":
showInfo(resp) fmt.Println("Model details:")
if len(resp.Details.Families) > 0 {
fmt.Printf("Family %s\n", strings.Join(resp.Details.Families, ", "))
} else if resp.Details.Family != "" {
fmt.Printf("Family %s\n", resp.Details.Family)
}
fmt.Printf("Parameter Size %s\n", resp.Details.ParameterSize)
fmt.Printf("Quantization Level %s\n", resp.Details.QuantizationLevel)
fmt.Println("")
case "license": case "license":
if resp.License == "" { if resp.License == "" {
fmt.Println("No license was specified for this model.") fmt.Println("No license was specified for this model.")
@@ -404,9 +445,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Println("No system message was specified for this model.") fmt.Println("No system message was specified for this model.")
} }
case "template": case "template":
if resp.Template != "" { switch {
case opts.Template != "":
fmt.Println(opts.Template + "\n")
case resp.Template != "":
fmt.Println(resp.Template) fmt.Println(resp.Template)
} else { default:
fmt.Println("No prompt template was specified for this model.") fmt.Println("No prompt template was specified for this model.")
} }
default: default:
@@ -490,35 +534,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
} }
func buildModelfile(opts runOptions) string { func buildModelfile(opts runOptions) string {
var f parser.File var mf strings.Builder
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)}) model := opts.ParentModel
if model == "" {
model = opts.Model
}
fmt.Fprintf(&mf, "FROM %s\n", model)
if opts.System != "" { if opts.System != "" {
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System}) fmt.Fprintf(&mf, "SYSTEM \"\"\"%s\"\"\"\n", opts.System)
} }
keys := maps.Keys(opts.Options) if opts.Template != "" {
slices.Sort(keys) fmt.Fprintf(&mf, "TEMPLATE \"\"\"%s\"\"\"\n", opts.Template)
}
keys := make([]string, 0)
for k := range opts.Options {
keys = append(keys, k)
}
sort.Strings(keys)
for _, k := range keys { for _, k := range keys {
v := opts.Options[k] fmt.Fprintf(&mf, "PARAMETER %s %v\n", k, opts.Options[k])
var cmds []parser.Command
switch t := v.(type) {
case []string:
for _, s := range t {
cmds = append(cmds, parser.Command{Name: k, Args: s})
}
default:
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
}
f.Commands = append(f.Commands, cmds...)
} }
fmt.Fprintln(&mf)
for _, msg := range opts.Messages { for _, msg := range opts.Messages {
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)}) fmt.Fprintf(&mf, "MESSAGE %s \"\"\"%s\"\"\"\n", msg.Role, msg.Content)
} }
return f.String() return mf.String()
} }
func normalizeFilePath(fp string) string { func normalizeFilePath(fp string) string {

View File

@@ -1,10 +1,12 @@
package cmd package cmd
import ( import (
"bytes"
"testing" "testing"
"text/template"
"github.com/google/go-cmp/cmp"
"github.com/stretchr/testify/assert" "github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
) )
@@ -55,53 +57,61 @@ d:\path with\spaces\seven.svg inbetween7 c:\users\jdoe\eight.png inbetween8
func TestModelfileBuilder(t *testing.T) { func TestModelfileBuilder(t *testing.T) {
opts := runOptions{ opts := runOptions{
Model: "hork", Model: "hork",
System: "You are part horse and part shark, but all hork. Do horklike things", System: "You are part horse and part shark, but all hork. Do horklike things",
Template: "This is a template.",
Messages: []api.Message{ Messages: []api.Message{
{Role: "user", Content: "Hey there hork!"}, {Role: "user", Content: "Hey there hork!"},
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."}, {Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
}, },
Options: map[string]any{ Options: map[string]interface{}{},
"temperature": 0.9,
"seed": 42,
"penalize_newline": false,
"stop": []string{"hi", "there"},
},
} }
t.Run("model", func(t *testing.T) { opts.Options["temperature"] = 0.9
expect := `FROM hork opts.Options["seed"] = 42
SYSTEM You are part horse and part shark, but all hork. Do horklike things opts.Options["penalize_newline"] = false
opts.Options["stop"] = []string{"hi", "there"}
mf := buildModelfile(opts)
expectedModelfile := `FROM {{.Model}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false PARAMETER penalize_newline false
PARAMETER seed 42 PARAMETER seed 42
PARAMETER stop hi PARAMETER stop [hi there]
PARAMETER stop there
PARAMETER temperature 0.9 PARAMETER temperature 0.9
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark. MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
` `
actual := buildModelfile(opts) tmpl, err := template.New("").Parse(expectedModelfile)
if diff := cmp.Diff(expect, actual); diff != "" { require.NoError(t, err)
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
t.Run("parent model", func(t *testing.T) { var buf bytes.Buffer
opts.ParentModel = "horseshark" err = tmpl.Execute(&buf, opts)
expect := `FROM horseshark require.NoError(t, err)
SYSTEM You are part horse and part shark, but all hork. Do horklike things assert.Equal(t, buf.String(), mf)
opts.ParentModel = "horseshark"
mf = buildModelfile(opts)
expectedModelfile = `FROM {{.ParentModel}}
SYSTEM """{{.System}}"""
TEMPLATE """{{.Template}}"""
PARAMETER penalize_newline false PARAMETER penalize_newline false
PARAMETER seed 42 PARAMETER seed 42
PARAMETER stop hi PARAMETER stop [hi there]
PARAMETER stop there
PARAMETER temperature 0.9 PARAMETER temperature 0.9
MESSAGE user Hey there hork!
MESSAGE assistant Yes it is true, I am half horse, half shark. MESSAGE user """Hey there hork!"""
MESSAGE assistant """Yes it is true, I am half horse, half shark."""
` `
actual := buildModelfile(opts)
if diff := cmp.Diff(expect, actual); diff != "" { tmpl, err = template.New("").Parse(expectedModelfile)
t.Errorf("mismatch (-want +got):\n%s", diff) require.NoError(t, err)
}
}) var parentBuf bytes.Buffer
err = tmpl.Execute(&parentBuf, opts)
require.NoError(t, err)
assert.Equal(t, parentBuf.String(), mf)
} }

View File

@@ -1,122 +1,200 @@
package convert package convert
import ( import (
"cmp"
"encoding/binary"
"encoding/json" "encoding/json"
"errors"
"fmt" "fmt"
"io" "io"
"io/fs"
"log/slog" "log/slog"
"os"
"path/filepath"
"slices"
"strings"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
) )
type Parameters struct { const (
Architectures []string `json:"architectures"` _ int32 = iota
VocabSize uint32 `json:"vocab_size"` tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
)
type Params struct {
Architectures []string `json:"architectures"`
VocabSize int `json:"vocab_size"`
HiddenSize int `json:"hidden_size"` // n_embd
HiddenLayers int `json:"num_hidden_layers"` // n_layer
ContextSize int `json:"max_position_embeddings"`
IntermediateSize int `json:"intermediate_size"`
AttentionHeads int `json:"num_attention_heads"` // n_head
KeyValHeads int `json:"num_key_value_heads"`
NormEPS float64 `json:"rms_norm_eps"`
BoSTokenID int `json:"bos_token_id"`
EoSTokenID int `json:"eos_token_id"`
HeadDimension int `json:"head_dim"`
PaddingTokenID int `json:"pad_token_id"`
RopeFrequencyBase float64 `json:"rope_theta"`
Experts int `json:"num_local_experts"`
ExpertsUsed int `json:"num_experts_per_tok"`
PreTokenizer string
ByteOrder
} }
func (Parameters) KV(t *Tokenizer) llm.KV { type ByteOrder interface {
kv := llm.KV{ binary.ByteOrder
"general.file_type": uint32(1), binary.AppendByteOrder
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
"tokenizer.ggml.model": t.Vocabulary.Model,
"tokenizer.ggml.tokens": t.Vocabulary.Tokens,
"tokenizer.ggml.scores": t.Vocabulary.Scores,
"tokenizer.ggml.token_type": t.Vocabulary.Types,
}
if t.Template != "" {
kv["tokenizer.chat_template"] = t.Template
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
}
return kv
} }
func (Parameters) specialTokenTypes() []string { type ModelArch interface {
return []string{ GetTensors() error
"bos", "eos", "unk", "sep", "pad", "cls", "mask", LoadVocab() error
} WriteGGUF(io.WriteSeeker) error
} }
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error { type ModelFormat interface {
return llm.WriteGGUF(ws, kv, ts) GetLayerName(string) (string, error)
GetTensors(string, *Params) ([]llm.Tensor, error)
GetParams(string) (*Params, error)
GetModelArch(string, string, *Params) (ModelArch, error)
} }
type Converter interface { type ModelData struct {
// KV maps parameters to LLM key-values Path string
KV(*Tokenizer) llm.KV Name string
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here. Params *Params
Tensors([]Tensor) []llm.Tensor Vocab *Vocab
Tensors []llm.Tensor
// tensorName returns the LLM tensor name for a specific input name Format ModelFormat
tensorName(string) string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
} }
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations func GetModelFormat(dirname string) (ModelFormat, error) {
// and files it finds in the input path. files, err := filepath.Glob(filepath.Join(dirname, "*"))
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil { if err != nil {
return err return nil, err
} }
var p Parameters for _, fn := range files {
if err := json.Unmarshal(bts, &p); err != nil { if strings.HasSuffix(fn, ".safetensors") {
return err return &SafetensorFormat{}, nil
} } else if strings.HasSuffix(fn, ".bin") || strings.HasSuffix(fn, ".pth") {
slog.Debug("model is torch")
if len(p.Architectures) < 1 { return &TorchFormat{}, nil
return errors.New("unknown architecture")
}
var conv Converter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{}
case "MixtralForCausalLM":
conv = &mixtral{}
case "GemmaForCausalLM":
conv = &gemma{}
default:
return errors.New("unsupported architecture")
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return err
}
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
} }
} else {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
} }
ts, err := parseTensors(fsys) return nil, fmt.Errorf("couldn't determine model format")
if err != nil { }
return err
} // Details on gguf's tokenizer can be found at:
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts)) type Vocab struct {
Tokens []string
Scores []float32
Types []int32
Merges []string
}
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
if err != nil {
return nil, err
}
// To regenerate sentencepiece from the protobufs use:
// protoc -I=./ --go_out=./ sentencepiece_model.proto
modelProto := &sentencepiece.ModelProto{}
if err := proto.Unmarshal(in, modelProto); err != nil {
return nil, err
}
v := &Vocab{
Tokens: make([]string, 0),
Scores: make([]float32, 0),
Types: make([]int32, 0),
}
pieces := modelProto.GetPieces()
for _, p := range pieces {
v.Tokens = append(v.Tokens, p.GetPiece())
v.Scores = append(v.Scores, p.GetScore())
t := p.GetType()
switch t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN:
case sentencepiece.ModelProto_SentencePiece_CONTROL:
case sentencepiece.ModelProto_SentencePiece_UNUSED:
case sentencepiece.ModelProto_SentencePiece_BYTE:
default:
t = sentencepiece.ModelProto_SentencePiece_NORMAL
}
v.Types = append(v.Types, int32(t))
}
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
// add any additional tokens
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
if os.IsNotExist(err) {
return v, nil
} else if err != nil {
return nil, err
}
slog.Info("reading user defined tokens")
var extraTokenData map[string]int
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
return nil, err
}
type token struct {
key string
pos int
}
extraTokens := make([]token, 0)
for k, id := range extraTokenData {
extraTokens = append(extraTokens, token{k, id})
}
slices.SortFunc(extraTokens, func(a, b token) int {
return cmp.Compare(a.pos, b.pos)
})
numToks := len(v.Tokens)
for cnt, t := range extraTokens {
// the token id should match the specific index for the total number of tokens
if t.pos != cnt+numToks {
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
}
v.Tokens = append(v.Tokens, t.key)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
if params.VocabSize > len(v.Tokens) {
missingTokens := params.VocabSize - len(v.Tokens)
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
for cnt := range missingTokens {
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
v.Scores = append(v.Scores, -1)
v.Types = append(v.Types, tokenTypeUserDefined)
}
}
return v, nil
} }

View File

@@ -1,103 +0,0 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
kv["gemma.feed_forward_length"] = p.IntermediateSize
kv["gemma.attention.head_count"] = p.NumAttentionHeads
kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma.attention.key_length"] = p.HeadDim
kv["gemma.attention.value_length"] = p.HeadDim
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,182 +0,0 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/ollama/ollama/llm"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type llama struct {
Parameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*llama)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["llama.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
}
if p.NumKeyValueHeads > 0 {
kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
}
if p.RMSNormEPS > 0 {
kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
}
if p.HeadDim > 0 {
kv["llama.attention.key_length"] = p.HeadDim
kv["llama.attention.value_length"] = p.HeadDim
}
if len(t.Merges) > 0 {
kv["tokenizer.ggml.merges"] = t.Merges
}
return kv
}
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -1,89 +0,0 @@
package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
}
if p.NumExpertsPerToken > 0 {
kv["llama.expert_used_count"] = p.NumExpertsPerToken
}
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
})
}
return append(out, p.llama.Tensors(ts)...)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

View File

@@ -1,33 +1,48 @@
//go:build slow
package convert package convert
import ( import (
"crypto/sha256"
"encoding/json"
"flag"
"fmt"
"io"
"io/fs"
"log/slog"
"math"
"os" "os"
"path/filepath" "path/filepath"
"slices"
"testing" "testing"
"github.com/ollama/ollama/llm" "github.com/ollama/ollama/llm"
"golang.org/x/exp/maps"
) )
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) { func convertFull(t *testing.T, p string) (llm.KV, llm.Tensors) {
t.Helper() t.Helper()
mf, err := GetModelFormat(p)
if err != nil {
t.Fatal(err)
}
params, err := mf.GetParams(p)
if err != nil {
t.Fatal(err)
}
arch, err := mf.GetModelArch("", p, params)
if err != nil {
t.Fatal(err)
}
if err := arch.LoadVocab(); err != nil {
t.Fatal(err)
}
if err := arch.GetTensors(); err != nil {
t.Fatal(err)
}
f, err := os.CreateTemp(t.TempDir(), "f16") f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
defer f.Close() defer f.Close()
if err := Convert(fsys, f); err != nil { if err := arch.WriteGGUF(f); err != nil {
t.Fatal(err) t.Fatal(err)
} }
@@ -35,91 +50,53 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
t.Cleanup(func() { r.Close() }) defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt) m, _, err := llm.DecodeGGML(r)
if err != nil { if err != nil {
t.Fatal(err) t.Fatal(err)
} }
if _, err := r.Seek(0, io.SeekStart); err != nil { return m.KV(), m.Tensors()
t.Fatal(err)
}
return r, m.KV(), m.Tensors()
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
} }
func TestConvertFull(t *testing.T) { func TestConvertFull(t *testing.T) {
cases := []string{ cases := []struct {
"Meta-Llama-3-8B-Instruct", path string
"Mistral-7B-Instruct-v0.2", arch string
"Mixtral-8x7B-Instruct-v0.1", tensors int
"gemma-2b-it", layers int
}{
{"Meta-Llama-3-8B-Instruct", "llama", 291, 35},
{"Mistral-7B-Instruct-v0.2", "llama", 291, 35},
{"Mixtral-8x7B-Instruct-v0.1", "llama", 291, 35},
{"gemma-2b-it", "gemma", 164, 20},
} }
for i := range cases { for _, tt := range cases {
tt := cases[i] t.Run(tt.path, func(t *testing.T) {
t.Run(tt, func(t *testing.T) { p := filepath.Join("testdata", tt.path)
t.Parallel() if _, err := os.Stat(p); err != nil {
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p) t.Skipf("%s not found", p)
} }
f, kv, tensors := convertFull(t, os.DirFS(p)) kv, tensors := convertFull(t, p)
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts)) if kv.Architecture() != tt.arch {
} t.Fatalf("expected llama, got %s", kv.Architecture())
} }
for _, tensor := range tensors.Items { if kv.FileType().String() != "F16" {
sha256sum := sha256.New() t.Fatalf("expected F16, got %s", kv.FileType())
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = fmt.Sprintf("%x", sha256sum.Sum(nil))
} }
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) if len(tensors) != tt.tensors {
if err != nil { t.Fatalf("expected %d tensors, got %d", tt.tensors, len(tensors))
t.Fatal(err)
} }
var expect map[string]string layers := tensors.Layers()
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil { if len(layers) != tt.layers {
t.Fatal(err) t.Fatalf("expected %d layers, got %d", tt.layers, len(layers))
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
}
} }
}) })
} }

View File

@@ -1,58 +0,0 @@
package convert
import (
"archive/zip"
"errors"
"io"
"io/fs"
"os"
"path/filepath"
)
type ZipReader struct {
r *zip.Reader
p string
// limit is the maximum size of a file that can be read directly
// from the zip archive. Files larger than this size will be extracted
limit int64
}
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
return &ZipReader{r, p, limit}
}
func (z *ZipReader) Open(name string) (fs.File, error) {
r, err := z.r.Open(name)
if err != nil {
return nil, err
}
defer r.Close()
if fi, err := r.Stat(); err != nil {
return nil, err
} else if fi.Size() < z.limit {
return r, nil
}
if !filepath.IsLocal(name) {
return nil, zip.ErrInsecurePath
}
n := filepath.Join(z.p, name)
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
w, err := os.Create(n)
if err != nil {
return nil, err
}
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
return os.Open(n)
}

102
convert/gemma.go Normal file
View File

@@ -0,0 +1,102 @@
package convert
import (
"fmt"
"io"
"log/slog"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type GemmaModel struct {
ModelData
}
func addOnes(data []float32, vectorSize int) ([]float32, error) {
n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, vectorSize)
n, err := n.Add(ones)
if err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 0)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (m *GemmaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
for _, l := range t {
if strings.HasSuffix(l.Name, "norm.weight") {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *GemmaModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) {
return addOnes(data, int(shape[0]))
}
func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "gemma",
"general.name": m.Name,
"gemma.context_length": uint32(m.Params.ContextSize),
"gemma.embedding_length": uint32(m.Params.HiddenSize),
"gemma.block_count": uint32(m.Params.HiddenLayers),
"gemma.feed_forward_length": uint32(m.Params.IntermediateSize),
"gemma.attention.head_count": uint32(m.Params.AttentionHeads),
"gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"gemma.attention.key_length": uint32(m.Params.HeadDimension),
"gemma.attention.value_length": uint32(m.Params.HeadDimension),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID),
"tokenizer.ggml.unknown_token_id": uint32(3),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}

159
convert/llama.go Normal file
View File

@@ -0,0 +1,159 @@
package convert
import (
"cmp"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type LlamaModel struct {
ModelData
}
func (m *LlamaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
switch m.Format.(type) {
case *TorchFormat:
wt := l.WriterTo.(torchWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
case *SafetensorFormat:
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *LlamaModel) LoadVocab() (err error) {
pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
if errors.Is(err, os.ErrNotExist) {
return nil
} else if err != nil {
return err
}
m.Vocab = &Vocab{}
for _, t := range ts {
m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
m.Vocab.Types = append(m.Vocab.Types, t.Type())
}
m.Vocab.Merges = merges
m.Params.PreTokenizer = pre
return nil
}
func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": m.Params.PreTokenizer,
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
}
if len(m.Vocab.Merges) > 0 {
kv["tokenizer.ggml.merges"] = m.Vocab.Merges
} else {
kv["tokenizer.ggml.scores"] = m.Vocab.Scores
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
if dim != 0 {
dims = append(dims, int(dim))
}
}
var heads int
switch {
case strings.HasSuffix(name, "attn_q.weight"):
heads = params.AttentionHeads
case strings.HasSuffix(name, "attn_k.weight"):
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
default:
return nil, fmt.Errorf("unknown tensor name: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

79
convert/mistral.go Normal file
View File

@@ -0,0 +1,79 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MistralModel struct {
ModelData
}
func (m *MistralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MistralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MistralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
"tokenizer.ggml.unknown_token_id": uint32(0),
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MistralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

87
convert/mixtral.go Normal file
View File

@@ -0,0 +1,87 @@
package convert
import (
"io"
"regexp"
"github.com/ollama/ollama/llm"
)
type MixtralModel struct {
ModelData
}
func (m *MixtralModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
return err
}
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
re, err := regexp.Compile(pattern)
if err != nil {
return err
}
for _, l := range t {
matches := re.FindAllStringSubmatch(l.Name, -1)
if len(matches) > 0 {
wt := l.WriterTo.(safetensorWriterTo)
wt.repacker = m.Repack
l.WriterTo = wt
}
m.Tensors = append(m.Tensors, l)
}
return nil
}
func (m *MixtralModel) LoadVocab() error {
v, err := LoadSentencePieceTokens(m.Path, m.Params)
if err != nil {
return err
}
m.Vocab = v
return nil
}
func (m *MixtralModel) WriteGGUF(ws io.WriteSeeker) error {
kv := llm.KV{
"general.architecture": "llama",
"general.name": m.Name,
"llama.block_count": uint32(m.Params.HiddenLayers),
"llama.context_length": uint32(m.Params.ContextSize),
"llama.embedding_length": uint32(m.Params.HiddenSize),
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
"llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
"llama.expert_count": uint32(m.Params.Experts),
"llama.expert_used_count": uint32(m.Params.ExpertsUsed),
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
"general.file_type": uint32(1),
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.tokens": m.Vocab.Tokens,
"tokenizer.ggml.scores": m.Vocab.Scores,
"tokenizer.ggml.token_type": m.Vocab.Types,
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
"tokenizer.ggml.unknown_token_id": uint32(0),
"tokenizer.ggml.add_bos_token": true,
"tokenizer.ggml.add_eos_token": false,
}
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *MixtralModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}

View File

@@ -1,82 +0,0 @@
package convert
import (
"errors"
"io"
"io/fs"
"strings"
)
type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
WriteTo(io.Writer) (int64, error)
}
type tensorBase struct {
name string
shape []uint64
repacker
}
func (t tensorBase) Name() string {
return t.name
}
func (t tensorBase) Shape() []uint64 {
return t.shape
}
const (
tensorKindF32 uint32 = iota
tensorKindF16
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
return 0
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return tensorKindF32
default:
return tensorKindF16
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},
}
for _, pattern := range patterns {
matches, err := fs.Glob(fsys, pattern.Pattern)
if err != nil {
return nil, err
}
if len(matches) > 0 {
return pattern.Func(fsys, matches...)
}
}
return nil, errors.New("unknown tensor format")
}

View File

@@ -1,149 +0,0 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"io/fs"
"slices"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := fsys.Open(p)
if err != nil {
return nil, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
for _, key := range keys {
if value := headers[key]; value.Type != "" {
ts = append(ts, safetensor{
fs: fsys,
path: p,
dtype: value.Type,
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
shape: value.Shape,
},
})
}
}
}
return ts, nil
}
// safetensorsPad returns the padded size of the safetensors file given a length n and offset s
func safetensorsPad(n, offset int64) int64 {
return 8 + n + offset
}
type safetensor struct {
fs fs.FS
path string
dtype string
offset int64
size int64
*tensorBase
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := st.fs.Open(st.path)
if err != nil {
return 0, err
}
defer f.Close()
if seeker, ok := f.(io.Seeker); ok {
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
} else {
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
return 0, err
}
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", st.dtype)
}
if st.repacker != nil {
f32s, err = st.repacker(st.Name(), f32s, st.Shape())
if err != nil {
return 0, err
}
}
switch st.Kind() {
case tensorKindF32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindF16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}
}

View File

@@ -1,47 +0,0 @@
package convert
import (
"io"
"io/fs"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
if err != nil {
return nil, err
}
for _, k := range pt.(*types.Dict).Keys() {
t := pt.(*types.Dict).MustGet(k)
var shape []uint64
for dim := range t.(*pytorch.Tensor).Size {
shape = append(shape, uint64(dim))
}
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
shape: shape,
},
})
}
}
return ts, nil
}
type torch struct {
storage pytorch.StorageInterface
*tensorBase
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

309
convert/safetensors.go Normal file
View File

@@ -0,0 +1,309 @@
package convert
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"os"
"path/filepath"
"regexp"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type safetensorWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
filename string
dtype string
offset, size int64
repacker func(string, []float32, []uint64) ([]float32, error)
}
type safetensorMetadata struct {
Type string `json:"dtype"`
Shape []uint64 `json:"shape"`
Offsets []int64 `json:"data_offsets"`
}
type SafetensorFormat struct{}
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
var tensors []llm.Tensor
matches, err := filepath.Glob(filepath.Join(dirpath, "*.safetensors"))
if err != nil {
return nil, err
}
var offset uint64
for _, f := range matches {
var t []llm.Tensor
var err error
t, offset, err = m.readTensors(f, offset, params)
if err != nil {
return nil, err
}
tensors = append(tensors, t...)
}
return tensors, nil
}
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
f, err := os.Open(fn)
if err != nil {
return nil, 0, err
}
defer f.Close()
var n int64
if err := binary.Read(f, binary.LittleEndian, &n); err != nil {
return nil, 0, err
}
b := bytes.NewBuffer(make([]byte, 0, n))
if _, err = io.CopyN(b, f, n); err != nil {
return nil, 0, err
}
var headers map[string]safetensorMetadata
if err := json.NewDecoder(b).Decode(&headers); err != nil {
return nil, 0, err
}
var keys []string
for key := range headers {
if !strings.HasSuffix(key, "self_attn.rotary_embd.inv_freq") {
keys = append(keys, key)
}
}
slices.Sort(keys)
var tensors []llm.Tensor
for _, key := range keys {
value := headers[key]
var kind uint32
switch len(value.Shape) {
case 0:
// valuedata
continue
case 2:
kind = 1
}
name, err := m.GetLayerName(key)
if err != nil {
return nil, 0, err
}
shape := make([]uint64, len(value.Shape))
copy(shape, value.Shape)
pad := func(s int64) int64 {
return 8 + n + s
}
t := llm.Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape,
}
t.WriterTo = safetensorWriterTo{
t: &t,
params: params,
bo: params.ByteOrder,
filename: fn,
dtype: value.Type,
offset: pad(value.Offsets[0]),
size: pad(value.Offsets[1]) - pad(value.Offsets[0]),
}
offset += t.Size()
tensors = append(tensors, t)
}
return tensors, offset, nil
}
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
return nil, err
}
defer f.Close()
var params Params
if err := json.NewDecoder(f).Decode(&params); err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
tMap := map[string]string{
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).block_sparse_moe.gate.weight": "blk.$1.ffn_gate_inp.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w1.weight": "blk.$1.ffn_gate.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w2.weight": "blk.$1.ffn_down.$2.weight",
"model.layers.(\\d+).block_sparse_moe.experts.(\\d+).w3.weight": "blk.$1.ffn_up.$2.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range tMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
f, err := os.Open(r.filename)
if err != nil {
return 0, err
}
defer f.Close()
if _, err = f.Seek(r.offset, io.SeekStart); err != nil {
return 0, err
}
var f32s []float32
switch r.dtype {
case "F32":
f32s = make([]float32, r.size/4)
if err = binary.Read(f, r.bo, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, r.size/2)
if err = binary.Read(f, r.bo, u16s); err != nil {
return 0, err
}
for _, b := range u16s {
f32s = append(f32s, float16.Frombits(b).Float32())
}
case "BF16":
u8s := make([]uint8, r.size)
if err = binary.Read(f, r.bo, u8s); err != nil {
return 0, err
}
f32s = bfloat16.DecodeFloat32(u8s)
default:
return 0, fmt.Errorf("unknown data type: %s", r.dtype)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MistralForCausalLM":
return &MistralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "MixtralForCausalLM":
return &MixtralModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
case "GemmaForCausalLM":
return &GemmaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -1,313 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "8192",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "500000",
"llama.vocab_size": "128256",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.bos_token_id": "128000",
"tokenizer.ggml.eos_token_id": "128009",
"tokenizer.ggml.merges": "d0cbac1fcc9dcf03724b8db5c9bfb593ae1cf68fb9bc72eb1d15274dcbbf618b",
"tokenizer.ggml.token_type": "d70a88809fd7da6f1f028622685cd64268a7a922c5d343c96f25b66327358978",
"tokenizer.ggml.tokens": "765b529dbcbc42dd202ce657341c63807b51f3b07e09898f6aa6196326865d5a",
"token_embd.weight": "b53102a11d9064bbd404833e3464b1b13e08ce73300b442312cccde2f19b2698",
"blk.0.attn_norm.weight": "7318df3cca9e8d153ff0a503026a1265e63d20b2a8c1dd7a2769585082b5d1ee",
"blk.0.ffn_down.weight": "b950806a1fc722c9fad7fd0b20c3c0a7fb50f14395e1e7663a590bfd62e20900",
"blk.0.ffn_gate.weight": "e73e580af6d4f08e060a74a3c25efdf5d3bed99e183d95a5a85ae859014839fd",
"blk.0.ffn_up.weight": "c8158af679ef99746da1befb67eebb19489e0bbe6ce7d97e13e348508244e516",
"blk.0.ffn_norm.weight": "7ec69c3c31e95e49a3359003b0033f6b9e85561a3e3fd83e7476661ecdd756bb",
"blk.0.attn_k.weight": "2732303257bac969b4964e0e32ec08b5a7f5c031bb02bf6ac4467b3ea0ebcf1e",
"blk.0.attn_output.weight": "ecda1d43b4ccc91cd5b366d7e7a275353990ac78561a07c83d9c77031aba12dc",
"blk.0.attn_q.weight": "569b1f5faf92b6f00910cf7effb2d5862f91038ce5c3b0019fc10e5d79fbd5e1",
"blk.0.attn_v.weight": "aa8416c5ef7e32fb54a1f20d6ac651656845d4af240564b397c39bd83e06e3b8",
"blk.1.attn_norm.weight": "03327e02862908c2a44b2f52decdb924bf4201f400b46f8037a9cb2e1d7a61ff",
"blk.1.ffn_down.weight": "5a83a87603f38c99f8e1e370a2d5f967bb45ac51d881a609304a7811027321e0",
"blk.1.ffn_gate.weight": "31da0572c79e655186c721c231376f85e56cdcc6257c28d08c8c5b40d5c22b40",
"blk.1.ffn_up.weight": "e0c811d64ca155c8de10a868e72015d43888834804614ee1aa2953129ffbc90f",
"blk.1.ffn_norm.weight": "5861f313d6137d6f0f904d423df47fffc6069e224ff746e1b637ac9c7f0af862",
"blk.1.attn_k.weight": "5fbbec0acca6457b9416ebdcd90e526885d0224537b7628f6be376a7f275313d",
"blk.1.attn_output.weight": "b237c9763fa3f75166a6f70b70f1566e77d0d89dfa164ed1b3137393e90575c3",
"blk.1.attn_q.weight": "c0a9cf4a98b4882b16f3eb2b49d933793dcc5357abb246fd3fe3134ed2b12e1c",
"blk.1.attn_v.weight": "96867111727200cac1af7865189dd41fd62b47584e5e5f33a91f1d34509cbd40",
"blk.2.attn_norm.weight": "f392f8a88ee3a95b1cc19c40dd4ef66317037b0faaa1800f610779e129ee0539",
"blk.2.ffn_down.weight": "73823eef46632aedcc8c1cb08a736b6aa97ca97842cd1fdfc5567d8dec459662",
"blk.2.ffn_gate.weight": "f4909ae19fc3848b00bb8b9050122e74f8e903b89e22937036f4cc9fea20a718",
"blk.2.ffn_up.weight": "16f4904a3d814ea68f00519724fc4943e48444a84c786bda39aa5efc298a7d84",
"blk.2.ffn_norm.weight": "e3ccdf56e75cb969f6f69c39caf6daf7c4e70e89e25df0f4d2e4bc60e159aafe",
"blk.2.attn_k.weight": "c3beb1e0a11bcf007ef0f0d8f6bdd3082d8b29090cd29597846b5d51e308a8e5",
"blk.2.attn_output.weight": "bb9f66c32cff51154fea92933c2cd62549236f8cb1a767f9ef28d3f99809b343",
"blk.2.attn_q.weight": "8eba394132eef2a05c5a92d62d2376000f7948448d7a2dc74e6b608203add20d",
"blk.2.attn_v.weight": "88f61f77c53567c617db3eef8f30621109a750e679f6784f7911739bd42c2f02",
"blk.3.attn_norm.weight": "7b996675b7ca75fa24107b3ebe0788653ede0f49ac83b8659d71ff54d591f81a",
"blk.3.ffn_down.weight": "2cb332bc05e4821962fdc9dcbcc7cc12630f32117711b687d18fb53c0bc4fbf4",
"blk.3.ffn_gate.weight": "340b387c7f208c8f0a6db904ef8d87c1e84b7d6ad57177abd32d86c8d18b760f",
"blk.3.ffn_up.weight": "07484433f8a7ee061c55aa0de2ecc009f769b0617c9c0ec096e9bb2946df9f0e",
"blk.3.ffn_norm.weight": "4f1a4ade36b393af341240bc894a2aab09cff7e4d56dc4658445deb107f9371b",
"blk.3.attn_k.weight": "483dcd96acb4528df84b9842970994630dbd82b8715ace394aa8b39fcf8d6291",
"blk.3.attn_output.weight": "beaff0810687923585642ee11d929cbf3b43dc6f87f30ddb552c222ab57bdbb3",
"blk.3.attn_q.weight": "0739355002f6fce520863add697e0ff25fc88215322dc3f993be7bb68dcce7e8",
"blk.3.attn_v.weight": "c216d17b6d90ee3e07f82598b8161fae34de2f392dbb0f745b682b578c324767",
"blk.4.attn_norm.weight": "91ab405bc4ba15bf63af233f266aa43aaab43789a9e6596e14a357c2ac7df217",
"blk.4.ffn_down.weight": "620f34ee75cdc73aecb8949af5fbb0d2437fd81422b6d8eb7acfc52addb9fc68",
"blk.4.ffn_gate.weight": "f6feec7bc9acadf35ec22532f8998d8e50f31afedabb19263590dcf8b9a92eee",
"blk.4.ffn_up.weight": "4a72af7cd28fd07b038f6cc4406678d120517280236ea85d9e76eff40ab2cc22",
"blk.4.ffn_norm.weight": "1805b37b44d5d682bdbd2fadeafb763ee001617d7870848cc487079ee34b21f9",
"blk.4.attn_k.weight": "a1e4f9d97cdf4c1b0d177cf00c4e32d1be30c1984a239b3c9bd73f8848888853",
"blk.4.attn_output.weight": "a1547e2497c423b0aff0eee71d9300d6fdf4e4986679418b6e637b69a9a6720b",
"blk.4.attn_q.weight": "0677483a9264ea6803d03d304d87a54632242cb516e8b76b6e3e8284c2f4de04",
"blk.4.attn_v.weight": "02691ba3af344fcc1969428ab0df811ac94aaa2fd91b0dc4ec1ac0a58806980d",
"blk.5.attn_norm.weight": "ba9c028335e5c895b87a5bd1448ca429248f9746ed97bdcb8679923206117156",
"blk.5.ffn_down.weight": "ccfdc9006acad1940a6bc05042a3947f1066acd671e0bb53b7684e9eea9ef5c9",
"blk.5.ffn_gate.weight": "623157679f1e742ccc3807c0b0153ddc8450104de75ec62f1370ec3807c09cf4",
"blk.5.ffn_up.weight": "05748804c65091f963729b58b085f58351891cac8a2861f5eae26b06aa60b2a0",
"blk.5.ffn_norm.weight": "84bae55af2efc8b8429f09056c8c04990c466dae31cb3f9356038b8957f1b406",
"blk.5.attn_k.weight": "8c766180c726b037d587fc52371de6e3307140c52409011609d1225624b6a3eb",
"blk.5.attn_output.weight": "490b582b3b1dc151ae55aee8b6743dad6c01fb49e43afefb6e68394b74be3d73",
"blk.5.attn_q.weight": "6f7b8ca4d9025ec836a44bbcca46be30c66b471a9fb62943ddff8288b3731409",
"blk.5.attn_v.weight": "9f70df3ba00c9e723214b3da83ff435a2163fff5915f75515c9664c05c866c27",
"blk.6.attn_norm.weight": "1a4a66613a682df6f061fc7c4d986f9f7e9175b62f0c42fc1ef31db536bd5942",
"blk.6.ffn_down.weight": "c56f25e4e49b443dbc82d88311ee63bc1f5002cc67e52f4787fd5f003aedeac1",
"blk.6.ffn_gate.weight": "31a5cf1aa9b831a81588d508550f51fc425f9517c43254d4ef7096d38029cf04",
"blk.6.ffn_up.weight": "ce135f3a1163e0c9297a615bdbe68a67ead21edce8debbfa9f6e15e6af8d4c94",
"blk.6.ffn_norm.weight": "4e328ce0648c94e732bc40501858ef6262ad1161e2e407b0cdcf4813fa9d45d8",
"blk.6.attn_k.weight": "1eb1c4c9f9c4c7ff7f5429075e0dc6a7782bed55109fa88df209a817dd8ef960",
"blk.6.attn_output.weight": "3d32986b56873b88655ee1edabdd413fdd9ab18b82108c9ce90bdbc2d3a6f3a3",
"blk.6.attn_q.weight": "8432f583b3a2809c99c393f9beb077cb0534dd5d247c17108f2986cadc6651f6",
"blk.6.attn_v.weight": "5045381513815bb91839dbac8335ffe49bbc7b0008369de7ea97eb676c5e2b36",
"blk.7.attn_norm.weight": "3dabd003638ec2499bfc8a48c49eef34276caab4fe76894eb963207848c2fdaf",
"blk.7.ffn_down.weight": "194fae858608bdcffd235be59ab119d0b91c8549f864ea06dae69249e099935f",
"blk.7.ffn_gate.weight": "00b24c29c30246892bce0791be804a89701d4c1332777e0bcdad5d9d5666604f",
"blk.7.ffn_up.weight": "44d7082a5280080c90cef9e19d410391de34f212ca0736377769b8ddd0c82d5e",
"blk.7.ffn_norm.weight": "21fe8a7fd6911c64e0d15a788b3b4cb6d71dd6ec51de65f760ee89afbb6ae53e",
"blk.7.attn_k.weight": "57a149eec5f6744a9526cd3925ac073f9d12db0fbcb5afe042ef4dc846458c44",
"blk.7.attn_output.weight": "0e9c28a3e81a2880251ce5eed77bcb8be8aaa1a51c9cb6de820b47ed83849fc2",
"blk.7.attn_q.weight": "15ee75263ee4e2a43eb322bc159ae004bb7d77e3a7e63ee4ddab700430693fff",
"blk.7.attn_v.weight": "440aa970bba4bff429fd7b7b1de21f2ad14fb2952b776cfa4acee68d7c6e9b8f",
"blk.8.attn_norm.weight": "af5b44825633c42c1ae964c82bb2be6a242d3a751f0a91f1bae4f593e8f5b6ec",
"blk.8.ffn_down.weight": "b11c14c76adca94fa200496dd2c10743becb23aab6642443ef1ae6d8710edbc1",
"blk.8.ffn_gate.weight": "7bb03d3325bf8637ae2fa1296b0651356515578d46a7c5ca65c7a923d7de27bc",
"blk.8.ffn_up.weight": "b956ef0a0669b5a9c9bf3a8da2d1c24f52d331cfb7354f6d7c51bd65be355e30",
"blk.8.ffn_norm.weight": "c78c3d748302edfef76f71ea5cb2055c94352122eee8b9b1173779a1814d224e",
"blk.8.attn_k.weight": "c0fba6a596ed9c1c32a7055c31a935a8b31e42b77282ee47c1f03ee3bde736b5",
"blk.8.attn_output.weight": "83cf9947080c5d8d571f04a842bc3dcfe7bbb0195fb25b346e22635e8649f2d4",
"blk.8.attn_q.weight": "47409350a576b333d97b7c877d69f47f46df504f3765102dfc0be9e521c7ecd6",
"blk.8.attn_v.weight": "1999dff91404fdcf1ecb34d9eaaaa9244ec7658a74dec8feb7cfd1fddba0347e",
"blk.9.attn_norm.weight": "1e6e29d5c3889ab4e1b0a5b9998cba60179b0f1fca133515df49cbc19d092593",
"blk.9.ffn_down.weight": "acb898a6490adff592e10b4c62d70edc5941661ee6da44658500e9205357c8e9",
"blk.9.ffn_gate.weight": "4cff63013593aadc3ffbaaa6ed70ffdba1224cd43c3644bf6f4162b5ac1ab542",
"blk.9.ffn_up.weight": "f985b5a2d6cf4fe32c7256301c3c89b8ad22b59e516342c52da42d8110766a4e",
"blk.9.ffn_norm.weight": "0d659c538bc6b21ed0018f107ab674a7424a00a42946c80e07208b479b21918f",
"blk.9.attn_k.weight": "f67611d888780d1b38c1c146b361c65310c8183bdf64fd73e2259985c6e8517f",
"blk.9.attn_output.weight": "f12ca1fa62a02ddc3f77f798bfb5707e0c50bf18ee0eaa67025521a98355f26b",
"blk.9.attn_q.weight": "3865185f4361a645b086ad47b72904c095313fb1c624e511647bf1a7dfc1c476",
"blk.9.attn_v.weight": "92125bbfed63544ab56052bd1e4aa453bbf34c795249ee54cde54907c8c6d1d3",
"blk.10.attn_norm.weight": "5d6bfbe545bcc2fcb2fc75c68f64b1f4c918badaf53e0156fe2d88aa977b2f94",
"blk.10.ffn_down.weight": "1dd9da8b0d2696ab5531fbca8a29c7d67567620a9d3e5fc2a19ec5d7e4c6cc8a",
"blk.10.ffn_gate.weight": "6e55e7f014edaebda0ac6819a426221d3b025c27312a2e18cc5806f31e3db226",
"blk.10.ffn_up.weight": "d80dde54af5db51241345ee8d64c1972608644f4deeac1e8195dc423bf27474a",
"blk.10.ffn_norm.weight": "f6ca65951d58ae3379eee8247bec34ebd0db05674cc9295593573841b8a55df3",
"blk.10.attn_k.weight": "b58e350bd6b49aba0fba4e4dd6865de3a2a0651ab865dbf2419b627b53ffc187",
"blk.10.attn_output.weight": "6b26a986e12fe66ec286a21d7d5af5eaa1bfe6f2bf502165d270e4497235a54a",
"blk.10.attn_q.weight": "3440e0e5b7e0d1e426424ae5a33f4e057be623249e9035ea12e57dbe5d3893c4",
"blk.10.attn_v.weight": "ebfadcfe14bcd6dee933053df0a67e12e7a196d5cc45728c1ffb2a2daedd5ca2",
"blk.11.attn_norm.weight": "3ed057b9576cd2de84507ef64c7646dc478c651efca4c2024cbe91a4f3fbf0bc",
"blk.11.ffn_down.weight": "8ff1c2487d22f5c499761e4eb721418f141f960160d0bab779595a34e4d68898",
"blk.11.ffn_gate.weight": "9c74e4507c7e45bf39b7cc7402198cd1dd77e3fff8c625b0413acaeb16efeb9f",
"blk.11.ffn_up.weight": "4367158007161d29939e00a322bb6776016e43f648a94f9b08a96a477aae75be",
"blk.11.ffn_norm.weight": "1cc0288c1491072121f4c9a0af20be0e13af49895696a3320e4fcac608768de3",
"blk.11.attn_k.weight": "066f5b3c144fce1366835e1ebf376f768b333b8ae29f5b478c42d1d0c809c855",
"blk.11.attn_output.weight": "e0d9f3d3f2c54aed59c02713ea4fb562799ddbacbe67ca3998dfc887bc44e47b",
"blk.11.attn_q.weight": "28d3ecc8a88cb3815e89a7f7a7d043da7a71f702b337a126e4d3a2ac1cd6370f",
"blk.11.attn_v.weight": "7c5cdef10ee73bca0a3b9f6ece5f0a0155664e0ce3d8de90ccdccfab5545e5e7",
"blk.12.attn_norm.weight": "973b133301a1af760cd7b3a7955371ea0a750808b442deb6adaf7b98482bd0c6",
"blk.12.ffn_down.weight": "d6c87b4b4ca03f75546ddd6a9e7fca720585a309188723c1ace8122438d4b200",
"blk.12.ffn_gate.weight": "2189a6e0cab1540bd05d6089b922aa8fd694be51255654933c165f302a0c955f",
"blk.12.ffn_up.weight": "5affbec19b58d092b9305721e3552481fe2eff51269ea3ed91cda3b9ef84d4df",
"blk.12.ffn_norm.weight": "f650fd42a34e950f758b4a130e7b8b1a712b1dcbede0291bb8edde47aaed0ef6",
"blk.12.attn_k.weight": "59b1e86f10450a7cc188beefc0856d2dcf44e8d7fdd9cd8859c30ec1ebaf24b6",
"blk.12.attn_output.weight": "446b0d36b2f66bd72a2323f4f4e9d85a0f621e9a58872e89a27248d6b1123238",
"blk.12.attn_q.weight": "3ed6bfd39f040301ed99fad882d3e569769d594259f9948445bef0e44ec881fb",
"blk.12.attn_v.weight": "e73652cd5d0029b1931be3ba9d82508f6696dce5a29d085476a54fb7a2ddbabc",
"blk.13.attn_norm.weight": "491b85278c0bd67bd31b9b8a9720902c244bd067e53a4a03641b7c0994782e82",
"blk.13.ffn_down.weight": "ad71cc248a85e9ced49307a24a9bfae01d387e979a7689c82ff59998e09741f3",
"blk.13.ffn_gate.weight": "0a55984d53971fab97575ee0ef5882013be7fdecfa76e3fbebb5dc85a07a14d4",
"blk.13.ffn_up.weight": "378b697b35e2e53c0de98e8e29b73d42ae3ec112ec16129aa5997a9e2f3b5943",
"blk.13.ffn_norm.weight": "f8aff2f69ab286210fad45a62b03f8d10b38f96a420d7baadf6b95d7b0b0bcd2",
"blk.13.attn_k.weight": "25ceb841afb1034831bea7f4d6a6c578def2ce4d4c412c780ef147dc9a598360",
"blk.13.attn_output.weight": "a242b322889c6bdaa14b67a7bab593db39df8eea3721638ef639abbb74d482e3",
"blk.13.attn_q.weight": "d80be9945a369439e835c55cfb0e97828b8a66bb7ced534d9059c92487bf20a9",
"blk.13.attn_v.weight": "ac33274cf9b67979d9ecdc967a55175afe0c9c4aeeff6391433cd9840c818706",
"blk.14.attn_norm.weight": "12a1e1091de5b2da12c9e7c0b1c8e6f09ce2a749733cf7d5240445b8e21cd093",
"blk.14.ffn_down.weight": "cfd41965c88266e32bc2dcdadda512499c35519e8686fefb9a7f249ab2291eb5",
"blk.14.ffn_gate.weight": "8dcfe774f07a095c7c6cf0a901c9df70d938bad7b5ba347fbc8f694e7603c0d1",
"blk.14.ffn_up.weight": "c7995577fe4a72ea0fb17c4a7b6b87b959072bbfdd5edacc6c367d43465809ae",
"blk.14.ffn_norm.weight": "81c41ebde41739e7016ffec31d2256217b825dc3cae049a935f5f61a60d22003",
"blk.14.attn_k.weight": "fb708bdebe4384f5c4b479c110028554f4d122f166b8091eda7d8d65e6780eb8",
"blk.14.attn_output.weight": "f5295caf2dfdc60553dcabe17537a80577e8b153c902247daac058df23542514",
"blk.14.attn_q.weight": "c12b7a3601c68c63ab5dc9d2599ebf3f3a10abc2c59d3a2126fffd5818f2763b",
"blk.14.attn_v.weight": "1ce968d9149bf0d5e237d52cc6d6433565b4bbf03252a736262bb00a2b34a687",
"blk.15.attn_norm.weight": "266fd2c36d7dcefc6b6bb7f1c9374c41f2bab5d6c84a063b6f91c4f682dad3c4",
"blk.15.ffn_down.weight": "6154886e9ef0a6cc08ab0d264a35f497e6f0987efdac992ed04e87088bea7801",
"blk.15.ffn_gate.weight": "183d9fd3c1b5657840099053d2fd3f72ad953b1de523296159b7761f20491a76",
"blk.15.ffn_up.weight": "51546d4498842ae2340ee226a0888d5f61e7d2ca4d052dfa06a77b0451242d3d",
"blk.15.ffn_norm.weight": "ef7378091a41a25a5f58bf1bf9d3bc64ea562e7f421e1c232b1f177c30fd3500",
"blk.15.attn_k.weight": "8d556ab8d9639324141774999b6eed0e91d7ee645bf3e7a3dcd200b2e7a00751",
"blk.15.attn_output.weight": "54aa6ba87def7cbe18b0c6ab3aff5c351cb3b6ca4a0d7b2cd5f75a1312991429",
"blk.15.attn_q.weight": "10731b0dc031ea8e0ef37bd7f010e0a78518a10a6df05a8bae48e3148b73ef3e",
"blk.15.attn_v.weight": "cbbe50c2ed7224866d3cf9b489c599f3ec41a4ea1aa3181e9f4e87e1fa0cefec",
"blk.16.attn_norm.weight": "387058eb39d4b28c04cf1368247417f1faeae8ae79d894c9f293457e0eaa00b0",
"blk.16.ffn_down.weight": "2cb26ccee585e933401ad5c82ed36ddacb3289efa0b28f8cf91b020ffbd9c333",
"blk.16.ffn_gate.weight": "d745985efb5bab42304e5d509024631efe35f92f2b2ec4931ead6db97ca9727e",
"blk.16.ffn_up.weight": "7a67bd195e0642828ca36eb7818149bb70c2c25f82de07e2b5807c520daf540e",
"blk.16.ffn_norm.weight": "7cefd061c8182482a89272f8a4e88a954b12609a62716923ca1cb3593b1c1651",
"blk.16.attn_k.weight": "d7968a2de67e755b4533e061aaad1cb62f8882af92dcad67f99d6d5112513439",
"blk.16.attn_output.weight": "9e9ab5788272ca3394ea89eadbce8c86ecc3fd75b7899184d6191c134ad9aae0",
"blk.16.attn_q.weight": "ef81c261b536c1a3a093b33f44cf2d42b86e5aa2d821674f07a0c80e992ed925",
"blk.16.attn_v.weight": "aef38e7958301b4a437cbdd2fbae6197f677b09269ec1eaf63188cd5da428d25",
"blk.17.attn_norm.weight": "28f6b289f1bc3131041e9f791b7a2a3a48baee0dfea27bf7051ebbb7ed364d80",
"blk.17.ffn_down.weight": "1a502829aafc6a9bd6bc81f12573bf8632d5c8c659f0dfb13c8b2411f3b1ec05",
"blk.17.ffn_gate.weight": "ddfd8aa0eb98846ebc9afe31366249159f46ae9815199dd70161527ed241ac4d",
"blk.17.ffn_up.weight": "4211a3cc247071bd361b30de2131d02382f552855062bf3b3e004c17992e5d09",
"blk.17.ffn_norm.weight": "647e5fa99a5b0d232af36d15816539f4d27e60a50a341b00aa88bb6e4474f8b9",
"blk.17.attn_k.weight": "d9125ff33a19c502c0f8846433ffc24395048582fc2f463d34a0301a82156f02",
"blk.17.attn_output.weight": "3d64fbb1cfef04444827f37c35fd9ad3413eb2165094d339ef89f00503f09de4",
"blk.17.attn_q.weight": "e5b29424028f578beca385fd82e29f37adedf3037cd51e5889d5a1ffb0428ca7",
"blk.17.attn_v.weight": "1809c5aaf2ac04c5d65539097564ad62796e87d24bb8b9ce5b095561a61d908a",
"blk.18.attn_norm.weight": "99daca58d001c627523d3adfbca1d95f04e590382a326866544d57989d5f4835",
"blk.18.ffn_down.weight": "84f30231ce6ca0f10227541dfc602d6418c1a210386b0c4926ef1656e7d4635c",
"blk.18.ffn_gate.weight": "ca5bbe4468b541740e54f69b9e08fcc8e478c344b70551dab21b1206acfbaadb",
"blk.18.ffn_up.weight": "0b3067b9dded31686dcfdc1e247eae3974a28a61ac59e9862758dbfaad64e8f7",
"blk.18.ffn_norm.weight": "8154a102232dbc0f90ce77ae5c1ff8f26f8b6e4dcf326e9ec1645749669e7960",
"blk.18.attn_k.weight": "25abb26021ccc481471a30e0d4cbeb7e1db29828417ec5136edeb93fecf09ac4",
"blk.18.attn_output.weight": "d87d481d9b046b68efa06ccdd4ed8cbf61e692d61114b75b7fad5ed75f5d87b2",
"blk.18.attn_q.weight": "cc6400379e15766992ff1293be79dc67682c28e9e15155a78109f4b64653b164",
"blk.18.attn_v.weight": "45c75cb1dd496aea3173aafe2575b841dd1d02cbe010b3198099731eb98f531c",
"blk.19.attn_norm.weight": "65389efc75297684773284ef8e5f8789a4504b636c9f33b8a32e0ee42499fa72",
"blk.19.ffn_down.weight": "4eefab7e939f64a17e4a214ca3c77a6fa110d94f677e2d6401086f70fc538b04",
"blk.19.ffn_gate.weight": "f1c0a59cafda66f466ab585b0b8b4861b58abe87a67cea1f6a488492242edfdf",
"blk.19.ffn_up.weight": "c42d045eef588db4a0e56960a57e110e1ff92eb8041107d19899165fd3b90f17",
"blk.19.ffn_norm.weight": "a8f33eda6d5d62ff5f333ad9771783caff556641f4e7df713451385676f441fa",
"blk.19.attn_k.weight": "0bab5d9e9083492bfb05a5a3bb23b79c0e7b99ef6a6644817b4d57d5c453b8a5",
"blk.19.attn_output.weight": "c99c551d70eafad0f7aea98fb6f9251635897168eb3895f76abf0d4ea3b3aa6f",
"blk.19.attn_q.weight": "c98bde95627c3b54c9443813ca50b4e14f518319681db6bbf7b2332ba26e9a60",
"blk.19.attn_v.weight": "ff3a490518cf64904db89ce0dc7d6eb89e870f1440e41883c6b55a221f82de84",
"blk.20.ffn_gate.weight": "761f0e317229cafe9d3754048ab038a0a84e9a287b196ab65f633139f2d29aba",
"blk.20.attn_k.weight": "45d13439b41066d282e8490a726785abf513605f46c79bd0c840f6419d27e790",
"blk.20.attn_output.weight": "a3b958d84b4a097844179b7d55c18fd0e4f319cb15e918c6fde33b68de1bcac6",
"blk.20.attn_q.weight": "127ab8e7d8c3f882874904196a02712bab42e6744fde45871b67350609d19f5e",
"blk.20.attn_v.weight": "5f0ad2d14a8ae42dd3bbeccfb33295687a14055fa92c54bc946249373c1c9f17",
"blk.20.attn_norm.weight": "77300b1755edc8c70089e0f45efa646056b9add7d8568b2324d2f3e62b64971a",
"blk.20.ffn_down.weight": "ab93d0e075b42e9017b701a070d561e698050d90aac4b4b9919256fbe50c3204",
"blk.20.ffn_up.weight": "4fd6628a07acc57a48d1ef83f81b7d7aa0bce569c1160a99d307284f8821322c",
"blk.20.ffn_norm.weight": "2a9e46b9e48e8e55215de56592e1f189530037c1c94a1428e3d6f106c7f26fb2",
"blk.21.attn_norm.weight": "4b3b5912c7bc61eb9da8e47d4651f896e85d9e59c4ecaa65df7acf3c21737298",
"blk.21.ffn_down.weight": "7146f931663d93b8771cd84405cd4802ea6560d0729b0d6d44588203c095bc53",
"blk.21.ffn_gate.weight": "b44ec5d64388fa40b90b3e9976d97a8b6800fa3b97584f32e64b03daffb8601f",
"blk.21.ffn_up.weight": "0cf3643fd23c685e17062cd11e116e17ce57a405e5e78953bab94cd62fe48789",
"blk.21.ffn_norm.weight": "4ef2cdb53da166df70b39f3e6b17af51848cfa5ea3c27ad6a1ae2a1bb1da1ce9",
"blk.21.attn_k.weight": "5d40f32a706f670c19972b14176bf660d5b045e3637b110dbf8d7de4ff32101a",
"blk.21.attn_output.weight": "18afaa916752ce16c9653ec0ec7e2fe60be55faa2aa5025d147be184adb75cac",
"blk.21.attn_q.weight": "2621daa5f858931514a4b2f0fe8d81cf9b96f541e6af99bfa7539e9bde8e34ee",
"blk.21.attn_v.weight": "63226dafc54c899bbce4aa49efceeedd8908e94faa613450fdda91f332b62864",
"blk.22.attn_norm.weight": "cf3058daab4d2c04387e7d169d1553bb8e7358eea66285ec067703f6ce62043a",
"blk.22.ffn_down.weight": "6a58d5fd220abdbac6cee7ba048abab794731af318f04982c2506df59413d0b3",
"blk.22.ffn_gate.weight": "d5614535324b03c7b91727a903b2a72f8d07ad17f7aa8b61ea173cf9b895069e",
"blk.22.ffn_up.weight": "ec20da3949566e93f66cabb67f8cd7eab399047ec6ebf5d43edfaf3669b82296",
"blk.22.ffn_norm.weight": "84c82f38f53a649972a44466fc476bf764e064ce18de870291edc302f3700e28",
"blk.22.attn_k.weight": "a3d2ecc37fde7c201176bb8abadf27f0d8ede9679a6034913e03d9db924fda12",
"blk.22.attn_output.weight": "5a3b8bb433f43a387df43dd371bdf80ddfac986dfeaf38e9bac1d7a0ec6628de",
"blk.22.attn_q.weight": "3a875cec661b4859f30a8fd2c866811184b25b68c9e36fe2663d299caf8b59c6",
"blk.22.attn_v.weight": "8717a83b79035058dcfd3ef6f8e5b36e71d77379e5a239e1899eef8766fb7703",
"blk.23.attn_norm.weight": "2b4a68a0a2f023dd646e4755c9bef17c2f631901154afd839edac7ac006ec99c",
"blk.23.ffn_down.weight": "29499b1586c6fc4883c9b7a9c8cf388035146b5aecf90c5c4c8c8e082c71e7d7",
"blk.23.ffn_gate.weight": "7d6554036d21c587b9b556428054f9c15cbef96d24b257f906fcef4ae38bd9c8",
"blk.23.ffn_up.weight": "19761ecb288d6ebd44b681c4535661583b1e19dc29e96d0c007333cd8f00aacf",
"blk.23.ffn_norm.weight": "37dc35500790a4ca33807b39cf7af65065e535dc25b9e94f3ed2759f61887ac9",
"blk.23.attn_k.weight": "717547d00323817b0cb40a72ec5f8cf42ecd1f9e3e42715c2cc5e38f07fffffe",
"blk.23.attn_output.weight": "a24786feb6a905fdf166d7500133757cbe494779d4ebcba9eb03046b319557df",
"blk.23.attn_q.weight": "6a2c4a98f138b928d22136efa163562691d3b4ed526d52d46a2fa2694a8f3965",
"blk.23.attn_v.weight": "c6e6081eb9c38a7fda023085957b460e9ea321e1fff408b38c2b58595c39979c",
"blk.24.attn_norm.weight": "5e6283f891e538670425f3e244b08dc6f96f33dfa4aefa913f8eb17212421850",
"blk.24.ffn_down.weight": "e09eb170f389deea0a4a1cbfdb52c12490768a2c60491b7bef8a4c445e2a08f5",
"blk.24.ffn_gate.weight": "af29d815cf49a38fc2ebd0bf9b2dd9933d023a29f2d766981acb9a1b53f09117",
"blk.24.ffn_up.weight": "36ccd9333426666de9d3088bd4dcdf5b624b09dca9e3a83a22fc0383f2d950fa",
"blk.24.ffn_norm.weight": "a88e1692318826db6ac42582d182e51a3c698c655d0e21e04fa086318832d07b",
"blk.24.attn_k.weight": "f7d61d6d1225289bcc502e3bbb0168b4584add0253218c1b77ac92ccef9a1c2e",
"blk.24.attn_output.weight": "85a1363b3ccc87312094c2195022687c16b0dad7fafb9e80bb4ec474d53c29ac",
"blk.24.attn_q.weight": "53482a2c008f42f4fad779ca323addc3712040149dfc12f782417756388a72bb",
"blk.24.attn_v.weight": "67498272369af7dd10097c73b07f731b565cfc9a559e711cc0d526389e7b44e2",
"blk.25.attn_norm.weight": "98dd617def5cb7825ee4833132ca2da2121245921585e1d9e36b93344adc321b",
"blk.25.ffn_down.weight": "7fd477d6c50aed5f424a878dd284343379cffbee8a34c0b6e55100c8305fa13f",
"blk.25.ffn_gate.weight": "f892c9806c8ec22e8aa746734ac9213428c534921cf161239e1d249fdb5d1ec0",
"blk.25.ffn_up.weight": "528bed14c9bf9762f790525ee40412545221f4321d2a2323fa8e73c58b7643c5",
"blk.25.ffn_norm.weight": "ca5831966672e7be6a578feeb631ec3570d3b5afe12860819ccb96e896ffc346",
"blk.25.attn_k.weight": "610d3068cc9b20401f0c3a0efea39a279dd9f564fde19baf3403b2ec2319e4c4",
"blk.25.attn_output.weight": "798aaf702e53b657265ac3b5e6caf3a0ab515bdadfeb1a3a156b4f3bfba76666",
"blk.25.attn_q.weight": "8a7fa25248de83029fb97b51d036a01baebe31fcb4be121ab00dd8b7de209b10",
"blk.25.attn_v.weight": "2a53d5e9f8a1218c66958c6388d3b37400a9af7956c785024ca44bfbc3c7d371",
"blk.26.attn_norm.weight": "5f44fc043481eb0771f3e6d2420bcbcf73140afb9a9feb8eddb6575452acebee",
"blk.26.ffn_down.weight": "944a60a409d0d5b6a851e33c69aca152454b691711a8b96f5bcc488772ab2833",
"blk.26.ffn_gate.weight": "2a0ca4abb3de5593e6693d8be69b63d6d1a639855ac8332a75f520353f030c62",
"blk.26.ffn_up.weight": "0b1df496163f9ac07bf89375d3eb441b51a81d41b47d769a04a61efc18dbe35b",
"blk.26.ffn_norm.weight": "56b8dd046e9be6ea71f7efd80dbd14e7fb1aa020d3cd38e063275f3873fd12f8",
"blk.26.attn_k.weight": "b1dabfabb970e6971c7ea6e53c63cf7ef56341e6a2edd9cf177785cad9af2f9a",
"blk.26.attn_output.weight": "39532c7e836baad164a655fb97ec5114ea4da37ffba9fdea2684f6e4450e6f84",
"blk.26.attn_q.weight": "8f48bf6aaa1252bc149e98af2be1777a5c0d2c3274c6d314171ea9344a41b604",
"blk.26.attn_v.weight": "02fb145f7fd905133750e90571effacadddfd3f4966552dc59982ac3900ab8c4",
"blk.27.attn_norm.weight": "654d168fc3cab716d91261f5719f180b7d697218401633b4878a759f1b5283f2",
"blk.27.ffn_down.weight": "2823272bec3a1c12f02cc4cb24aa4031abd7e9dbe0b02676e2305b21671818f0",
"blk.27.ffn_gate.weight": "b1a1d40cd02f97182cac17a79971d1934ee0daf3aa0bf11303568c636e208a64",
"blk.27.ffn_up.weight": "ed62ec72a020d070e64eb7b50237b32213944727b5b2427f45d989f50df5fb2a",
"blk.27.ffn_norm.weight": "c69649ac65d694b306a905dee8b03b89eec1ed188b1eaaf38f8e29d4b12e38a0",
"blk.27.attn_k.weight": "cc57bbf413f1fd227128dc66efc8590c73634cbd6f96d01ec4878b5e7ca6a925",
"blk.27.attn_output.weight": "cac407ad02361d53207b3c7e25ceab84dcb4347b8087055162e2efe14d11d84a",
"blk.27.attn_q.weight": "0af18e07cee12015761c07c94407024f4f4d77d97bdb24163db0e16669e2cef3",
"blk.27.attn_v.weight": "a1d08fbdfa40af773c5adcf93bd68b78a44ed144e3fc6bbeb8af02e937527eb6",
"blk.28.attn_norm.weight": "f39a51f814512b040a1082143150e4a49ff730f85cef49d7f77fc79d83e91f40",
"blk.28.ffn_down.weight": "74f29ed51055d1c1adb8f0660bbe538a27e016c65650f2d67efc6f1c84fa1b45",
"blk.28.ffn_gate.weight": "ae48bb16487ded6781c60aafc0bf738fb4ae15729952906f247d216592ce249a",
"blk.28.ffn_up.weight": "543009727718ac22f11ee4b17815f68ea6f15ba1f3e7ed5ecdb755cf6417565b",
"blk.28.ffn_norm.weight": "b8f9e54c322079ff20a82b88948cdc2916c22c7db40b9a9ed6d3cbe89efb727e",
"blk.28.attn_k.weight": "55d055ba653b728d6e784f9e013786fed07115c9fdf23367e3941386d5e77db8",
"blk.28.attn_output.weight": "155101c03ddbf18f4fd0694bfc982f33c7bae25c9b087d6f5273c2bfbffcf2c9",
"blk.28.attn_q.weight": "1ed19bfdd22e9c14eca014739982492e9516d411515a8585f65cf754d849e53f",
"blk.28.attn_v.weight": "11ba854dd575c025d37256eee9041f6d1bd2b549a083d6409a09bfc1542913f3",
"blk.29.attn_norm.weight": "02b0bf5e2fcefd11a153cc988c81ba672682e4844fcf6442423e21a0e10d566d",
"blk.29.ffn_down.weight": "594bb692ec2779938721ff4748666ca8370e0e4fe85229503f616438b8884f5f",
"blk.29.ffn_gate.weight": "8bedcf47e91dcb2cf4093de56b048ee411faab6ff472f89ab2c9c113a08e6967",
"blk.29.ffn_up.weight": "e241a547b5fd6dfca8200b8141e21c1c487a96cbc4e5855f181a7ed1be91b642",
"blk.29.ffn_norm.weight": "e63eba5e4c6b288bfd9f15e46e236086456c8b7f1f9c732c0b5de84962a2e7cc",
"blk.29.attn_k.weight": "afe5979d5bcf211aebb526620f5974bcb0a2c39c8be71e815575c55d6385e3aa",
"blk.29.attn_output.weight": "9c944ed44b124b014906fc240afd3b90aed56bbd9567f2eddfd5b7a685b3cb48",
"blk.29.attn_q.weight": "e234e08e5c1bd9245a2edc8d63e9933b6b879f97c01392209cad4f55f05f3ada",
"blk.29.attn_v.weight": "5cb8e3e5f954e775c5a5e4de7a9a62b17e9c6931bb0ff0e2f82c4126fd3e1a1c",
"blk.30.attn_norm.weight": "a65483ee51a0b214144ec8a14f28ea5437586e9e12ebe342a57d1f8627ee12af",
"blk.30.ffn_down.weight": "417959da77ceb33ead4271cbb9428b195196173a893c44e52880a7ec61b4856b",
"blk.30.ffn_gate.weight": "a0d503ffcbe45dc927600bb98c9f6082487e65cb577ab545add400d666a87638",
"blk.30.ffn_up.weight": "f8ab957b82ffcd10b21303cb5e866209b6fe95f827b1b94e9a949207952d12c0",
"blk.30.ffn_norm.weight": "210c7ceb0514a9ef27b5d4d1b3aff6dde43f1af0345a050d71097940e0e73e03",
"blk.30.attn_k.weight": "16861b9abcf5a3fe73c93d977ca45a1e6daa65be0fd85c2cff53486ce2033afa",
"blk.30.attn_output.weight": "ca541fb2e57e2257118c35784845b0c731278af8db3036ac53d71aa1681fdbdc",
"blk.30.attn_q.weight": "f7834917748e26bb456b945e230bc926c228e93696bc01fbc2b134bdeeac71a1",
"blk.30.attn_v.weight": "9292783171dbe5eb689d17c9bda11e537f0e9b328fced6986c938d61ed590e81",
"blk.31.ffn_gate.weight": "e4766a04bcd8f937ba883c6a144101e546747804ca66c35c97281d6ccb47b566",
"blk.31.ffn_up.weight": "cc1e666116f7e6b06736db4aa4b81003c583f54f4d9200bfa48842249940e16a",
"blk.31.attn_k.weight": "fc80b57557687504efae7d24265cb7dc39b8f826bb3d897a11783012dbedc44f",
"blk.31.attn_output.weight": "215617f50a1f5d9b2250b82f3652b35a9e9aa0ad9ef2b485d73965a14b2b872a",
"blk.31.attn_q.weight": "274b4f1dfb0bdec28632705677049fb3e327ce6d9e1f3baaad1560439039982f",
"blk.31.attn_v.weight": "e641b8b926f9dfcbbf6b6da1c02555525ac4b1c306d96f20cfbba7d6662c4e56",
"blk.31.attn_norm.weight": "b3243c361d4041ddb892ce6862dd5091f57d87357e3c67e177451b85d8baf34d",
"blk.31.ffn_down.weight": "0a00cd3ecd5e91624a27f9e239b1de425d5ba3cfff82c256a11a4ad434abf3c2",
"blk.31.ffn_norm.weight": "2a0d67ea2bb1303975712243f07273c92fce83baa11b1cd6d8e42e74ea3c810b",
"output.weight": "768615f077fb797967844571c58b94d7c399d884d115be3ab4b0154504cae892",
"output_norm.weight": "7cc5b7ce10e5082000fa00bfa68af8c7c5da218e59e2c41cf2f1499d40ca229e"
}

View File

@@ -1,313 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.rope.dimension_count": "128",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "cde834ccac5e94324b25cb81b02d27312cac0c551b55a7e1d555d90bf6cb6e81",
"blk.0.attn_k.weight": "458bfdd9715c66e017c2447b1ed3c582963a3111479314e664faad8c914f42be",
"blk.0.attn_norm.weight": "e1fd60b95f713bae7b7e3ca933c64ae6c9cd1e8d808000204bbfdc19f0ba635b",
"blk.0.attn_output.weight": "df13b6a157d9d4f96c53b012b3b9bcd207d0c94144cbd22ae3ec13bb07d6c373",
"blk.0.attn_q.weight": "13b4126b4245bf06c915a93317c42b8174e05053535ec99dc576541e4cec7c25",
"blk.0.attn_v.weight": "5b1781d3a341214511b27eb4e268674ea3ea829dbdf8ae5a6bb89b3c0b33fafd",
"blk.0.ffn_down.weight": "49186f5d8148d316b07458841d13a2e66587f4af69b776188a809591ed9c070d",
"blk.0.ffn_gate.weight": "4397e30ece09136f00f4ff84ff49e5241b765a374deb8c5a12e897e2bf73473e",
"blk.0.ffn_norm.weight": "43260589aac3850a779bca3f9649f793bbfbe5db538361cb743b3830217f8287",
"blk.0.ffn_up.weight": "fd7ac918240a07566f6967527ffca58fcf433a30b78fdd6d84b2136d4ebd9987",
"blk.1.attn_k.weight": "209839566c7d235bdc20565a4766378b6ee8553133a5a3315abe8a85baa80712",
"blk.1.attn_norm.weight": "58c52986f7c69784ba327cb7f350923420782bee17fa39b1fbd13839d4005357",
"blk.1.attn_output.weight": "5067cc628449682665dfcf59b16e58fe2a9d2a81cb099f0fcd42f4f8670c6740",
"blk.1.attn_q.weight": "f410f9f0dd5edc09401af597d02e2a4c727f1502ec3ec3898321617b36c6df6b",
"blk.1.attn_v.weight": "d40fa49e07c102c0644e130e7909eaa93ed0d54e2edddc0759e721d58a4e4f5e",
"blk.1.ffn_down.weight": "594b1eff6ed4defbdd819fabbe2d48764984f08878a860bdb808511d5a25b8db",
"blk.1.ffn_gate.weight": "4cda97541e388a5bb607ce4cc8b3db1da7045830a630e7ba4d17807befcff346",
"blk.1.ffn_norm.weight": "66c13d7481be65b97aa474735ddc9674f33d512ddda76fa6fb45c7464b09f1ed",
"blk.1.ffn_up.weight": "1adc6de288ba4cc1237833ca8b4eb81107149842e38bc452e18e5cfe284338a2",
"blk.2.attn_k.weight": "5420423559f236ab22d85a00849f31e0cc6e9c7dd879de724393d8cd2b379153",
"blk.2.attn_norm.weight": "495fe1ab40cc52aa054ddd4f0c2d2790f4326c8d103296b1b38f3b1060db2a24",
"blk.2.attn_output.weight": "ccb83e7085381f558bfd65588c525ad2671feddcbc3887afb4038ad9c7aac348",
"blk.2.attn_q.weight": "2e8f77478392bc93c2a391f2e0f4a173a952bbab88a7aca099c6ee909726409a",
"blk.2.attn_v.weight": "d64512590f3b7ebbb9e77c2eb97fbda90b00d45c944f2b174f03a2cb11007567",
"blk.2.ffn_down.weight": "1de5084a05dcaa6b1bd926e83517dbe9ebe7fde79235fe56018b3028b1aa6397",
"blk.2.ffn_gate.weight": "cbea526b557f49aad8c976973cf367fcd12175b900f551984f498b9e07e4b7fd",
"blk.2.ffn_norm.weight": "530aa49b10c7eae08899d143409240deb95dae4e1d5bf78cea3b26393cff3ba1",
"blk.2.ffn_up.weight": "13a5fc19b96b4dcc1e9bd01998c8272ebe52034c1933ed123a506b711fae9a5c",
"blk.3.attn_k.weight": "1913b63a73305941d8cdc472e7f101c633d3357a78602eac0a4b49a744261075",
"blk.3.attn_norm.weight": "9c11bed5ab41f4adbfdae4ead65b525c8f19443e656a8c61ba412a4e1ad1193b",
"blk.3.attn_output.weight": "bb0b42c1d34779c5943272ed71f1dbb31ad8edd75f8bcd5c868f88505ac3a610",
"blk.3.attn_q.weight": "3461a1fe4e49f5319ea047cae98ccdb46528a3ec23831183fe87610b48c94948",
"blk.3.attn_v.weight": "82aa30be6a61526a41fb79bb28a2617416f5909f0477aa9e95e16be9370fcb38",
"blk.3.ffn_down.weight": "68521011ae03f5e3b0966127111afa8ee9f2eaeeef8d3a0b86b633e0332e9fbf",
"blk.3.ffn_gate.weight": "1e89e26338fd364bb679695968c65106382f15ad55c95cbb5ec9bdfeb766f432",
"blk.3.ffn_norm.weight": "c81932529a5a8c417c27b888dbe95fff8b447c2ea5f6f560444ec5d50b93832c",
"blk.3.ffn_up.weight": "305021735afd8669afefd713f56137248d5e817e60471a112ad06b7fa07ffe88",
"blk.4.attn_k.weight": "cc26ba5c5c28082a79e6abfe61186029e80b145252ca6a7924c437f0bcf2d51b",
"blk.4.attn_norm.weight": "302d251fdcc91f7468cf33f80b49484251d8917d7018ad264ab3a85c8ecf9ddd",
"blk.4.attn_output.weight": "a012f5bee3520cd4ce51f0076c132ebc3653309f304032ad051aa308f55f36de",
"blk.4.attn_q.weight": "3c8d607e447f5ef21e73af71e3c0d32fae16f91f31faae34ff06912cf9cb68fa",
"blk.4.attn_v.weight": "49f6c81a634ce46d71c2350206ecbd231b1732af96e4e4e67693c41a07e007d8",
"blk.4.ffn_down.weight": "e89504f311a4a34dc819a67b761022f14d71c43df3ead4f892c87aaa8e9f0adf",
"blk.4.ffn_gate.weight": "18b22f079a2fbaefe3572eec61fdcd996fd747724e2f0ff4f08cfcb43eb7bfb6",
"blk.4.ffn_norm.weight": "22415a492c168a0878912b05c854a631228b01c3ea8842e1d75989ec46c18a65",
"blk.4.ffn_up.weight": "f57379eae2874d8853f14ddf0f0fcc4ff1338574d5ed5d7e88331d5fb84f5642",
"blk.5.attn_k.weight": "d627af853c40bddf9762ce3988008c1ff17f2686fa8f73a0b5da38010147c316",
"blk.5.attn_norm.weight": "9ce01092c7f7f1c3ef72d6b794da12d77aa1f6a24fb96ba1b9bd5a0bcc3e2443",
"blk.5.attn_output.weight": "0388da8064c4b6b795ce2d8079e8a36535e82b2c9cf794e38ce8ae460aae726d",
"blk.5.attn_q.weight": "039b7ce1c909761fdf475c06cf14cabe5a90199282c89e4dcf460e95a4b6275d",
"blk.5.attn_v.weight": "c47bfd8d2496bdb6e00e03b903e15fd0ee806a515094ec257e43cc433147ab7e",
"blk.5.ffn_down.weight": "1d62e6708974bae318cbf00a8bf621d9ba0537e549ce4710a536520a8d14168e",
"blk.5.ffn_gate.weight": "8b42b1b11c92db19985094cbb50434e3a7c9cfea71ee6f21ea79eae7c49284a5",
"blk.5.ffn_norm.weight": "e0bc520f1505e687ec391d632a381d38d8ebcdec19f614a11a2000ab573e8b7b",
"blk.5.ffn_up.weight": "8cdcd17d2ea89bb9ab902dbc6bf3f827fa4ee029c6bf19eecbdefd146d8b6f2f",
"blk.6.attn_k.weight": "5dc6bcff89794d1756bf57ec665b58622d9352130d31082a6c66e1a079f99932",
"blk.6.attn_norm.weight": "13b26008abe0f119b5104b9d78ebd5e797d3cdd68122b93d73a3b4831a54d085",
"blk.6.attn_output.weight": "f5a49917ea70c3fb311ccfffbfafa63ab18416a5d55e5429b70ce8bfba57c075",
"blk.6.attn_q.weight": "d9c2f652c87dbd09ec3822e12876648fa32e86553ac25afab723b1cd9f8cef90",
"blk.6.attn_v.weight": "5ecc5fe67609a35151011cb526f45c56fc0a999079ae0ff37c755ca03c68c555",
"blk.6.ffn_down.weight": "0ec125ae0ecb2d9277fdb1b04f17efee94e37d0ae37311057c212ca2db3fe6d1",
"blk.6.ffn_gate.weight": "fa4d6d38355ee8aa3b80b476d65ae7e343c9b7770d7b097fc848ee8a6e091d1f",
"blk.6.ffn_norm.weight": "30e8f7defc627532e1739dc76d31223d45767391a431f925b63dabe334b0f392",
"blk.6.ffn_up.weight": "6b97cc32b290fa9087806b5d65aa6dc1760737730c8c71394cc4f30c2157f9ab",
"blk.7.attn_k.weight": "0231cb127cb7c3714cd72b8f39343891d7715a9bab2237ade9e7bc5f4ed2e68a",
"blk.7.attn_norm.weight": "7c3187f07eead7d219d98ab2daf87905e88d5f1ace109b6f5fa55dce3914981f",
"blk.7.attn_output.weight": "2f30ad972c284ae7c8eb0482053433495ebe8fe9c5ee2c28b4bc4ed1f33050fe",
"blk.7.attn_q.weight": "3a2b4b8d61cc9956d304fa9f82a9e65b4bb9fda2196670b16df7e0d8c43eff2c",
"blk.7.attn_v.weight": "d2aab97d0dcf0f61dd2f32848f7a8a99c423a4948a660a660a03a546972b8db8",
"blk.7.ffn_down.weight": "2270d520468c5549cd30023ff9c452a277058310104c4239a616373fc5a94387",
"blk.7.ffn_gate.weight": "4134a3ef71b3eac8f76b6f1a2e58625b3bae48081f175994bc3ed7d8b0d4f2d0",
"blk.7.ffn_norm.weight": "42df4abd4b8769b16f3930068f96960af1b061f1aeb7505384f272233b2badff",
"blk.7.ffn_up.weight": "c920549054ec16ff8c73a72f5d837cf4e11885e44db57c1c1c584c18fbd7a9a5",
"blk.8.attn_k.weight": "01c609bd3bf31ce65688f1f640ee413740e821330134d4ed1877a3065d1527d5",
"blk.8.attn_norm.weight": "48857411f769b00290f4e4f2e593e092781fdc2503f80c1e3eeda1b85a20f74d",
"blk.8.attn_output.weight": "90fb273f8df83744554bd59236515c16c5a5a698ca3fbedc17cc89ddcee354ff",
"blk.8.attn_q.weight": "ade617ac4653c7f00593dbb51837a468afef20a14eaab3780fb96ac3d6714369",
"blk.8.attn_v.weight": "c2c37496494864fee5c527d1fe1f88529d31c73f9cbd02ef9b2e9b23611ea50f",
"blk.8.ffn_down.weight": "2da58572e9ad79087c03cbb0c23c9ef69f93ec221fd5fe4ed92fb93871d23ffa",
"blk.8.ffn_gate.weight": "4483294e628edaa4901708e73e92c917bdd93b780fa01aa74aed57166f2bbf0a",
"blk.8.ffn_norm.weight": "c0cbb7a4f8123b62f0c4652a687f3b394802bc32870dc446eefb709e42043a7f",
"blk.8.ffn_up.weight": "9eaf8a2060cb9224cd585997cd671866c4051ad885c2c6d9fdc7056c2a5c0d89",
"blk.9.attn_k.weight": "5dd36c45fbc9c50fd35c36cd75576288506971eac5c5311d4f5c16ef60099645",
"blk.9.attn_norm.weight": "3c8ca64f2f75ed7c8fc1da010c23be787648139a96ca0ef3ad10be7b14942b8d",
"blk.9.attn_output.weight": "6277e1f833024f53c409be919ec76d34464a78b278c8f9dbf79e777746e3b995",
"blk.9.attn_q.weight": "87352b70d9e328c2d51d59090cf5ea5a046529864a890d0bc8986447a0a5c006",
"blk.9.attn_v.weight": "2efdf01161d7a82a9117cc2d87d37dba5ffefcf730781cb94fcc95130e48ff9e",
"blk.9.ffn_down.weight": "e7658a2ca984961c7ace16acb679387bedb1fef656b5330bbbf588db19673a75",
"blk.9.ffn_gate.weight": "773cd330d4ff5d64be8af00adf2e2722fae4e33fc26bb9d03549f6f4b3b0fe57",
"blk.9.ffn_norm.weight": "c8b86cd5c43b332f72060b807091c33a258e5dac01358ff4733b916cd34c9c97",
"blk.9.ffn_up.weight": "d8cc3bcff18bd46124ba2aa7caacc71220b44eeef6fccb993b4c6cb53e8f2c3a",
"blk.10.attn_k.weight": "964bdf3b4e77b915a216f750ff7b0f2eb1dd6bfa071358aef21010b90111044d",
"blk.10.attn_norm.weight": "59ed411d91d14775764eb514acb0895a75a10cbbfbc1c15d453bc50f8046cb7f",
"blk.10.attn_output.weight": "4d35a2a44cfe4ac0a83fd3ab0dcf1f5a0bf54cdb3b7be9fc353ed32c8a3eb81c",
"blk.10.attn_q.weight": "defff5339450dd881ac352f5c459293f39e07b9619ebd10ed632d79a3f310278",
"blk.10.attn_v.weight": "b9803e8d6a54acea58f662d4c0a5c8ebdf986676de7dfe12d4b288937881ce93",
"blk.10.ffn_down.weight": "eba856be64e4be20b92fb4639a783454dd92427250759df92a337e39f1971c08",
"blk.10.ffn_gate.weight": "2d5c509b066584db4de3632b01234e86edcde35409c5ebce18957dc80fe465e3",
"blk.10.ffn_norm.weight": "ecb9a8679945ff0273856624ce435dd250ffe5a440ea0861a5c84f0e4c44d2c6",
"blk.10.ffn_up.weight": "e76ec7e993f399af02958778c643aa78368e3067846714165eb5aba9d5f547f5",
"blk.11.attn_k.weight": "29c6d1f34bd3ba2f0904e57b32a5bf8dcb2834d439159a33edf234ce0b775677",
"blk.11.attn_norm.weight": "b5817b275149cd2abe18a6a10e19854605fc58fd364666744362ceee8cfe49f4",
"blk.11.attn_output.weight": "1e05653220e237cbe0cc770033e183c9a0eed5680510997409b16186c6691950",
"blk.11.attn_q.weight": "03db725ae669151e4d536e50285b3b047ad097f52475df208ed3e790e31a44be",
"blk.11.attn_v.weight": "27cdf1d4e971326c451a4615a0b79a8c7fe9508f9b76c0d52fa01971fc7eb403",
"blk.11.ffn_down.weight": "176938cd7c2966094f614cace8ba568b10532e45a0d438f80eccd19b6c2a7f87",
"blk.11.ffn_gate.weight": "9782339915dd6fa70013628a01524ee1d01ad8beab04068da7ac6a5ee7603a60",
"blk.11.ffn_norm.weight": "8245f6391e3be97811c0ff27f0d8f484ecc82a468a837c893f059745bfcd95eb",
"blk.11.ffn_up.weight": "15616ddde096d0d25e906375c548b6de4bd5576d1f6b68eefdc29f14e183af42",
"blk.12.attn_k.weight": "66dd21604993edd1b1fe547bcaa06f5bb7e31c9204902d147a227e4badf7feec",
"blk.12.attn_norm.weight": "23a69f85dd8a0904b9839cc5d0afcda299b74e82ae2642106224a1c820f2b761",
"blk.12.attn_output.weight": "4a98d132e376beb274a39d4ea9b6a1b870ad5c66625439d7ff6f45c229c3ca04",
"blk.12.attn_q.weight": "1c6c309d63afcfde32fe37257e300a78e25d01117e33490801107c0e75d1ea66",
"blk.12.attn_v.weight": "723d9e4ebe4e2b1974afa01d8f512b52933698fa36717dd47b37b07760c50a10",
"blk.12.ffn_down.weight": "00e0fb09e1f1fbbf3803f1dee373eaae7a93756b6e13063ab77f9927bc6f996a",
"blk.12.ffn_gate.weight": "89159f7f97aefb1e100107e3ac2d694e1008ad873f79bb953d60c2c1bb22724d",
"blk.12.ffn_norm.weight": "5f70aebd0e43a39d6373d8658cc670c13aadd7818831d3d84f761d5f688442f0",
"blk.12.ffn_up.weight": "faec21b446f061eb4dca561a3180712724347b77a71eb312e7afe9be9e89fa04",
"blk.13.attn_k.weight": "3d440825d19eac3b1753b34d94fee2b3a3cb6636c10b2703ffcf688d3c1eded3",
"blk.13.attn_norm.weight": "47b575e57e410738ad13fd3c74bb49c06b3d31030910834ece509cd1a5c6d9be",
"blk.13.attn_output.weight": "05436d8e613f4475741c1798a7c371b53d61b229507fa04fe23c504ba1f0e12a",
"blk.13.attn_q.weight": "002b5024ce520da41256e3ded5cdc60e5ae07ad9b202cb19d76ab511efd02b1b",
"blk.13.attn_v.weight": "c1f2d6763587c50312cee0d7140fa2c7ee326f5b172bc99b2d8946e08329cabd",
"blk.13.ffn_down.weight": "b5c4e0d8a3ff96cd76a135e415b89f02d28c28f7f3c16a36af31ef0ab8773da5",
"blk.13.ffn_gate.weight": "ae06e9e3d2e1f64c7ad23a4009dc904c2eccd7241f9f91c4974ab2504f116be0",
"blk.13.ffn_norm.weight": "e44a22321bcbcb4a3c345b504e939e8071370f54a8cd702fabdb40b97e0d7683",
"blk.13.ffn_up.weight": "7e6f366d538e21ad431264b12c011892d0be9dfe4c4da9f730af677f920641ba",
"blk.14.attn_k.weight": "95492d6417952ec24b2cab87bceb750fc7e95ac6b1944fc328a3852d980164be",
"blk.14.attn_norm.weight": "6b7b09e1c51addcdbb160ea59edf032531421c520ec5645fe1ff9ca4180cef54",
"blk.14.attn_output.weight": "75887474e4d72c218e6ab0f69f1bf3ec3dc414d51b36fc59df00cdb23421bb6a",
"blk.14.attn_q.weight": "940e33f76e48c21215d19e8a21234c8246d4d084381a7d9806aecb24b071d5bd",
"blk.14.attn_v.weight": "c58601cf5a9833f80f7f9a5b2656e8eab5eb133211446ebd48f8be15fed4ebb9",
"blk.14.ffn_down.weight": "f9f886e7f9b2a54d717b08947a25a0a93e8c2a5b8bcd5a907c06817c8ee3ac11",
"blk.14.ffn_gate.weight": "727ed0ee68594a3f59d704ed3240b6929f083b9c36650fb848d182315737245c",
"blk.14.ffn_norm.weight": "bd2471008ff1b2bae9aa26bea019393fb2bbc5b9493b8cec3ebd2c280fca24ca",
"blk.14.ffn_up.weight": "b006446769f51e4f93b503c4727deae897bc1fc7f4fad49f85024b63c4548d38",
"blk.15.attn_k.weight": "23bb70f9035356624039547a603e46be7d1e4403616eafc2451cc09c5373d522",
"blk.15.attn_norm.weight": "718cb371ca052eeb3bfac6ac506abb887df125271821fd171797a7f2d8dd6313",
"blk.15.attn_output.weight": "c76a2695a204b43a8e5acfa5720590b5d449a9ad9e082cbe3e80fab5903ea16a",
"blk.15.attn_q.weight": "2b3e4037b9e91bdd26d6e8d904cf39f948192dcf09bb6445cb55ca058d4f4626",
"blk.15.attn_v.weight": "7c15e89b6acafc8619e86aa9d412f5893ab17843ff2cfaf40eea9637b24910c6",
"blk.15.ffn_down.weight": "e16fd4bdc6d1c1209c6b633454df4992870c8cefb2cb0e8c92a7e489e9fb5d19",
"blk.15.ffn_gate.weight": "95a46bea366c260337c537fde06b4cbeaeec52484a69c3390bb1d178eb0525c9",
"blk.15.ffn_norm.weight": "37730293f704da265dc6d1896b3be00c39c0a41dab07f573af39dc30a481d623",
"blk.15.ffn_up.weight": "ba74a199da2d0875d7410824238c4ffafbda3993568812284a72b8800df91f15",
"blk.16.attn_k.weight": "f58f79a2a91c9a763adefce0c53a71eb5ce6bd8442f4af554b04b58083bff27e",
"blk.16.attn_norm.weight": "0c16e41b95e81978e0e0e3b338e2afe2d297426578cacee94de15df74e94eaad",
"blk.16.attn_output.weight": "ead22fc337514e4add49aee19720008558e52090466866e849671953a1fccba4",
"blk.16.attn_q.weight": "ef59c4e8fe8918c1add43d7e9c6fb3ef799dd3e1bdd731ec7b6a4a6f97c86048",
"blk.16.attn_v.weight": "902e6b84c2b64241470b13e6f412f859f66b4b223bcfb9c15d5cb1106b07ef3b",
"blk.16.ffn_down.weight": "2ad6e9eb4d8372c32a554395d460d17cfb02d6dbcb757cc962b6bfa36db4f5ee",
"blk.16.ffn_gate.weight": "825b2d50fcce3dbe6a5d8d8a50a95466f83ca4a10343efe67894c20b4628fb15",
"blk.16.ffn_norm.weight": "3bf6ac90befb0e17e077c8ea9454a8485a30f89f2d761ec7751b60c90aed1af9",
"blk.16.ffn_up.weight": "9fbdd08739b32411f5ab0252174d386bab19eb0b17884862f760429b7d41d78c",
"blk.17.attn_k.weight": "4033398718bf3674830ed1b73071ed8482b6dd4ef27f31a6c5fbb998321b6c07",
"blk.17.attn_norm.weight": "714f2e8ac9592966a0f1c02ee979eee8f84586405b992e8ee9543e840199ffa1",
"blk.17.attn_output.weight": "b6bbb618597d767b8f535117be68f92911e4a71d4eb4d8b5d943444151445ece",
"blk.17.attn_q.weight": "b84a0dc00ceb515faa2628125dcec502eed923077b21cfe900a4ff16c2e5f9ed",
"blk.17.attn_v.weight": "4387c7d6a17da9cc7a6bca8f4a75618b20407d570792056283a8e93b6ec65f18",
"blk.17.ffn_down.weight": "47db95c6f1e12b399c3eaf9ddba261782dd71173dd163b52af96541cf87b5196",
"blk.17.ffn_gate.weight": "59abaded0aedfd12f01df81f7a811e84db6a227f51b60abe9a247ca726e87392",
"blk.17.ffn_norm.weight": "b7e86445be5c7b722e01ddb98d5c7527ca86cb827ce0354f2c269e0f2558751e",
"blk.17.ffn_up.weight": "8e31c293bac649d2f60da4b3fc4a3acdce1111ec6058d8805eeeb242443011de",
"blk.18.attn_k.weight": "5ce762ab7b032511c131df81093b587871718c7097f79d8e07d707571f18a47b",
"blk.18.attn_norm.weight": "1f52cdc7af1f4dc1f0ef6ad1ad02e18cda32133654e57cfa9c72ada9c0b1d995",
"blk.18.attn_output.weight": "6486957f30bf8a88516e25772c6650f98b13923f490a2865a8752e36439d1cfa",
"blk.18.attn_q.weight": "93621c8abf69d2ca29c5207180eb628fb2b544d89de6c4a7fb0699be95534899",
"blk.18.attn_v.weight": "11604083b5a74828ac1d226af015ad5dc0215a1fdca44fa7131c2163c02d8156",
"blk.18.ffn_down.weight": "8f9997feb94385f106915df810239c9753b31efda2bf14bdf18a9fbbeec8233d",
"blk.18.ffn_gate.weight": "427c213b3a4e94af703429daf2f65766f70424d8230c123e7e712a18bceb5ecb",
"blk.18.ffn_norm.weight": "c45d305c4ea6a54013ba112f12dafaade064a32cf01317373464a3618d8ba44a",
"blk.18.ffn_up.weight": "a2811f2e73ac9eb9cce91a21a454e84e230a155244e2cd73f2c12aad3c9b8cfd",
"blk.19.attn_k.weight": "b2daed159925eac58c291e2f1e2000beed21002b03c9e1bc7e7a52e22240666c",
"blk.19.attn_norm.weight": "6307306ede2ab5bffa1bcac3f8b139354678c0376b1d9f5530c1fcb4268cfeb4",
"blk.19.attn_output.weight": "ebb98218b2a9c84d3fb6baeb02c5df264b7ab80d994d1098ba1cd47aa398effe",
"blk.19.attn_q.weight": "4f10df2ad09177e7528e9456039b670d07db22940a49417101b725d239c16724",
"blk.19.attn_v.weight": "30f1efc5114badaeaafa91fa466dc7fa14b1616db433c6f563ab851f7333a5dd",
"blk.19.ffn_down.weight": "be5ec7fe6b48855cd0015b0e430d1b70c620de87a7ff188c7c1afef546d7b6bd",
"blk.19.ffn_gate.weight": "10dffea4213881f8a9b583ee0fd370e033756d32255ed15053f794375b9400e9",
"blk.19.ffn_norm.weight": "e75cd24ade45dca78fdb0cbcaaa2d4a17d83a5a73dcc94ce0ec2d68fbdb2a881",
"blk.19.ffn_up.weight": "63e81bdb951410ffa81bcfba1b94a679ec9ebae59cd1623ce2651ed5d4c78bfd",
"blk.20.attn_k.weight": "c2fc5ad39e9bdd45e73c6e54aecc474388d944c4be1ee1921b7fcd035bad02e0",
"blk.20.attn_norm.weight": "aaa9169171937bdce20c1f057e94e9252f221cabacf1ced12e11b9586f23d308",
"blk.20.attn_output.weight": "a9f4fb496e4bc053e3f6cf2e72e22d4cd2b545ef6c32f7e782c2ef6ebcc21d4b",
"blk.20.attn_q.weight": "5a07ac619ed251494170b213921ef3fcc4c2712839da262516d9d5b8ea1ff185",
"blk.20.attn_v.weight": "d6689473105d241eacb17f09f06000ee237336916cf5ec4f48271c5b41bcb8e7",
"blk.20.ffn_down.weight": "74be38db51df736f26ede7c6b52ea787e385f181cb66231e2cced4556a25c9b8",
"blk.20.ffn_gate.weight": "ea91e06dc3d051c0ba0243b5a8bb40edbf254eadfb54fda7247e05cfdd88cbe2",
"blk.20.ffn_norm.weight": "5fbd357b3d6f44a7a91e8a4fc246b24303891b7957e0f3c32818ae5dc16ddd8d",
"blk.20.ffn_up.weight": "fe3290333e056af4ed12942ac72aeba97a6b562e2db05e79cd35dd07eab5b101",
"blk.21.attn_k.weight": "201ec6ee95f06ea5eb80fe86fd07bd016d3ae9ab6abd25d631834414e14a010e",
"blk.21.attn_norm.weight": "ea8154f93e06485828475a00b98cc397ac84768dd70e06ecc0c075b5712d7276",
"blk.21.attn_output.weight": "9f8af74d531478fd304723fd8e4e01578db598441b80dc7c960cb801dbbc501e",
"blk.21.attn_q.weight": "277de9953a8d3cff894ffd06c15ad0ee1407e319df0c1a693d4f45fa9c74ac7f",
"blk.21.attn_v.weight": "6bfdc16cfb898909b7788ddd39dd04b928f31d6732772195d53c558004638dca",
"blk.21.ffn_down.weight": "173877146cb94801157796ee9e5eecf3f46acb3b5e797f90b83a3fc22395eb30",
"blk.21.ffn_gate.weight": "53146713e2ca1be80496024077a028f6b6d749b02e71003c349e113b436f48f4",
"blk.21.ffn_norm.weight": "b28b97e18ab20a5c553ba422f7d7f6014f5902f1d62a69abd20d9fe19a5f9462",
"blk.21.ffn_up.weight": "5c39d0ac4d602b8ec8909dade93b2efcd6b6d9d84a19b252d76bb66dcfaab87c",
"blk.22.attn_k.weight": "01f26272c82917a87a3ccf922fa1d521a952b05de878241b7efe3525b617ac87",
"blk.22.attn_norm.weight": "5ffc96249d8873b506e9eb7158bdfd07fa1429e53c1951430ca7505d25f11c76",
"blk.22.attn_output.weight": "9c2201569358f720244b9c9497e4da02585a167b1414c8a506b85ad75ba990d0",
"blk.22.attn_q.weight": "906036eb4ddf027f6d920f9356a6a2a5e529b96f4e1231a0496d46b4434a5842",
"blk.22.attn_v.weight": "30ede8b0d166003a4b8a81fc99437f557719fc36e5c4dd510c9f161f36a47e73",
"blk.22.ffn_down.weight": "d04c164beabab30e1837b843e18852260efccfbb9d96a34ddd816e6fb3ba23c5",
"blk.22.ffn_gate.weight": "19c889db6b19179f0a62d5981a1506592c65de83760d67afbe00d202202750a8",
"blk.22.ffn_norm.weight": "4885eff2d851b32dbd306bd632c725857e6d164f0fa8b3d5857e572e6ef98ee9",
"blk.22.ffn_up.weight": "365594d8db8e95cf87cc33ac23947942dc326110175cc8ec5a07b5c7059089a7",
"blk.23.attn_k.weight": "badfea1569da0fc6ab817c5727ca3a69b07d9cfd622fb8be5e66678d5b3f7ae2",
"blk.23.attn_norm.weight": "8968f78a379ac3ca5458b4ed4251e8d9112aca6d6dd1ef6440b4bb0b380375a4",
"blk.23.attn_output.weight": "93e43393c03956287b1fe31e9735ff1cfe84f4ae56b83dbaebe96275e4e11831",
"blk.23.attn_q.weight": "aaff73c725a8700ae66bf26ac8869dfe96738eff23a8ff340de2ab53400a5795",
"blk.23.attn_v.weight": "3a86a8dcf14a746ed1411f5a7e634064bc4dfd6511c24cfeccfb2c9ebb6b4101",
"blk.23.ffn_down.weight": "d4da6f37bd7ef69bb203f7b0dd59f50bce37432c70627e6cf274ab81548af5cf",
"blk.23.ffn_gate.weight": "5b6072936c4a693923bb4e3d1473fd45545cb02fc07799aca458ef0449a04061",
"blk.23.ffn_norm.weight": "cd76e37025f84773180298ddb15e0d4ba9cfc7d832e19c791049daa47c6d9c10",
"blk.23.ffn_up.weight": "cde43b99b83124a13b2e4753d12674b3a61dfb34c04703007ced3e8e2aee1801",
"blk.24.attn_k.weight": "457379edc4cce4cbbe107385079019bc922264fdfc7bd1d1ae84343a81460c66",
"blk.24.attn_norm.weight": "0ce0dfab2edeede5da419fa7833db78e36222cf25c358d08f3ec664310f031fb",
"blk.24.attn_output.weight": "0cf91c2fd40c204d2fd4b9c85b69281e5ad4ea8442972fcd44b5fc8e835ffdf8",
"blk.24.attn_q.weight": "87ede30c09eafec6a4e6285674c1bc4637140b168b2da4ed34f36fdb6e176cc9",
"blk.24.attn_v.weight": "4c0b078b2798ca35d6d2c2258fe499820d2bc88700654ba4016e4b028f563590",
"blk.24.ffn_down.weight": "cdb8540c32b1ab988f984484928d39f6841f2131c1cebe90ad9456737fccbcaf",
"blk.24.ffn_gate.weight": "da2e0e913648b5526bd2bbb344038dd067639343aed3b413662b064b0db7556e",
"blk.24.ffn_norm.weight": "8940bd781c610d75eb2be63cfc8d869a3af05e53c963dc7fd4c6f653df5a80ab",
"blk.24.ffn_up.weight": "90cbac2a58801abe11ed6c24560aa4acb949f79429f2aa8ff129ac05868bb87d",
"blk.25.attn_k.weight": "90607131e36998e990ce718ad05cbecd1bcaed010931401ce6baa3b0d93ebce6",
"blk.25.attn_norm.weight": "fbf679c85656c04a6cf8fedd5412c1ace22960e6c2d47f2d43997827811fbb97",
"blk.25.attn_output.weight": "08412724ee7a2086514406e6f68fb9f622e10bac25b0c373b294709f4b09bd2b",
"blk.25.attn_q.weight": "9c1238e98a2747654a0d4371d3e7ea8b979867f609dc42482544f25591e85c7f",
"blk.25.attn_v.weight": "a57796a535c6cb09581cbafd6a91dc14adc8cca2a2465a7ffd0aec546cd84074",
"blk.25.ffn_down.weight": "f7e34e8a6391b480da08b52640613ccadce268373934b409759743a1735b74d6",
"blk.25.ffn_gate.weight": "b8d0b2f4612678b5ce42bd4a683f8024514b75fb5ebf6b22c600811e95582ee4",
"blk.25.ffn_norm.weight": "cde1fdba2369d315f3c6940a997c471ec891924e642505db580d732763bd7b75",
"blk.25.ffn_up.weight": "72e700c32ac8b9c47559c2222e45888a480b527ea512075423c5dc01678e2bb3",
"blk.26.attn_k.weight": "6ac83b3414ae75bf3a9055c32e49d2c40fe611ab21f8444f03d2f465d18122c9",
"blk.26.attn_norm.weight": "55f9d6dc9d75973dc75136ecb9d991b4398097ac133070873fb96ec76a6f60bc",
"blk.26.attn_output.weight": "ebc4fcbd15b33263e50ed2ad45740867cce15bc90e1216623babcb1820734509",
"blk.26.attn_q.weight": "080f057521073e412936fe3fee64fd574c8128fa4a148b879d3e598fe4954581",
"blk.26.attn_v.weight": "0fa2830d6746487ac91b243716e4302361f891e4e008eddd14abec47c7809d5e",
"blk.26.ffn_down.weight": "cb2ab8af1653adc57111ada49d2825c6995e338c8208455b92de10e580f60f31",
"blk.26.ffn_gate.weight": "231ce30966086bce2dc0e0afd34a22a1958cfda7a57c41b3b8e9444c5dfde8a6",
"blk.26.ffn_norm.weight": "35d959d25d17b00617590f5d5831bf705c385c51e46297a14375a700effca6af",
"blk.26.ffn_up.weight": "367680c8d332538b467d1ef87cfeb36cc5c6af564c5023c5fb50e728e3438287",
"blk.27.attn_k.weight": "0bfcb351c6d17aeac5b55a915074fbdf00f11c4bda98babb196ac8804805746b",
"blk.27.attn_norm.weight": "5d598a88c2e75ba59dd7ba4fee940bdec92d72038f1286536d2dfb71d008a09c",
"blk.27.attn_output.weight": "23a9da7347336479f6a10ded14cb3f46e06b5bd56dc4b0fbc526c688552ec840",
"blk.27.attn_q.weight": "b83319dba9055f069208e9c9d66da08bc6874f23e575288fcd81697d1777aa54",
"blk.27.attn_v.weight": "36ed34ccb2f36fdf16b2c2dd225a98ea6b7b0e376e7791191136ccd7bd7a4add",
"blk.27.ffn_down.weight": "5488e1d3a58c71b5e9ddda430540b4776b268cfe1457cbc1c2622dedd9e4526e",
"blk.27.ffn_gate.weight": "4ff48011ee0bac39af704849d9132a2410392c87a509c684f2062f6b76b498fb",
"blk.27.ffn_norm.weight": "32afe99675983da3de2961d1b5ca41c98970a356823597fe29e91f6e86abf0e8",
"blk.27.ffn_up.weight": "1eae3088a75629571fdbf6a20f141bc2bb2ed3f5ba2b9fd1d949f80695e442a1",
"blk.28.attn_k.weight": "c4e80af714962d6f9040d2c09f316f4a1cbc3a2e994e19902d7c653cf3c73dba",
"blk.28.attn_norm.weight": "c1ecf85dedc1c83d5d402bb7c94fb8b9c11f1a3e5f64e7680f80912d4a560794",
"blk.28.attn_output.weight": "72ba47c061b21f5ebc5213a455eaf6fc49c8f8e04ff9ce37e6ed4921b629161d",
"blk.28.attn_q.weight": "c4abc47234307f44b8ca789aa6668e298158fa4b459b2c1e84bd581806591cc1",
"blk.28.attn_v.weight": "aeba950799d4950e491ad0fcbe30334e39b8975177990a2cb339031c45ac153c",
"blk.28.ffn_down.weight": "4e84ce382a37b994fb8608df451a60040559e3f4f3241c3b3cb8989a3ed50d83",
"blk.28.ffn_gate.weight": "04df157acdc8e8534ad60acc2d2a4dd3a7a6610f6382535ec728994fa6f83f83",
"blk.28.ffn_norm.weight": "4d0386dae2bd1c1a9d0f9730718333e3a486c3bc6a5c5d482193c75d39832c80",
"blk.28.ffn_up.weight": "fec60bb0a3daf182a14bd8311fe6dd1e3fd020c5fc273e2549cdb1a2d6b79b05",
"blk.29.attn_k.weight": "b0532a263aa5a4e2a7a80adc83fc5dec974493bd18da7f953e7ebfc3f3a19aae",
"blk.29.attn_norm.weight": "593fc3b4000c35b7a59dace09ca1756c08be0105b2edd354a0e1c16c82898859",
"blk.29.attn_output.weight": "315b896f9f0cbacd0ca8937384c3a3a227efa908cb8c3a9125ec00c480e32b9b",
"blk.29.attn_q.weight": "d482d45386d4ad3394f08e9dff233ee3a70d0427d65c0b8fa05905da7e25ca53",
"blk.29.attn_v.weight": "cd3b5a6e2852da796902930a6a84bc87fc6a7c7bf51f8fc23758d12a39013b36",
"blk.29.ffn_down.weight": "5b3dba6f9753bd1b1ebcba65ef5373dd62c38e755c44b7231b95d93d45761f89",
"blk.29.ffn_gate.weight": "8610d9d2db15c256243ffcca3ffd31786d0ada0af0e7c7aa3fd20524370ab036",
"blk.29.ffn_norm.weight": "1a2ef2d38b7ac3e51190b9ccb8b6552ba83ab290e523356a7f851ddb35dedca2",
"blk.29.ffn_up.weight": "a5fdd15811bde16dc27677cf1a4c97daab4c28cb12a9530f1a0e573134fdb69c",
"blk.30.attn_k.weight": "1efeb0b5f4b45a85cdf47300f892ac77ac1f38000ec3653565d1303d1fb8c743",
"blk.30.attn_norm.weight": "c73934c182c7fe80838ec1d0b92f50a583f75f7a3d78d822f009b58ad2c80e65",
"blk.30.attn_output.weight": "3a0fd89de2d274614750345d827a9c886a4f97b343a13cdf680390505df596a3",
"blk.30.attn_q.weight": "711e113362bdb067db843c66236704eb1cd3fc5f40e3767143e96d510686ef4e",
"blk.30.attn_v.weight": "82b12a9a74fd3d91b73cc2e841e2b3f0a5197ccd2998afa17020995f880d2267",
"blk.30.ffn_down.weight": "af9f4b1287c0d824ae22d6e335d19e04a70135b835be7caa2435f1d85e931993",
"blk.30.ffn_gate.weight": "e2ab3e6f15f5c50fca66c084cb6a57a2b6b82406d65150e82ea0437b93dd9a46",
"blk.30.ffn_norm.weight": "c1b9c325c83f00e177386a4d7e769945f2995e60950c4a576c0a2c4ab9703d04",
"blk.30.ffn_up.weight": "9b94a21efd419715d82071b490d3b635cf1e8da080620dcc39e5bde976d7e9a6",
"blk.31.attn_k.weight": "0db0d82e3ddcc2c06209f5f013e1d72a84a996c40bf00186be485b909cc268e8",
"blk.31.attn_norm.weight": "2b8b7239471f57140c5cdfe06bd224a4f6326282f99736e44fba4c7b120ac101",
"blk.31.attn_output.weight": "a310b048840cc3ff2be4b84796340e8e2cdf05ec89d14bd3655c109b2bfa9fcd",
"blk.31.attn_q.weight": "f45e0cd95645175ea82813455356d171838539bc3f7676d877c698f2af0a0eda",
"blk.31.attn_v.weight": "8bde008e809112aa7e7c23e9c3099087bcc557313b01306c87efa0a4a30805ba",
"blk.31.ffn_down.weight": "8266fec7e203fbfad7033120861e44984581ff8b6851d01dfb7b81c5d8fa90ec",
"blk.31.ffn_gate.weight": "b73bc0aa5baf006d9ef6403104891b8133671b0992398fe038380b67e0d7e2cf",
"blk.31.ffn_norm.weight": "9c62cc27a7b6017c1df8ad49bff249a8245e8895c6754f402cd44623fda83268",
"blk.31.ffn_up.weight": "5b970a4694ea3171a0167f6e1636d9f00268bc1c9640430ffc35218494884adb",
"output.weight": "74fa0ef08c57a30e633e7117b1e9c805f833e2e5e21434bc79ddf9c92c6d7330",
"output_norm.weight": "59b8a59fd3fbf39353506116e43e5e76edd0cbf2a2873d869da4cf27a04997c3"
}

View File

@@ -1,348 +0,0 @@
{
"general.architecture": "llama",
"general.file_type": "1",
"general.quantization_version": "2",
"llama.block_count": "32",
"llama.context_length": "32768",
"llama.embedding_length": "4096",
"llama.feed_forward_length": "14336",
"llama.rope.dimension_count": "128",
"llama.rope.freq_base": "1e+06",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"llama.attention.layer_norm_rms_epsilon": "1e-05",
"llama.expert_count": "8",
"llama.expert_used_count": "2",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "1",
"tokenizer.ggml.eos_token_id": "2",
"tokenizer.ggml.unknown_token_id": "0",
"tokenizer.ggml.scores": "e3d3eea80bb41a1213f2d0aa3e8a38581d1f19323be77dbd779c9c7e3b72e676",
"tokenizer.ggml.token_type": "6040635e6bd38d98af06698feb75c1802bad35180ee6ae0a503e38c0f60fd71e",
"tokenizer.ggml.tokens": "604ac4bfbd019e430d7b6cdf18c6c0cd5b967900601f0307f714ec7773aa5ca6",
"token_embd.weight": "1d1d1d39a867d5a4bfb32792a47247d2638c10c95a6259391d02843583505cc4",
"blk.0.ffn_gate_exps.weight": "2e5cd43ac3f26c44f071926ff6c3f239ecc52a34bc9a5b5906d3d4c1bf2fbbfa",
"blk.0.ffn_down_exps.weight": "a4dfc7e7c96e7402eb70279601675b956bb7331da8101e63fe5c0a611b6972e5",
"blk.0.ffn_up_exps.weight": "2d5d87b378b2319c344ed2c642598b6f7cb6beeb582a8ea51abc9ae690d473c3",
"blk.0.ffn_gate_inp.weight": "a46aaf5aba7401ce6e41f158242b4879d34901661f3ede85496cbd0ce79d6314",
"blk.0.attn_norm.weight": "3fe37d913bdd2b65076bcdd6efe64a37b0b03cacbb1b80b9f7089068aa35f38c",
"blk.0.ffn_norm.weight": "5e14308a3c894734eb204c8f558bdc817e94bbd5b4e9cb4094e91ba388c8f7f2",
"blk.0.attn_k.weight": "73d943dcac0911e87bd771f4aa1c901e1bfe1aed293af06e1a67812159859f67",
"blk.0.attn_output.weight": "4c5f754c855e262e8d4c94c6fbbb57af06399dc0e170d7d99a1a17fc9aab9227",
"blk.0.attn_q.weight": "d6fd7403c873d49c05f6f03208f30d99ad34cb3b71c9990c47334d502a8e4c7b",
"blk.0.attn_v.weight": "cf17cf64b2d683bd9de6cebaf60e5c264df6fdc38fe719dde9d54c80334f6366",
"blk.1.ffn_gate_inp.weight": "0d524de81cd915816b4e714bf595ad6946a9130b3de731cd89428b2781230809",
"blk.1.attn_k.weight": "2ea47f412992b374c70674730fe84700e0c8cce177086ce9b6635e42408964bd",
"blk.1.attn_output.weight": "b4b2520794d54113e86c8ff678eacfc62e35be4395a594a6c8c22b4383ebcc0c",
"blk.1.attn_q.weight": "5db930c98c4f91f6eab57eb974c72210b158e366d23d6d2890b2759c053bee33",
"blk.1.attn_v.weight": "079bdde09668394bf7af9f8bc175017b4f48f0ab64e6dd855a4d7561d1693c0f",
"blk.1.ffn_gate_exps.weight": "146a62de19f9ab093deb101f9640534ffc3dc40d69f508be12fc0475d01b0c7a",
"blk.1.ffn_down_exps.weight": "949da94a3c0f375160672a979e85f7def284264b10d48d038238aad5f5ece793",
"blk.1.ffn_up_exps.weight": "7016a3f467d9e3f2f4b4019579ed86b757469cd367f2b225483305376b4bb3c1",
"blk.1.attn_norm.weight": "1614d1e6ed537737275eb888666c7bac533f4eefbe73dec92b591045ca9e1afd",
"blk.1.ffn_norm.weight": "405a455fa7d1ec36894652ceb554bbcb09a07fd6405f42741e66dc4a4665c19c",
"blk.2.ffn_gate_exps.weight": "90d5003fc7421f44220c0842d43128955e91488f6f785fe570b62d81b719e964",
"blk.2.ffn_down_exps.weight": "ecdc2b5a8b504ef0a7833acff47d69b0c1fa9c22126de1bb120ff5e48c3d6e2c",
"blk.2.ffn_up_exps.weight": "2cbd9485a32460d315eb50a2f3b00863fd77245bfe885b7565efac1cdb1f191e",
"blk.2.ffn_gate_inp.weight": "0d0a17a1a2c7a61f2cca49ecbb479154dc93a870873257bc4f225e7607f2e2c2",
"blk.2.attn_norm.weight": "b2e4c5a977f87a6f880896bd73596234c9b83622fa0d7add5892501e3155913c",
"blk.2.ffn_norm.weight": "0ab875b4280afa922376cfc7b9aa3f7071c9432ea1254091ce7de3749df0e8e6",
"blk.2.attn_k.weight": "bb884af51fb51550acfef54ccf1b58ce8284e587806e6a2f88c8265e1ad05a5e",
"blk.2.attn_output.weight": "0f03099ba1ef342ea61af9cd71d028123bbd8b1dd7d7fd9b509aef77815427d9",
"blk.2.attn_q.weight": "8fad0d29eb4c9d24e564774ee3316b9eb7a4c4985e4567111d2c836c830f6cf3",
"blk.2.attn_v.weight": "fe04c847ff677632401a94e7b6b6fdca60391ab21cb23bd791533115de6303a1",
"blk.3.ffn_gate_inp.weight": "29e3aaa724590c070e614af8288939603d2641b0ef11e8c0f476bebb2776673c",
"blk.3.attn_k.weight": "231cc5631def10f7f292d8862d6125ff555164cd70480ac76362149fad204497",
"blk.3.attn_output.weight": "86467a605c62852e05fda1a7ef43150df2cf715fe59785dbcba09f1c27cfa086",
"blk.3.attn_q.weight": "901822402453922225c2d6ac79616691d48217635d5ff7338daa971d5ddee210",
"blk.3.attn_v.weight": "27030784f44375720df2f090933645a31a022d3fb3b14573e5ca0b78f44070c1",
"blk.3.ffn_gate_exps.weight": "231ba59cc0b988d125d77bf627aa3f04636684870af88f081f3944b48a160d86",
"blk.3.ffn_down_exps.weight": "530c3ab44ae4d66e8afa4d10c153ba5dfcdfb7321989a988e62e9d12e7234625",
"blk.3.ffn_up_exps.weight": "b85c2d4d9d11332e702b3c0a6610d4f525f9a93e5d12f5c7c55c592c40755e75",
"blk.3.attn_norm.weight": "05dbb6d88cfa6b199f9d705ccbda97c0ef13f9ec875c595398a1a42d009a4555",
"blk.3.ffn_norm.weight": "6880b1c27d46969ce36fac049c05dc8b89e4bb47dc89df357e32df7e18fc512e",
"blk.4.ffn_gate_exps.weight": "a883b4f225b760c5a2f6605dc5e2167ab85bb398c70bf64ceb539fcbd6128dcd",
"blk.4.ffn_down_exps.weight": "d291bb656aae77947d4b525e2819bf4112afece53ff31de9dab999af1f65f9c4",
"blk.4.ffn_up_exps.weight": "38592afb8ba3dcfb26970f906174f7d3fa62da44fa4be4fc6912a19030ea9164",
"blk.4.ffn_gate_inp.weight": "1596cb74e8fd6c3080b937b06468bb397b0dbb661e6d180a6bcbdc43e8bfd0c6",
"blk.4.attn_norm.weight": "f90c83c5ff4366281d283384efc941620542b9cfdea160d678dc54a75e33f758",
"blk.4.ffn_norm.weight": "d28d8c49d1746b7cc085562d1074905fd14023844de823dc4fb22202bb280790",
"blk.4.attn_k.weight": "792bbf412cc357140fdaba543e547a9b2f7582919e307bbd9a80c7d6d8f5f1f9",
"blk.4.attn_output.weight": "d98e4a062d2631d9c315f1990d5f6ca9a88e7e0e46387f611ccb0353f876aa12",
"blk.4.attn_q.weight": "1a11a55a91d9f748a72176ff6b1c174844df406e00d1b66b9aa64dc6ee4bcd1d",
"blk.4.attn_v.weight": "04cb3c02b12a6313c7ac7044513441083d534fb4c5a3f63bbaa58f7edbd2fadb",
"blk.5.ffn_gate_inp.weight": "cbd5cdf015d33a2da6703eb74c22fcb97581fb9175435173b6dc4f9e8364320d",
"blk.5.attn_k.weight": "4fdf3405e4d657403f5647b51233521310ee984b4b81bbcd901cb3e6ab76b7ff",
"blk.5.attn_output.weight": "4a25662c46979a29600ed77e1907cf81fb16ef30e724c155444e54ccb76af481",
"blk.5.attn_q.weight": "e2acb30e30b97300039bb20ad0878f05159d5657fa811748a51d5b6fb35d631e",
"blk.5.attn_v.weight": "306504b6a26aa123c63dbbed3f4ced0ed2ee8fb6a30bf0093539b817539f5ece",
"blk.5.ffn_gate_exps.weight": "7e34df9b9944dbeea5e8565786d3aa6937314a4b87acd4d0874687877c5a39fd",
"blk.5.ffn_down_exps.weight": "c4b7a57a42b5ac0a8ae27dcd5cb2646d7a7cc7123126d44a56ab128e85f60b13",
"blk.5.ffn_up_exps.weight": "09d47593b6dd6c664a9155bff02fc2eb7ac4a70219a88162d05c802a01d3c6ba",
"blk.5.attn_norm.weight": "58804a036d6ac4c1fe357b8b6a97a5c37cae1c2f06ee0086c041d449c1c6ef6a",
"blk.5.ffn_norm.weight": "d872dee6789f0826211aa46ca9d0869e3e96bcace9e77d6559a7b6f3e524f3ca",
"blk.6.ffn_gate_inp.weight": "fb1eae732e974d6c1d020a5b4ef98c5f33016f984701bcea656f999a99daad66",
"blk.6.attn_k.weight": "55e9c59c5051ab5519b3a7962e1b5fa96a3c0251cb6200dc2f177885ad2de470",
"blk.6.attn_output.weight": "f3c834a8d0027370350e2b6294d95434d31432e57be6313b013c15a56303d61c",
"blk.6.attn_q.weight": "efaefe5f11c2140dc7cb532b0832c2a0b363a165cbda21f00fadae77efca377b",
"blk.6.attn_v.weight": "900bd734d75616d846a90a121c97e081c956a3d1ab012f66dd0bc62c43e1ec3c",
"blk.6.ffn_gate_exps.weight": "312a99661b1468fcaed2474621116f1681432755e973f3ee79d01912974fd424",
"blk.6.ffn_down_exps.weight": "ac9cd7db67a2ef0d2b5def86873673d05e48d49d147dd944469dbb8e2d4c46f6",
"blk.6.ffn_up_exps.weight": "57613e7e09579400a1a09fee4445acfbfe83f2f327fdf317877787d96ada6b84",
"blk.6.attn_norm.weight": "0e8801e09885c633bc01a9a5b85d4e878d30158a4eb41a937dc5b760ebd044cb",
"blk.6.ffn_norm.weight": "b8c58062ac93072f878446b0e7f958c737aa47fb769fc3a8f593133d12db2dd1",
"blk.7.ffn_gate_exps.weight": "1ef611732ff13edfa8d30981ed9dac00c15ceba9fc012ed0b199e9280a849948",
"blk.7.ffn_down_exps.weight": "856c6811945c7b0fa461ca17811cfa43436b4cdf5326bad23cbc30883486d7cc",
"blk.7.ffn_up_exps.weight": "6725e3e33994302ee13fa5ec163631ce2dcaa08aadde8fc166c2265d4561c5c5",
"blk.7.ffn_gate_inp.weight": "36b49d7f80c1003dc392b2c1b9960cd49889dd69e77b26b9e4b13d01f3d0a32a",
"blk.7.attn_norm.weight": "7a0ec49acc5e20ee71c6f80ca02f4f1e564c485e0ae0621309e7c2eb0c616cf0",
"blk.7.ffn_norm.weight": "eeae035c39ab6e64bc06a4baa1bf6e50d4c8b8797cb0ad8abd48be86974802c0",
"blk.7.attn_k.weight": "e8f78c1def01a7a38d2d9bf7becb17755e28fefe4927856f7890fbee52840187",
"blk.7.attn_output.weight": "5367f05ac3bb49ef8745ba5902e1bdd4442415a3ebff2c7e1a3918d7be6fe948",
"blk.7.attn_q.weight": "37c95fc5acc55a4f6e5f02cab9be60e4fe54c08b65f98f4455741b4aa542ff4e",
"blk.7.attn_v.weight": "c89f1343486ba55814233511e94090f7365662a8a4214aa4c278cdadc79196c2",
"blk.8.ffn_gate_inp.weight": "4e239afe8c7afb8de3a005757c887cf14b1622ca2d224227591cb0e5301f4c17",
"blk.8.attn_k.weight": "2ad0229f30fdcc1e85ce64e00d8f75902238294844a81d5af43e14ba75c02983",
"blk.8.attn_output.weight": "2e44a4722acb3b521b81d0b910f8ca2f6c286d874a92ddd02150566454061699",
"blk.8.attn_q.weight": "1cd2b09cb2f43e08de776b5f7eac197a5a6d4ffdfd52b21baa36319450147bd0",
"blk.8.attn_v.weight": "5a22c57ebfd33ac500cbcfd321d5b5b1783f8728801db6f3f8bed51c7183e4db",
"blk.8.ffn_gate_exps.weight": "91063fe56cb4f3ff3b41052bb5046fcf8ef61516a603ee90aab893a9d68c15a7",
"blk.8.ffn_down_exps.weight": "d4c3abc8f1d1b462f67f70bd8f404b3fcf45dceeaa8527fa120527254c383c90",
"blk.8.ffn_up_exps.weight": "76a1a1f08ec577716a2e7027b45293e9205751126424f1bebe1de89c78f087d5",
"blk.8.attn_norm.weight": "f980d774da39eb76c52358afac3e38cb4c81cb323deaabbe5c41822e3f17a98e",
"blk.8.ffn_norm.weight": "1c937658cf90f1a85db9a5f26e077730fdd4b694607dbeeb825c5fb2bc407e0b",
"blk.9.ffn_gate_exps.weight": "a2532471ecb7896d5c78e5a34e10cfaf4125265e1595166c8d0d0dfbe2a3187f",
"blk.9.ffn_down_exps.weight": "b47921a28412d48fee450b8b9d97cee42344a2e69f06d407fd9523d7adf13333",
"blk.9.ffn_up_exps.weight": "7c461bd1b2a73b439cff6a10d94afa01e8b06f7e6f09d9a6f28e3876aef48bce",
"blk.9.ffn_gate_inp.weight": "1648dfb08b5c06d7953a5a97ecb764995fae9487fb729a1c867023b2538149d0",
"blk.9.attn_norm.weight": "8635db0f299882a63b7cfcd1d4259c9e53fab22c31d3d054de36b1001380b31b",
"blk.9.ffn_norm.weight": "f9309aa323062d174c463613afef9b0a33501b510bfaa58a8e0e866d12ffef3c",
"blk.9.attn_k.weight": "dfe62030441e947a588512d18d9c6e4ed72c2f71c227d622c095e4263b23dadf",
"blk.9.attn_output.weight": "1977beb75c6349c50ba7dd3865d7c0a9c5c5ddc854413147b0eec98ac4fda351",
"blk.9.attn_q.weight": "eb132596719605cd6bd1782487f121994629e115190edd69240b12af66e734f5",
"blk.9.attn_v.weight": "9e708f15d332d7c5187b0693b1a977eb30a2fa10bf7df48ed9d7537c0aa6ed99",
"blk.10.ffn_gate_inp.weight": "97503a5d166c1925f9b65c0eed980753d411714d66896f3d0fad5286c7aba702",
"blk.10.attn_k.weight": "1ebdd222336bd25b48df1b138cdbe09021c4a5562ea7cb78cadd1255d2be3a39",
"blk.10.attn_output.weight": "5e98faa38e9d514b9057e1c8342c509cbe1083defd518e506f6bad89117d1f5a",
"blk.10.attn_q.weight": "3323a26c87d936d1dd87c577d0b763459fced726679612c874b3de5fc6d969c5",
"blk.10.attn_v.weight": "d5fa73cb56aca388e205f44455e4b4f676fdc12ed7fac4542fbb3b41ecea59ad",
"blk.10.ffn_gate_exps.weight": "225021b53782800906cd13b70be3a4161e8b300b97f984a959ccad6a6e8adcbd",
"blk.10.ffn_down_exps.weight": "f08eb91526bd22f5fd0402fe925d6141cdbb308a1ced0330858d0c85c71f5ef3",
"blk.10.ffn_up_exps.weight": "a9f688350c3b53eaada5103b5848bd9a3d7d6b327a70fa16c24bf28ece933eac",
"blk.10.attn_norm.weight": "5ba426c9dfc79805015ccd76cd1068b0ad3bb7a8453e14bb1d35486f122d8f95",
"blk.10.ffn_norm.weight": "98891d6acbc3986b2581b7a3af9f5946a392d9188972c6a8b15d4e745a4f2482",
"blk.11.ffn_gate_inp.weight": "b2365a60566e7dace892e1cb0e62eb73ce387352601723e847052b34874feaa6",
"blk.11.attn_k.weight": "0efbc1d1430505543ff71532a4fcda821aeac616ef6c1dca40e00d4f2ff70bea",
"blk.11.attn_output.weight": "3d5bd4d9a41236f30d4293edb9ae27beaa113ffb31b4fbfadff3a4c370dfd3e6",
"blk.11.attn_q.weight": "aa11e9db14dd9c77951511443077c2a1a78070753d7bd3d9811038473f69e325",
"blk.11.attn_v.weight": "5adc567f377aa11d1763d35f50e53fb2896a8b03b623ac36acc45efa2486d512",
"blk.11.ffn_gate_exps.weight": "71d07d982aabfab9eed3c733d49c20f023bf475368fc71db5084d91beadc4b47",
"blk.11.ffn_down_exps.weight": "9a06e61461e48b3925a9f7d9cca634d048c8b62163d7bc5c43e35899f959319e",
"blk.11.ffn_up_exps.weight": "bc05494d0dcec61021b3ac0c5bc1bf502736cadf48224e213bc139d562699a89",
"blk.11.attn_norm.weight": "a5758a10bdd0404ae1470e8e9db903985d4d07f60553c5001a5e7b660d4f7ada",
"blk.11.ffn_norm.weight": "814ae037563aad3771787316bec4806c95bf6f5991dd6474b4b1e5cc13dc18ee",
"blk.12.ffn_gate_exps.weight": "3a68b831ba1606fb9ef6dffed4732032447ecef23ea563ff4e79317586c7eb49",
"blk.12.ffn_down_exps.weight": "268b25e13f4b7beab08686e83705a41b21d15251809ee4784526f78a580da829",
"blk.12.ffn_up_exps.weight": "9105751a5b5b42ca2614d0456f24f779d2e2ac8cdff0f96842aa7ae2b70f341e",
"blk.12.ffn_gate_inp.weight": "d0de1558cc1d458c5c504f63ddc59785c323df7330474bb0644c346104b40a3a",
"blk.12.attn_norm.weight": "859a4c8113678e2e202d10299850e0cfb52eb11ea50bcbf4fe3ff39bdd394154",
"blk.12.ffn_norm.weight": "7fbf4c459c1760218877e9ee3f5ad49e960956a4369bcfe96c143f04ff9ddf97",
"blk.12.attn_k.weight": "0a7e254fdf3730a57372b6ff421a613eabaea68cdefd64800857941411318374",
"blk.12.attn_output.weight": "ceb763fc15d88af149d8fb78e82db2b7dab3aeae584af8cf7611a12356a397e5",
"blk.12.attn_q.weight": "a43402d23c46cb2d3cb3c2a98c81b19d10026b7e6742370fed6b2880b6e049b5",
"blk.12.attn_v.weight": "3bc24f2c0480ce91ef72993ee8f1cf962f7359e12183424583ffa1246bf3db52",
"blk.13.ffn_gate_inp.weight": "a6d68c82bfe66d8bab68f980f5f18268a9e2c0cd6b8832ed39010e0de198ae05",
"blk.13.attn_k.weight": "0166c39546b37dc2e01b2b396ba43e183f797dd04eaa51a6d103d8b58ee4bace",
"blk.13.attn_output.weight": "2ce5eb198deab9557475a58b69b11e9874b547e05c23f223c6e42fa35ddca069",
"blk.13.attn_q.weight": "745c1bbdf434284a7fae98f45e821c076dd9c2a2467dba6a9d8cf0041e419dbc",
"blk.13.attn_v.weight": "9ece68d5ac64d1421ea7aa32e1cff9cc1fecf5175f4c4da858dd31d8633e3337",
"blk.13.ffn_gate_exps.weight": "ccfdcb4670b131689de12d396a010b5ea737795cf5c15a14a304d720b3c7c899",
"blk.13.ffn_down_exps.weight": "8b8fb328664764f1aaa5cbdec336d5654e981e965a02ef622bde5f07ea1c164d",
"blk.13.ffn_up_exps.weight": "d2ace0236c2fb3365fdc85499d676a7f65813c48e5085348b1df1799922766ec",
"blk.13.attn_norm.weight": "1ed29d7d89ce52d7cb4d57e895ff7115430466e917136c049c385c030ed44e9c",
"blk.13.ffn_norm.weight": "a194fc542597a4dcfdfaec5e3cba2a2b2b21b21edfc87c39c0d7f7651355bc4d",
"blk.14.ffn_gate_exps.weight": "a625e3574e5e740e7f8e2f9c40390f2f382c720aab5b10534e298002dd8d1fb9",
"blk.14.ffn_down_exps.weight": "bc366f015b83c865946afd74c8a884943e0ea2c671314a0b7bb72f21a44d2f78",
"blk.14.ffn_up_exps.weight": "ee3199bf2086de77b49f57f487676be8ee70e102a2fb5a5ef8ddbbc28a9eff41",
"blk.14.ffn_gate_inp.weight": "2b437870c850fa2e2044d032bb02908af634356e37466fdae260b933e48ee8b4",
"blk.14.attn_norm.weight": "cd8344d193a1cbd42bd898e17f4bcb1ca0b2918420fbdafa9249a6f2b7f4ae06",
"blk.14.ffn_norm.weight": "70eec40374e558fed5b07257283cf36342b6b0129285a00007deb59c32c9f7c8",
"blk.14.attn_k.weight": "4053bdb507e0543d724b632570bac86b31707696d90a0db44c49b2a082e0d599",
"blk.14.attn_output.weight": "0182632cb0e06a07241b8293d25d109fbc1862e1e337d435f908e8681e2eb1ab",
"blk.14.attn_q.weight": "ffc7794a4c1b6f793c842dba969435330a7a80b9212e457b4b2ac33e68b41241",
"blk.14.attn_v.weight": "6411805292d528e61bbaad8f9aab9dd073529a17946c057fb06864fad9cf3211",
"blk.15.ffn_gate_inp.weight": "77d0744567c76e6abb67f81ba9c715b2b544841186d5b948309571eff213bafb",
"blk.15.attn_k.weight": "1f7957954ea4c6521c257b35a360e868ffa02bdb3de91f146d5e06bb4a545c98",
"blk.15.attn_output.weight": "d7809d36bd8d3342240c46fd87bcc7f9821a222f48d9a95e45ae50460265d3cf",
"blk.15.attn_q.weight": "25f509313ae4d8401b871904059f472a26f5714e7c791c725de77a1a522c976e",
"blk.15.attn_v.weight": "96fedf5a591fc0f020e6de10fd72ff12b3ef9cf70cd21dabaa0d3e7b06f54e73",
"blk.15.ffn_gate_exps.weight": "8f950d976b2fd9a3d213b84123cf114c1377efde9352767fb2ddee89e177c8ef",
"blk.15.ffn_down_exps.weight": "6fd09d1557bb94b06efbd4f6a1ca4be532a202ba290e9315bc8da3d12a5c4c4a",
"blk.15.ffn_up_exps.weight": "cbeb59ae7b0266a928dc7e3a6e70a9330b92f9ee1b17ee1ed91022108204a33c",
"blk.15.attn_norm.weight": "2005330911ac2edc7b6d27aca021c67d30d16eb632e49b1a13f30fdb2717aed0",
"blk.15.ffn_norm.weight": "0e9198f3b548eb78acc8961f2b3350d238d26cec110933ba753a8cf0035c501c",
"blk.16.ffn_gate_inp.weight": "a41d1f99d739c8b150c3945b6949763988d0c6a4c5a2b5855592ca1a48ed23d5",
"blk.16.attn_k.weight": "b624e2ec88c2d3047f60530fb87e72cb4a5e655a9663f6f3e9b09e5ad32cddaa",
"blk.16.attn_output.weight": "687759ea75e45108526ffc1573d6fdf084728079bfc2dc89b9979e76280f43c4",
"blk.16.attn_q.weight": "beff3a45c7e9ec82ffc6d3c701126be28654d10aabd747d03441210491fd31b6",
"blk.16.attn_v.weight": "43a349b13f0b9d040cacecd942bcb168c030fef8c75c987d59a4fce6c14e855b",
"blk.16.ffn_gate_exps.weight": "793406d6c13d727c82bb7b692ca98d65ca975baee69fc57be5378d77c5a19b62",
"blk.16.ffn_down_exps.weight": "9bad3dd150d0230404b7f886ac7ff8803225757e813f195cdb26bad245243b4d",
"blk.16.ffn_up_exps.weight": "7449d663023fea3496475bf0a9c1de7272ad0ce9adcb3265e8e424badaa674dc",
"blk.16.attn_norm.weight": "a424ce34c195a401df1ce37ac4f2794e8a6720b1ee8acb21428e2b68c65e0125",
"blk.16.ffn_norm.weight": "405a68bb8e16e1064df2de55ca3cd9ceddda1d9fc0af007a9bd7cad4b2676248",
"blk.17.ffn_gate_exps.weight": "97c6e5321491ca5dc039ee88da0eb0e78f347372785411809af84b3298cb19dd",
"blk.17.ffn_down_exps.weight": "1617ac19788a1be19bac69277408761e6bdf5719d63a8c7fea14d41cc27641b5",
"blk.17.ffn_up_exps.weight": "4ead1c365f112581c10610ea3f63d2a1474311d2503d2060fed4b458ef337f5d",
"blk.17.ffn_gate_inp.weight": "ed4b3393f2523f2b5e0fc7680a1caa2842e605728a529b5af68a7fa8d7abf940",
"blk.17.attn_norm.weight": "beac17ef86a7fb2b5840cc72f7a95a5e3d6bd24e7fa698e0b0ebb9bdac45c561",
"blk.17.ffn_norm.weight": "81cb58ec6d6dc02a0b4ede10adc336dc865fa76f982d4eab0e4a37b40f5b0fac",
"blk.17.attn_k.weight": "eab569e5ea8c8b05e5a6a209fba031129453c2e28181eee3e736b3b04b36bbec",
"blk.17.attn_output.weight": "f85b70f01438ce8fe5d10599b113f30bf18dee2bbae0657d3eba295870001db3",
"blk.17.attn_q.weight": "887ceebfbf6a2b94b43d2df4439ac3a5bbc29311d4b28addc04d525546032047",
"blk.17.attn_v.weight": "2df9414d65014c06a93da22ba3a668be7b83e2e8008e98d7771f7dfebed98298",
"blk.18.ffn_gate_inp.weight": "9b07741a0950fc667e5fd25937e33bc22e1f764f80eb4ff3119f005327ae0f6e",
"blk.18.attn_k.weight": "8649598dbb63938744c39bcda5ce8c31773e29c573be8d4d2c114f5030f8d3e8",
"blk.18.attn_output.weight": "f8e391adb92622298ca834d5d1eda48b69c3b1c51c5a584ef6c54a725c298d75",
"blk.18.attn_q.weight": "84bf8708a2eed618f48f69c178ed7dd11fa4c468102376e72e910ebd037d131f",
"blk.18.attn_v.weight": "31db3cd773f09548c2c1b1eac2718e46364a7810970fe9c433fad9d8de5397eb",
"blk.18.ffn_gate_exps.weight": "be2a2ba378002f1b61f86c273a69eede9b93786d5ce96b4fee1861f730dca4c4",
"blk.18.ffn_down_exps.weight": "d35196159e37705db50a5343e3989f7335477f1a4add67ef42ad64a638cd07ae",
"blk.18.ffn_up_exps.weight": "c6ceedd86e97913a6dcadc838e7abb762d629fb8dd55f15cf02fd9bd66d2ba78",
"blk.18.attn_norm.weight": "41f0b1ad83d6e3cb9fbe0d27878c2e7ad4a351b9f554a6bc9117c01745cdf6e5",
"blk.18.ffn_norm.weight": "96646204bd0d82f25dc77faba4dbd86b1332e449313e6684e00122da8be99057",
"blk.19.ffn_gate_exps.weight": "c6eb7f61e7938bda0492dbc05e51e8f631c99224fe18e99861fc4fc53ba9e9ff",
"blk.19.ffn_down_exps.weight": "4384803da3a3a3d44120d7dd192fe2c9bbd9a1a0cb492dbec1fdd7565230f1e8",
"blk.19.ffn_up_exps.weight": "22d73de2fbb8bb0f1bd2caf17fad8a355c47d914143f7f6e6d0128f66f074a60",
"blk.19.ffn_gate_inp.weight": "9a0cc4a2301a5634022fbce41189021bf0d1a961792d2d9330fd35556d18e5bd",
"blk.19.attn_norm.weight": "c5cc56ec5df9a1f7d5ad71fbda49f1433132e58895d45cb44c73420bd61ebd6b",
"blk.19.ffn_norm.weight": "77e17de741742ef2482fc7872fd423c8e3c1454dc4d2be89ee939084b6d78bc0",
"blk.19.attn_k.weight": "a92ea36ce2e3569656306aeefb835ccd5d1b03b33a86e0d3d030644cc923b813",
"blk.19.attn_output.weight": "5e2a912b37855f84ea964907a1a86d609cbdd79efa0c93c3e8e2fc07caf7c226",
"blk.19.attn_q.weight": "4ef3a5913292ac3c1a6fd3e9e53d011021f2b41d0276cf849706d1ca925cf7a7",
"blk.19.attn_v.weight": "42981b75b68ae852cee638b5433605c147da4392aaa6d7a06e756115b0171f39",
"blk.20.ffn_gate_inp.weight": "71381b9879a7c80b9f7b475abc0aa31b8cd71ccc00856ebe89764a2acb9df2dc",
"blk.20.attn_k.weight": "1928b7ebc054eb3967929ed6fb446314d5352f4aaf8b475ce55c6345019f2ea4",
"blk.20.attn_output.weight": "6071ecd9ca91af0d2ba93fef4a1a56f3b243dd70f862a21a2d164d56f386043b",
"blk.20.attn_q.weight": "002e95042a40f36ceed5829e3d0c8072e5f5e4ee86a089e2902b2348fed24dd5",
"blk.20.attn_v.weight": "42f509cdb1c0e298f89f896e349be86952c5168e49b3f83bb17badbcb7596d57",
"blk.20.ffn_gate_exps.weight": "a684a3ffe4b0a57c819a5fa9cb3521de223f392732927271e97ce925b6e33765",
"blk.20.ffn_down_exps.weight": "e3081a7bc7ba750d8a4886bc8ca4f231b55db4ca082b54b4106c7531964725cb",
"blk.20.ffn_up_exps.weight": "fad0fd5eca36ab154788da28be8ec25bb5d6db06c9d133db89e96df358a2f6a2",
"blk.20.attn_norm.weight": "c3e3f2429715ae95e884ef1246b0b461b23c5cc0ed08beecf70a14cddd184820",
"blk.20.ffn_norm.weight": "ff31f609dda65ca496b0584fabea6550e42edd05ebf229812aa6b7bb5ede15e6",
"blk.21.ffn_gate_exps.weight": "366f09ef0ecfb86808eb3296cc9abdb957951d27f6533c03f1422b54061da660",
"blk.21.ffn_down_exps.weight": "3fc495947d27fcca7fc0893c8a96e5d48ba27b2c8c58f8fcfb8dcfcd5539741c",
"blk.21.ffn_up_exps.weight": "6713ed51410bcc8283cbb001c4ad784098f25701e8021f4fa4f411e186859c4a",
"blk.21.ffn_gate_inp.weight": "6d4c92c01ec801647134d907bf1108878156df266a6107abc10526332b328b93",
"blk.21.attn_norm.weight": "27605719ae2df24f4f2e85a730927cab20367631612cb501631f6bbf38eb1209",
"blk.21.ffn_norm.weight": "ca80ee8177db185b15a4a378c1cb6f7143c76546a7f1726bda23f329323d4ffa",
"blk.21.attn_k.weight": "9e49f743d4a5bda9b4bd9c40c2ca37cdae5aec7e54cb193897ac8b4945ada14d",
"blk.21.attn_output.weight": "ab923540879753feaed152f5950f69cdd83d8f2413ca873f5f038b63ab0aea12",
"blk.21.attn_q.weight": "62617fc3f1c9d2aa672a4d91a121c7a91b92d145b65e75f0b06b4bb7c825dc36",
"blk.21.attn_v.weight": "15f8b2e72f8e8e992f2f6b3e93238a9d7be7bd6136f91c9d04b4b4cd0cd60369",
"blk.22.ffn_gate_inp.weight": "3ddb1773d9257b68add7a2a4e94dad25ed926803e02707863dd742ab9b2dc179",
"blk.22.attn_k.weight": "680e45a9e8d5feddee5266e119dc053bf80718fa9af1cf6803e6f493b265f1eb",
"blk.22.attn_output.weight": "0d5fae3402fb2c5aa3a860010e3973fc8e3168d1015f7a76b7b2964681693206",
"blk.22.attn_q.weight": "eee7e3d426ab533bd18d62c9aa142eedbde394bed07db58313e0fccc82a23237",
"blk.22.attn_v.weight": "26b5be1fe3c2b6824c5a648a3e4bdf17691904526fca158fbc3ebb627b67e2f4",
"blk.22.ffn_gate_exps.weight": "32ab7a7735313d60f6a75229b1aeee940b6aee176c9648536bf5921b0dc2929a",
"blk.22.ffn_down_exps.weight": "67590808f6a67777d3eb7976c31fe616d388b98fecbb12253b72d1241d70753f",
"blk.22.ffn_up_exps.weight": "fc245c0183e6d90829ff5e71a4ec93e4860b3d4c1a17b9dda2fb64f5f5c9ed32",
"blk.22.attn_norm.weight": "128e99d206d4d6724758ec97468af767fa0aea592149c324b731659c1e74a1a8",
"blk.22.ffn_norm.weight": "e45f498033f0cffa15da0eff2c47b4472e43fcf8921729fc4eeb2e3a6b3c78e2",
"blk.23.ffn_gate_inp.weight": "d63e686f5325fbc89fa242c2c52a3b8ff54f867dca914c9ae6eea13e9d6f46e5",
"blk.23.attn_k.weight": "f71f5a577f46ea12b1818f3a5ff4b85ddc45f9a2afb0fa2e041d71a3e31c6779",
"blk.23.attn_output.weight": "92b13563c1e0eac0d748fb67b235dfd7a64c8f16e2dafb316885744582e23b4b",
"blk.23.attn_q.weight": "2f9b9c35dc4f912f3f51c06e2d68f417b51a0de0a84aac530a64f9d3d7b0a2dd",
"blk.23.attn_v.weight": "268e40813806e74a5c364b19556d087bf8374e76e7b6fcf55c381eb7da13ccd1",
"blk.23.ffn_gate_exps.weight": "12f857e7a7ce228afac34d99b602c8d6fe96984f2a21118f459a58cb767ee65e",
"blk.23.ffn_down_exps.weight": "cdb082c16599c3bb36a28066dcc122d9529b54fa91b6cf0153437ec960a5e16d",
"blk.23.ffn_up_exps.weight": "f4b99f6f44d7b8b5a305894e88633bf5938fc1f6303a2b2092399da9c8b64d7c",
"blk.23.attn_norm.weight": "a691392210383915916b4d3886d5e4d56e7855e27e37e414fbd73bf66b3712e6",
"blk.23.ffn_norm.weight": "0c3dc72f667e5ae19b69bfa9f2bd2a01a57681f89ef9527bad4eb0d8c7b70da8",
"blk.24.ffn_gate_exps.weight": "86baca2a3157994df7fd8ced5e08436d5c1810dc29c0715637c36de723e0e7d1",
"blk.24.ffn_down_exps.weight": "ac5d559562b35c34993e34b071f66d15c65be5907797078c2d2a49aba54e3192",
"blk.24.ffn_up_exps.weight": "fce0a099cf09777f44fbab3606ceb75f7fae6f0b80725f9e871654b8cdf9262a",
"blk.24.ffn_gate_inp.weight": "e7c6800c0cfc56b565b2d35ad6f1dbfdb70dd0b05b338bc8da2286ffc3678d79",
"blk.24.attn_norm.weight": "dc6cc18ec52d102d015153c4a1132f9d7a504e29cbdec81c5edbf3b9e65815e1",
"blk.24.ffn_norm.weight": "480d5a1397af5e0e657f1e67d20ec0cdef5724e71246a326843321b87ffabd33",
"blk.24.attn_k.weight": "338c0597954a9b95a782545b2fe36469553e73f86ae2d2b5697767b28e1c7daa",
"blk.24.attn_output.weight": "a77d23b79933c67e52f1eef7f83a3dff4f767ce0bbcc39572f8cec4acd457643",
"blk.24.attn_q.weight": "45c9478593002be1998e96e70668aafa2dd3972380fbc1df12fb05c24ba959e0",
"blk.24.attn_v.weight": "515729420885408a6a9614bc27cda393ed907521318d14d21335d39a3eff0b61",
"blk.25.ffn_gate_inp.weight": "aae4ac40e9ab3925241f9d784b54b38851d9bc999a6c3bc03fc3f17c9b28a67c",
"blk.25.attn_k.weight": "4ab4808d02396c35b00b426f536015673b71c17ae6cd55bbc2e6bfe7a4c59d0c",
"blk.25.attn_output.weight": "1990bb982b77e0c947cd1a8ef0b36227ee1259e6dbbc2829e5c136edf88675eb",
"blk.25.attn_q.weight": "a1490f3048e8c0ec8784f8550c43adf5cc8d0f2f90131c934713fe4b1b015bd7",
"blk.25.attn_v.weight": "f15e53c6d45b3b6f58808fa968425d65e0b26b7f9b268127a77abb1227c67431",
"blk.25.ffn_gate_exps.weight": "656662447ff54f56ee80f78a1b9483f7efdc40f7375d0cd8a9c72ccf21f77e7b",
"blk.25.ffn_down_exps.weight": "db06f101bccbaef19cced0f6c185166e18202465f4a42cddfd535fbe5cbabb4a",
"blk.25.ffn_up_exps.weight": "584a7b02456f27fe1d8d3c7ccd21d426b6ea887795a3ed77f704596a1e3841d7",
"blk.25.attn_norm.weight": "8f0f3597982930fd237e9d609776c64f2b909a455b21678f83a7ebd4bbb83e64",
"blk.25.ffn_norm.weight": "3e7079c32582afba0c55e032f254adc18d2997705eec860185e9a6dd3d82f07e",
"blk.26.ffn_gate_exps.weight": "e70341691b583b86489812b29b77aa41eb658b1865733d6118da54c66e3bfcc6",
"blk.26.ffn_down_exps.weight": "5c1b812d11dfb064af816ced5ab6463bf9722eefdfc341b8a93705d5038fd781",
"blk.26.ffn_up_exps.weight": "e18118362ae54ef7432781c83884f9fb230a9d934e342aabeda8822ea5f71fb6",
"blk.26.ffn_gate_inp.weight": "cd1c5f6710166b9567c6b74c97b2348b191c60aa860958c6bc264ab095261dff",
"blk.26.attn_norm.weight": "71d087531af2520bda2e676c489e8529cef5db8aeea1eec0a937a8b4f2fa2e54",
"blk.26.ffn_norm.weight": "7f704e936fda28eb5c2cc339f0f6a5f78170b5aa43c01265b21668870d819c82",
"blk.26.attn_k.weight": "1cc62a0ce0ae251275d898c52c4a9fba5995fca10955d2011d10dd1a59e1afb8",
"blk.26.attn_output.weight": "636e881b1505f9cef656a4be98bec6a4765321d51f9bf1dac8933397cf44b765",
"blk.26.attn_q.weight": "89a3c4d202d7d6adebb9e0c1bcfd8b775f6456386f1be25e86e43acc949c1e16",
"blk.26.attn_v.weight": "ff2cc963b597cdf1a21703f3e7022af3bb4c65a34a19e19d9309a7c5e198b5bd",
"blk.27.ffn_gate_inp.weight": "6150139498fefe380bb99d11e72028da47a15ecb73dfc5b2774f726f4bed8f9e",
"blk.27.attn_k.weight": "f286eb9e5c56c7b801a497aedc40158c2a27877d7f9fb59b3fc67834798902d2",
"blk.27.attn_output.weight": "5dc3d3a05f9f7729509147fd09c16fb53f85f520cdab5cb69abf4bae3fd460c7",
"blk.27.attn_q.weight": "8462e40f86b24251960d6f35a9ea99b8793a01937faf1aec2859f2e5395dbb61",
"blk.27.attn_v.weight": "bac1a99e38e25953f8315f7212eb9777dc216cadb09b959977885ae62724ceca",
"blk.27.ffn_gate_exps.weight": "6a15eca7f0f6ecfd93db2e55c63875348ec4a78c4ff643ec46df9e958c0101e4",
"blk.27.ffn_down_exps.weight": "2e1c91247c4359e2073a8e5f26fd7f6426da7be3ed5bc65dcfff701f0a5022b2",
"blk.27.ffn_up_exps.weight": "65d6f5c553c9332085eae4aeadf25090b5d7768212ea7b08ed698102c21b29a1",
"blk.27.attn_norm.weight": "7fab8ae63ec8e91ce625cd130ab96d8427dad3a7413bb21b25ec5f408c5b9f5a",
"blk.27.ffn_norm.weight": "532720546b0fdcd423a02ca6e3e9d8aacb84b1b3e8269968f88a47fe2a69bab4",
"blk.28.ffn_gate_inp.weight": "a305ea58d98962d9dcf0c53ad2389b7acc8936fb35a0e3fc9410e7767cd49dea",
"blk.28.attn_k.weight": "8315e8a2e4f78dfdf36d4fc18fffc74bc95fe42c3ae4f9af2b6c874612c0f71b",
"blk.28.attn_output.weight": "9b5fdedd32d39ef46a22cca7cd5355d7b93bd07ea305f466a8aad6ca5a4f3778",
"blk.28.attn_q.weight": "4e8fb96997c30e231c437130f410d7c91d541a816f6c568b5f3bfdb4b8dece74",
"blk.28.attn_v.weight": "1fec739cf3bd7b4913f72ca358d4cf31391c304de44ac0ae31ecb825beaa7cfd",
"blk.28.ffn_gate_exps.weight": "9f259789d535e09268266b9a8020f32d6a6779966c909d91d3a10574f06238a2",
"blk.28.ffn_down_exps.weight": "516d3f8abaedb01b9916a4b67d4672159769138ef2850158bc1b32c41e31f0e8",
"blk.28.ffn_up_exps.weight": "f2f1d88d2c31ed588806fb5ad981d68f5134d7284c4fc022fd018de2eef437fc",
"blk.28.attn_norm.weight": "960fd005598deadaebd969996f4367a9dbfad90539a863674fe95730935acc64",
"blk.28.ffn_norm.weight": "e1993b37ced93d4049e9af2c47b0d9207d8f7e6f2cc3a52f57bef30bc806d805",
"blk.29.ffn_gate_exps.weight": "58927146338f443513337476b3cd30e6341742f096c2beb5890d400f10121298",
"blk.29.ffn_down_exps.weight": "03a3386e4f0b75a28c5608e23b2de8f0de25f21954e4aa7fc343431bde9db07e",
"blk.29.ffn_up_exps.weight": "6916b7490a7ae7b04a5d81cc1e7ac9b20c483434f3b186b12d87fe176bf1567b",
"blk.29.ffn_gate_inp.weight": "98e710e467a3d567abe4ce29d78b8e8dc033148762290c0c5e1ae4d78efd8c78",
"blk.29.attn_norm.weight": "4e64cb307d37be20d55f38c94faf7e451d11df5e60df347906cbaf9c5441be71",
"blk.29.ffn_norm.weight": "696c23a52f742679bd44440d687a4c44b4302d57f1e9dc5610d23374336187e7",
"blk.29.attn_k.weight": "e85253652fd6120c623634ba66b725bf7cd491318b54ccdad2c7df8851d64c0a",
"blk.29.attn_output.weight": "4f650a71efb150d1f24cd4d114d4187bf570ac424da3b92ea6455abdf1aea705",
"blk.29.attn_q.weight": "69fa7da901026ebcbbbc848455b425458b7e3295007d7fc093acf4b38e2166ea",
"blk.29.attn_v.weight": "17e2e7590b317b21f106de546aafd955579703d1e95d6aea044ee72ec3a514c9",
"blk.30.ffn_gate_inp.weight": "3a03284b4aa60d59d4a2ec86253469b61fc656372afca427cb77a5332fbcc62c",
"blk.30.attn_k.weight": "d518cfd0db9708e769eb1399e87ee49357dc54d5afdbac3d4c0ca46c64e789eb",
"blk.30.attn_output.weight": "9b44378714d784c5ef9ab604359091baca4e0ec222afa139b7f840eaefb371fd",
"blk.30.attn_q.weight": "cbb95365bbfbcad0c9cd99b4eebb5a5d32de68ce08e4063b5ec3e792b7548044",
"blk.30.attn_v.weight": "e7985c04fe1740e35a9598f43b67b0922b4fc2d00b68a92a9f917b82c3248de1",
"blk.30.ffn_gate_exps.weight": "8ac4bbd07935d98f895ba94dc174e5ad5046c3c222b53729d60f987c05e7eb70",
"blk.30.ffn_down_exps.weight": "dd672cc71e82abf05064a18121b8e55fe1a4f19bc1d7cb9a142f4add54bc336e",
"blk.30.ffn_up_exps.weight": "12282f664a2a12aa25e2deac58946108715ebb978bafed5274cef24569107646",
"blk.30.attn_norm.weight": "1a33458fee054c6c9c896a4bb0a4e1fbfa0293b2408c7dd2b81d692e966e7273",
"blk.30.ffn_norm.weight": "311e33b68051f507f1478ed8f2693fddb846170ddb7285a91be43f795c2ce31e",
"blk.31.ffn_gate_exps.weight": "8af43d9867a51cd8392fb48b981b0ceee0ae979c491c07d711b3b56b5162c786",
"blk.31.ffn_down_exps.weight": "5579cb7758c1600b19d1f540deffe081b575962e37437b3b2efb2fb0a2924e40",
"blk.31.ffn_up_exps.weight": "f2e7c005276b3a001fb40753f027fa10b4d5a346f43cf4b4bbdeec6e74e1cf6a",
"blk.31.ffn_gate_inp.weight": "89885dc0e30b6b16a90c0331d7fa3174671e941364e8102d934f02132237e61b",
"blk.31.attn_norm.weight": "99e4e9bf86a9edf8c404153a7e8a82324ba79da462622196e2faba161bd95172",
"blk.31.ffn_norm.weight": "55335997cf6de781bf332b943de96ff4646966b05d9fee86b76ea897e27b6ca7",
"blk.31.attn_k.weight": "cee570762b78da6316b637892cc4b080e40f57af5551ffb1866b9a8e80e96628",
"blk.31.attn_output.weight": "fa321ff55ec7819ead7b819fd45215262f39744569765ba2113c989c03588802",
"blk.31.attn_q.weight": "9e2c409b878f8a2a1436874abf428fceb1c534b21f9ad4dd6f532b8a469007f0",
"blk.31.attn_v.weight": "a845d0be68ba537b4a775bfba4d897faf7c82a811a2612b0b7420cc4f3574cb8",
"output.weight": "16101cbb74b54cda9ebc07ca3c762e3263a56efb3cc011156184b95807d7cf13",
"output_norm.weight": "d7aa61585baedd60157aafe157930785742c55989c288573566a971b02423564"
}

View File

@@ -1,188 +0,0 @@
{
"general.architecture": "gemma",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma.block_count": "18",
"gemma.context_length": "8192",
"gemma.embedding_length": "2048",
"gemma.feed_forward_length": "16384",
"gemma.attention.head_count": "8",
"gemma.attention.head_count_kv": "1",
"gemma.attention.key_length": "256",
"gemma.attention.value_length": "256",
"gemma.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "485e40bf3d715a4764818fc097d6a2a41db872d82ee714bc500872a3437ff48d",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "17b87ab2c01c80657855a5413d0457b4a041afaeda0cc785080e44e2f04acf07",
"blk.0.attn_k.weight": "28ac0da05754ad2714ae95da28a5ad191192140b30b8fd22d108d4700c9d989f",
"blk.0.attn_norm.weight": "3f9d5675d1ab0eb8a816719dac9fab81f2e95c52be02c34263339acbc087febb",
"blk.0.attn_output.weight": "703295c2c63990ff896778685c678f145298886f680f3ed5dc2a7ad54c293265",
"blk.0.attn_q.weight": "69c2d0e4870e9d722a190d356203c9605575a16863466c3d1747966ef1cf5791",
"blk.0.attn_v.weight": "95219c9c07b5ffe9a9a01e456d845eef2b11f4fc12c93dbbba479db395444c13",
"blk.0.ffn_down.weight": "a2feb5eb3d572c57c5bafbf0ab506862df1160fe40965dcfe4b9fd855c08bed7",
"blk.0.ffn_gate.weight": "fcca072c445c31f4dc4d5dfaa785b1bdf7271342442099b74fd17268b5829fbf",
"blk.0.ffn_norm.weight": "7621f95dbd245cade6fffd6b08797d69d8e3954e960f0b5551b90d967ab95448",
"blk.0.ffn_up.weight": "14a9bcdd451403c67136391e1b6e53b3b1830f00199bd911dbcc56d8749c14f4",
"blk.1.attn_k.weight": "c70f73c5df20579cb44d971164b48b5f0d8d5abdb38b381e7a8b880ba12aa406",
"blk.1.attn_norm.weight": "88b6b91f93a1ef83425a7c7dc2a2fbd3b22704a04c64a80061df376ac8c33626",
"blk.1.attn_output.weight": "f031a537490c452be3b3bb51e6b7949a636405756e160976a1c070a792ea00ee",
"blk.1.attn_q.weight": "bdb23214b1cf9cfd30f863a0a5868e52c6809d93b7e8f44df096a94204d9896a",
"blk.1.attn_v.weight": "e9bbc0b05f2c872fb1403f8f938cd1612b502229ee401f12593b1164c61acc00",
"blk.1.ffn_down.weight": "5ff53811038b661a7b8f2bfdf213bebfb185ec1a6060b662f063714f33584d79",
"blk.1.ffn_gate.weight": "205085c8c951a5c7543b1495183cd96028fb49f67464b3e9862a2693a6077a33",
"blk.1.ffn_norm.weight": "798f354fc85afce9625f5d10093a585a966831698a0560e6c9b97ce659eb4b22",
"blk.1.ffn_up.weight": "db92dc5684cb6e90940e13f4d1da555ed20ba4f8cab1e990ddfd7553e2e91315",
"blk.2.attn_k.weight": "ef5ce360c4eed6d00d03ca4761e0f8e4b0af4509978468314be14f3d46621044",
"blk.2.attn_norm.weight": "6dadbc05dbd0d3fabb4216affa60a3de1378a82d2859dc90b338cbe70f50d455",
"blk.2.attn_output.weight": "6bbf87a966f691bbfd7c8d25629aa4e6710107bd431a667434861febb391edc5",
"blk.2.attn_q.weight": "4e575c09ae2de417ce9057ce8b073680e860a24aae13a472b68f101b760752e5",
"blk.2.attn_v.weight": "cd33f7f01141e9439afdaf2ea1aaced9feaa335e32a58daa136ebd555d4d96f4",
"blk.2.ffn_down.weight": "b970ff1b0b6494165defe2fbfa1d31425766ed71e64de9ec4e66ac3955c8bc5f",
"blk.2.ffn_gate.weight": "dbb3e1360402e0e369b101995bb686b73f95d4a7673f061be85d64d15dfb0061",
"blk.2.ffn_norm.weight": "bfb7980105d8ac9647710454f57a5cdac50598a0f6f4884e16f1d94b00844687",
"blk.2.ffn_up.weight": "50ef89339b275a438b664686f6227dd9b6e43853ed6856ec9e33ef4bbd90bda1",
"blk.3.attn_k.weight": "be942ea98151434eebcd2c1da4b00e0146152fe524a530689b1fd491cb833d21",
"blk.3.attn_norm.weight": "0df2f218daf609c289fb7c60c5f375fa99c0d4e04381ad5a494a19144edd8e20",
"blk.3.attn_output.weight": "c2184aaf86aa2cb8f47be49f60b165834e97205f39c6ee1dfd19fd4411a156ce",
"blk.3.attn_q.weight": "4f86e2a0a4221c1c84ff9c409ac89893cb95d7208cf65bf1e98e24e01125f991",
"blk.3.attn_v.weight": "abfdb8a60c349dadde641d1afc9542025e24fbf41a3238bfa9675e0b1f1e4b68",
"blk.3.ffn_down.weight": "58821a8d87008d47d122427911c6fad5272aca70c448bbae223256a74bacd07e",
"blk.3.ffn_gate.weight": "776e051f1a0ddd5c4934e69186683a75ca9a3c8c0f61911bba321fed1dd287d2",
"blk.3.ffn_norm.weight": "7f380f29335e28be90bfcfae6f6d69fdf5751211b36d2dd62aa5541ed113e4f2",
"blk.3.ffn_up.weight": "fc5ae8d488894cbd4951059675468d227da27871d26e925c9941863841c097ee",
"blk.4.attn_k.weight": "14833b078cc4c5137bdd5fdc0538047974ca147a99b0282e1b144440c78bc1db",
"blk.4.attn_norm.weight": "0a69957d4a15599fb80ad4753558020804925221457d9a5052926754d3768065",
"blk.4.attn_output.weight": "887a49b6130fb6297cf10767207c3dd97191b2cf63723449af9c27bca8dbeda0",
"blk.4.attn_q.weight": "51fd577b76764824dd6f0d4891c137ebe4736f591b5ca2793c5fff2be49abbde",
"blk.4.attn_v.weight": "1a623c43cf9c509d1b7ea0d1a5c04d0af4809665f9f9e93b7d6dba8c5df178fa",
"blk.4.ffn_down.weight": "5d61e8856d8941d2b1fd138116d015f63840d0fa1e31e20e20a5ceca1536ceec",
"blk.4.ffn_gate.weight": "06640f7273764f8ca5df7e386547417916b6cd7d565a8343153113239a94b0a1",
"blk.4.ffn_norm.weight": "91a6c6c41b894228e361435ecbc5058dca34d4911a23da5b56de219299c964d3",
"blk.4.ffn_up.weight": "d016dac1055e36d6a10b6317e57f98a904709ea892ef3194342f4d2f6326561e",
"blk.5.attn_k.weight": "987146afe124131500808cc0da33c06d207433656d41df6e6d8c99118a83bac5",
"blk.5.attn_norm.weight": "6b354938966f2608a2fb8d0f5b363ed0d8b0967c2ec8d0abd5c625b413042ded",
"blk.5.attn_output.weight": "cdcbfe02c6ff79d5326882b017a02099f5af71beedf6b1b3eb4de01e3a844536",
"blk.5.attn_q.weight": "b910d0cff781d3efb42eab0a302f46f286b2de717079175680d5b42bf8c309c8",
"blk.5.attn_v.weight": "66d3a279f747412f9f4b0e8abad44540c122ab2e811a7ee74c1f33bc36caade9",
"blk.5.ffn_down.weight": "c9b0efd2212981f16d956d8571f054b68780ad01f4917033647e359b557a4653",
"blk.5.ffn_gate.weight": "fe96b94109ca141c01f6a04788e20783019ca6ec334aa1f3134810bdb499e557",
"blk.5.ffn_norm.weight": "aa7b016e832e7055a36c6e20de58ea1936f995f390401fff1c5fc65906064e49",
"blk.5.ffn_up.weight": "555ce27c4873d3375394f38ad3b45e3d8848f9d5642dc1602383d0f0a33c2a14",
"blk.6.attn_k.weight": "88280d461db324c4f36475ce396793063e61a27283ec64511b0480890fb5b3b4",
"blk.6.attn_norm.weight": "af8f460c411f660d33196286d208f1845fd5a2b45f7b56549a4df31e7515447a",
"blk.6.attn_output.weight": "dd9996fb0a256e8375ad3917705258a33fce006bcea0f536caae420a77974d8b",
"blk.6.attn_q.weight": "7a4841541191e037cfb9b07930c4d8cab451809658b182f0ada6ccde9615c003",
"blk.6.attn_v.weight": "ae81e6a592b64d701a9d40233e986039a56cba8d8d24f61aea93c6393cf3078a",
"blk.6.ffn_down.weight": "622dd1ce1706355cbc659a8ab2c4509678ffe0f3ad34258e5e25ed2a5d951bcd",
"blk.6.ffn_gate.weight": "8389a735c0bd5591010f8ced9805a2a12c749f6df0d3c18ad4d05c2a302e7168",
"blk.6.ffn_norm.weight": "621f5346400382474d61358397bd58fb1459b07c53e376e4bca15e08b3f9b3fb",
"blk.6.ffn_up.weight": "8d834e4c42f13c251dfee36cf89e12f1bd400680d00d5c2e6cac0459e9ce2f7f",
"blk.7.attn_k.weight": "8bd0412de65a3e64901ef8fe6a28c95e116bf39dc9aa22f0126b9d36688e5ea7",
"blk.7.attn_norm.weight": "056d8e56be4e87d6dc6f900762f0dc6fde07bfdc50dd85bfc510415e2bba3f3d",
"blk.7.attn_output.weight": "27972eda51da53d416ff95aed78149a2c5a287b47d2cd46f2f544ca692ecb3bb",
"blk.7.attn_q.weight": "41eca977b9371f7932800c11a9c45b931310196919e2a0651b847703b180fc7f",
"blk.7.attn_v.weight": "13c74fd7e07f08883a09fb070a1fe5bbdd2341b4cb8d1cac07c4b637049b5774",
"blk.7.ffn_down.weight": "9e75db42468800849a9a7da603d0072c5e86c8ed2b4d8b20a312a51fb86a7a10",
"blk.7.ffn_gate.weight": "db6bdc3117f910088aaf7db51f2da63ea5bd933de36af5599c215bfb26f7db2b",
"blk.7.ffn_norm.weight": "48bb82b49bfc8679a1e77f282ee182d952db7a3c11be7ef9a102ee2ddd8011e2",
"blk.7.ffn_up.weight": "feebea87175817a0f3585ec0af09dc873d94c203581ae97a712eb356d3b49efe",
"blk.8.attn_k.weight": "d5640ad71b6af68d88e17bf8e7fc26c907d2262605457a84247dd9afc2884d69",
"blk.8.attn_norm.weight": "75b850c481a69083ae09d0207ba7317b37c735a39fcf5fef5400e6c84fb1257f",
"blk.8.attn_output.weight": "cbd669dbdea2bdd90f9f0cc97566b3dffff3c56cecb4f47290ceef30da83b2d6",
"blk.8.attn_q.weight": "9edcb63087a431bac361822497e6ecdaa06d9ea4a1a754e36da7ba9f8db81c7c",
"blk.8.attn_v.weight": "3fb72c2c4f95a83626aa3e30062f9450b09ab37c7871e229f18bbc5cf744633c",
"blk.8.ffn_down.weight": "bd69d2c9172974fff154441b237b4787fb53b2d185325442d5048130ef5bc4ef",
"blk.8.ffn_gate.weight": "d04689c80553edd011d1cbaa5d570fffa7fa91e88b66cf1352d89ab60b72f908",
"blk.8.ffn_norm.weight": "e49984183b735b7f2c4e4730c289eed9394056d2e283a00fd83ea0915df31a73",
"blk.8.ffn_up.weight": "8fe62a1ce8e847e567add6c6f6bf2922bc467495b5eb4c116b3cb85b85b3b211",
"blk.9.attn_k.weight": "d90904959e5004cf0d6e729c6bff18cc33c094798b802473c1ec55ab8d276183",
"blk.9.attn_norm.weight": "79277f290cc07411115d8fa138045edf4a17b3416ab2145409cbe8ab829fd4ee",
"blk.9.attn_output.weight": "5a21bf2e1f09a81405025f96d4153ffb630158e17269cff8ffff935c38ceb1a7",
"blk.9.attn_q.weight": "51b1d0febc3b350945be4504f55afa4347517bde0f710e1a4b88e6b17e71e7c7",
"blk.9.attn_v.weight": "aab7e1db0a8b50a03036356791ffce736ab010d15674c96eaef8049d80076054",
"blk.9.ffn_down.weight": "cbf43ec84becb40c9359a181ab0e641fd7faae7d34b549501f7cfb7afdc3d764",
"blk.9.ffn_gate.weight": "dce0e8661c778327bed7f03b6790d26710764188aed9dc746e6e05863891fa57",
"blk.9.ffn_norm.weight": "6d41642104f995c77bf31122b13237caebda3e7fcccb1367ce91db36b015e923",
"blk.9.ffn_up.weight": "82fe4c67bf24e7b2d6f6e05f7b1234c2bf90c3932951091a9066211b8e15ecbb",
"blk.10.attn_k.weight": "f6a9ed8fd8d3229b5d03175c413ffc56a07f2ce7236271986361dd3d8993f9aa",
"blk.10.attn_norm.weight": "cebbef89f0326ca8e02df3867a571e4d61c20c2a12f295f98ae590d62bc86010",
"blk.10.attn_output.weight": "34f5efb86accb4f06347d83a32558ea8eab3039d128969161a741ebacbb656ff",
"blk.10.attn_q.weight": "1e0efe27df2d5d50f7157253ba2cfd436d6781c3dc78ca176d0c16a210b5b763",
"blk.10.attn_v.weight": "8f085bf50a2b0f83cd6cdda3c8ef5a9e204a36348ed95871aac725d1f68640cf",
"blk.10.ffn_down.weight": "bf3b3cb4cace435809ac7b4cc933f20853af12f1f272d3dcefe7f19c0f203b8b",
"blk.10.ffn_gate.weight": "d3df7a1413b1c5adf1a1dcda9e5225a15c89874bae53bb6137ad1ea42fca2d34",
"blk.10.ffn_norm.weight": "a1da603b0480471b5ed8e862148cecd5fed918f8304d6933ab0bdb25b8d2fb8f",
"blk.10.ffn_up.weight": "bffbba605922e972dc47dda88a0b4659aa52236c76e5fe861a949e6d9a367492",
"blk.11.attn_k.weight": "9f31c63d66cd32c29b1eb8bb829d0c8525ce2ae936e0eefdaab6335a2d12a3df",
"blk.11.attn_norm.weight": "0bde1a266d8b2e8f202bb7e2e88b19147ca83021901f6d3cae77a4df5548c754",
"blk.11.attn_output.weight": "e10725c7cf746ed4a7e472cf7aea6cb564e5db6a1d5197adc980d650a387ccea",
"blk.11.attn_q.weight": "05ee758a7d065802630f8c65dca424364c1c8825e389aa33f9405c45e8a50cce",
"blk.11.attn_v.weight": "0c3ae7090f11775d24c51120db6e305db6aff706493e7ee123dcab74485ba789",
"blk.11.ffn_down.weight": "7ba40b8e12c09c5fb2006b77a771cb01ce894e88a3b3e1877f927a5b89c91709",
"blk.11.ffn_gate.weight": "db76388a023b98097972d354ba1c6a5e26efdeb1c596b9c28bf2cd8f6596975e",
"blk.11.ffn_norm.weight": "a38c3ae1b89a68ddc7b72c99c5b28be7fe3787c4fad9904d0c43d64eaf00c474",
"blk.11.ffn_up.weight": "13c8142f9cf1eddc658babf978daf3515c4ccc45f849f3e7e3930aa18a8480a0",
"blk.12.attn_k.weight": "f03241c36ac87cb57429a2ef22186b8d7d0b590a8b173beb01fa13d93772f3b1",
"blk.12.attn_norm.weight": "4568f654e6d65104d586e7c16ba960c83428698ce103022b7e0be15e2884e13b",
"blk.12.attn_output.weight": "04867603f82f91e41306e09b33ecda0104b3ee4834061f2c0bbdc8da33c72509",
"blk.12.attn_q.weight": "70fe04b9a8e08b6100cc8d6b58bf4cbbad15ca1de82d63baca5d352ba6c4cbae",
"blk.12.attn_v.weight": "15cb28db61a86c98687991d7e611bc92a1fcc6007f3432149cfb5fe518a4f65e",
"blk.12.ffn_down.weight": "6d10c790a4e3dc44c2dc36d96251ae97cdf30a4fa04d4c43e31bfbd038e6a7b7",
"blk.12.ffn_gate.weight": "3462a2d8f6b4743b25e24da51b90018ac2858d05ac7e582bcb69063cfdac1104",
"blk.12.ffn_norm.weight": "1f96392c1faa34e34ae5dea55a6a86c5aa4c79758952075d53d28de89dd88456",
"blk.12.ffn_up.weight": "d22eacc612a7411953d948483c5fb201e11722955ee0754da866e7bec578ac6d",
"blk.13.attn_k.weight": "5864977e6b733ea942647d6feed5c76156c48c200649c22e4e11b9e5860e57f3",
"blk.13.attn_norm.weight": "87e053535144723db4145aa5402acc54331b7696752d852bb9fc542ff33f0fb5",
"blk.13.attn_output.weight": "078145f5ad83f8b14f97a869346f7fd1583b24d1e3edadaa95d3da4242973f8f",
"blk.13.attn_q.weight": "3b8caf35504cbc4d1a7dd6e011a95760703b7f71e2218b030b1254f811362dd7",
"blk.13.attn_v.weight": "4fdf8365a603e043e5b40c4a21c84ac167f9be62794178f9d8a608dfe5653bf9",
"blk.13.ffn_down.weight": "a07d3abbfcacf48ba028df2cab895be32cc15022d23389a745286e79c1b1d1fd",
"blk.13.ffn_gate.weight": "1d2ab39666aa2909acc96787432a3ed13b19d25170f74665fadff9b17bbaffb1",
"blk.13.ffn_norm.weight": "4f2e809fda5f3eadf52578ee50e0ba36e53be91e55dce418c12dfe595f5f18e7",
"blk.13.ffn_up.weight": "8783d2720c2c37ca176a5801e0b3ef1f9cc9cf3ef1cd37af423aaf6b2a27e2bd",
"blk.14.attn_k.weight": "ce9428e2b55d43ae0c6690dbd56182f99adc427694ba8236b405cc8ea5035e86",
"blk.14.attn_norm.weight": "6abb35f9db8251d6ae954bda147c6ada2371b0574d11702e828f3c6ac99b7cc0",
"blk.14.attn_output.weight": "fe3880916d0ceb5bff672c88bbefb7060a545be609bf049beb2024b38221836d",
"blk.14.attn_q.weight": "7c8ad81be6f4a350931fd108b5f7c9e366e8c26ef62d1d85ffef5dca8fd893f8",
"blk.14.attn_v.weight": "e4bdedffacbebe38567a0734dfd67db90e911d9a9669fcde9a7c4ad8a0066c52",
"blk.14.ffn_down.weight": "ef6694dff1e05820aac0cd2b22f39ac7788b4967afc9250775575554c66aab2c",
"blk.14.ffn_gate.weight": "db63c4179e2db704bc505e2b4696e055b593e295a1b7c4c586fc793bdd5aab19",
"blk.14.ffn_norm.weight": "2796a62d832a9710148f95d533320492a33e712b2e5218659c548705bd11684d",
"blk.14.ffn_up.weight": "3f78c78d8c2d54df45f799d4ff902316628af296834afe4ceed63d4a324ff03e",
"blk.15.attn_k.weight": "6e810ee3859e07695645ee0c9a5efc7962668984a5f0a9325f47e462743b447c",
"blk.15.attn_norm.weight": "0956b576ae96db0b28cb09f761f801cfd9281432284664f0fe181c8d9c55d1ec",
"blk.15.attn_output.weight": "03a17f7e94208177aace5cc41b7f54670ba57873b7274ff6e23caf58cce110ca",
"blk.15.attn_q.weight": "b8edafe7d2216a6f8b4ae4905a906475490e6ea418f6e1d3cec563dbdc6fab91",
"blk.15.attn_v.weight": "f8ae8cae0f4cfa34a459824eba57350c3c248104ba5607e7d9dc7d7c39aaf4a6",
"blk.15.ffn_down.weight": "8d02eb439da852246d2ca67e9b7b6de0b090b80744355e64728a23e41926505b",
"blk.15.ffn_gate.weight": "ed5bf361c67db8731f186b775826f21c33bdb521111fd2d922539719a770239f",
"blk.15.ffn_norm.weight": "5942ca3c73209ac9a0c8bfd9b4aab7f7be7aee9aa12d9c35833493b44af76767",
"blk.15.ffn_up.weight": "f4bebf4ad99ec5f911327dec347be6c595814885309c7bc5647ce28c7f4d1cf5",
"blk.16.attn_k.weight": "756a534c19364448e0958b8948fe33891c6ccda0fbb4dfa2024e1f532a87804b",
"blk.16.attn_norm.weight": "386b7b9e4e6509f6af9c022d942b6c6c6cc136aeed8751ecb037c74d7c4bfb93",
"blk.16.attn_output.weight": "3ba1a766a25830b84d7c22178203635f9c5624caad290bc5e5d73da5d5e7a2ec",
"blk.16.attn_q.weight": "d39b0c91e1fda7685d50a0f7cc8d18c44b5bdc90a142c7fda0bc329cca1afa74",
"blk.16.attn_v.weight": "98b33fcb0ee3483cff1b06ecb44d7b7ffb4d34c268248e4d73dfdf82b2065b2f",
"blk.16.ffn_down.weight": "14006f5e4acb2f9416271ae562e299359cd2585739c7fc77ccbca54495563948",
"blk.16.ffn_gate.weight": "12f8abae2d301d8f88bedb6af98b1daecc7b0b8d05148594f931f30958d77aca",
"blk.16.ffn_norm.weight": "129a15a046ee96d06de288bd43c80f77a6b0fb3a159c7367154c6e4aaf362672",
"blk.16.ffn_up.weight": "b4a5911a45f3871ef1d4efb7dc7108645a564b70f818eccf45beebef2e844ee9",
"blk.17.attn_k.weight": "5e1bfcff0146ebdde3817b656952892eb671e14e75afc92fa53f84f8eecbec4c",
"blk.17.attn_norm.weight": "60bc988fab7c4b29ee9de599df41a8de00caa94fcd74677da011fac82f60f465",
"blk.17.attn_output.weight": "ba49b40d6a0b5685f749c24b0edbed3adc44dbe13b5d5e5fa1e56169fc746555",
"blk.17.attn_q.weight": "82bb415d24efcd14d03ace03f907bb70db6a204c76a0bdd1892e0fba165db87d",
"blk.17.attn_v.weight": "73dbe54beb91a899884e275ea81ffc5187a20cb7d5b68d5c299b783096999d94",
"blk.17.ffn_down.weight": "7c086166241e0664f8963fd1ca4ed74c737abfb2525ec20f8435821ff50158f3",
"blk.17.ffn_gate.weight": "51a32f78244d42a539f619c5ce661db9e6cf41636280a826d439b5444edcd28c",
"blk.17.ffn_norm.weight": "c4bb247fccd1ecc84875028af63dd20aaf5cbd17eb94a9bc36679c09285dccab",
"blk.17.ffn_up.weight": "b5886182790bc6fbadd63de9bc4ffee416f3b69a66280d197ab8c18edf769abf",
"output_norm.weight": "481f3097d0a20412e35b3a739b1b958487bcd41ff67744baa3c9acbddd2ee4d4"
}

View File

@@ -3,150 +3,19 @@ package convert
import ( import (
"cmp" "cmp"
"crypto/sha256" "crypto/sha256"
"encoding/hex"
"encoding/json" "encoding/json"
"errors"
"fmt" "fmt"
"io/fs"
"log/slog" "log/slog"
"os" "os"
"slices" "slices"
)
const ( "golang.org/x/exp/maps"
_ int32 = iota
tokenTypeNormal
tokenTypeUnknown
tokenTypeControl
tokenTypeUserDefined
tokenTypeUnused
tokenTypeByte
) )
type Tokenizer struct { type Tokenizer struct {
*Vocabulary Version string `json:"version"`
SpecialVocabulary []*SpecialVocabulary AddedTokens []Token `json:"added_tokens"`
Merges []string Model TokenizerModel `json:"model"`
Pre string
Template string
}
func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error) {
v, err := parseVocabulary(fsys)
if err != nil {
return nil, err
}
t := &Tokenizer{
Vocabulary: v,
Pre: "default",
}
addedTokens := make(map[string]token)
if f, err := fsys.Open("tokenizer.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var tt tokenizer
if err := json.NewDecoder(f).Decode(&tt); err != nil {
return nil, err
}
for _, t := range tt.AddedTokens {
addedTokens[t.Content] = t
}
t.Merges = tt.Model.Merges
sha256sum := sha256.New()
for _, pt := range tt.PreTokenizer.PreTokenizers {
switch pt.Type {
case "Split":
if pt.Pattern.Regex != "" {
// create a checksum of all Split pretokenizers which should be sufficient
// to identify the pretokenizer
sha256sum.Write([]byte(pt.Pattern.Regex))
}
}
}
switch digest := hex.EncodeToString(sha256sum.Sum(nil)); digest {
case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
t.Pre = "llama-bpe"
case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
t.Pre = "deepseek-llm"
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
t.Pre = "deepseek-coder"
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
// noop, empty pretokenizer
default:
slog.Warn("unknown pretokenizer, using default", "digest", digest)
}
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
}
}
for _, st := range specialTokenTypes {
sv := SpecialVocabulary{Type: st}
if bts, ok := p[fmt.Sprintf("add_%s_token", st)]; ok {
if err := json.Unmarshal(bts, &sv.AddToken); err != nil {
return nil, err
}
}
if bts, ok := p[fmt.Sprintf("%s_token", st)]; ok {
var content string
if err := json.Unmarshal(bts, &content); err != nil {
var mm map[string]any
if err := json.Unmarshal(bts, &mm); err != nil {
continue
}
content, ok = mm["content"].(string)
if !ok {
continue
}
}
sv.Content = content
}
if id, ok := addedTokens[sv.Content]; ok {
sv.ID = id.ID
t.SpecialVocabulary = append(t.SpecialVocabulary, &sv)
}
}
}
return t, nil
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
} `json:"model"`
PreTokenizer struct { PreTokenizer struct {
PreTokenizers []struct { PreTokenizers []struct {
@@ -158,108 +27,80 @@ type tokenizer struct {
} `json:"pre_tokenizer"` } `json:"pre_tokenizer"`
} }
type token struct { type TokenizerModel struct {
Type string `json:"type"`
Vocab map[string]int `json:"vocab"`
Merges []string `json:"merges"`
Tokens []Token
}
type Token struct {
ID int `json:"id"` ID int `json:"id"`
Content string `json:"content"` Content string `json:"content"`
Special bool `json:"special"` Special bool `json:"special"`
UserDefined bool UserDefined bool
} }
type Vocabulary struct { func (t *Token) Type() int32 {
Model string switch {
Tokens []string case t.Special:
Scores []float32 return tokenTypeControl
Types []int32 case t.UserDefined:
return tokenTypeUserDefined
default:
return tokenTypeNormal
}
} }
func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) { func (t *Tokenizer) maxID() int {
f, err := fsys.Open("tokenizer.json") return max(
slices.Max(maps.Values(t.Model.Vocab)),
slices.MaxFunc(t.AddedTokens, func(a, b Token) int {
return cmp.Compare(a.ID, b.ID)
}).ID,
)
}
func parseTokens(dirpath string) (pre string, tokens []Token, merges []string, err error) {
f, err := os.Open(dirpath)
if err != nil { if err != nil {
return nil, err panic(err)
} }
defer f.Close() defer f.Close()
var t tokenizer var t Tokenizer
if err := json.NewDecoder(f).Decode(&t); err != nil { if err := json.NewDecoder(f).Decode(&t); err != nil {
return nil, err return "", nil, nil, err
} }
var tokens []token tokens = make([]Token, t.maxID()+1)
for k, v := range t.Model.Vocab { for k, v := range t.Model.Vocab {
tokens = append(tokens, token{ tokens[v] = Token{ID: v, Content: k, Special: false, UserDefined: false}
ID: v,
Content: k,
})
} }
for _, t := range t.AddedTokens { for _, v := range t.AddedTokens {
t.UserDefined = true v.UserDefined = true
tokens = append(tokens, t) tokens[v.ID] = v
} }
slices.SortFunc(tokens, func(i, j token) int { sha256sum := sha256.New()
return cmp.Compare(i.ID, j.ID) for _, pt := range t.PreTokenizer.PreTokenizers {
}) if pt.Type == "Split" && pt.Pattern.Regex != "" {
sha256sum.Write([]byte(pt.Pattern.Regex))
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
switch {
case t.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)
} }
} }
return &v, nil switch digest := fmt.Sprintf("%x", sha256sum.Sum(nil)); digest {
} case "d98f9631be1e9607a9848c26c1f9eac1aa9fc21ac6ba82a2fc0741af9780a48f":
pre = "llama-bpe"
func parseVocabulary(fsys fs.FS) (*Vocabulary, error) { case "03df5c5863ad70781dcfdef491ead25140f895fe8010964be0daefe27be32b02":
patterns := []struct { pre = "deepseek-llm"
Pattern string case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
Func func(fs.FS) (*Vocabulary, error) pre = "deepseek-coder"
}{ default:
{"tokenizer.model", parseSentencePiece}, slog.Warn("unknown pretokenizer, using default", "digest", digest)
{"tokenizer.json", parseVocabularyFromTokenizer}, pre = "default"
} }
for _, pattern := range patterns { return pre, tokens, t.Model.Merges, nil
if _, err := fs.Stat(fsys, pattern.Pattern); errors.Is(err, os.ErrNotExist) {
continue
} else if err != nil {
return nil, err
}
return pattern.Func(fsys)
}
return nil, errors.New("unknown tensor format")
}
type SpecialVocabulary struct {
Type string
ID int
Content string
AddToken bool
}
func (sv SpecialVocabulary) Key() string {
switch t := sv.Type; t {
case "bos", "eos", "cls", "mask":
return t
case "unk":
return "unknown"
case "sep":
//nolint:misspell // this is an upstream typo
return "seperator"
case "pad":
return "padding"
}
panic("unknown special vocabulary type")
} }

View File

@@ -1,83 +0,0 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io/fs"
"os"
"slices"
"google.golang.org/protobuf/proto"
"github.com/ollama/ollama/convert/sentencepiece"
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil {
return nil, err
}
var spm sentencepiece.ModelProto
if err := proto.Unmarshal(bts, &spm); err != nil {
return nil, err
}
v := Vocabulary{Model: "llama"}
for _, piece := range spm.GetPieces() {
v.Tokens = append(v.Tokens, piece.GetPiece())
v.Scores = append(v.Scores, piece.GetScore())
switch t := piece.GetType(); t {
case sentencepiece.ModelProto_SentencePiece_UNKNOWN,
sentencepiece.ModelProto_SentencePiece_CONTROL,
sentencepiece.ModelProto_SentencePiece_UNUSED,
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
}
}
f, err := fsys.Open("added_tokens.json")
if errors.Is(err, os.ErrNotExist) {
return &v, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var atm map[string]int
if err := json.NewDecoder(f).Decode(&atm); err != nil {
return nil, err
}
type t struct {
id int
content string
}
var ts []t
for content, id := range atm {
ts = append(ts, t{id, content})
}
slices.SortFunc(ts, func(i, j t) int {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
}
v.Tokens = append(v.Tokens, t.content)
v.Scores = append(v.Scores, -1000.0)
v.Types = append(v.Types, tokenTypeUserDefined)
}
return &v, nil
}

287
convert/torch.go Normal file
View File

@@ -0,0 +1,287 @@
package convert
import (
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"regexp"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
type torchWriterTo struct {
t *llm.Tensor
params *Params
bo ByteOrder
storage pytorch.StorageInterface
repacker func(string, []float32, []uint64) ([]float32, error)
}
type TorchFormat struct{}
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
slog.Debug("getting torch tensors")
var files []string
if pt, _ := filepath.Glob(filepath.Join(dirpath, "consolidated*.pth")); len(pt) > 0 {
files = append(files, pt...)
} else if pt, _ := filepath.Glob(filepath.Join(dirpath, "pytorch_model*.pth")); len(pt) > 0 {
files = append(files, pt...)
}
var offset uint64
var tensors []llm.Tensor
for _, fn := range files {
m, err := pytorch.Load(fn)
if err != nil {
slog.Error(fmt.Sprintf("error unpickling: %q", err))
return []llm.Tensor{}, err
}
for _, k := range m.(*types.Dict).Keys() {
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
continue
}
t, _ := m.(*types.Dict).Get(k)
tshape := t.(*pytorch.Tensor).Size
var size uint64
var kind uint32
switch len(tshape) {
case 0:
continue
case 1:
// convert to float32
kind = 0
size = uint64(tshape[0] * 4)
case 2:
// convert to float16
kind = 1
size = uint64(tshape[0] * tshape[1] * 2)
}
ggufName, err := tf.GetLayerName(k.(string))
if err != nil {
slog.Error(err.Error())
return nil, err
}
slog.Debug(fmt.Sprintf("'%35s': '%30s' %10d [%#v]", k.(string), ggufName, size, tshape))
shape := []uint64{0, 0, 0, 0}
for i := range tshape {
shape[i] = uint64(tshape[i])
}
tensor := llm.Tensor{
Name: ggufName,
Kind: kind,
Offset: offset, // calculate the offset
Shape: shape,
}
tensor.WriterTo = torchWriterTo{
t: &tensor,
params: params,
bo: params.ByteOrder,
storage: t.(*pytorch.Tensor).Source,
}
tensors = append(tensors, tensor)
offset += size
}
}
return tensors, nil
}
func getAltParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "params.json"))
if err != nil {
slog.Error("no params.json")
return nil, err
}
defer f.Close()
type TorchParams struct {
HiddenSize int `json:"dim"`
AttentionHeads int `json:"n_heads"`
KeyValHeads int `json:"n_kv_heads"`
HiddenLayers int `json:"n_layers"`
RopeTheta float64 `json:"rope_theta"`
NormEPS float64 `json:"norm_eps"`
}
var tparams TorchParams
d := json.NewDecoder(f)
err = d.Decode(&tparams)
if err != nil {
return nil, err
}
params := &Params{
Architectures: []string{"LlamaForCausalLM"},
HiddenSize: tparams.HiddenSize,
AttentionHeads: tparams.AttentionHeads,
KeyValHeads: tparams.KeyValHeads,
HiddenLayers: tparams.HiddenLayers,
NormEPS: tparams.NormEPS,
}
switch {
case tparams.RopeTheta == 1000000:
// Codellama
params.ContextSize = 16384
case tparams.NormEPS == 1e-06:
// llama2
slog.Debug("Found llama2 - setting context size to 4096")
params.ContextSize = 4096
default:
params.ContextSize = 2048
}
params.ByteOrder = binary.LittleEndian
return params, nil
}
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
f, err := os.Open(filepath.Join(dirpath, "config.json"))
if err != nil {
if os.IsNotExist(err) {
// try params.json instead
return getAltParams(dirpath)
} else {
return nil, err
}
}
var params Params
d := json.NewDecoder(f)
err = d.Decode(&params)
if err != nil {
return nil, err
}
params.ByteOrder = binary.LittleEndian
return &params, nil
}
func (m *TorchFormat) GetLayerName(n string) (string, error) {
directMap := map[string]string{
"tok_embeddings.weight": "token_embd.weight",
"output.weight": "output.weight",
"norm.weight": "output_norm.weight",
"rope.freqs": "rope_freqs.weight",
"model.embed_tokens.weight": "token_embd.weight",
"lm_head.weight": "output.weight",
"model.norm.weight": "output_norm.weight",
}
lMap := map[string]string{
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
}
v, ok := directMap[n]
if ok {
return v, nil
}
// quick hack to rename the layers to gguf format
for k, v := range lMap {
re := regexp.MustCompile(k)
newName := re.ReplaceAllString(n, v)
if newName != n {
return newName, nil
}
}
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
}
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
var f32s []float32
switch s := r.storage.(type) {
case *pytorch.FloatStorage:
f32s = s.Data
case *pytorch.HalfStorage:
f32s = s.Data
case *pytorch.BFloat16Storage:
f32s = s.Data
default:
return 0, fmt.Errorf("unknown data type: %T", s)
}
if r.repacker != nil {
f32s, err = r.repacker(r.t.Name, f32s, r.t.Shape)
if err != nil {
return 0, err
}
}
switch r.t.Kind {
case 0:
return 0, binary.Write(w, r.bo, f32s)
case 1:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, r.bo, f16s)
default:
return 0, fmt.Errorf("unknown storage type: %d", r.t.Kind)
}
}
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
switch len(params.Architectures) {
case 0:
return nil, fmt.Errorf("No architecture specified to convert")
case 1:
switch params.Architectures[0] {
case "LlamaForCausalLM":
return &LlamaModel{
ModelData{
Name: name,
Path: dirPath,
Params: params,
Format: m,
},
}, nil
default:
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
}
}
return nil, fmt.Errorf("Unknown error")
}

View File

@@ -26,7 +26,7 @@ All durations are returned in nanoseconds.
### Streaming responses ### Streaming responses
Certain endpoints stream responses as JSON objects. Streaming can be disabled by providing `{"stream": false}` for these endpoints. Certain endpoints stream responses as JSON objects and can optional return non-streamed responses.
## Generate a completion ## Generate a completion
@@ -40,7 +40,6 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `model`: (required) the [model name](#model-names) - `model`: (required) the [model name](#model-names)
- `prompt`: the prompt to generate a response for - `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`) - `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
Advanced parameters (optional): Advanced parameters (optional):
@@ -58,8 +57,7 @@ Advanced parameters (optional):
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below. Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below.
> [!IMPORTANT] > Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
### Examples ### Examples
@@ -150,44 +148,8 @@ If `stream` is set to `false`, the response will be a single JSON object:
} }
``` ```
#### Request (with suffix)
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "codellama:code",
"prompt": "def compute_gcd(a, b):",
"suffix": " return result",
"options": {
"temperature": 0
},
"stream": false
}'
```
##### Response
```json
{
"model": "codellama:code",
"created_at": "2024-07-22T20:47:51.147561Z",
"response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n",
"done": true,
"done_reason": "stop",
"context": [...],
"total_duration": 1162761250,
"load_duration": 6683708,
"prompt_eval_count": 17,
"prompt_eval_duration": 201222000,
"eval_count": 63,
"eval_duration": 953997000
}
```
#### Request (JSON mode) #### Request (JSON mode)
> [!IMPORTANT]
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON. > When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
##### Request ##### Request
@@ -336,7 +298,6 @@ curl http://localhost:11434/api/generate -d '{
"num_predict": 100, "num_predict": 100,
"top_k": 20, "top_k": 20,
"top_p": 0.9, "top_p": 0.9,
"min_p": 0.0,
"tfs_z": 0.5, "tfs_z": 0.5,
"typical_p": 0.7, "typical_p": 0.7,
"repeat_last_n": 33, "repeat_last_n": 33,
@@ -419,14 +380,12 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names) - `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory - `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
The `message` object has the following fields: The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool` - `role`: the role of the message, either `system`, `user` or `assistant`
- `content`: the content of the message - `content`: the content of the message
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`) - `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools the model wants to use
Advanced parameters (optional): Advanced parameters (optional):
@@ -587,7 +546,7 @@ Final response:
##### Request ##### Request
Send a chat message with images. The images should be provided as an array, with the individual images encoded in Base64. Send a chat message with a conversation history.
```shell ```shell
curl http://localhost:11434/api/chat -d '{ curl http://localhost:11434/api/chat -d '{
@@ -663,79 +622,6 @@ curl http://localhost:11434/api/chat -d '{
} }
``` ```
#### Chat request (with tools)
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "mistral",
"messages": [
{
"role": "user",
"content": "What is the weather today in Paris?"
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The location to get the weather for, e.g. San Francisco, CA"
},
"format": {
"type": "string",
"description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["location", "format"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "mistral:7b-instruct-v0.3-q4_K_M",
"created_at": "2024-07-22T20:33:28.123648Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_current_weather",
"arguments": {
"format": "celsius",
"location": "Paris, FR"
}
}
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 885095291,
"load_duration": 3753500,
"prompt_eval_count": 122,
"prompt_eval_duration": 328493000,
"eval_count": 33,
"eval_duration": 552222000
}
```
## Create a Model ## Create a Model
```shell ```shell
@@ -1140,7 +1026,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
## Generate Embeddings ## Generate Embeddings
```shell ```shell
POST /api/embed POST /api/embeddings
``` ```
Generate embeddings from a model Generate embeddings from a model
@@ -1148,11 +1034,10 @@ Generate embeddings from a model
### Parameters ### Parameters
- `model`: name of model to generate embeddings from - `model`: name of model to generate embeddings from
- `input`: text or list of text to generate embeddings for - `prompt`: text to generate embeddings for
Advanced parameters: Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature` - `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`) - `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
@@ -1161,9 +1046,9 @@ Advanced parameters:
#### Request #### Request
```shell ```shell
curl http://localhost:11434/api/embed -d '{ curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm", "model": "all-minilm",
"input": "Why is the sky blue?" "prompt": "Here is an article about llamas..."
}' }'
``` ```
@@ -1171,35 +1056,10 @@ curl http://localhost:11434/api/embed -d '{
```json ```json
{ {
"model": "all-minilm", "embedding": [
"embeddings": [[ 0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814, 0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348 ]
]]
}
```
#### Request (Multiple input)
```shell
curl http://localhost:11434/api/embed -d '{
"model": "all-minilm",
"input": ["Why is the sky blue?", "Why is the grass green?"]
}'
```
#### Response
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
} }
``` ```
@@ -1246,45 +1106,3 @@ A single JSON object will be returned.
] ]
} }
``` ```
## Generate Embedding
> Note: this endpoint has been superseded by `/api/embed`
```shell
POST /api/embeddings
```
Generate embeddings from a model
### Parameters
- `model`: name of model to generate embeddings from
- `prompt`: text to generate embeddings for
Advanced parameters:
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Examples
#### Request
```shell
curl http://localhost:11434/api/embeddings -d '{
"model": "all-minilm",
"prompt": "Here is an article about llamas..."
}'
```
#### Response
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
]
}
```

View File

@@ -104,7 +104,7 @@ like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use: you might use:
``` ```
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./... OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
go build . go build .
``` ```

View File

@@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model: Now you can run a model:
``` ```
docker exec -it ollama ollama run llama3.1 docker exec -it ollama ollama run llama3
``` ```
### Try different models ### Try different models

View File

@@ -227,7 +227,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
To preload a model using the CLI, use the command: To preload a model using the CLI, use the command:
```shell ```shell
ollama run llama3.1 "" ollama run llama3 ""
``` ```
## How do I keep a model loaded in memory or make it unload immediately? ## How do I keep a model loaded in memory or make it unload immediately?
@@ -257,23 +257,3 @@ If you wish to override the `OLLAMA_KEEP_ALIVE` setting, use the `keep_alive` AP
## How do I manage the maximum number of requests the Ollama server can queue? ## How do I manage the maximum number of requests the Ollama server can queue?
If too many requests are sent to the server, it will respond with a 503 error indicating the server is overloaded. You can adjust how many requests may be queue by setting `OLLAMA_MAX_QUEUE`. If too many requests are sent to the server, it will respond with a 503 error indicating the server is overloaded. You can adjust how many requests may be queue by setting `OLLAMA_MAX_QUEUE`.
## How does Ollama handle concurrent requests?
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it is configured to allow parallel request processing.
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
Parallel request processing for a given model results in increasing the context size by the number of parallel requests. For example, a 2K context with 4 parallel requests will result in an 8K context and additional memory allocation.
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

View File

@@ -18,7 +18,7 @@ Check your compute compatibility to see if your card is supported:
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` | | | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` | | 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` | | 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` | | | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050` |
| | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` | | | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` |
| | Tesla | `P40` `P4` | | | Tesla | `P40` `P4` |
| 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` | | 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` |
@@ -46,24 +46,13 @@ sudo modprobe nvidia_uvm`
## AMD Radeon ## AMD Radeon
Ollama supports the following AMD GPUs: Ollama supports the following AMD GPUs:
### Linux Support
| Family | Cards and accelerators | | Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- | | -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` | | AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` | | AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` | | AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
### Windows Support ### Overrides
With ROCm v6.1, the following GPUs are supported on Windows.
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Overrides on Linux
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a similar LLVM target that is some cases you can force the system to try to use a similar LLVM target that is
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4) close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
@@ -74,7 +63,7 @@ would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below. supported types below.
At this time, the known supported GPU types on linux are the following LLVM Targets. At this time, the known supported GPU types are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets: This table shows some example GPUs that map to these LLVM targets:
| **LLVM Target** | **An Example GPU** | | **LLVM Target** | **An Example GPU** |
|-----------------|---------------------| |-----------------|---------------------|

View File

@@ -1,7 +1,6 @@
# Ollama Model File # Ollama Model File
> [!NOTE] > Note: `Modelfile` syntax is in development
> `Modelfile` syntax is in development
A model file is the blueprint to create and share models with Ollama. A model file is the blueprint to create and share models with Ollama.
@@ -141,7 +140,6 @@ PARAMETER <parameter> <parametervalue>
| num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 | | num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 |
| top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 | | top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 |
| top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 | | top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 |
| min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 |
### TEMPLATE ### TEMPLATE

View File

@@ -27,15 +27,6 @@ chat_completion = client.chat.completions.create(
], ],
model='llama3', model='llama3',
) )
list_completion = client.models.list()
model = client.models.retrieve("llama3")
embeddings = client.embeddings.create(
model="all-minilm",
input=["why is the sky blue?", "why is the grass green?"]
)
``` ```
### OpenAI JavaScript library ### OpenAI JavaScript library
@@ -54,15 +45,6 @@ const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }], messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3', model: 'llama3',
}) })
const listCompletion = await openai.models.list()
const model = await openai.models.retrieve("llama3");
const embedding = await openai.embeddings.create({
model: "all-minilm",
input: ["why is the sky blue?", "why is the grass green?"],
});
``` ```
### `curl` ### `curl`
@@ -83,17 +65,6 @@ curl http://localhost:11434/v1/chat/completions \
} }
] ]
}' }'
curl http://localhost:11434/v1/models
curl http://localhost:11434/v1/models/llama3
curl http://localhost:11434/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "all-minilm",
"input": ["why is the sky blue?", "why is the grass green?"]
}'
``` ```
## Endpoints ## Endpoints
@@ -106,8 +77,8 @@ curl http://localhost:11434/v1/embeddings \
- [x] Streaming - [x] Streaming
- [x] JSON mode - [x] JSON mode
- [x] Reproducible outputs - [x] Reproducible outputs
- [x] Tools (streaming support coming soon)
- [ ] Vision - [ ] Vision
- [ ] Function calling
- [ ] Logprobs - [ ] Logprobs
#### Supported request fields #### Supported request fields
@@ -125,39 +96,16 @@ curl http://localhost:11434/v1/embeddings \
- [x] `temperature` - [x] `temperature`
- [x] `top_p` - [x] `top_p`
- [x] `max_tokens` - [x] `max_tokens`
- [x] `tools`
- [ ] `tool_choice`
- [ ] `logit_bias` - [ ] `logit_bias`
- [ ] `tools`
- [ ] `tool_choice`
- [ ] `user` - [ ] `user`
- [ ] `n` - [ ] `n`
### `/v1/models`
#### Notes #### Notes
- `created` corresponds to when the model was last modified - `finish_reason` will always be `stop`
- `owned_by` corresponds to the ollama username, defaulting to `"library"` - `usage.prompt_tokens` will be 0 for completions where prompt evaluation is cached
### `/v1/models/{model}`
#### Notes
- `created` corresponds to when the model was last modified
- `owned_by` corresponds to the ollama username, defaulting to `"library"`
### `/v1/embeddings`
#### Supported request fields
- [x] `model`
- [x] `input`
- [x] string
- [x] array of strings
- [ ] array of tokens
- [ ] array of token arrays
- [ ] `encoding format`
- [ ] `dimensions`
- [ ] `user`
## Models ## Models

View File

@@ -1,173 +0,0 @@
# Template
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
## Basic Template Structure
A basic Go template consists of three main parts:
* **Layout**: The overall structure of the template.
* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
* **Functions**: Custom functions or logic that can be used to manipulate the template's content.
Here's an example of a simple chat template:
```gotmpl
{{- range .Messages }}
{{ .Role }}: {{ .Content }}
{{- end }}
```
In this example, we have:
* A basic messages structure (layout)
* Three variables: `Messages`, `Role`, and `Content` (variables)
* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item
## Adding templates to your model
By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
{{ .System }}<|eot_id|>
{{- end }}
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
{{ .Content }}<|eot_id|>
{{- end }}<|start_header_id|>assistant<|end_header_id|>
"""
```
## Variables
`System` (string): system prompt
`Prompt` (string): user prompt
`Response` (string): assistant response
`Suffix` (string): text inserted after the assistant's response
`Messages` (list): list of messages
`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool`
`Messages[].Content` (string): message content
`Messages[].ToolCalls` (list): list of tools the model wants to call
`Messages[].ToolCalls[].Function` (object): function to call
`Messages[].ToolCalls[].Function.Name` (string): function name
`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value
`Tools` (list): list of tools the model can access
`Tools[].Type` (string): schema type. `type` is always `function`
`Tools[].Function` (object): function definition
`Tools[].Function.Name` (string): function name
`Tools[].Function.Description` (string): function description
`Tools[].Function.Parameters` (object): function parameters
`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object`
`Tools[].Function.Parameters.Required` (list): list of required properties
`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition
`Tools[].Function.Parameters.Properties[].Type` (string): property type
`Tools[].Function.Parameters.Properties[].Description` (string): property description
`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values
## Tips and Best Practices
Keep the following tips and best practices in mind when working with Go templates:
* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.`
* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root
* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace
## Examples
### Example Messages
#### ChatML
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
```gotmpl
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}
{{- range .Messages }}<|im_start|>{{ .Role }}
{{ .Content }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ else }}
{{ if .System }}<|im_start|>system
{{ .System }}<|im_end|>
```
### Example Tools
Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
#### Mistral
Mistral v0.3 and Mixtral 8x22B supports tool calling.
```gotmpl
{{- range $index, $_ := .Messages }}
{{- if eq .Role "user" }}
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
{{ end }}{{ .Content }}[/INST]
{{- else if eq .Role "assistant" }}
{{- if .Content }} {{ .Content }}</s>
{{- else if .ToolCalls }}[TOOL_CALLS] [
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
{{- end }}]</s>
{{- end }}
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
{{- end }}
{{- end }}
```
### Example Fill-in-Middle
Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
#### CodeLlama
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
```gotmpl
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
```
> [!NOTE]
> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
#### Codestral
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
```gotmpl
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
```

View File

@@ -70,18 +70,14 @@ curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION="0.1.29" sh
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/ If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
## NVIDIA GPU Discovery ## Container fails to run on NVIDIA GPU
When Ollama starts up, it takes inventory of the GPUs present in the system to determine compatibility and how much VRAM is available. Sometimes this discovery can fail to find your GPUs. In general, running the latest driver will yield the best results. Make sure you've set up the container runtime first as described in [docker.md](./docker.md)
### Linux NVIDIA Troubleshooting Sometimes the container runtime can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem
If you are using a container to run Ollama, make sure you've set up the container runtime first as described in [docker.md](./docker.md) - Is the container runtime working? Try `docker run --gpus all ubuntu nvidia-smi` - if this doesn't work, Ollama wont be able to see your NVIDIA GPU.
- Is the uvm driver not loaded? `sudo nvidia-modprobe -u`
Sometimes the Ollama can have difficulties initializing the GPU. When you check the server logs, this can show up as various error codes, such as "3" (not initialized), "46" (device unavailable), "100" (no device), "999" (unknown), or others. The following troubleshooting techniques may help resolve the problem
- If you are using a container, is the container runtime working? Try `docker run --gpus all ubuntu nvidia-smi` - if this doesn't work, Ollama wont be able to see your NVIDIA GPU.
- Is the uvm driver loaded? `sudo nvidia-modprobe -u`
- Try reloading the nvidia_uvm driver - `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm` - Try reloading the nvidia_uvm driver - `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm`
- Try rebooting - Try rebooting
- Make sure you're running the latest nvidia drivers - Make sure you're running the latest nvidia drivers
@@ -89,8 +85,3 @@ Sometimes the Ollama can have difficulties initializing the GPU. When you check
If none of those resolve the problem, gather additional information and file an issue: If none of those resolve the problem, gather additional information and file an issue:
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs - Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia` - Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View File

@@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({ const ollama = new Ollama({
baseUrl: "http://localhost:11434", baseUrl: "http://localhost:11434",
model: "llama3.1", model: "llama3",
}); });
const answer = await ollama.invoke(`why is the sky blue?`); const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer); console.log(answer);
``` ```
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app. That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash ```bash
npm install cheerio npm install cheerio

View File

@@ -19,12 +19,10 @@ Logs will often be helpful in diagnosing the problem (see
## System Requirements ## System Requirements
* Windows 10 22H2 or newer, Home or Pro * Windows 10 or newer, Home or Pro
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card * NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card * AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card
Ollama uses unicode characters for progress indication, which may render as unknown squares in some older terminal fonts in Windows 10. If you see this, try changing your terminal font settings.
## API Access ## API Access
Here's a quick example showing API access from `powershell` Here's a quick example showing API access from `powershell`

View File

@@ -1,29 +1,316 @@
package envconfig package envconfig
import ( import (
"errors"
"fmt" "fmt"
"log/slog" "log/slog"
"math"
"net" "net"
"net/url"
"os" "os"
"path/filepath" "path/filepath"
"runtime" "runtime"
"strconv" "strconv"
"strings" "strings"
"time"
) )
// Host returns the scheme and host. Host can be configured via the OLLAMA_HOST environment variable. type OllamaHost struct {
// Default is scheme "http" and host "127.0.0.1:11434" Scheme string
func Host() *url.URL { Host string
Port string
}
func (o OllamaHost) String() string {
return fmt.Sprintf("%s://%s:%s", o.Scheme, o.Host, o.Port)
}
var ErrInvalidHostPort = errors.New("invalid port specified in OLLAMA_HOST")
var (
// Set via OLLAMA_ORIGINS in the environment
AllowOrigins []string
// Set via OLLAMA_DEBUG in the environment
Debug bool
// Experimental flash attention
FlashAttention bool
// Set via OLLAMA_HOST in the environment
Host *OllamaHost
// Set via OLLAMA_KEEP_ALIVE in the environment
KeepAlive string
// Set via OLLAMA_LLM_LIBRARY in the environment
LLMLibrary string
// Set via OLLAMA_MAX_LOADED_MODELS in the environment
MaxRunners int
// Set via OLLAMA_MAX_QUEUE in the environment
MaxQueuedRequests int
// Set via OLLAMA_MODELS in the environment
ModelsDir string
// Set via OLLAMA_MAX_VRAM in the environment
MaxVRAM uint64
// Set via OLLAMA_NOHISTORY in the environment
NoHistory bool
// Set via OLLAMA_NOPRUNE in the environment
NoPrune bool
// Set via OLLAMA_NUM_PARALLEL in the environment
NumParallel int
// Set via OLLAMA_RUNNERS_DIR in the environment
RunnersDir string
// Set via OLLAMA_SCHED_SPREAD in the environment
SchedSpread bool
// Set via OLLAMA_TMPDIR in the environment
TmpDir string
// Set via OLLAMA_INTEL_GPU in the environment
IntelGpu bool
// Set via CUDA_VISIBLE_DEVICES in the environment
CudaVisibleDevices string
// Set via HIP_VISIBLE_DEVICES in the environment
HipVisibleDevices string
// Set via ROCR_VISIBLE_DEVICES in the environment
RocrVisibleDevices string
// Set via GPU_DEVICE_ORDINAL in the environment
GpuDeviceOrdinal string
// Set via HSA_OVERRIDE_GFX_VERSION in the environment
HsaOverrideGfxVersion string
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug, "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention, "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host, "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive, "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary, "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners, "Maximum number of loaded models (default 1)"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueuedRequests, "Maximum number of queued requests"},
"OLLAMA_MAX_VRAM": {"OLLAMA_MAX_VRAM", MaxVRAM, "Maximum VRAM"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", ModelsDir, "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory, "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune, "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel, "Maximum number of parallel requests (default 1)"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowOrigins, "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir, "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread, "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir, "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices, "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices, "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices, "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal, "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion, "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGpu, "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
var defaultAllowOrigins = []string{
"localhost",
"127.0.0.1",
"0.0.0.0",
}
// Clean quotes and spaces from the value
func clean(key string) string {
return strings.Trim(os.Getenv(key), "\"' ")
}
func init() {
// default values
NumParallel = 1
MaxRunners = 1
MaxQueuedRequests = 512
LoadConfig()
}
func LoadConfig() {
if debug := clean("OLLAMA_DEBUG"); debug != "" {
d, err := strconv.ParseBool(debug)
if err == nil {
Debug = d
} else {
Debug = true
}
}
if fa := clean("OLLAMA_FLASH_ATTENTION"); fa != "" {
d, err := strconv.ParseBool(fa)
if err == nil {
FlashAttention = d
}
}
RunnersDir = clean("OLLAMA_RUNNERS_DIR")
if runtime.GOOS == "windows" && RunnersDir == "" {
// On Windows we do not carry the payloads inside the main executable
appExe, err := os.Executable()
if err != nil {
slog.Error("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Error("failed to lookup working directory", "error", err)
}
var paths []string
for _, root := range []string{filepath.Dir(appExe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, p := range paths {
candidate := filepath.Join(p, "ollama_runners")
_, err := os.Stat(candidate)
if err == nil {
RunnersDir = candidate
break
}
}
if RunnersDir == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}
TmpDir = clean("OLLAMA_TMPDIR")
userLimit := clean("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseUint(userLimit, 10, 64)
if err != nil {
slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err)
} else {
MaxVRAM = avail
}
}
LLMLibrary = clean("OLLAMA_LLM_LIBRARY")
if onp := clean("OLLAMA_NUM_PARALLEL"); onp != "" {
val, err := strconv.Atoi(onp)
if err != nil || val <= 0 {
slog.Error("invalid setting must be greater than zero", "OLLAMA_NUM_PARALLEL", onp, "error", err)
} else {
NumParallel = val
}
}
if nohistory := clean("OLLAMA_NOHISTORY"); nohistory != "" {
NoHistory = true
}
if spread := clean("OLLAMA_SCHED_SPREAD"); spread != "" {
s, err := strconv.ParseBool(spread)
if err == nil {
SchedSpread = s
} else {
SchedSpread = true
}
}
if noprune := clean("OLLAMA_NOPRUNE"); noprune != "" {
NoPrune = true
}
if origins := clean("OLLAMA_ORIGINS"); origins != "" {
AllowOrigins = strings.Split(origins, ",")
}
for _, allowOrigin := range defaultAllowOrigins {
AllowOrigins = append(AllowOrigins,
fmt.Sprintf("http://%s", allowOrigin),
fmt.Sprintf("https://%s", allowOrigin),
fmt.Sprintf("http://%s", net.JoinHostPort(allowOrigin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(allowOrigin, "*")),
)
}
AllowOrigins = append(AllowOrigins,
"app://*",
"file://*",
"tauri://*",
)
maxRunners := clean("OLLAMA_MAX_LOADED_MODELS")
if maxRunners != "" {
m, err := strconv.Atoi(maxRunners)
if err != nil {
slog.Error("invalid setting", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err)
} else {
MaxRunners = m
}
}
if onp := os.Getenv("OLLAMA_MAX_QUEUE"); onp != "" {
p, err := strconv.Atoi(onp)
if err != nil || p <= 0 {
slog.Error("invalid setting", "OLLAMA_MAX_QUEUE", onp, "error", err)
} else {
MaxQueuedRequests = p
}
}
KeepAlive = clean("OLLAMA_KEEP_ALIVE")
var err error
ModelsDir, err = getModelsDir()
if err != nil {
slog.Error("invalid setting", "OLLAMA_MODELS", ModelsDir, "error", err)
}
Host, err = getOllamaHost()
if err != nil {
slog.Error("invalid setting", "OLLAMA_HOST", Host, "error", err, "using default port", Host.Port)
}
if set, err := strconv.ParseBool(clean("OLLAMA_INTEL_GPU")); err == nil {
IntelGpu = set
}
CudaVisibleDevices = clean("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = clean("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = clean("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = clean("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = clean("HSA_OVERRIDE_GFX_VERSION")
}
func getModelsDir() (string, error) {
if models, exists := os.LookupEnv("OLLAMA_MODELS"); exists {
return models, nil
}
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", "models"), nil
}
func getOllamaHost() (*OllamaHost, error) {
defaultPort := "11434" defaultPort := "11434"
s := strings.TrimSpace(Var("OLLAMA_HOST")) hostVar := os.Getenv("OLLAMA_HOST")
scheme, hostport, ok := strings.Cut(s, "://") hostVar = strings.TrimSpace(strings.Trim(strings.TrimSpace(hostVar), "\"'"))
scheme, hostport, ok := strings.Cut(hostVar, "://")
switch { switch {
case !ok: case !ok:
scheme, hostport = "http", s scheme, hostport = "http", hostVar
case scheme == "http": case scheme == "http":
defaultPort = "80" defaultPort = "80"
case scheme == "https": case scheme == "https":
@@ -43,242 +330,17 @@ func Host() *url.URL {
} }
} }
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 { if portNum, err := strconv.ParseInt(port, 10, 32); err != nil || portNum > 65535 || portNum < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort) return &OllamaHost{
return &url.URL{
Scheme: scheme, Scheme: scheme,
Host: net.JoinHostPort(host, defaultPort), Host: host,
} Port: defaultPort,
}, ErrInvalidHostPort
} }
return &url.URL{ return &OllamaHost{
Scheme: scheme, Scheme: scheme,
Host: net.JoinHostPort(host, port), Host: host,
} Port: port,
} }, nil
// Origins returns a list of allowed origins. Origins can be configured via the OLLAMA_ORIGINS environment variable.
func Origins() (origins []string) {
if s := Var("OLLAMA_ORIGINS"); s != "" {
origins = strings.Split(s, ",")
}
for _, origin := range []string{"localhost", "127.0.0.1", "0.0.0.0"} {
origins = append(origins,
fmt.Sprintf("http://%s", origin),
fmt.Sprintf("https://%s", origin),
fmt.Sprintf("http://%s", net.JoinHostPort(origin, "*")),
fmt.Sprintf("https://%s", net.JoinHostPort(origin, "*")),
)
}
origins = append(origins,
"app://*",
"file://*",
"tauri://*",
)
return origins
}
// Models returns the path to the models directory. Models directory can be configured via the OLLAMA_MODELS environment variable.
// Default is $HOME/.ollama/models
func Models() string {
if s := Var("OLLAMA_MODELS"); s != "" {
return s
}
home, err := os.UserHomeDir()
if err != nil {
panic(err)
}
return filepath.Join(home, ".ollama", "models")
}
// KeepAlive returns the duration that models stay loaded in memory. KeepAlive can be configured via the OLLAMA_KEEP_ALIVE environment variable.
// Negative values are treated as infinite. Zero is treated as no keep alive.
// Default is 5 minutes.
func KeepAlive() (keepAlive time.Duration) {
keepAlive = 5 * time.Minute
if s := Var("OLLAMA_KEEP_ALIVE"); s != "" {
if d, err := time.ParseDuration(s); err == nil {
keepAlive = d
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
keepAlive = time.Duration(n) * time.Second
}
}
if keepAlive < 0 {
return time.Duration(math.MaxInt64)
}
return keepAlive
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
b, err := strconv.ParseBool(s)
if err != nil {
return true
}
return b
}
return false
}
}
var (
// Debug enabled additional debug information.
Debug = Bool("OLLAMA_DEBUG")
// FlashAttention enables the experimental flash attention feature.
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
// NoHistory disables readline history.
NoHistory = Bool("OLLAMA_NOHISTORY")
// NoPrune disables pruning of model blobs on startup.
NoPrune = Bool("OLLAMA_NOPRUNE")
// SchedSpread allows scheduling models across all GPUs.
SchedSpread = Bool("OLLAMA_SCHED_SPREAD")
// IntelGPU enables experimental Intel GPU detection.
IntelGPU = Bool("OLLAMA_INTEL_GPU")
)
func String(s string) func() string {
return func() string {
return Var(s)
}
}
var (
LLMLibrary = String("OLLAMA_LLM_LIBRARY")
TmpDir = String("OLLAMA_TMPDIR")
CudaVisibleDevices = String("CUDA_VISIBLE_DEVICES")
HipVisibleDevices = String("HIP_VISIBLE_DEVICES")
RocrVisibleDevices = String("ROCR_VISIBLE_DEVICES")
GpuDeviceOrdinal = String("GPU_DEVICE_ORDINAL")
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
)
func RunnersDir() (p string) {
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
return p
}
if runtime.GOOS != "windows" {
return
}
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}()
// On Windows we do not carry the payloads inside the main executable
exe, err := os.Executable()
if err != nil {
return
}
cwd, err := os.Getwd()
if err != nil {
return
}
var paths []string
for _, root := range []string{filepath.Dir(exe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "ollama_runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break
}
}
return p
}
func Uint(key string, defaultValue uint) func() uint {
return func() uint {
if s := Var(key); s != "" {
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
} else {
return uint(n)
}
}
return defaultValue
}
}
var (
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
type EnvVar struct {
Name string
Value any
Description string
}
func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
"OLLAMA_NOHISTORY": {"OLLAMA_NOHISTORY", NoHistory(), "Do not preserve readline history"},
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible"}
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible"}
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}
return ret
}
func Values() map[string]string {
vals := make(map[string]string)
for k, v := range AsMap() {
vals[k] = fmt.Sprintf("%v", v.Value)
}
return vals
}
// Var returns an environment variable stripped of leading and trailing quotes or spaces
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
} }

View File

@@ -1,234 +1,70 @@
package envconfig package envconfig
import ( import (
"math" "fmt"
"net"
"testing" "testing"
"time"
"github.com/google/go-cmp/cmp" "github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
) )
func TestHost(t *testing.T) { func TestConfig(t *testing.T) {
cases := map[string]struct { Debug = false // Reset whatever was loaded in init()
t.Setenv("OLLAMA_DEBUG", "")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "false")
LoadConfig()
require.False(t, Debug)
t.Setenv("OLLAMA_DEBUG", "1")
LoadConfig()
require.True(t, Debug)
t.Setenv("OLLAMA_FLASH_ATTENTION", "1")
LoadConfig()
require.True(t, FlashAttention)
}
func TestClientFromEnvironment(t *testing.T) {
type testCase struct {
value string value string
expect string expect string
}{ err error
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
} }
for name, tt := range cases { hostTestCases := map[string]*testCase{
t.Run(name, func(t *testing.T) { "empty": {value: "", expect: "127.0.0.1:11434"},
t.Setenv("OLLAMA_HOST", tt.value) "only address": {value: "1.2.3.4", expect: "1.2.3.4:11434"},
if host := Host(); host.Host != tt.expect { "only port": {value: ":1234", expect: ":1234"},
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host) "address and port": {value: "1.2.3.4:1234", expect: "1.2.3.4:1234"},
} "hostname": {value: "example.com", expect: "example.com:11434"},
}) "hostname and port": {value: "example.com:1234", expect: "example.com:1234"},
} "zero port": {value: ":0", expect: ":0"},
} "too large port": {value: ":66000", err: ErrInvalidHostPort},
"too small port": {value: ":-1", err: ErrInvalidHostPort},
func TestOrigins(t *testing.T) { "ipv6 localhost": {value: "[::1]", expect: "[::1]:11434"},
cases := []struct { "ipv6 world open": {value: "[::]", expect: "[::]:11434"},
value string "ipv6 no brackets": {value: "::1", expect: "[::1]:11434"},
expect []string "ipv6 + port": {value: "[::1]:1337", expect: "[::1]:1337"},
}{ "extra space": {value: " 1.2.3.4 ", expect: "1.2.3.4:11434"},
{"", []string{ "extra quotes": {value: "\"1.2.3.4\"", expect: "1.2.3.4:11434"},
"http://localhost", "extra space+quotes": {value: " \" 1.2.3.4 \" ", expect: "1.2.3.4:11434"},
"https://localhost", "extra single quotes": {value: "'1.2.3.4'", expect: "1.2.3.4:11434"},
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://10.0.0.1", []string{
"http://10.0.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://172.16.0.1,https://192.168.0.1", []string{
"http://172.16.0.1",
"https://192.168.0.1",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
{"http://totally.safe,http://definitely.legit", []string{
"http://totally.safe",
"http://definitely.legit",
"http://localhost",
"https://localhost",
"http://localhost:*",
"https://localhost:*",
"http://127.0.0.1",
"https://127.0.0.1",
"http://127.0.0.1:*",
"https://127.0.0.1:*",
"http://0.0.0.0",
"https://0.0.0.0",
"http://0.0.0.0:*",
"https://0.0.0.0:*",
"app://*",
"file://*",
"tauri://*",
}},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
t.Setenv("OLLAMA_ORIGINS", tt.value)
if diff := cmp.Diff(Origins(), tt.expect); diff != "" {
t.Errorf("%s: mismatch (-want +got):\n%s", tt.value, diff)
}
})
}
}
func TestBool(t *testing.T) {
cases := map[string]bool{
"": false,
"true": true,
"false": false,
"1": true,
"0": false,
// invalid values
"random": true,
"something": true,
} }
for k, v := range cases { for k, v := range hostTestCases {
t.Run(k, func(t *testing.T) { t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_BOOL", k) t.Setenv("OLLAMA_HOST", v.value)
if b := Bool("OLLAMA_BOOL")(); b != v { LoadConfig()
t.Errorf("%s: expected %t, got %t", k, v, b)
} oh, err := getOllamaHost()
}) if err != v.err {
} t.Fatalf("expected %s, got %s", v.err, err)
} }
func TestUint(t *testing.T) { if err == nil {
cases := map[string]uint{ host := net.JoinHostPort(oh.Host, oh.Port)
"0": 0, assert.Equal(t, v.expect, host, fmt.Sprintf("%s: expected %s, got %s", k, v.expect, host))
"1": 1,
"1337": 1337,
// default values
"": 11434,
"-1": 11434,
"0o10": 11434,
"0x10": 11434,
"string": 11434,
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_UINT", k)
if i := Uint("OLLAMA_UINT", 11434)(); i != v {
t.Errorf("%s: expected %d, got %d", k, v, i)
}
})
}
}
func TestKeepAlive(t *testing.T) {
cases := map[string]time.Duration{
"": 5 * time.Minute,
"1s": time.Second,
"1m": time.Minute,
"1h": time.Hour,
"5m0s": 5 * time.Minute,
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
"0": time.Duration(0),
"60": 60 * time.Second,
"120": 2 * time.Minute,
"3600": time.Hour,
"-0": time.Duration(0),
"-1": time.Duration(math.MaxInt64),
"-1m": time.Duration(math.MaxInt64),
// invalid values
" ": 5 * time.Minute,
"???": 5 * time.Minute,
"1d": 5 * time.Minute,
"1y": 5 * time.Minute,
"1w": 5 * time.Minute,
}
for tt, expect := range cases {
t.Run(tt, func(t *testing.T) {
t.Setenv("OLLAMA_KEEP_ALIVE", tt)
if actual := KeepAlive(); actual != expect {
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
}
})
}
}
func TestVar(t *testing.T) {
cases := map[string]string{
"value": "value",
" value ": "value",
" 'value' ": "value",
` "value" `: "value",
" ' value ' ": " value ",
` " value " `: " value ",
}
for k, v := range cases {
t.Run(k, func(t *testing.T) {
t.Setenv("OLLAMA_VAR", k)
if s := Var("OLLAMA_VAR"); s != v {
t.Errorf("%s: expected %q, got %q", k, v, s)
} }
}) })
} }

View File

@@ -35,7 +35,7 @@ func main() {
ctx := context.Background() ctx := context.Background()
req := &api.ChatRequest{ req := &api.ChatRequest{
Model: "llama3.1", Model: "llama3",
Messages: messages, Messages: messages,
} }

View File

@@ -16,7 +16,7 @@ func main() {
// By default, GenerateRequest is streaming. // By default, GenerateRequest is streaming.
req := &api.GenerateRequest{ req := &api.GenerateRequest{
Model: "gemma2", Model: "gemma",
Prompt: "how many planets are there?", Prompt: "how many planets are there?",
} }

View File

@@ -15,7 +15,7 @@ func main() {
} }
req := &api.GenerateRequest{ req := &api.GenerateRequest{
Model: "gemma2", Model: "gemma",
Prompt: "how many planets are there?", Prompt: "how many planets are there?",
// set streaming to false // set streaming to false

View File

View File

@@ -4,14 +4,6 @@ This example provides an interface for asking questions to a PDF document.
## Setup ## Setup
1. Ensure you have the `llama3.1` model installed:
```
ollama pull llama3.1
```
2. Install the Python Requirements.
``` ```
pip install -r requirements.txt pip install -r requirements.txt
``` ```

View File

@@ -51,7 +51,7 @@ while True:
template=template, template=template,
) )
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])) llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type( qa_chain = RetrievalQA.from_chain_type(
llm, llm,
retriever=vectorstore.as_retriever(), retriever=vectorstore.as_retriever(),

View File

@@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama2` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama2
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.

View File

@@ -5,7 +5,7 @@ from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally") loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load() docs = loader.load()
llm = Ollama(model="llama3.1") llm = Ollama(model="llama3")
chain = load_summarize_chain(llm, chain_type="stuff") chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs) result = chain.invoke(docs)

View File

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama3` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama3
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
from langchain.llms import Ollama from langchain.llms import Ollama
input = input("What is your question?") input = input("What is your question?")
llm = Ollama(model="llama3.1") llm = Ollama(model="llama3")
res = llm.predict(input) res = llm.predict(input)
print (res) print (res)

View File

@@ -1,4 +1,4 @@
FROM llama3.1 FROM llama3
PARAMETER temperature 1 PARAMETER temperature 1
SYSTEM """ SYSTEM """
You are Mario from super mario bros, acting as an assistant. You are Mario from super mario bros, acting as an assistant.

View File

@@ -2,12 +2,12 @@
# Example character: Mario # Example character: Mario
This example shows how to create a basic character using Llama3.1 as the base model. This example shows how to create a basic character using Llama3 as the base model.
To run this example: To run this example:
1. Download the Modelfile 1. Download the Modelfile
2. `ollama pull llama3.1` to get the base model used in the model file. 2. `ollama pull llama3` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile` 3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME` 4. `ollama run NAME`
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like: What the model file looks like:
``` ```
FROM llama3.1 FROM llama3
PARAMETER temperature 1 PARAMETER temperature 1
SYSTEM """ SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant. You are Mario from Super Mario Bros, acting as an assistant.

View File

@@ -4,7 +4,7 @@ imageName = input("Enter the name of the image: ")
client = docker.from_env() client = docker.from_env()
s = requests.Session() s = requests.Session()
output="" output=""
with s.post('http://localhost:11434/api/generate', json={'model': 'mattw/dockerit', 'prompt': inputDescription}, stream=True) as r: with s.post('http://localhost:11434/api/generate', json={'model': 'dockerit', 'prompt': inputDescription}, stream=True) as r:
for line in r.iter_lines(): for line in r.iter_lines():
if line: if line:
j = json.loads(line) j = json.loads(line)

View File

@@ -2,7 +2,7 @@ import requests
import json import json
import random import random
model = "llama3.1" model = "llama3"
template = { template = {
"firstName": "", "firstName": "",
"lastName": "", "lastName": "",

View File

@@ -12,7 +12,7 @@ countries = [
"France", "France",
] ]
country = random.choice(countries) country = random.choice(countries)
model = "llama3.1" model = "llama3"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters." prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View File

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama3` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama3
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.

View File

@@ -2,7 +2,7 @@ import json
import requests import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve` # NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3.1" # TODO: update this for whatever model you wish to use model = "llama3" # TODO: update this for whatever model you wish to use
def chat(messages): def chat(messages):

View File

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama3` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama3
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.

View File

@@ -1,6 +1,6 @@
import * as readline from "readline"; import * as readline from "readline";
const model = "llama3.1"; const model = "llama3";
type Message = { type Message = {
role: "assistant" | "user" | "system"; role: "assistant" | "user" | "system";
content: string; content: string;

3
go.mod
View File

@@ -18,7 +18,6 @@ require (
require ( require (
github.com/agnivade/levenshtein v1.1.1 github.com/agnivade/levenshtein v1.1.1
github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1 github.com/d4l3k/go-bfloat16 v0.0.0-20211005043715-690c3bdd05f1
github.com/google/go-cmp v0.6.0
github.com/mattn/go-runewidth v0.0.14 github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0 github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
@@ -72,7 +71,7 @@ require (
golang.org/x/net v0.25.0 // indirect golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.20.0 golang.org/x/sys v0.20.0
golang.org/x/term v0.20.0 golang.org/x/term v0.20.0
golang.org/x/text v0.15.0 golang.org/x/text v0.15.0 // indirect
google.golang.org/protobuf v1.34.1 google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect gopkg.in/yaml.v3 v3.0.1 // indirect
) )

View File

@@ -49,17 +49,9 @@ func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
} }
func commonAMDValidateLibDir() (string, error) { func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version // We try to favor system paths first, so that we can wire up the subprocess to use
// the system version. Only use our bundled version if the system version doesn't work
// Installer payload location if we're running the installed binary // This gives users a more recovery options if versions have subtle problems at runtime
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
// Prefer explicit HIP env var // Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH") hipPath := os.Getenv("HIP_PATH")
@@ -95,5 +87,14 @@ func commonAMDValidateLibDir() (string, error) {
} }
} }
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
return "", fmt.Errorf("no suitable rocm found, falling back to CPU") return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
} }

View File

@@ -33,10 +33,9 @@ type HipLib struct {
} }
func NewHipLib() (*HipLib, error) { func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs/ this repo will consist with v5.7
h, err := windows.LoadLibrary("amdhip64.dll") h, err := windows.LoadLibrary("amdhip64.dll")
if err != nil { if err != nil {
return nil, fmt.Errorf("unable to load amdhip64.dll, please make sure to upgrade to the latest amd driver: %w", err) return nil, fmt.Errorf("unable to load amdhip64.dll: %w", err)
} }
hl := &HipLib{} hl := &HipLib{}
hl.dll = h hl.dll = h
@@ -85,8 +84,9 @@ func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
} }
slog.Debug("hipDriverGetVersion", "version", version) slog.Debug("hipDriverGetVersion", "version", version)
driverMajor = version / 10000000 // TODO - this isn't actually right, but the docs claim hipDriverGetVersion isn't accurate anyway...
driverMinor = (version - (driverMajor * 10000000)) / 100000 driverMajor = version / 1000
driverMinor = (version - (driverMajor * 1000)) / 10
return driverMajor, driverMinor, nil return driverMajor, driverMinor, nil
} }

View File

@@ -10,7 +10,6 @@ import (
"path/filepath" "path/filepath"
"regexp" "regexp"
"slices" "slices"
"sort"
"strconv" "strconv"
"strings" "strings"
@@ -61,9 +60,9 @@ func AMDGetGPUInfo() []RocmGPUInfo {
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others // Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only hipVD := envconfig.HipVisibleDevices // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID, but consumer cards seem to not support UUID rocrVD := envconfig.RocrVisibleDevices // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index gpuDO := envconfig.GpuDeviceOrdinal // zero based index
switch { switch {
// TODO is this priorty order right? // TODO is this priorty order right?
case hipVD != "": case hipVD != "":
@@ -76,27 +75,13 @@ func AMDGetGPUInfo() []RocmGPUInfo {
visibleDevices = strings.Split(gpuDO, ",") visibleDevices = strings.Split(gpuDO, ",")
} }
gfxOverride := envconfig.HsaOverrideGfxVersion() gfxOverride := envconfig.HsaOverrideGfxVersion
var supported []string var supported []string
libDir := "" libDir := ""
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract // The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU) // from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob) matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
cpuCount := 0 cpuCount := 0
for _, match := range matches { for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match) slog.Debug("evaluating amdgpu node " + match)

View File

@@ -8,7 +8,6 @@ import (
"path/filepath" "path/filepath"
"slices" "slices"
"strconv" "strconv"
"strings"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
@@ -17,12 +16,12 @@ import (
const ( const (
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true // TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
iGPUName = "AMD 2099 Graphics" iGPUName = "AMD Radeon(TM) Graphics"
) )
var ( var (
// Used to validate if the given ROCm lib is usable // Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6 ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob? RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
) )
@@ -35,11 +34,12 @@ func AMDGetGPUInfo() []RocmGPUInfo {
} }
defer hl.Release() defer hl.Release()
driverMajor, driverMinor, err := hl.AMDDriverVersion() // TODO - this reports incorrect version information, so omitting for now
if err != nil { // driverMajor, driverMinor, err := hl.AMDDriverVersion()
// For now this is benign, but we may eventually need to fail compatibility checks // if err != nil {
slog.Debug("error looking up amd driver version", "error", err) // // For now this is benign, but we may eventually need to fail compatibility checks
} // slog.Debug("error looking up amd driver version", "error", err)
// }
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified // Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount() count := hl.HipGetDeviceCount()
@@ -53,7 +53,7 @@ func AMDGetGPUInfo() []RocmGPUInfo {
} }
var supported []string var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion() gfxOverride := envconfig.HsaOverrideGfxVersion
if gfxOverride == "" { if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir) supported, err = GetSupportedGFX(libDir)
if err != nil { if err != nil {
@@ -87,13 +87,12 @@ func AMDGetGPUInfo() []RocmGPUInfo {
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx) slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
//slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0 //slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!? // TODO Why isn't props.iGPU accurate!?
if strings.EqualFold(name, iGPUName) { //if strings.EqualFold(name, iGPUName) {
slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx) // slog.Info("unsupported Radeon iGPU detected skipping", "id", i, "name", name, "gfx", gfx)
continue // continue
} //}
if gfxOverride == "" { if gfxOverride == "" {
// Strip off Target Features when comparing if !slices.Contains[[]string, string](supported, gfx) {
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported) slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting? // TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage") slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
@@ -115,6 +114,8 @@ func AMDGetGPUInfo() []RocmGPUInfo {
continue continue
} }
// TODO revisit this once ROCm v6 is available on windows.
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory)) slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory)) slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
gpuInfo := RocmGPUInfo{ gpuInfo := RocmGPUInfo{
@@ -124,16 +125,15 @@ func AMDGetGPUInfo() []RocmGPUInfo {
TotalMemory: totalMemory, TotalMemory: totalMemory,
FreeMemory: freeMemory, FreeMemory: freeMemory,
}, },
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir, DependencyPath: libDir,
MinimumMemory: rocmMinimumMemory, MinimumMemory: rocmMinimumMemory,
Name: name, Name: name,
Compute: gfx, Compute: gfx,
DriverMajor: driverMajor,
DriverMinor: driverMinor, // TODO - this information isn't accurate on windows, so don't report it until we find the right way to retrieve
// DriverMajor: driverMajor,
// DriverMinor: driverMinor,
}, },
index: i, index: i,
} }

View File

@@ -26,7 +26,7 @@ func PayloadsDir() (string, error) {
defer lock.Unlock() defer lock.Unlock()
var err error var err error
if payloadsDir == "" { if payloadsDir == "" {
runnersDir := envconfig.RunnersDir() runnersDir := envconfig.RunnersDir
if runnersDir != "" { if runnersDir != "" {
payloadsDir = runnersDir payloadsDir = runnersDir
@@ -35,7 +35,7 @@ func PayloadsDir() (string, error) {
// The remainder only applies on non-windows where we still carry payloads in the main executable // The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs() cleanupTmpDirs()
tmpDir := envconfig.TmpDir() tmpDir := envconfig.TmpDir
if tmpDir == "" { if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama") tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil { if err != nil {
@@ -105,7 +105,7 @@ func cleanupTmpDirs() {
func Cleanup() { func Cleanup() {
lock.Lock() lock.Lock()
defer lock.Unlock() defer lock.Unlock()
runnersDir := envconfig.RunnersDir() runnersDir := envconfig.RunnersDir
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" { if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir // We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, "..")) tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))

View File

@@ -202,7 +202,7 @@ func GetGPUInfo() GpuInfoList {
}() }()
if !bootstrapped { if !bootstrapped {
slog.Info("looking for compatible GPUs") slog.Debug("Detecting GPUs")
needRefresh = false needRefresh = false
cpuCapability = GetCPUCapability() cpuCapability = GetCPUCapability()
var memInfo C.mem_info_t var memInfo C.mem_info_t
@@ -230,8 +230,8 @@ func GetGPUInfo() GpuInfoList {
// On windows we bundle the nvidia library one level above the runner dir // On windows we bundle the nvidia library one level above the runner dir
depPath := "" depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" { if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda") depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "cuda")
} }
// Load ALL libraries // Load ALL libraries
@@ -274,40 +274,18 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMajor = driverMajor gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor gpuInfo.DriverMinor = driverMinor
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does... // TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo) cudaGPUs = append(cudaGPUs, gpuInfo)
} }
} }
// Intel // Intel
if envconfig.IntelGPU() { if envconfig.IntelGpu {
oHandles = initOneAPIHandles() oHandles = initOneAPIHandles()
// On windows we bundle the oneapi library one level above the runner dir // On windows we bundle the oneapi library one level above the runner dir
depPath = "" depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" { if runtime.GOOS == "windows" && envconfig.RunnersDir != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi") depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir), "oneapi")
} }
for d := range oHandles.oneapi.num_drivers { for d := range oHandles.oneapi.num_drivers {
@@ -342,9 +320,6 @@ func GetGPUInfo() GpuInfoList {
rocmGPUs = AMDGetGPUInfo() rocmGPUs = AMDGetGPUInfo()
bootstrapped = true bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
} }
// For detected GPUs, load library if not loaded // For detected GPUs, load library if not loaded
@@ -360,17 +335,14 @@ func GetGPUInfo() GpuInfoList {
"before", "before",
"total", format.HumanBytes2(cpus[0].TotalMemory), "total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory), "free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
), ),
slog.Group( slog.Group(
"now", "now",
"total", format.HumanBytes2(mem.TotalMemory), "total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory), "free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
), ),
) )
cpus[0].FreeMemory = mem.FreeMemory cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
} }
var memInfo C.mem_info_t var memInfo C.mem_info_t
@@ -399,14 +371,9 @@ func GetGPUInfo() GpuInfoList {
slog.Warn("error looking up nvidia GPU memory") slog.Warn("error looking up nvidia GPU memory")
continue continue
} }
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data", slog.Debug("updating cuda memory data",
"gpu", gpu.ID, "gpu", gpu.ID,
"name", gpu.Name, "name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group( slog.Group(
"before", "before",
"total", format.HumanBytes2(gpu.TotalMemory), "total", format.HumanBytes2(gpu.TotalMemory),
@@ -547,23 +514,7 @@ func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
defer C.free(unsafe.Pointer(lib)) defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp) C.nvcuda_init(lib, &resp)
if resp.err != nil { if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why slog.Debug("Unable to load nvcuda", "library", libPath, "error", C.GoString(resp.err))
msg := C.GoString(resp.err)
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
case C.CUDA_ERROR_NO_DEVICE:
slog.Info("no nvidia devices detected", "library", libPath)
case C.CUDA_ERROR_UNKNOWN:
slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
default:
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
}
}
C.free(unsafe.Pointer(resp.err)) C.free(unsafe.Pointer(resp.err))
} else { } else {
return int(resp.num_devices), &resp.ch, libPath return int(resp.num_devices), &resp.ch, libPath
@@ -611,7 +562,7 @@ func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
} }
func getVerboseState() C.uint16_t { func getVerboseState() C.uint16_t {
if envconfig.Debug() { if envconfig.Debug {
return C.uint16_t(1) return C.uint16_t(1)
} }
return C.uint16_t(0) return C.uint16_t(0)

View File

@@ -56,8 +56,7 @@ func GetCPUInfo() GpuInfoList {
func GetCPUMem() (memInfo, error) { func GetCPUMem() (memInfo, error) {
return memInfo{ return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()), TotalMemory: uint64(C.getPhysicalMemory()),
FreeMemory: uint64(C.getFreeMemory()), FreeMemory: 0,
// FreeSwap omitted as Darwin uses dynamic paging
}, nil }, nil
} }

View File

@@ -2,4 +2,3 @@
#include <stdint.h> #include <stdint.h>
uint64_t getRecommendedMaxVRAM(); uint64_t getRecommendedMaxVRAM();
uint64_t getPhysicalMemory(); uint64_t getPhysicalMemory();
uint64_t getFreeMemory();

View File

@@ -1,5 +1,4 @@
#import <Foundation/Foundation.h> // go:build darwin
#import <mach/mach.h>
#include "gpu_info_darwin.h" #include "gpu_info_darwin.h"
uint64_t getRecommendedMaxVRAM() { uint64_t getRecommendedMaxVRAM() {
@@ -9,27 +8,6 @@ uint64_t getRecommendedMaxVRAM() {
return result; return result;
} }
// getPhysicalMemory returns the total physical memory in bytes
uint64_t getPhysicalMemory() { uint64_t getPhysicalMemory() {
return [NSProcessInfo processInfo].physicalMemory; return [[NSProcessInfo processInfo] physicalMemory];
}
// getFreeMemory returns the total free memory in bytes, including inactive
// memory that can be reclaimed by the system.
uint64_t getFreeMemory() {
mach_port_t host_port = mach_host_self();
mach_msg_type_number_t host_size = sizeof(vm_statistics64_data_t) / sizeof(integer_t);
vm_size_t pagesize;
vm_statistics64_data_t vm_stat;
host_page_size(host_port, &pagesize);
if (host_statistics64(host_port, HOST_VM_INFO64, (host_info64_t)&vm_stat, &host_size) != KERN_SUCCESS) {
return 0;
}
uint64_t free_memory = (uint64_t)vm_stat.free_count * pagesize;
free_memory += (uint64_t)vm_stat.speculative_count * pagesize;
free_memory += (uint64_t)vm_stat.inactive_count * pagesize;
return free_memory;
} }

View File

@@ -7,7 +7,6 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
CUresult ret; CUresult ret;
resp->err = NULL; resp->err = NULL;
resp->num_devices = 0; resp->num_devices = 0;
resp->cudaErr = CUDA_SUCCESS;
const int buflen = 256; const int buflen = 256;
char buf[buflen + 1]; char buf[buflen + 1];
int i; int i;
@@ -39,7 +38,6 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
nvcuda_lib_path, msg); nvcuda_lib_path, msg);
free(msg); free(msg);
resp->err = strdup(buf); resp->err = strdup(buf);
resp->cudaErr = -1;
return; return;
} }
@@ -54,7 +52,6 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
msg); msg);
free(msg); free(msg);
resp->err = strdup(buf); resp->err = strdup(buf);
resp->cudaErr = -1;
return; return;
} }
} }
@@ -64,9 +61,12 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret); LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle); UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL; resp->ch.handle = NULL;
snprintf(buf, buflen, "cuda driver library init failure: %d", ret); if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "nvcuda init failure: %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
resp->cudaErr = ret;
return; return;
} }
@@ -91,7 +91,6 @@ void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
resp->ch.handle = NULL; resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret); snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
resp->cudaErr = ret;
return; return;
} }
} }
@@ -107,13 +106,13 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) { if (h.handle == NULL) {
resp->err = strdup("cuda driver library handle isn't initialized"); resp->err = strdup("nvcuda handle isn't initialized");
return; return;
} }
ret = (*h.cuDeviceGet)(&device, i); ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device failed to initialize"); snprintf(buf, buflen, "nvcuda device failed to initialize");
resp->err = strdup(buf); resp->err = strdup(buf);
return; return;
} }
@@ -169,14 +168,14 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
// To get memory we have to set (and release) a context // To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device); ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret); snprintf(buf, buflen, "nvcuda failed to get device context %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
return; return;
} }
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total); ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret); snprintf(buf, buflen, "nvcuda device memory info lookup failure %d", ret);
resp->err = strdup(buf); resp->err = strdup(buf);
// Best effort on failure... // Best effort on failure...
(*h.cuCtxDestroy)(ctx); (*h.cuCtxDestroy)(ctx);
@@ -194,7 +193,7 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
ret = (*h.cuCtxDestroy)(ctx); ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret); LOG(1, "nvcuda failed to release device context %d", ret);
} }
} }
@@ -207,7 +206,7 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
ret = (*h.cuDeviceGet)(&device, i); ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device failed to initialize"); LOG(1, "nvcuda device failed to initialize");
return; return;
} }
@@ -215,13 +214,13 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
// To get memory we have to set (and release) a context // To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device); ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to get device context %d", ret); LOG(1, "nvcuda failed to get device context %d", ret);
return; return;
} }
ret = (*h.cuMemGetInfo_v2)(free, total); ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device memory info lookup failure %d", ret); LOG(1, "nvcuda device memory info lookup failure %d", ret);
// Best effort on failure... // Best effort on failure...
(*h.cuCtxDestroy)(ctx); (*h.cuCtxDestroy)(ctx);
return; return;
@@ -229,12 +228,12 @@ void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total)
ret = (*h.cuCtxDestroy)(ctx); ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) { if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret); LOG(1, "nvcuda failed to release device context %d", ret);
} }
} }
void nvcuda_release(nvcuda_handle_t h) { void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing cuda driver library\n"); LOG(h.verbose, "releasing nvcuda library\n");
UNLOAD_LIBRARY(h.handle); UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic? // TODO and other context release logic?
h.handle = NULL; h.handle = NULL;

View File

@@ -7,12 +7,9 @@
typedef enum cudaError_enum { typedef enum cudaError_enum {
CUDA_SUCCESS = 0, CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1, CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2, CUDA_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_NOT_INITIALIZED = 3, CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35, CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
CUDA_ERROR_UNKNOWN = 999,
// Other values omitted for now... // Other values omitted for now...
} CUresult; } CUresult;
@@ -67,7 +64,6 @@ typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch; nvcuda_handle_t ch;
int num_devices; int num_devices;
CUresult cudaErr;
} nvcuda_init_resp_t; } nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp); void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);

View File

@@ -50,7 +50,7 @@ var OneapiMgmtName = "libze_intel_gpu.so"
func GetCPUMem() (memInfo, error) { func GetCPUMem() (memInfo, error) {
var mem memInfo var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64 var total, available, free, buffers, cached uint64
f, err := os.Open("/proc/meminfo") f, err := os.Open("/proc/meminfo")
if err != nil { if err != nil {
return mem, err return mem, err
@@ -70,21 +70,20 @@ func GetCPUMem() (memInfo, error) {
_, err = fmt.Sscanf(line, "Buffers:%d", &buffers) _, err = fmt.Sscanf(line, "Buffers:%d", &buffers)
case strings.HasPrefix(line, "Cached:"): case strings.HasPrefix(line, "Cached:"):
_, err = fmt.Sscanf(line, "Cached:%d", &cached) _, err = fmt.Sscanf(line, "Cached:%d", &cached)
case strings.HasPrefix(line, "SwapFree:"):
_, err = fmt.Sscanf(line, "SwapFree:%d", &freeSwap)
default: default:
continue continue
} }
if err != nil { if err != nil {
return mem, err return mem, err
} }
if total > 0 && available > 0 {
mem.TotalMemory = total * format.KibiByte
mem.FreeMemory = available * format.KibiByte
return mem, nil
}
} }
mem.TotalMemory = total * format.KibiByte mem.TotalMemory = total * format.KibiByte
mem.FreeSwap = freeSwap * format.KibiByte mem.FreeMemory = (free + buffers + cached) * format.KibiByte
if available > 0 {
mem.FreeMemory = available * format.KibiByte
} else {
mem.FreeMemory = (free + buffers + cached) * format.KibiByte
}
return mem, nil return mem, nil
} }

View File

@@ -51,5 +51,5 @@ func GetCPUMem() (memInfo, error) {
if r1 == 0 { if r1 == 0 {
return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err) return memInfo{}, fmt.Errorf("GlobalMemoryStatusEx failed: %w", err)
} }
return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys, FreeSwap: memStatus.AvailPageFile}, nil return memInfo{TotalMemory: memStatus.TotalPhys, FreeMemory: memStatus.AvailPhys}, nil
} }

View File

@@ -10,7 +10,6 @@ import (
type memInfo struct { type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"` TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"` FreeMemory uint64 `json:"free_memory,omitempty"`
FreeSwap uint64 `json:"free_swap,omitempty"`
} }
// Beginning of an `ollama info` command // Beginning of an `ollama info` command
@@ -30,11 +29,6 @@ type GpuInfo struct {
// Extra environment variables specific to the GPU as list of [key,value] // Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"` EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
// False indicates FreeMemory can generally be trusted on this GPU
UnreliableFreeMemory bool
// GPU information // GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available Name string `json:"name"` // user friendly name if available
@@ -53,8 +47,7 @@ type CPUInfo struct {
type CudaGPUInfo struct { type CudaGPUInfo struct {
GpuInfo GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library index int //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
} }
type CudaGPUInfoList []CudaGPUInfo type CudaGPUInfoList []CudaGPUInfo

View File

@@ -45,7 +45,14 @@ func TestUnicodeModelDir(t *testing.T) {
defer os.RemoveAll(modelDir) defer os.RemoveAll(modelDir)
slog.Info("unicode", "OLLAMA_MODELS", modelDir) slog.Info("unicode", "OLLAMA_MODELS", modelDir)
t.Setenv("OLLAMA_MODELS", modelDir) oldModelsDir := os.Getenv("OLLAMA_MODELS")
if oldModelsDir == "" {
defer os.Unsetenv("OLLAMA_MODELS")
} else {
defer os.Setenv("OLLAMA_MODELS", oldModelsDir)
}
err = os.Setenv("OLLAMA_MODELS", modelDir)
require.NoError(t, err)
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute) ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel() defer cancel()

View File

@@ -5,16 +5,14 @@ package integration
import ( import (
"context" "context"
"log/slog" "log/slog"
"os"
"strconv" "strconv"
"sync" "sync"
"testing" "testing"
"time" "time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig" "github.com/stretchr/testify/require"
"github.com/ollama/ollama/format"
) )
func TestMultiModelConcurrency(t *testing.T) { func TestMultiModelConcurrency(t *testing.T) {
@@ -71,7 +69,7 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
reqLimit := len(req) reqLimit := len(req)
iterLimit := 5 iterLimit := 5
vram := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM vram := os.Getenv("OLLAMA_MAX_VRAM")
if vram != "" { if vram != "" {
max, err := strconv.ParseUint(vram, 10, 64) max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err) require.NoError(t, err)
@@ -108,16 +106,13 @@ func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit // Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
func TestMultiModelStress(t *testing.T) { func TestMultiModelStress(t *testing.T) {
s := os.Getenv("OLLAMA_MAX_VRAM") // TODO - discover actual VRAM vram := os.Getenv("OLLAMA_MAX_VRAM")
if s == "" { if vram == "" {
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test") t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
} }
max, err := strconv.ParseUint(vram, 10, 64)
maxVram, err := strconv.ParseUint(s, 10, 64) require.NoError(t, err)
if err != nil { const MB = uint64(1024 * 1024)
t.Fatal(err)
}
type model struct { type model struct {
name string name string
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
@@ -126,82 +121,83 @@ func TestMultiModelStress(t *testing.T) {
smallModels := []model{ smallModels := []model{
{ {
name: "orca-mini", name: "orca-mini",
size: 2992 * format.MebiByte, size: 2992 * MB,
}, },
{ {
name: "phi", name: "phi",
size: 2616 * format.MebiByte, size: 2616 * MB,
}, },
{ {
name: "gemma:2b", name: "gemma:2b",
size: 2364 * format.MebiByte, size: 2364 * MB,
}, },
{ {
name: "stable-code:3b", name: "stable-code:3b",
size: 2608 * format.MebiByte, size: 2608 * MB,
}, },
{ {
name: "starcoder2:3b", name: "starcoder2:3b",
size: 2166 * format.MebiByte, size: 2166 * MB,
}, },
} }
mediumModels := []model{ mediumModels := []model{
{ {
name: "llama2", name: "llama2",
size: 5118 * format.MebiByte, size: 5118 * MB,
}, },
{ {
name: "mistral", name: "mistral",
size: 4620 * format.MebiByte, size: 4620 * MB,
}, },
{ {
name: "orca-mini:7b", name: "orca-mini:7b",
size: 5118 * format.MebiByte, size: 5118 * MB,
}, },
{ {
name: "dolphin-mistral", name: "dolphin-mistral",
size: 4620 * format.MebiByte, size: 4620 * MB,
}, },
{ {
name: "gemma:7b", name: "gemma:7b",
size: 5000 * format.MebiByte, size: 5000 * MB,
},
{
name: "codellama:7b",
size: 5118 * format.MebiByte,
}, },
// TODO - uncomment this once #3565 is merged and this is rebased on it
// {
// name: "codellama:7b",
// size: 5118 * MB,
// },
} }
// These seem to be too slow to be useful... // These seem to be too slow to be useful...
// largeModels := []model{ // largeModels := []model{
// { // {
// name: "llama2:13b", // name: "llama2:13b",
// size: 7400 * format.MebiByte, // size: 7400 * MB,
// }, // },
// { // {
// name: "codellama:13b", // name: "codellama:13b",
// size: 7400 * format.MebiByte, // size: 7400 * MB,
// }, // },
// { // {
// name: "orca-mini:13b", // name: "orca-mini:13b",
// size: 7400 * format.MebiByte, // size: 7400 * MB,
// }, // },
// { // {
// name: "gemma:7b", // name: "gemma:7b",
// size: 5000 * format.MebiByte, // size: 5000 * MB,
// }, // },
// { // {
// name: "starcoder2:15b", // name: "starcoder2:15b",
// size: 9100 * format.MebiByte, // size: 9100 * MB,
// }, // },
// } // }
var chosenModels []model var chosenModels []model
switch { switch {
case maxVram < 10000*format.MebiByte: case max < 10000*MB:
slog.Info("selecting small models") slog.Info("selecting small models")
chosenModels = smallModels chosenModels = smallModels
// case maxVram < 30000*format.MebiByte: // case max < 30000*MB:
default: default:
slog.Info("selecting medium models") slog.Info("selecting medium models")
chosenModels = mediumModels chosenModels = mediumModels
@@ -230,15 +226,15 @@ func TestMultiModelStress(t *testing.T) {
} }
var wg sync.WaitGroup var wg sync.WaitGroup
consumed := uint64(256 * format.MebiByte) // Assume some baseline usage consumed := uint64(256 * MB) // Assume some baseline usage
for i := 0; i < len(req); i++ { for i := 0; i < len(req); i++ {
// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long // Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
if i > 1 && consumed > vram { if i > 1 && consumed > max {
slog.Info("achieved target vram exhaustion", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed)) slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
break break
} }
consumed += chosenModels[i].size consumed += chosenModels[i].size
slog.Info("target vram", "count", i, "vram", format.HumanBytes2(vram), "models", format.HumanBytes2(consumed)) slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
wg.Add(1) wg.Add(1)
go func(i int) { go func(i int) {

View File

@@ -12,7 +12,7 @@ import (
func TestContextExhaustion(t *testing.T) { func TestContextExhaustion(t *testing.T) {
// Longer needed for small footprint GPUs // Longer needed for small footprint GPUs
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute) ctx, cancel := context.WithTimeout(context.Background(), 6*time.Minute)
defer cancel() defer cancel()
// Set up the test data // Set up the test data
req := api.GenerateRequest{ req := api.GenerateRequest{
@@ -25,10 +25,5 @@ func TestContextExhaustion(t *testing.T) {
"num_ctx": 128, "num_ctx": 128,
}, },
} }
client, _, cleanup := InitServerConnection(ctx, t) GenerateTestHelper(ctx, t, req, []string{"once", "upon", "lived"})
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("PullIfMissing failed: %v", err)
}
DoGenerate(ctx, t, client, req, []string{"once", "upon", "lived"}, 120*time.Second, 10*time.Second)
} }

View File

@@ -1,209 +0,0 @@
//go:build integration
package integration
import (
"context"
"math"
"testing"
"time"
"github.com/ollama/ollama/api"
)
func floatsEqual32(a, b float32) bool {
return math.Abs(float64(a-b)) <= 1e-4
}
func floatsEqual64(a, b float64) bool {
return math.Abs(a-b) <= 1e-4
}
func TestAllMiniLMEmbeddings(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbeddingRequest{
Model: "all-minilm",
Prompt: "why is the sky blue?",
}
res, err := embeddingTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embedding) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embedding))
}
if !floatsEqual64(res.Embedding[0], 0.06642947345972061) {
t.Fatalf("expected 0.06642947345972061, got %.16f", res.Embedding[0])
}
}
func TestAllMiniLMEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 1 {
t.Fatalf("expected 1 embedding, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMBatchEmbed(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
req := api.EmbedRequest{
Model: "all-minilm",
Input: []string{"why is the sky blue?", "why is the grass green?"},
}
res, err := embedTestHelper(ctx, t, req)
if err != nil {
t.Fatalf("error: %v", err)
}
if len(res.Embeddings) != 2 {
t.Fatalf("expected 2 embeddings, got %d", len(res.Embeddings))
}
if len(res.Embeddings[0]) != 384 {
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
}
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
}
}
func TestAllMiniLMEmbedTruncate(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
defer cancel()
truncTrue, truncFalse := true, false
type testReq struct {
Name string
Request api.EmbedRequest
}
reqs := []testReq{
{
Name: "Target Truncation",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why",
},
},
{
Name: "Default Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Options: map[string]any{"num_ctx": 1},
},
},
{
Name: "Explicit Truncate",
Request: api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncTrue,
Options: map[string]any{"num_ctx": 1},
},
},
}
res := make(map[string]*api.EmbedResponse)
for _, req := range reqs {
response, err := embedTestHelper(ctx, t, req.Request)
if err != nil {
t.Fatalf("error: %v", err)
}
res[req.Name] = response
}
if res["Target Truncation"].Embeddings[0][0] != res["Default Truncate"].Embeddings[0][0] {
t.Fatal("expected default request to truncate correctly")
}
if res["Default Truncate"].Embeddings[0][0] != res["Explicit Truncate"].Embeddings[0][0] {
t.Fatal("expected default request and truncate true request to be the same")
}
// check that truncate set to false returns an error if context length is exceeded
_, err := embedTestHelper(ctx, t, api.EmbedRequest{
Model: "all-minilm",
Input: "why is the sky blue?",
Truncate: &truncFalse,
Options: map[string]any{"num_ctx": 1},
})
if err == nil {
t.Fatal("expected error, got nil")
}
}
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
response, err := client.Embeddings(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
if err := PullIfMissing(ctx, client, req.Model); err != nil {
t.Fatalf("failed to pull model %s: %v", req.Model, err)
}
response, err := client.Embed(ctx, &req)
if err != nil {
return nil, err
}
return response, nil
}

View File

@@ -5,6 +5,7 @@ package integration
import ( import (
"context" "context"
"errors" "errors"
"fmt"
"log/slog" "log/slog"
"os" "os"
"strconv" "strconv"
@@ -13,10 +14,8 @@ import (
"testing" "testing"
"time" "time"
"github.com/stretchr/testify/require"
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig" "github.com/stretchr/testify/require"
) )
func TestMaxQueue(t *testing.T) { func TestMaxQueue(t *testing.T) {
@@ -28,10 +27,13 @@ func TestMaxQueue(t *testing.T) {
// Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU // Note: This test can be quite slow when running in CPU mode, so keep the threadCount low unless your on GPU
// Also note that by default Darwin can't sustain > ~128 connections without adjusting limits // Also note that by default Darwin can't sustain > ~128 connections without adjusting limits
threadCount := 32 threadCount := 32
if maxQueue := envconfig.MaxQueue(); maxQueue != 0 { mq := os.Getenv("OLLAMA_MAX_QUEUE")
threadCount = maxQueue if mq != "" {
var err error
threadCount, err = strconv.Atoi(mq)
require.NoError(t, err)
} else { } else {
t.Setenv("OLLAMA_MAX_QUEUE", strconv.Itoa(threadCount)) os.Setenv("OLLAMA_MAX_QUEUE", fmt.Sprintf("%d", threadCount))
} }
req := api.GenerateRequest{ req := api.GenerateRequest{

Some files were not shown because too many files have changed in this diff Show More