Compare commits

..

160 Commits

Author SHA1 Message Date
likelovewant
c8d6d9a010 Merge branch 'ollama:main' into main 2024-09-19 22:46:10 +08:00
Patrick Devine
5804cf1723 documentation for stopping a model (#6766) 2024-09-18 16:26:42 -07:00
Ryan Marten
bf7ee0f4d4 examples: add python examples for bespoke-minicheck (#6841) 2024-09-18 09:35:25 -07:00
Michael Yang
504a410f02 llm: add solar pro (preview) (#6846) 2024-09-17 18:11:26 -07:00
Jeffrey Morgan
d05da29912 server: add tool parsing support for nemotron-mini (#6849) 2024-09-17 18:06:16 -07:00
Michael Yang
72962c6e08 Merge pull request #6833 from ollama/mxyng/git-am
make patches git am-able
2024-09-17 16:33:23 -07:00
Michael Yang
7bd7b02712 make patches git am-able
raw diffs can be applied using `git apply` but not with `git am`. git
patches, e.g. through `git format-patch` are both apply-able and am-able
2024-09-17 15:26:40 -07:00
Daniel Hiltgen
8f9ab5e14d CI: dist directories no longer present (#6834)
The new buildx based build no longer leaves the dist/linux-* directories
around, so we don't have to clean them up before uploading.
2024-09-16 17:31:37 -07:00
Daniel Hiltgen
7717bb6a84 CI: clean up naming, fix tagging latest (#6832)
The rocm CI step for RCs was incorrectly tagging them as the latest rocm build.
The multiarch manifest was incorrectly tagged twice (with and without the
prefix "v").  Static windows artifacts weren't being carried between build
jobs.  This also fixes the latest tagging script.
2024-09-16 16:18:41 -07:00
Daniel Hiltgen
0ec2915ea7 CI: set platform build build_linux script to keep buildx happy (#6829)
The runners don't have emulation set up so the default multi-platform build
wont work.
2024-09-16 14:07:29 -07:00
Michael Yang
c9a7541b9c readme: add Agents-Flex to community integrations (#6788) 2024-09-16 13:42:52 -07:00
Patrick Devine
d81cfd7d6f fix typo in import docs (#6828) 2024-09-16 11:48:14 -07:00
Pepo
b330c830d3 readme: add vim-intelligence-bridge to Terminal section (#6818) 2024-09-15 21:20:36 -04:00
Edward Cui
d889c6fd07 readme: add Obsidian Quiz Generator plugin to community integrations (#6789) 2024-09-14 23:52:37 -04:00
Daniel Hiltgen
56b9af336a Fix incremental builds on linux (#6780)
scripts: fix incremental builds on linux or similar
2024-09-13 08:24:08 -07:00
Daniel Hiltgen
fda0d3be52 Use GOARCH for build dirs (#6779)
Corrects x86_64 vs amd64 discrepancy
2024-09-12 16:38:05 -07:00
Daniel Hiltgen
cd5c8f6471 Optimize container images for startup (#6547)
* Optimize container images for startup

This change adjusts how to handle runner payloads to support
container builds where we keep them extracted in the filesystem.
This makes it easier to optimize the cpu/cuda vs cpu/rocm images for
size, and should result in faster startup times for container images.

* Refactor payload logic and add buildx support for faster builds

* Move payloads around

* Review comments

* Converge to buildx based helper scripts

* Use docker buildx action for release
2024-09-12 12:10:30 -07:00
dcasota
fef257c5c5 examples: updated requirements.txt for privategpt example 2024-09-11 18:56:56 -07:00
Adrian Cole
d066d9b8e0 examples: polish loganalyzer example (#6744) 2024-09-11 18:37:37 -07:00
RAPID ARCHITECT
5a00dc9fc9 readme: add ollama_moe to community integrations (#6752) 2024-09-11 18:36:26 -07:00
Jesse Gross
c354e87809 Merge pull request #6767 from ollama/jessegross/bug_6707
runner: Flush pending responses before returning
2024-09-11 17:20:22 -07:00
Jesse Gross
93ac3760cb runner: Flush pending responses before returning
If there are any pending reponses (such as from potential stop
tokens) then we should send them back before ending the sequence.
Otherwise, we can be missing tokens at the end of a response.

Fixes #6707
2024-09-11 16:39:32 -07:00
Patrick Devine
abed273de3 add "stop" command (#6739) 2024-09-11 16:36:21 -07:00
Michael Yang
034392624c Merge pull request #6762 from ollama/mxyng/show-output
refactor show ouput
2024-09-11 14:58:40 -07:00
Michael Yang
ecab6f1cc5 refactor show ouput
fixes line wrapping on long texts
2024-09-11 14:23:09 -07:00
Petr Mironychev
7d6900827d readme: add QodeAssist to community integrations (#6754) 2024-09-11 13:19:49 -07:00
Daniel Hiltgen
9246e6dd15 Verify permissions for AMD GPU (#6736)
This adds back a check which was lost many releases back to verify /dev/kfd permissions
which when lacking, can lead to confusing failure modes of:
  "rocBLAS error: Could not initialize Tensile host: No devices found"

This implementation does not hard fail the serve command but instead will fall back to CPU
with an error log.  In the future we can include this in the GPU discovery UX to show
detected but unsupported devices we discovered.
2024-09-11 11:38:25 -07:00
Michael Yang
735a0ca2e4 Merge pull request #6732 from ollama/mxyng/debug-proxy
add *_proxy to env map for debugging
2024-09-10 16:13:25 -07:00
Michael Yang
dddb72e084 add *_proxy for debugging 2024-09-10 09:43:35 -07:00
Jeffrey Morgan
83a9b5271a docs: update examples to use llama3.1 (#6718) 2024-09-09 22:47:16 -07:00
Daniel Hiltgen
4a8069f9c4 Quiet down dockers new lint warnings (#6716)
* Quiet down dockers new lint warnings

Docker has recently added lint warnings to build.  This cleans up those warnings.

* Fix go lint regression
2024-09-09 17:22:20 -07:00
Patrick Devine
84b84ce2db catch when model vocab size is set correctly (#6714) 2024-09-09 17:18:54 -07:00
likelovewant
486ae433ae Merge branch 'ollama:main' into main 2024-09-09 19:33:57 +08:00
Jeffrey Morgan
bb6a086d63 readme: add crewAI to community integrations (#6699) 2024-09-08 00:36:24 -07:00
RAPID ARCHITECT
30c8f201cc readme: add crewAI with mesop to community integrations 2024-09-08 00:35:59 -07:00
likelovewant
06db1f2cf5 Merge branch 'ollama:main' into main 2024-09-08 11:44:55 +08:00
frob
06d4fba851 openai: align chat temperature and frequency_penalty options with completion (#6688) 2024-09-07 09:08:08 -07:00
Jeffrey Morgan
108fb6c1d1 docs: improve linux install documentation (#6683)
Includes small improvements to document layout and code blocks
2024-09-06 22:05:37 -07:00
Yaroslav
da915345d1 openai: don't scale temperature or frequency_penalty (#6514) 2024-09-06 17:45:45 -07:00
nickthecook
8a027bc401 readme: add Archyve to community integrations (#6680) 2024-09-06 14:06:01 -07:00
imoize
5446903fbd readme: add Plasmoid Ollama Control to community integrations (#6681) 2024-09-06 14:04:12 -07:00
Daniel Hiltgen
56318fb365 Improve logging on GPU too small (#6666)
When we determine a GPU is too small for any layers, it's not always clear why.
This will help troubleshoot those scenarios.
2024-09-06 08:29:36 -07:00
frob
fe91d7fff1 openai: fix "presence_penalty" typo and add test (#6665) 2024-09-06 01:16:28 -07:00
Patrick Devine
608e87bf87 Fix gemma2 2b conversion (#6645) 2024-09-05 17:02:28 -07:00
Daniel Hiltgen
48685c6ed0 Document uninstall on windows (#6663) 2024-09-05 15:57:38 -07:00
Daniel Hiltgen
9565fa64a8 Revert "Detect running in a container (#6495)" (#6662)
This reverts commit a60d9b89ce.
2024-09-05 14:26:00 -07:00
Daniel Hiltgen
6719097649 llm: make load time stall duration configurable via OLLAMA_LOAD_TIMEOUT
With the new very large parameter models, some users are willing to wait for
a very long time for models to load.
2024-09-05 14:00:08 -07:00
Daniel Hiltgen
b05c9e83d9 Introduce GPU Overhead env var (#5922)
Provide a mechanism for users to set aside an amount of VRAM on each GPU
to make room for other applications they want to start after Ollama, or workaround
memory prediction bugs
2024-09-05 13:46:35 -07:00
Daniel Hiltgen
a60d9b89ce Detect running in a container (#6495) 2024-09-05 13:24:51 -07:00
Michael Yang
bf612cd608 Merge pull request #6260 from ollama/mxyng/mem
llama3.1 memory
2024-09-05 13:22:08 -07:00
Zeyo
ef98e56122 readme: add AiLama to the list of community integrations (#4957) 2024-09-05 13:10:44 -07:00
Michael
5f944baac7 Update gpu.md: Add RTX 3050 Ti and RTX 3050 Ti (#5888)
* Update gpu.md

    Seems strange that the laptop versions of 3050 and 3050 Ti would be supported but not the non-notebook, but this is what the page (https://developer.nvidia.com/cuda-gpus) says.

Signed-off-by: bean5 <2052646+bean5@users.noreply.github.com>

* Update gpu.md

Remove notebook reference

---------

Signed-off-by: bean5 <2052646+bean5@users.noreply.github.com>
2024-09-05 11:24:26 -07:00
Tobias Heinze
6fc9d22707 server: fix blob download when receiving a 200 response (#6656) 2024-09-05 10:48:26 -07:00
Vitaly Zdanevich
f27c00d8c5 readme: add Gentoo package manager entry to community integrations (#5714) 2024-09-05 09:58:14 -07:00
王卿
c7c845ec52 Update install.sh:Replace "command -v" with encapsulated functionality (#6035)
Replace "command -v" with encapsulated functionality
2024-09-05 09:49:48 -07:00
Augustinas Malinauskas
cf48603943 readme: include Enchanted for Apple Vision Pro (#4949)
Added Enchanted with Apple Vision Pro support
2024-09-05 01:30:19 -04:00
Silas Marvin
6e67be09b6 readme: add lsp-ai to community integrations (#5063) 2024-09-05 01:17:34 -04:00
Arda Günsüren
0f5f060d2b readme: add ollama-php library to community integrations (#6361) 2024-09-05 01:01:14 -04:00
jk011ru
b3554778bd readme: add vnc-lm discord bot community integration (#6644) 2024-09-04 19:46:02 -04:00
Pascal Patry
bbe7b96ded llm: use json.hpp from common (#6642) 2024-09-04 19:34:42 -04:00
Rune Berg
c18ff18b2c readme: add confichat to community integrations (#6378) 2024-09-04 17:26:02 -04:00
Tomoya Fujita
133770a548 docs: add group to manual Linux isntructions and verify service is running (#6430) 2024-09-04 14:45:09 -04:00
Teïlo M
f36ebfb478 readme: add gollm to the list of community libraries (#6099) 2024-09-04 14:19:41 -04:00
亢奋猫
5b55379651 readme: add Cherry Studio to community integrations (#6633) 2024-09-04 10:53:36 -04:00
Mitar
93eb43d020 readme: add Go fun package (#6421) 2024-09-04 10:52:46 -04:00
Carter
369479cc30 docs: fix spelling error (#6391)
change "dorrect" to "correct"
2024-09-04 09:42:33 -04:00
Erkin Alp Güney
7d89e48f5c install.sh: update instructions to use WSL2 (#6450) 2024-09-04 09:34:53 -04:00
Sam
27bcce6d9f readme: add claude-dev to community integrations (#6630) 2024-09-04 09:32:26 -04:00
Viz
491fc312ae readme: add PyOllaMx project (#6624) 2024-09-03 23:10:53 -04:00
Jeffrey Morgan
5e2653f9fe llm: update llama.cpp commit to 8962422 (#6618) 2024-09-03 21:12:39 -04:00
Daniel Hiltgen
f29b167e1a Use cuda v11 for driver 525 and older (#6620)
It looks like driver 525 (aka, cuda driver 12.0) has problems with the cuda v12 library
we compile against, so run v11 on those older drivers if detected.
2024-09-03 17:15:31 -07:00
Daniel Hiltgen
037a4d103e Log system memory at info (#6617)
On systems with low system memory, we can hit allocation failures that are difficult to diagnose
without debug logs.  This will make it easier to spot.
2024-09-03 14:55:20 -07:00
Mateusz Migas
50c05d57e0 readme: add Painting Droid community integration (#5514) 2024-09-03 16:15:54 -04:00
Amith Koujalgi
35159de18a readme: update Ollama4j link and add link to Ollama4j Web UI (#6608) 2024-09-03 16:08:50 -04:00
FellowTraveler
94fff5805f Fix sprintf to snprintf (#5664)
/Users/au/src/ollama/llm/ext_server/server.cpp:289:9: warning: 'sprintf' is deprecated: This function is provided for compatibility reasons only. Due to security concerns inherent in the design of sprintf(3), it is highly recommended that you use snprintf(3) instead.
2024-09-03 09:32:59 -07:00
OpenVMP
14d5093cd0 readme: add PartCAD tool to readme for generating 3D CAD models using Ollama (#6605) 2024-09-03 12:28:01 -04:00
R0CKSTAR
9df5f0e8e4 Reduce docker image size (#5847)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2024-09-03 09:25:31 -07:00
presbrey
ad3eb00bee readme: add OllamaFarm project (#6508) 2024-09-02 16:05:36 -04:00
Jonathan Hecl
bfc2d61549 readme: add go-crew and Ollamaclient projects (#6583) 2024-09-02 15:34:26 -04:00
SnoopyTlion
741affdfd6 docs: update faq.md for OLLAMA_MODELS env var permissions (#6587) 2024-09-02 15:31:29 -04:00
likelovewant
8a7baa1bbf Merge branch 'ollama:main' into main 2024-09-02 14:58:22 +08:00
Vimal Kumar
5f7b4a5e30 fix(cmd): show info may have nil ModelInfo (#6579) 2024-08-31 21:12:17 -07:00
rayfiyo
1aad838707 docs: update GGUF examples and references (#6577) 2024-08-31 19:34:25 -07:00
Daniel Hiltgen
a1cef4d0a5 Add findutils to base images (#6581)
This caused missing internal files
2024-08-31 10:40:05 -07:00
Michael Yang
c41f0b9e6c Merge pull request #6562 from ollama/mxyng/build-artifacts
remove any unneeded build artifacts
2024-08-30 09:40:50 -07:00
Michael Yang
142cbb722d Merge pull request #6482 from ollama/mxyng/client-path
passthrough OLLAMA_HOST path to client
2024-08-30 09:40:34 -07:00
Michael Yang
9468c6824a Merge pull request #6534 from ollama/mxyng/messages
update templates to use messages
2024-08-30 09:39:59 -07:00
Michael Yang
11018196e0 remove any unneeded build artifacts 2024-08-29 13:40:47 -07:00
Bryan Honof
56346ccfa3 doc: Add Nix and Flox to package manager listing (#6074) 2024-08-29 12:45:35 -04:00
Patrick Devine
8e4e509fa4 update the openai docs to explain how to set the context size (#6548) 2024-08-28 17:11:46 -07:00
Michael Yang
47c2b947a9 Merge pull request #6546 from ollama/mxyng/fix-test
fix(test): do not clobber models directory
2024-08-28 15:37:47 -07:00
Michael Yang
5eb77bf976 Merge pull request #6539 from ollama/mxyng/validate-modelpath
fix: validate modelpath
2024-08-28 14:38:27 -07:00
Michael Yang
e4d0a9c325 fix(test): do not clobber models directory 2024-08-28 14:07:48 -07:00
Patrick Devine
7416ced70f add llama3.1 chat template (#6545) 2024-08-28 14:03:20 -07:00
Michael Yang
9cfd2dd3e3 Merge pull request #6522 from ollama/mxyng/detect-chat
detect chat template from configs that contain lists
2024-08-28 11:04:18 -07:00
Michael Yang
8e6da3cbc5 update deprecated warnings 2024-08-28 09:55:11 -07:00
Michael Yang
d9d50c43cc validate model path 2024-08-28 09:32:57 -07:00
likelovewant
76feb6c569 Merge branch 'ollama:main' into main 2024-08-28 12:02:21 +08:00
Patrick Devine
6c1c1ad6a9 throw an error when encountering unsupport tensor sizes (#6538) 2024-08-27 17:54:04 -07:00
Daniel Hiltgen
93ea9240ae Move ollama executable out of bin dir (#6535) 2024-08-27 16:19:00 -07:00
Michael Yang
413ae39f3c update templates to use messages 2024-08-27 15:44:04 -07:00
Michael Yang
60e47573a6 more tokenizer tests 2024-08-27 14:51:10 -07:00
Patrick Devine
d13c3daa0b add safetensors to the modelfile docs (#6532) 2024-08-27 14:46:47 -07:00
Patrick Devine
1713eddcd0 Fix import image width (#6528) 2024-08-27 14:19:47 -07:00
Daniel Hiltgen
4e1c4f6e0b Update manual instructions with discrete ROCm bundle (#6445) 2024-08-27 13:42:28 -07:00
Sean Khatiri
397cae7962 llm: fix typo in comment (#6530) 2024-08-27 13:28:29 -07:00
Patrick Devine
1c70a00f71 adjust image sizes 2024-08-27 11:15:25 -07:00
Michael Yang
eae3af6807 clean up convert tokenizer 2024-08-27 11:11:43 -07:00
Michael Yang
3eb08377f8 detect chat template from configs that contain lists 2024-08-27 10:49:33 -07:00
Patrick Devine
ac80010db8 update the import docs (#6104) 2024-08-26 19:57:26 -07:00
Jeffrey Morgan
47fa0839b9 server: clean up route names for consistency (#6524) 2024-08-26 19:36:11 -07:00
Daniel Hiltgen
0f92b19bec Only enable numa on CPUs (#6484)
The numa flag may be having a performance impact on multi-socket systems with GPU loads
2024-08-24 17:24:50 -07:00
Daniel Hiltgen
69be940bf6 gpu: Group GPU Library sets by variant (#6483)
The recent cuda variant changes uncovered a bug in ByLibrary
which failed to group by common variant for GPU types.
2024-08-23 15:11:56 -07:00
Michael Yang
9638c24c58 Merge pull request #5446 from ollama/mxyng/faq
update faq
2024-08-23 14:05:59 -07:00
Michael Yang
bb362caf88 update faq 2024-08-23 13:37:21 -07:00
Michael Yang
386af6c1a0 passthrough OLLAMA_HOST path to client 2024-08-23 13:23:28 -07:00
Patrick Devine
0c819e167b convert safetensor adapters into GGUF (#6327) 2024-08-23 11:29:56 -07:00
Daniel Hiltgen
7a1e1c1caf gpu: Ensure driver version set before variant (#6480)
During rebasing, the ordering was inverted causing the cuda version
selection logic to break, with driver version being evaluated as zero
incorrectly causing a downgrade to v11.
2024-08-23 11:21:12 -07:00
Daniel Hiltgen
0b03b9c32f llm: Align cmake define for cuda no peer copy (#6455)
Define changed recently and this slipped through the cracks with the old
name.
2024-08-23 11:20:39 -07:00
Daniel Hiltgen
90ca84172c Fix embeddings memory corruption (#6467)
* Fix embeddings memory corruption

The patch was leading to a buffer overrun corruption.  Once removed though, parallism
in server.cpp lead to hitting an assert due to slot/seq IDs being >= token count.  To
work around this, only use slot 0 for embeddings.

* Fix embed integration test assumption

The token eval count has changed with recent llama.cpp bumps (0.3.5+)
2024-08-22 14:51:42 -07:00
Michael Yang
6bd8a4b0a1 Merge pull request #6064 from ollama/mxyng/convert-llama3
convert: update llama conversion for llama3.1
2024-08-21 12:57:09 -07:00
Michael Yang
77903ab8b4 llama3.1 2024-08-21 11:49:31 -07:00
Michael Yang
e22286c9e1 Merge pull request #5365 from ollama/mxyng/convert-gemma2
convert gemma2
2024-08-21 11:48:43 -07:00
Michael Yang
107f695929 Merge pull request #4917 from ollama/mxyng/convert-bert
convert bert model from safetensors
2024-08-21 11:48:29 -07:00
Michael Yang
4ecc70d3b4 Merge pull request #6386 from zwwhdls/fix-new-layer
fix: chmod new layer to 0o644 when creating it
2024-08-21 10:58:45 -07:00
likelovewant
f9e1f572c2 Merge branch 'ollama:main' into main 2024-08-21 10:45:57 +08:00
Michael Yang
3546bbd08c convert gemma2 2024-08-20 17:27:51 -07:00
Michael Yang
beb49eef65 create bert models from cli 2024-08-20 17:27:34 -07:00
Michael Yang
5a28b9cf5f bert 2024-08-20 17:27:34 -07:00
Daniel Hiltgen
a017cf2fea Split rocm back out of bundle (#6432)
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions.  This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
2024-08-20 07:26:38 -07:00
Daniel Hiltgen
19e5a890f7 CI: remove directories from dist dir before upload step (#6429) 2024-08-19 15:19:21 -07:00
Daniel Hiltgen
f91c9e3709 CI: handle directories during checksum (#6427) 2024-08-19 13:48:45 -07:00
Daniel Hiltgen
2df6905ede Merge pull request #6424 from dhiltgen/cuda_v12
Fix overlapping artifact name on CI
2024-08-19 12:11:58 -07:00
Daniel Hiltgen
d8be22e47d Fix overlapping artifact name on CI 2024-08-19 12:07:18 -07:00
Daniel Hiltgen
652c273f0e Merge pull request #5049 from dhiltgen/cuda_v12
Cuda v12
2024-08-19 11:14:24 -07:00
Daniel Hiltgen
88e7705079 Merge pull request #6402 from rick-github/numParallel
Override numParallel in pickBestPartialFitByLibrary() only if unset.
2024-08-19 11:07:22 -07:00
Daniel Hiltgen
f9e31da946 Review comments 2024-08-19 10:36:15 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
3b19cdba2a Remove Jetpack 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
927d98a6cd Add windows cuda v12 + v11 support 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
f6c811b320 Enable cuda v12 flags 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
4fe3a556fa Add cuda v12 variant and selection logic
Based on compute capability and driver version, pick
v12 or v11 cuda variants.
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
fc3b4cda89 Report GPU variant in log 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
d470ebe78b Add Jetson cuda variants for arm
This adds new variants for arm64 specific to Jetson platforms
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
c7bcb00319 Wire up ccache and pigz in the docker based build
This should help speed things up a little
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Jeffrey Morgan
9fddef3731 server: limit upload parts to 16 (#6411) 2024-08-19 09:20:52 -07:00
Richard Lyons
885cf45087 Fix white space. 2024-08-18 03:07:16 +02:00
Richard Lyons
9352eeb752 Reset NumCtx. 2024-08-18 02:55:01 +02:00
Richard Lyons
0ad0e738cd Override numParallel only if unset. 2024-08-18 01:43:26 +02:00
likelovewant
3442ca76a9 Merge branch 'ollama:main' into main 2024-08-16 15:28:34 +08:00
likelovewant
4574e557ee update to hip sdk 6.1.2 2024-08-16 15:25:43 +08:00
zwwhdls
bdc4308afb fix: chmod new layer to 0o644 when creating it
Signed-off-by: zwwhdls <zww@hdls.me>
2024-08-16 11:43:19 +08:00
Daniel Hiltgen
d29cd4c2ed Merge pull request #6381 from eust-w/main
fix: Add tooltip to system tray icon
2024-08-15 15:31:15 -07:00
eust-w
a84c05cf91 fix: Add tooltip to system tray icon
- Updated setIcon method to include tooltip text for the system tray icon.
- Added NIF_TIP flag and set the tooltip text using UTF16 encoding.

Resolves: #6372
2024-08-16 06:00:12 +08:00
Michael Yang
e3d7f32af7 Merge pull request #6363 from ollama/mxyng/fix-noprune
fix: noprune on pull
2024-08-15 12:20:38 -07:00
Michael Yang
3a75e74e34 only skip invalid json manifests 2024-08-15 10:29:14 -07:00
Michael Yang
237dccba1e skip invalid manifest files 2024-08-14 16:55:45 -07:00
Michael Yang
b3f75fc812 fix noprune 2024-08-14 15:48:51 -07:00
Michael Yang
2003d60159 llama3.1 memory 2024-08-08 11:18:13 -07:00
158 changed files with 5760 additions and 26817 deletions

View File

@@ -7,3 +7,5 @@ llm/llama.cpp
.env
.cache
test_data
llm/build
llama/build

View File

@@ -102,7 +102,8 @@ jobs:
with:
name: generate-windows-cpu
path: |
llm/build/**/bin/*
build/**/*
build/**/*.a
llm/build/**/*.a
dist/windows-amd64/**
@@ -176,7 +177,7 @@ jobs:
with:
name: generate-windows-rocm
path: |
llm/build/**/bin/*
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
@@ -187,6 +188,13 @@ jobs:
generate-windows-cuda:
environment: release
runs-on: windows
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
@@ -220,11 +228,11 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
- name: 'Install CUDA ${{ matrix.cuda.version }}'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
@@ -256,15 +264,16 @@ jobs:
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
llm/build/**/bin/*
build/**/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
name: windows-cuda-deps
name: windows-cuda-deps-${{ matrix.cuda.version }}
path: dist/deps/*
# Import the prior generation steps and build the final windows assets
build-windows:
environment: release
@@ -314,17 +323,23 @@ jobs:
name: generate-windows-cpu
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps
name: generate-windows-cuda-12
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-12
- uses: actions/download-artifact@v4
with:
name: windows-rocm-deps
- uses: actions/download-artifact@v4
with:
name: generate-windows-rocm
- run: dir llm/build
- run: dir build
- run: |
$gopath=(get-command go).source | split-path -parent
& "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Launch-VsDevShell.ps1"
@@ -345,9 +360,7 @@ jobs:
environment: release
runs-on: linux
env:
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: amd64
PUSH: '1'
PLATFORM: linux/amd64
steps:
- uses: actions/checkout@v4
with:
@@ -355,15 +368,8 @@ jobs:
- name: Set Version
shell: bash
run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
mv dist/deps/* dist/
- uses: actions/upload-artifact@v4
with:
name: dist-linux-amd64
@@ -377,9 +383,7 @@ jobs:
environment: release
runs-on: linux-arm64
env:
OLLAMA_SKIP_MANIFEST_CREATE: '1'
BUILD_ARCH: arm64
PUSH: '1'
PLATFORM: linux/arm64
steps:
- uses: actions/checkout@v4
with:
@@ -408,14 +412,8 @@ jobs:
sudo usermod -aG docker $USER
sudo apt-get install acl
sudo setfacl --modify user:$USER:rw /var/run/docker.sock
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
- uses: actions/upload-artifact@v4
with:
name: dist-linux-arm64
@@ -423,6 +421,178 @@ jobs:
dist/*linux*
!dist/*-cov
# Container image build
build-container-image:
environment: release
strategy:
matrix:
runner:
- linux
- linux-arm64
runs-on: ${{ matrix.runner }}
env:
FINAL_IMAGE_REPO: ollama/ollama
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: 'Install Docker'
if: ${{ startsWith(matrix.runner, 'linux-arm64') }}
run: |
sudo apt-get update
sudo apt-get install -y ca-certificates curl
sudo install -m 0755 -d /etc/apt/keyrings
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc
sudo chmod a+r /etc/apt/keyrings/docker.asc
echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION_CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker $USER
sudo apt-get install acl
sudo setfacl --modify user:$USER:rw /var/run/docker.sock
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
machine=$(uname -m)
case ${machine} in
x86_64) echo ARCH=amd64; echo PLATFORM_PAIR=linux-amd64 ;;
aarch64) echo ARCH=arm64; echo PLATFORM_PAIR=linux-arm64 ;;
esac >>$GITHUB_ENV
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v6
with:
context: "."
platforms: linux/${{ env.ARCH }}
build-args: |
GOFLAGS
outputs: type=image,name=${{ env.FINAL_IMAGE_REPO }},push-by-digest=true,name-canonical=true,push=true
- name: Export digest
run: |
mkdir -p /tmp/digests
digest="${{ steps.build.outputs.digest }}"
touch "/tmp/digests/${digest#sha256:}"
- name: Upload digest
uses: actions/upload-artifact@v4
with:
name: digests-${{ env.PLATFORM_PAIR }}
path: /tmp/digests/*
if-no-files-found: error
retention-days: 1
merge:
environment: release
runs-on: linux
needs:
- build-container-image
env:
FINAL_IMAGE_REPO: ollama/ollama
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Download digests
uses: actions/download-artifact@v4
with:
path: /tmp/digests
pattern: digests-*
merge-multiple: true
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
machine=$(uname -m)
case ${machine} in
x86_64) echo ARCH=amd64; echo PLATFORM_PAIR=linux-amd64 ;;
aarch64) echo ARCH=arm64; echo PLATFORM_PAIR=linux-arm64 ;;
esac >>$GITHUB_ENV
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Create manifest list and push
working-directory: /tmp/digests
run: |
docker buildx imagetools create $(jq -cr '.tags | map("-t " + .) | join(" ")' <<< "$DOCKER_METADATA_OUTPUT_JSON") \
$(printf '${{ env.FINAL_IMAGE_REPO }}@sha256:%s ' *)
- name: Inspect image
run: |
docker buildx imagetools inspect ${{ env.FINAL_IMAGE_REPO }}:${{ steps.meta.outputs.version }}
build-container-image-rocm:
environment: release
runs-on: linux
env:
FINAL_IMAGE_REPO: ollama/ollama
ARCH: amd64
PLATFORM_PAIR: linux-amd64
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
- name: Docker meta
id: meta
uses: docker/metadata-action@v5
with:
images: ${{ env.FINAL_IMAGE_REPO }}
flavor: |
latest=false
tags: |
type=ref,enable=true,priority=600,prefix=0.0.0-pr,suffix=,event=pr
type=semver,pattern={{version}}
- name: Set Version
shell: bash
run: |
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${{ env.DOCKER_METADATA_OUTPUT_VERSION }}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_ENV
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- name: Build and push by digest
id: build
uses: docker/build-push-action@v6
with:
context: "."
target: runtime-rocm
build-args: |
GOFLAGS
tags: ${{ env.FINAL_IMAGE_REPO }}:${{ env.DOCKER_METADATA_OUTPUT_VERSION}}-rocm
push: true
# Aggregate all the assets and ship a release
release:
needs:
@@ -435,8 +605,6 @@ jobs:
permissions:
contents: write
env:
OLLAMA_SKIP_IMAGE_BUILD: '1'
PUSH: '1'
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
@@ -445,12 +613,6 @@ jobs:
run: |
echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
echo "RELEASE_VERSION=$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)" >> $GITHUB_ENV
- name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ vars.DOCKER_USER }}
password: ${{ secrets.DOCKER_ACCESS_TOKEN }}
- run: ./scripts/build_docker.sh
- name: Retrieve built artifact
uses: actions/download-artifact@v4
with:
@@ -459,7 +621,8 @@ jobs:
merge-multiple: true
- run: |
ls -lh dist/
(cd dist; sha256sum * > sha256sum.txt)
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
cat dist/sha256sum.txt
- name: Create or update Release
run: |

View File

@@ -81,12 +81,6 @@ jobs:
if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: 'Unix Go Generate'
- run: go build .
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries
path: |
llm/build/**/bin/*
llm/build/**/*.a
generate-cuda:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_CUDA == 'True' }}
@@ -114,12 +108,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: cuda-${{ matrix.cuda-version }}-libraries
path: |
llm/build/**/bin/*
dist/windows-amd64/**
generate-rocm:
needs: [changes]
if: ${{ needs.changes.outputs.GENERATE_ROCM == 'True' }}
@@ -147,12 +135,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
- uses: actions/upload-artifact@v4
with:
name: rocm-${{ matrix.rocm-version }}-libraries
path: |
llm/build/**/bin/*
dist/windows-amd64/**
# ROCm generation step
generate-windows-rocm:
@@ -189,7 +171,6 @@ jobs:
name: go generate
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
# CUDA generation step
generate-windows-cuda:
@@ -231,7 +212,6 @@ jobs:
go generate -x ./...
env:
OLLAMA_SKIP_CPU_GENERATE: '1'
# TODO - do we need any artifacts?
lint:
strategy:
@@ -263,14 +243,6 @@ jobs:
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
@@ -301,23 +273,10 @@ jobs:
cache: true
- run: |
case ${{ matrix.arch }} in
amd64) echo ARCH=x86_64 ;;
amd64) echo ARCH=amd64 ;;
arm64) echo ARCH=arm64 ;;
esac >>$GITHUB_ENV
shell: bash
- run: |
mkdir -p llm/build/linux/$ARCH/stub/bin
touch llm/build/linux/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'ubuntu-') }}
- run: |
mkdir -p llm/build/darwin/$ARCH/stub/bin
touch llm/build/darwin/$ARCH/stub/bin/ollama_llama_server
if: ${{ startsWith(matrix.os, 'macos-') }}
shell: bash
- run: go generate ./...
- run: go build
- run: go test -v ./...
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-binaries
path: ollama

3
.gitignore vendored
View File

@@ -14,4 +14,7 @@ ggml-metal.metal
test_data
*.crt
llm/build
build/*/*/*
!build/**/placeholder
llama/build
__debug_bin*

View File

@@ -32,6 +32,10 @@ linters:
linters-settings:
gci:
sections: [standard, default, localmodule]
staticcheck:
checks:
- all
- -SA1019 # omit Deprecated check
severity:
default-severity: error
rules:

View File

@@ -18,7 +18,7 @@ See the [development documentation](./docs/development.md) for instructions on h
* New features: new features (e.g. API fields, environment variables) add surface area to Ollama and make it harder to maintain in the long run as they cannot be removed without potentially breaking users in the future.
* Refactoring: large code improvements are important, but can be harder or take longer to review and merge.
* Documentation: small updates to fill in or dorrect missing documentation is helpful, however large documentation additions can be hard to maintain over time.
* Documentation: small updates to fill in or correct missing documentation is helpful, however large documentation additions can be hard to maintain over time.
### Issues that may not be accepted

View File

@@ -1,7 +1,9 @@
ARG GOLANG_VERSION=1.22.5
ARG CMAKE_VERSION=3.22.1
# this CUDA_VERSION corresponds with the one specified in docs/gpu.md
ARG CUDA_VERSION=11.3.1
ARG CUDA_VERSION_11=11.3.1
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
# Copy the minimal context we need to run the generate scripts
@@ -10,131 +12,243 @@ COPY .git .git
COPY .gitmodules .gitmodules
COPY llm llm
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION-devel-centos7 AS cuda-build-amd64
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_11-devel-centos7 AS cuda-11-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION-devel-rockylinux8 AS cuda-build-arm64
FROM --platform=linux/amd64 nvidia/cuda:$CUDA_VERSION_12-devel-centos7 AS cuda-12-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_11-devel-rockylinux8 AS cuda-11-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V11_ARCHITECTURES
ENV GOARCH=arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V11_ARCHITECTURES}" \
CUDA_VARIANT="_v11" \
bash gen_linux.sh
FROM --platform=linux/arm64 nvidia/cuda:$CUDA_VERSION_12-devel-rockylinux8 AS cuda-12-build-runner-arm64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG CUDA_V12_ARCHITECTURES
ENV GOARCH=arm64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 \
OLLAMA_SKIP_CPU_GENERATE=1 \
CMAKE_CUDA_ARCHITECTURES="${CUDA_V12_ARCHITECTURES}" \
CUDA_VARIANT="_v12" \
OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on" \
bash gen_linux.sh
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS rocm-build-amd64
ARG CMAKE_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH /opt/amdgpu/lib64
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV LIBRARY_PATH=/opt/amdgpu/lib64
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
ARG CGO_CFLAGS
ARG AMDGPU_TARGETS
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 sh gen_linux.sh
RUN mkdir /tmp/scratch && \
for dep in $(zcat /go/src/github.com/ollama/ollama/llm/build/linux/x86_64/rocm*/bin/deps.txt.gz) ; do \
cp ${dep} /tmp/scratch/ || exit 1 ; \
done && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd /tmp/scratch/ && tar xf - ) && \
mkdir -p /go/src/github.com/ollama/ollama/dist/deps/ && \
(cd /tmp/scratch/ && tar czvf /go/src/github.com/ollama/ollama/dist/deps/ollama-linux-amd64-rocm.tgz . )
ENV GOARCH=amd64
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_SKIP_CPU_GENERATE=1 bash gen_linux.sh
RUN mkdir -p ../../dist/linux-amd64-rocm/lib/ollama && \
(cd /opt/rocm/lib && tar cf - rocblas/library) | (cd ../../dist/linux-amd64-rocm/lib/ollama && tar xf - )
FROM --platform=linux/amd64 centos:7 AS cpu-builder-amd64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH=amd64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/amd64 cpu-builder-amd64 AS static-build-amd64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx" bash gen_linux.sh
FROM --platform=linux/amd64 cpu-builder-amd64 AS cpu_avx2-build-amd64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu_avx2" bash gen_linux.sh
FROM --platform=linux/arm64 rockylinux:8 AS cpu-builder-arm64
ARG CMAKE_VERSION
ARG GOLANG_VERSION
COPY ./scripts/rh_linux_deps.sh /
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
COPY --from=llm-code / /go/src/github.com/ollama/ollama/
ARG OLLAMA_CUSTOM_CPU_DEFS
ARG CGO_CFLAGS
ENV GOARCH=arm64
WORKDIR /go/src/github.com/ollama/ollama/llm/generate
FROM --platform=linux/arm64 cpu-builder-arm64 AS static-build-arm64
RUN OLLAMA_CPU_TARGET="static" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_CPU_TARGET="static" bash gen_linux.sh
FROM --platform=linux/arm64 cpu-builder-arm64 AS cpu-build-arm64
RUN OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" sh gen_linux.sh
RUN --mount=type=cache,target=/root/.ccache \
OLLAMA_SKIP_STATIC_GENERATE=1 OLLAMA_CPU_TARGET="cpu" bash gen_linux.sh
# Intermediate stage used for ./scripts/build_linux.sh
# Intermediate stages used for ./scripts/build_linux.sh
FROM --platform=linux/amd64 cpu-build-amd64 AS build-amd64
ENV CGO_ENABLED 1
ENV CGO_ENABLED=1
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/deps/ ./dist/deps/
COPY --from=static-build-amd64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build -trimpath .
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-rocm && \
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz
# Intermediate stage used for ./scripts/build_linux.sh
FROM --platform=linux/arm64 cpu-build-arm64 AS build-arm64
ENV CGO_ENABLED 1
ENV CGO_ENABLED=1
ARG GOLANG_VERSION
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=cuda-build-arm64 /go/src/github.com/ollama/ollama/llm/build/linux/ llm/build/linux/
COPY --from=static-build-arm64 /go/src/github.com/ollama/ollama/llm/build/ llm/build/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN go build -trimpath .
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
# Runtime stages
FROM --platform=linux/amd64 ubuntu:22.04 as runtime-amd64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
FROM --platform=linux/arm64 ubuntu:22.04 as runtime-arm64
RUN apt-get update && apt-get install -y ca-certificates
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM --platform=linux/arm64 scratch AS dist-arm64
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
FROM dist-$TARGETARCH as dist
# Radeon images are much larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete as runtime-rocm
RUN update-pciids
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/ollama /bin/ollama
# Optimized container images do not cary nested payloads
FROM --platform=linux/amd64 static-build-amd64 AS container-build-amd64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-amd64/bin/ollama .
FROM --platform=linux/arm64 static-build-arm64 AS container-build-arm64
WORKDIR /go/src/github.com/ollama/ollama
COPY . .
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-11-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cuda-12-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=cpu-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-11-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=cuda-12-build-runner-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
# across releases
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=cpu-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=cpu_avx2-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
COPY --from=rocm-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV OLLAMA_HOST=0.0.0.0
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM runtime-$TARGETARCH
EXPOSE 11434
ENV OLLAMA_HOST 0.0.0.0
ENV OLLAMA_HOST=0.0.0.0
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility

View File

@@ -215,6 +215,18 @@ ollama show llama3.1
ollama list
```
### List which models are currently loaded
```
ollama ps
```
### Stop a model which is currently running
```
ollama stop llama3.1
```
### Start Ollama
`ollama serve` is used when you want to start ollama without running the desktop application.
@@ -313,13 +325,24 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
### Terminal
@@ -344,6 +367,11 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [podman-ollama](https://github.com/ericcurtin/podman-ollama)
- [gollama](https://github.com/sammcj/gollama)
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -353,23 +381,28 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Package managers
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)
- [Ollama for Ruby](https://github.com/gbaptista/ollama-ai)
- [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs)
- [Ollama-hpp for C++](https://github.com/jmont-dev/ollama-hpp)
- [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j)
- [Ollama4j for Java](https://github.com/ollama4j/ollama4j)
- [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama)
- [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit)
- [Ollama for Dart](https://github.com/breitburg/dart-ollama)
@@ -386,11 +419,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Portkey](https://portkey.ai/docs/welcome/integration-guides/ollama)
- [PromptingTools.jl](https://github.com/svilupp/PromptingTools.jl) with an [example](https://svilupp.github.io/PromptingTools.jl/dev/examples/working_with_ollama)
- [LlamaScript](https://github.com/Project-Llama/llamascript)
- [Gollm](https://docs.gollm.co/examples/ollama-example)
- [Ollamaclient for Golang](https://github.com/xyproto/ollamaclient)
- [High-level function abstraction in Go](https://gitlab.com/tozd/go/fun)
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
### Mobile
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
### Extensions & Plugins
@@ -415,11 +454,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
- [Plasmoid Ollama Control](https://github.com/imoize/plasmoid-ollamacontrol) (KDE Plasma extension that allows you to quickly manage/control Ollama model)
- [AI Telegram Bot](https://github.com/tusharhero/aitelegrambot) (Telegram bot using Ollama in backend)
- [AI ST Completion](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (Sublime Text 4 AI assistant plugin with Ollama support)
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
### Supported backends

View File

@@ -296,15 +296,17 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Path string `json:"path"`
Modelfile string `json:"modelfile"`
Stream *bool `json:"stream,omitempty"`
Quantize string `json:"quantize,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
// Quantization is deprecated, see Quantize
// Deprecated: set the file content with Modelfile instead
Path string `json:"path"`
// Deprecated: use Quantize instead
Quantization string `json:"quantization,omitempty"`
}
@@ -312,7 +314,7 @@ type CreateRequest struct {
type DeleteRequest struct {
Model string `json:"model"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -327,7 +329,7 @@ type ShowRequest struct {
Options map[string]interface{} `json:"options"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -359,7 +361,7 @@ type PullRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}
@@ -380,7 +382,7 @@ type PushRequest struct {
Password string `json:"password"`
Stream *bool `json:"stream,omitempty"`
// Name is deprecated, see Model
// Deprecated: set the model name with Model instead
Name string `json:"name"`
}

View File

@@ -88,19 +88,10 @@ DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\windows-{#ARCH}\lib\ollama\runners\*"; DestDir: "{app}\lib\ollama\runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda")
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Flags: ignoreversion recursesubdirs
[Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"

View File

@@ -11,6 +11,7 @@ import (
"path/filepath"
"sort"
"sync"
"syscall"
"unsafe"
"golang.org/x/sys/windows"
@@ -433,7 +434,12 @@ func (t *winTray) setIcon(src string) error {
t.muNID.Lock()
defer t.muNID.Unlock()
t.nid.Icon = h
t.nid.Flags |= NIF_ICON
t.nid.Flags |= NIF_ICON | NIF_TIP
if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil {
copy(t.nid.Tip[:], toolTipUTF16)
} else {
return err
}
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.modify()

View File

@@ -61,6 +61,7 @@ const (
MIIM_SUBMENU = 0x00000004
MIM_APPLYTOSUBMENUS = 0x80000000
NIF_ICON = 0x00000002
NIF_TIP = 0x00000004
NIF_INFO = 0x00000010
NIF_MESSAGE = 0x00000001
SW_HIDE = 0

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1,8 @@
package build
import "embed"
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
//go:embed darwin/amd64/*
var EmbedFS embed.FS

View File

@@ -0,0 +1,8 @@
package build
import "embed"
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
//go:embed darwin/arm64/*
var EmbedFS embed.FS

6
build/embed_linux.go Normal file
View File

@@ -0,0 +1,6 @@
package build
import "embed"
//go:embed linux/*
var EmbedFS embed.FS

8
build/embed_unused.go Normal file
View File

@@ -0,0 +1,8 @@
//go:build !linux && !darwin
package build
import "embed"
// unused on windows
var EmbedFS embed.FS

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -0,0 +1 @@
This is here to make sure the build/ directory exists for the go:embed command

View File

@@ -2,6 +2,7 @@ package cmd
import (
"archive/zip"
"bufio"
"bytes"
"context"
"crypto/ed25519"
@@ -21,6 +22,7 @@ import (
"regexp"
"runtime"
"slices"
"strconv"
"strings"
"sync/atomic"
"syscall"
@@ -204,6 +206,12 @@ func tempZipFiles(path string) (string, error) {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
@@ -223,6 +231,14 @@ func tempZipFiles(path string) (string, error) {
}
files = append(files, js...)
// bert models require a nested config.json
// TODO(mxyng): merge this with the glob above
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
if err != nil {
return "", err
}
files = append(files, js...)
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
@@ -252,6 +268,11 @@ func tempZipFiles(path string) (string, error) {
return "", err
}
zfi.Name, err = filepath.Rel(path, file)
if err != nil {
return "", err
}
zf, err := zipfile.CreateHeader(zfi)
if err != nil {
return "", err
@@ -325,6 +346,39 @@ func (w *progressWriter) Write(p []byte) (n int, err error) {
return len(p), nil
}
func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
req := &api.GenerateRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
}
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
}
func StopHandler(cmd *cobra.Command, args []string) error {
opts := &runOptions{
Model: args[0],
KeepAlive: &api.Duration{Duration: 0},
}
if err := loadOrUnloadModel(cmd, opts); err != nil {
if strings.Contains(err.Error(), "not found") {
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
}
}
return nil
}
func RunHandler(cmd *cobra.Command, args []string) error {
interactive := true
@@ -403,7 +457,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
opts.ParentModel = info.Details.ParentModel
if interactive {
if err := loadModel(cmd, &opts); err != nil {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
return err
}
@@ -559,7 +613,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
table.SetHeaderLine(false)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetTablePadding(" ")
table.AppendBulk(data)
table.Render()
@@ -594,7 +648,15 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
cpuPercent := math.Round(float64(sizeCPU) / float64(m.Size) * 100)
procStr = fmt.Sprintf("%d%%/%d%% CPU/GPU", int(cpuPercent), int(100-cpuPercent))
}
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, format.HumanTime(m.ExpiresAt, "Never")})
var until string
delta := time.Since(m.ExpiresAt)
if delta > 0 {
until = "Stopping..."
} else {
until = format.HumanTime(m.ExpiresAt, "Never")
}
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), procStr, until})
}
}
@@ -605,7 +667,7 @@ func ListRunningHandler(cmd *cobra.Command, args []string) error {
table.SetHeaderLine(false)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetTablePadding(" ")
table.AppendBulk(data)
table.Render()
@@ -701,122 +763,89 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
return nil
}
showInfo(resp)
return nil
return showInfo(resp, os.Stdout)
}
func showInfo(resp *api.ShowResponse) {
func showInfo(resp *api.ShowResponse, w io.Writer) error {
tableRender := func(header string, rows func() [][]string) {
fmt.Fprintln(w, " ", header)
table := tablewriter.NewWriter(w)
table.SetAlignment(tablewriter.ALIGN_LEFT)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding(" ")
switch header {
case "Template", "System", "License":
table.SetColWidth(100)
}
table.AppendBulk(rows())
table.Render()
fmt.Fprintln(w)
}
tableRender("Model", func() (rows [][]string) {
if resp.ModelInfo != nil {
arch := resp.ModelInfo["general.architecture"].(string)
modelData := [][]string{
{"arch", arch},
{"parameters", resp.Details.ParameterSize},
{"quantization", resp.Details.QuantizationLevel},
{"context length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64))},
{"embedding length", fmt.Sprintf("%v", resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64))},
}
mainTableData := [][]string{
{"Model"},
{renderSubTable(modelData, false)},
rows = append(rows, []string{"", "architecture", arch})
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ModelInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "context length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.context_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ModelInfo[fmt.Sprintf("%s.embedding_length", arch)].(float64), 'f', -1, 64)})
} else {
rows = append(rows, []string{"", "architecture", resp.Details.Family})
rows = append(rows, []string{"", "parameters", resp.Details.ParameterSize})
}
rows = append(rows, []string{"", "quantization", resp.Details.QuantizationLevel})
return
})
if resp.ProjectorInfo != nil {
projectorData := [][]string{
{"arch", "clip"},
{"parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))},
}
if projectorType, ok := resp.ProjectorInfo["clip.projector_type"]; ok {
projectorData = append(projectorData, []string{"projector type", projectorType.(string)})
}
projectorData = append(projectorData,
[]string{"embedding length", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.embedding_length"].(float64))},
[]string{"projection dimensionality", fmt.Sprintf("%v", resp.ProjectorInfo["clip.vision.projection_dim"].(float64))},
)
mainTableData = append(mainTableData,
[]string{"Projector"},
[]string{renderSubTable(projectorData, false)},
)
tableRender("Projector", func() (rows [][]string) {
arch := resp.ProjectorInfo["general.architecture"].(string)
rows = append(rows, []string{"", "architecture", arch})
rows = append(rows, []string{"", "parameters", format.HumanNumber(uint64(resp.ProjectorInfo["general.parameter_count"].(float64)))})
rows = append(rows, []string{"", "embedding length", strconv.FormatFloat(resp.ProjectorInfo[fmt.Sprintf("%s.vision.embedding_length", arch)].(float64), 'f', -1, 64)})
rows = append(rows, []string{"", "dimensions", strconv.FormatFloat(resp.ProjectorInfo[fmt.Sprintf("%s.vision.projection_dim", arch)].(float64), 'f', -1, 64)})
return
})
}
if resp.Parameters != "" {
mainTableData = append(mainTableData, []string{"Parameters"}, []string{formatParams(resp.Parameters)})
tableRender("Parameters", func() (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(resp.Parameters))
for scanner.Scan() {
if text := scanner.Text(); text != "" {
rows = append(rows, append([]string{""}, strings.Fields(text)...))
}
}
return
})
}
head := func(s string, n int) (rows [][]string) {
scanner := bufio.NewScanner(strings.NewReader(s))
for scanner.Scan() && (len(rows) < n || n < 0) {
if text := scanner.Text(); text != "" {
rows = append(rows, []string{"", strings.TrimSpace(text)})
}
}
return
}
if resp.System != "" {
mainTableData = append(mainTableData, []string{"System"}, []string{renderSubTable(twoLines(resp.System), true)})
tableRender("System", func() [][]string {
return head(resp.System, 2)
})
}
if resp.License != "" {
mainTableData = append(mainTableData, []string{"License"}, []string{renderSubTable(twoLines(resp.License), true)})
tableRender("License", func() [][]string {
return head(resp.License, 2)
})
}
table := tablewriter.NewWriter(os.Stdout)
table.SetAutoWrapText(false)
table.SetBorder(false)
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range mainTableData {
table.Append(v)
}
table.Render()
}
func renderSubTable(data [][]string, file bool) string {
var buf bytes.Buffer
table := tablewriter.NewWriter(&buf)
table.SetAutoWrapText(!file)
table.SetBorder(false)
table.SetNoWhiteSpace(true)
table.SetTablePadding("\t")
table.SetAlignment(tablewriter.ALIGN_LEFT)
for _, v := range data {
table.Append(v)
}
table.Render()
renderedTable := buf.String()
lines := strings.Split(renderedTable, "\n")
for i, line := range lines {
lines[i] = "\t" + line
}
return strings.Join(lines, "\n")
}
func twoLines(s string) [][]string {
lines := strings.Split(s, "\n")
res := [][]string{}
count := 0
for _, line := range lines {
line = strings.TrimSpace(line)
if line != "" {
count++
res = append(res, []string{line})
if count == 2 {
return res
}
}
}
return res
}
func formatParams(s string) string {
lines := strings.Split(s, "\n")
table := [][]string{}
for _, line := range lines {
table = append(table, strings.Fields(line))
}
return renderSubTable(table, false)
return nil
}
func CopyHandler(cmd *cobra.Command, args []string) error {
@@ -1306,6 +1335,15 @@ func NewCLI() *cobra.Command {
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
runCmd.Flags().String("format", "", "Response format (e.g. json)")
stopCmd := &cobra.Command{
Use: "stop MODEL",
Short: "Stop a running model",
Args: cobra.ExactArgs(1),
PreRunE: checkServerHeartbeat,
RunE: StopHandler,
}
serveCmd := &cobra.Command{
Use: "serve",
Aliases: []string{"start"},
@@ -1373,6 +1411,7 @@ func NewCLI() *cobra.Command {
createCmd,
showCmd,
runCmd,
stopCmd,
pullCmd,
pushCmd,
listCmd,
@@ -1399,6 +1438,8 @@ func NewCLI() *cobra.Command {
envVars["OLLAMA_TMPDIR"],
envVars["OLLAMA_FLASH_ATTENTION"],
envVars["OLLAMA_LLM_LIBRARY"],
envVars["OLLAMA_GPU_OVERHEAD"],
envVars["OLLAMA_LOAD_TIMEOUT"],
})
default:
appendEnvDocs(cmd, envs)
@@ -1410,6 +1451,7 @@ func NewCLI() *cobra.Command {
createCmd,
showCmd,
runCmd,
stopCmd,
pullCmd,
pushCmd,
listCmd,

206
cmd/cmd_test.go Normal file
View File

@@ -0,0 +1,206 @@
package cmd
import (
"bytes"
"os"
"path/filepath"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/api"
)
func TestShowInfo(t *testing.T) {
t.Run("bare details", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("bare model info", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(7_000_000_000),
"test.context_length": float64(0),
"test.embedding_length": float64(0),
},
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
context length 0
embedding length 0
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("parameters", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Parameters: `
stop never
stop gonna
stop give
stop you
stop up
temperature 99`,
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
Parameters
stop never
stop gonna
stop give
stop you
stop up
temperature 99
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("project info", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
ProjectorInfo: map[string]any{
"general.architecture": "clip",
"general.parameter_count": float64(133_700_000),
"clip.vision.embedding_length": float64(0),
"clip.vision.projection_dim": float64(0),
},
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
Projector
architecture clip
parameters 133.70M
embedding length 0
dimensions 0
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("system", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
System: `You are a pirate!
Ahoy, matey!
Weigh anchor!
`,
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
System
You are a pirate!
Ahoy, matey!
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("license", func(t *testing.T) {
var b bytes.Buffer
license, err := os.ReadFile(filepath.Join("..", "LICENSE"))
if err != nil {
t.Fatal(err)
}
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
License: string(license),
}, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 7B
quantization FP16
License
MIT License
Copyright (c) Ollama
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}

View File

@@ -18,7 +18,6 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
)
@@ -31,26 +30,6 @@ const (
MultilineSystem
)
func loadModel(cmd *cobra.Command, opts *runOptions) error {
p := progress.NewProgress(os.Stderr)
defer p.StopAndClear()
spinner := progress.NewSpinner("")
p.Add("", spinner)
client, err := api.ClientFromEnvironment()
if err != nil {
return err
}
chatReq := &api.ChatRequest{
Model: opts.Model,
KeepAlive: opts.KeepAlive,
}
return client.Chat(cmd.Context(), chatReq, func(api.ChatResponse) error { return nil })
}
func generateInteractive(cmd *cobra.Command, opts runOptions) error {
usage := func() {
fmt.Fprintln(os.Stderr, "Available Commands:")
@@ -217,7 +196,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
if err := loadModel(cmd, &opts); err != nil {
if err := loadOrUnloadModel(cmd, &opts); err != nil {
return err
}
continue
@@ -371,7 +350,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
showInfo(resp)
_ = showInfo(resp, os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")

View File

@@ -7,16 +7,27 @@ import (
"io"
"io/fs"
"log/slog"
"strings"
"github.com/ollama/ollama/llm"
)
type Parameters struct {
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
func (Parameters) KV(t *Tokenizer) llm.KV {
type AdapterParameters struct {
Alpha uint32 `json:"lora_alpha"`
LoraLayers uint32 `json:"lora_layers"`
LoraParameters struct {
Rank uint32 `json:"rank"`
Alpha float32 `json:"alpha"`
Scale float32 `json:"scale"`
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
@@ -43,40 +54,119 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
return kv
}
func (Parameters) specialTokenTypes() []string {
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
} else {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
"general.type": "adapter",
"general.version": "v0.2",
}
return kv
}
func (ModelParameters) specialTokenTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
}
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type Converter interface {
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
parseMore(fs.FS) error
}
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
}
var p AdapterParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
return errors.New("architecture not set for the base model")
}
var conv AdapterConverter
switch arch {
case "llama":
conv = &llamaAdapter{}
case "gemma2":
conv = &gemma2Adapter{}
default:
return errors.New("unsupported architecture")
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
}
var p Parameters
var p ModelParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
@@ -85,16 +175,20 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return errors.New("unknown architecture")
}
var conv Converter
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{}
conv = &llamaModel{}
case "MixtralForCausalLM":
conv = &mixtral{}
conv = &mixtralModel{}
case "GemmaForCausalLM":
conv = &gemma{}
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Phi3ForCausalLM":
conv = &phi3{}
conv = &phi3Model{}
case "BertModel":
conv = &bertModel{}
default:
return errors.New("unsupported architecture")
}
@@ -103,23 +197,33 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
if t, ok := conv.(moreParser); ok {
if err := t.parseMore(fsys); err != nil {
return err
}
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return err
}
if vocabSize := int(p.VocabSize); vocabSize > len(t.Vocabulary.Tokens) {
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", p.VocabSize, "actual", len(t.Vocabulary.Tokens))
vocabSize := int(p.VocabSize)
switch {
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
} else {
case vocabSize < len(t.Vocabulary.Tokens):
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
ts, err := parseTensors(fsys)
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}

174
convert/convert_bert.go Normal file
View File

@@ -0,0 +1,174 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
PoolingType uint32
}
var (
_ ModelConverter = (*bertModel)(nil)
_ moreParser = (*bertModel)(nil)
)
func (p *bertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
break
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["bert.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
// noop
} else if strings.HasPrefix(e, "##") {
t.Tokens[i] = e[2:]
} else {
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (bertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"embeddings.position_embeddings", "position_embd",
"attention.self.query", "attn_q",
"attention.self.key", "attn_k",
"attention.self.value", "attn_v",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

View File

@@ -9,8 +9,8 @@ import (
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
type gemmaModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
@@ -21,12 +21,11 @@ type gemma struct {
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
@@ -43,16 +42,15 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -62,8 +60,8 @@ func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
func (p *gemmaModel) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
@@ -76,11 +74,10 @@ func (p *gemma) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))

53
convert/convert_gemma2.go Normal file
View File

@@ -0,0 +1,53 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
SlidingWindow uint32 `json:"sliding_window"`
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize
kv["gemma2.block_count"] = p.HiddenLayers
kv["gemma2.feed_forward_length"] = p.IntermediateSize
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma2.attention.key_length"] = p.HeadDim
kv["gemma2.attention.value_length"] = p.HeadDim
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma2Model) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
}
}

View File

@@ -0,0 +1,91 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
AdapterParameters
}
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma2Adapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -3,6 +3,7 @@ package convert
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/pdevine/tensor"
@@ -11,8 +12,8 @@ import (
"github.com/ollama/ollama/llm"
)
type llama struct {
Parameters
type llamaModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
@@ -28,7 +29,13 @@ type llama struct {
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
@@ -37,12 +44,11 @@ type llama struct {
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*llama)(nil)
var _ ModelConverter = (*llamaModel)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@@ -71,6 +77,27 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
} else if p.RopeScaling.RopeType == "llama3" {
dim := p.HiddenSize / p.NumAttentionHeads
for i := uint32(0); i < dim; i += 2 {
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
if lambda < float64(lambdaHigh) {
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
} else if lambda > float64(lambdaLow) {
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
} else {
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
}
}
}
if p.NumKeyValueHeads > 0 {
@@ -93,17 +120,26 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
WriterTo: p.RopeScaling.factors,
})
}
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -113,8 +149,8 @@ func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
func (p *llamaModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@@ -128,21 +164,19 @@ func (p *llama) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
if strings.HasSuffix(name, "attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View File

@@ -0,0 +1,169 @@
package convert
import (
"cmp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
AdapterParameters
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
}
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repackAndTranspose)
} else {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
}
return out
}
func (p *llamaAdapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return data, nil
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
}
if heads > 0 {
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
}
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -9,16 +9,14 @@ import (
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
type mixtralModel struct {
llamaModel
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
@@ -31,7 +29,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@@ -69,7 +67,14 @@ func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
})
}
return append(out, p.llama.Tensors(ts)...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp",
)
}
type experts []Tensor

View File

@@ -11,8 +11,8 @@ import (
"github.com/ollama/ollama/llm"
)
type phi3 struct {
Parameters
type phi3Model struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
@@ -35,12 +35,11 @@ type phi3 struct {
SlidingWindow uint32 `json:"sliding_window"`
}
var _ Converter = (*phi3)(nil)
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["general.name"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
@@ -69,13 +68,12 @@ func (p *phi3) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasPrefix(name, "blk.0.") {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
@@ -92,7 +90,7 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@@ -102,8 +100,8 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *phi3) tensorName(n string) string {
return strings.NewReplacer(
func (p *phi3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@@ -114,7 +112,7 @@ func (p *phi3) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
).Replace(n)
}
}
type ropeFactor []float32

View File

@@ -1,7 +1,9 @@
package convert
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"flag"
@@ -13,6 +15,7 @@ import (
"os"
"path/filepath"
"slices"
"strings"
"testing"
"golang.org/x/exp/maps"
@@ -20,6 +23,12 @@ import (
"github.com/ollama/ollama/llm"
)
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
t.Helper()
@@ -29,7 +38,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
}
defer f.Close()
if err := Convert(fsys, f); err != nil {
if err := ConvertModel(fsys, f); err != nil {
t.Fatal(err)
}
@@ -51,37 +60,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
}
func TestConvertFull(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
}
for i := range cases {
tt := cases[i]
t.Run(tt, func(t *testing.T) {
t.Parallel()
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p)
}
f, kv, tensors := convertFull(t, os.DirFS(p))
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@@ -106,6 +85,46 @@ func TestConvertFull(t *testing.T) {
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
return actual
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
flag.Parse()
slog.SetLogLoggerLevel(level)
os.Exit(m.Run())
}
func TestConvertModel(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
"gemma-2-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
}
for i := range cases {
tt := cases[i]
t.Run(tt, func(t *testing.T) {
t.Parallel()
p := filepath.Join("testdata", tt)
if testing.Short() {
t.Skip("skipping in short mode")
} else if _, err := os.Stat(p); err != nil {
t.Skipf("%s not found", p)
}
f, kv, tensors := convertFull(t, os.DirFS(p))
actual := generateResultsJSON(t, f, kv, tensors)
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
t.Fatal(err)
@@ -128,3 +147,330 @@ func TestConvertFull(t *testing.T) {
})
}
}
func TestConvertInvalidTensorNames(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), "testmodel")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
td := map[string]*tensorData{}
offset := 4096
td["model.layers.0.self_attn.q_proj.weight"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 4096},
}
td["blk.0.attn_q.weight"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{4096, 4096},
}
generateSafetensorTestData(t, tempDir, td)
err = ConvertModel(os.DirFS(tempDir), f)
if err == nil || !strings.HasPrefix(err.Error(), "duplicate tensor name") {
t.Errorf("expected error but didn't get one")
}
}
func TestConvertInvalidDatatype(t *testing.T) {
f, err := os.CreateTemp(t.TempDir(), "testmodel")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
td := map[string]*tensorData{}
offset := 4096 * 14336
td["model.layers.0.mlp.down_proj.weight"] = &tensorData{
Offsets: []int{0, offset},
Type: "I8",
Shape: []int{4096, 14336},
}
td["model.layers.0.mlp.down_proj.weight_format"] = &tensorData{
Offsets: []int{offset, offset},
Type: "U8",
Shape: []int{},
}
generateSafetensorTestData(t, tempDir, td)
err = ConvertModel(os.DirFS(tempDir), f)
if err == nil || err.Error() != "unsupported safetensors model" {
t.Errorf("expected error but didn't get one")
}
}
func generateSafetensorTestData(t *testing.T, tempDir string, tensorData map[string]*tensorData) {
data, err := json.Marshal(tensorData)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "model-00001-of-00001.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"architectures": [
"LlamaForCausalLM"
]
}
`
f, err := os.Create(filepath.Join(tempDir, "config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
tokenizerData := `
{
}
`
f, err = os.Create(filepath.Join(tempDir, "tokenizer.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(tokenizerData)
if err != nil {
t.Fatal(err)
}
}
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
Expected map[string]string
}
cases := []AdapterCase{
{
Name: "discollama",
BaseKV: map[string]any{
"general.architecture": "llama",
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
},
Expected: map[string]string{
"general.architecture": "llama",
"general.file_type": "1",
"general.parameter_count": "106496",
"general.type": "adapter",
"general.version": "v0.2",
"adapter.lora.alpha": "16",
"adapter.type": "lora",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
},
},
}
for _, c := range cases {
t.Run(c.Name, func(t *testing.T) {
t.Parallel()
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateLoraTestData(t, tempDir)
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
t.Fatal(err)
}
r, err := os.Open(f.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
}
})
}
}
func generateLoraTestData(t *testing.T, tempDir string) {
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{8, 4096},
}
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
Offsets: []int{offset * 2, offset * 3},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
Type: "F32",
Shape: []int{8, 1024},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
// write some data for the tensors
ones := make([]float32, 4096*8)
for i := range ones {
ones[i] = float32(1)
}
for range 3 {
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
}
ones = make([]float32, 1024*8)
for i := range ones {
ones[i] = float32(1)
}
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"adapter_path": "adapters-test",
"batch_size": 8,
"config": "config-tiny.json",
"data": "../discollama-completion",
"grad_checkpoint": null,
"iters": 1000,
"learning_rate": 1e-05,
"lora_layers": 1,
"lora_parameters": {
"rank": 8,
"alpha": 16,
"dropout": 0.0,
"scale": 2.0
},
"lr_schedule": null,
"max_seq_length": 2048,
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
"resume_adapter_file": null,
"save_every": 100,
"seed": 0,
"steps_per_eval": 200,
"steps_per_report": 10,
"test": false,
"test_batches": 500,
"train": true,
"use_dora": false,
"val_batches": 25
}
`
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
}

View File

@@ -35,7 +35,9 @@ const (
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
// these tensors are always F32
return 0
}
@@ -55,13 +57,15 @@ func (t *tensorBase) SetRepacker(fn repacker) {
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS) ([]Tensor, error) {
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, ...string) ([]Tensor, error)
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},
@@ -74,7 +78,7 @@ func parseTensors(fsys fs.FS) ([]Tensor, error) {
}
if len(matches) > 0 {
return pattern.Func(fsys, matches...)
return pattern.Func(fsys, replacer, matches...)
}
}

View File

@@ -4,10 +4,12 @@ import (
"bytes"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
@@ -20,7 +22,7 @@ type safetensorMetadata struct {
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := fsys.Open(p)
@@ -47,8 +49,19 @@ func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
keys := maps.Keys(headers)
slices.Sort(keys)
names := make(map[string]struct{}, len(keys))
for _, key := range keys {
if value := headers[key]; value.Type != "" {
// bitsandbytes quantized models are unsupported
if len(value.Shape) == 0 {
return nil, errors.New("unsupported safetensors model")
}
ggufName := replacer.Replace(key)
if _, ok := names[ggufName]; ok {
return nil, fmt.Errorf("duplicate tensor name '%s' was found for this model", ggufName)
}
names[ggufName] = struct{}{}
ts = append(ts, safetensor{
fs: fsys,
path: p,
@@ -56,7 +69,7 @@ func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
name: ggufName,
shape: value.Shape,
},
})

View File

@@ -3,12 +3,13 @@ package convert
import (
"io"
"io/fs"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
@@ -27,7 +28,7 @@ func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
name: replacer.Replace(k.(string)),
shape: shape,
},
})

View File

@@ -0,0 +1,3 @@
{
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
}

124
convert/testdata/all-MiniLM-L6-v2.json vendored Normal file
View File

@@ -0,0 +1,124 @@
{
"general.architecture": "bert",
"general.file_type": "1",
"general.quantization_version": "2",
"bert.attention.causal": "false",
"bert.attention.head_count": "12",
"bert.attention.layer_norm_epsilon": "1e-12",
"bert.block_count": "6",
"bert.context_length": "512",
"bert.embedding_length": "384",
"bert.feed_forward_length": "1536",
"bert.pooling_type": "1",
"tokenizer.ggml.model": "bert",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "100",
"tokenizer.ggml.cls_token_id": "101",
"tokenizer.ggml.seperator_token_id": "102",
"tokenizer.ggml.mask_token_id": "103",
"tokenizer.ggml.token_type_count": "2",
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
}

312
convert/testdata/gemma-2-2b-it.json vendored Normal file
View File

@@ -0,0 +1,312 @@
{
"general.architecture": "gemma2",
"general.file_type": "1",
"general.quantization_version": "2",
"gemma2.block_count": "26",
"gemma2.context_length": "8192",
"gemma2.embedding_length": "2304",
"gemma2.feed_forward_length": "9216",
"gemma2.attention.head_count": "8",
"gemma2.attention.head_count_kv": "4",
"gemma2.attention.key_length": "256",
"gemma2.attention.value_length": "256",
"gemma2.attention.layer_norm_rms_epsilon": "1e-06",
"tokenizer.ggml.model": "llama",
"tokenizer.ggml.add_bos_token": "true",
"tokenizer.ggml.add_eos_token": "false",
"tokenizer.ggml.bos_token_id": "2",
"tokenizer.ggml.eos_token_id": "1",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "3",
"tokenizer.ggml.scores": "0872465d173867d755d3ee728f882b9dc2057a0bfd596fe1e3d131522f1250d8",
"tokenizer.ggml.token_type": "8d40143b3477df77beea4139420335ede458bf5e14102f01b0170197b55da8d8",
"tokenizer.ggml.tokens": "c6e66de1841f04de8b8d236d461ab720a4c9b9b5414dc293a09c6e10eab45fda",
"token_embd.weight": "64a9d30707e659e2e673656d71f5aef7a9fb9fd83bb9a77558dfc5abbe218a05",
"blk.0.attn_k.weight": "d8b4437c5edb3cddf6af9987038e1bb2b191c4f0fce0e160d2abace717f5d5d7",
"blk.0.attn_norm.weight": "1eb73e3f7aa8e502f6ca31cd19efbb8e4fd9a89692e13e48ac8205545a7fa7e8",
"blk.0.attn_output.weight": "39e7b78e57d356a22dd89ce1c4d7163b970712ba756545e1703f97866cd2192e",
"blk.0.attn_q.weight": "795058e23b6109febd9d55c89e1eebe6af0714ec8c56fd86a160876a6135ffe8",
"blk.0.attn_v.weight": "0cd6e583d1887c020472e961bbb113fe5a0d23ae2f1c2c876fc366cdb7692b52",
"blk.0.ffn_down.weight": "51eb4d962189e945a84e94e0dc1aad3f8f90cc1a11e18029670afcd0ea0acb1b",
"blk.0.ffn_gate.weight": "9811a29b8ad48432925897ab21dfcb13c5cbd372aeccbbefca9b7866883b4ce3",
"blk.0.ffn_norm.weight": "92cbf4652ef503c1de5b10f2be00b3fcf00100980cb3baa8f3013a8d8bf3d851",
"blk.0.ffn_up.weight": "af87de21746879483ed1b374cdd76b19ba11ca2b6dbb1beba98efdf3be3e8077",
"blk.0.post_attention_norm.weight": "32e135f1f258ffe407018899e39af1725d59d66d60022b9a21575ba160e0357a",
"blk.0.post_ffw_norm.weight": "ba286f5ac11b07fbc986173708c66f1920427be5a6d108af38fa0a837c1c8eb6",
"blk.1.attn_k.weight": "51584435552051f7fade76beca582b3f7190cf7fc07adcf527c2774d4b1c3901",
"blk.1.attn_norm.weight": "6833104c7fbf35a7e799ae56c262b97fffa14789642aee14381b25acd21ed80a",
"blk.1.attn_output.weight": "14c39481369087bf292ac9a3ab2ef166f9fe376a9f90c246653213ef264febdc",
"blk.1.attn_q.weight": "443f64ae2229f857c69d6bebb7800b685786cb77884c3ae19d4286aeed081325",
"blk.1.attn_v.weight": "0df482de2038f1e4c8a7733ac0ddb69ad90759dab5968b942af0155588de4c4a",
"blk.1.ffn_down.weight": "66f30763a8bbbcaea609a0087ed75fadb5e771c06378dd2cea94cf17e492e8cf",
"blk.1.ffn_gate.weight": "a7151bff00a545fa18b2c92dcd2a14572ccf9beb957a6c494f1374e8ebe174c9",
"blk.1.ffn_norm.weight": "e197d71ea11b5276bc0167d2663b88089b3ff42b47ba91e85f6c5d95f6306435",
"blk.1.ffn_up.weight": "57c182e0b14cccd1350d388f0c616991702e74281db54637451b70f4ccc24f9b",
"blk.1.post_attention_norm.weight": "3c56f837168d784c2d8bac247c130bdca6610c095c8da4558c536ccad7605609",
"blk.1.post_ffw_norm.weight": "d2a51d320fd01069dd7ccaa7082f16a7faeb671885607d7900b10a89c354d0fa",
"blk.2.attn_k.weight": "bc103c818192de7ce36caaf89dc117be4df13fb902e0bd9a23c64edace5df9b6",
"blk.2.attn_norm.weight": "0f2503aa126083a5d6ac72481be1ef66c6014705b573682b35bd864e4749a3d5",
"blk.2.attn_output.weight": "05fcd4a1226e482f91803a266f72caca887a93e63c2d2ba5611ab3c68d38743a",
"blk.2.attn_q.weight": "6a10b5c2fd423d1e4c4fd60fa8c154a0159b6b2501ea79cae2ef19f45a674e5e",
"blk.2.attn_v.weight": "3cf891945a1f8ae7cc908a5c6b729ff5b70f4436c5ffdbf245cc0ed4cc19cd1b",
"blk.2.ffn_down.weight": "ea204fd04e0d2fc728a9861a459216bbfec629c152004ba625f52cd8837bd51e",
"blk.2.ffn_gate.weight": "3a3518729f1b8b64a82b8792f33987db5418fdb094be0263c68f146a5c38de54",
"blk.2.ffn_norm.weight": "754ede678b725de41a34b82f0edf7688b5c065be7c0d46df6f7ad9430d986884",
"blk.2.ffn_up.weight": "ffdcb88439f5828ffbd9fc844b03ff91637b790b9838097258cc3ae75935720c",
"blk.2.post_attention_norm.weight": "4b3f53b7ba26e8c36b2dfda3b7e5fc4b1065257cefdea235fc7df9af130ac2fd",
"blk.2.post_ffw_norm.weight": "e550369e26b8485e2b54ad34b34bc98af5494287dcc513c2c39cf1eaa5b89d07",
"blk.3.attn_k.weight": "89f24ea450e37d9e95757651a83205c085d81b354ee9489dd6310a391d8409f3",
"blk.3.attn_norm.weight": "24e2ea662b7cb822b4ca5cd61bc17f2709f406d990ec3b4a0dac1cc112db45cf",
"blk.3.attn_output.weight": "ac4dad69473c6e3fac56669212cadd8c34ecc5973d945972e974d94805334967",
"blk.3.attn_q.weight": "b6a9c9a7d4722b9096631c65de62228dfddca6e26edfe6af7fce01e116ef0f4c",
"blk.3.attn_v.weight": "f272a960a40093942309bc342a379984cbacec2d7bc64428db3f64e6b1887ed4",
"blk.3.ffn_down.weight": "c0188ba50d8228805982029c277fc0e87aa57473b8363037c648f6d006ff828a",
"blk.3.ffn_gate.weight": "a04aec1561ee6c0fbb18c3db49dc62fb533619cf697fd548cbf2279761aaec3b",
"blk.3.ffn_norm.weight": "bc053837d44087ec05eb5d9458357b2a5be787789b19cdbbdc694b57697f99a6",
"blk.3.ffn_up.weight": "b3ce8b274f20796d3b1a7c08ba27a919066f9de89a782faa544c4a8d6bea1382",
"blk.3.post_attention_norm.weight": "9c922dee7a7df5667289e2788e60170238239cee2dfdbbd9e435763f9f416718",
"blk.3.post_ffw_norm.weight": "b682544ac953ad2e0b49027ed8916f2e9d1aba5d1587bb4127ac703570c7a03a",
"blk.4.attn_k.weight": "143b0cbb4b787b95c2b6212374410e32173ccef2adb914908a2f89a7916de512",
"blk.4.attn_norm.weight": "5668f60491b780273745192662d02c9a92a4f692b29d16aa0bbc7413fec4f85b",
"blk.4.attn_output.weight": "b9f2bdb68be1e0cf66dd19f8fa2afb105910ad2ef394864cb32cea8f8944e0d5",
"blk.4.attn_q.weight": "ddcf1343dafbc2dfcd0b8741225af22fe4b54b2becce29240bd01c34265d126c",
"blk.4.attn_v.weight": "6dc7074366e7ed52d9f48c594dcc85bef738e096276cb99d28228c89eecc5b9c",
"blk.4.ffn_down.weight": "30334ffc59ce343cf2a1b973174acb7722823463adc07e19a99bd0f404bc9906",
"blk.4.ffn_gate.weight": "890f7c8af208d63b28db52c4b8c16c2288a382d87ff5a6a6d6b0a5b3bf27e6cd",
"blk.4.ffn_norm.weight": "ff0316cc7847221eb86a90c1ab441d4ee61553d410c66414a7755021b3b12448",
"blk.4.ffn_up.weight": "6af97d113f91564c636734f215e25ee602d48eb045458f300b3ec7582be0f41d",
"blk.4.post_attention_norm.weight": "69438f231e105e68216b078bdeb35a7cdc8b12c4e2845e18ecf4c8d361d6a321",
"blk.4.post_ffw_norm.weight": "0fd535da78bcf2b32c95b05b2b83dc49817393765be90d8cc1ed3d56f47b68ec",
"blk.5.attn_k.weight": "0166eb3c6d20dcf3d3c169e94caa8dee057535bb525e29f698fb6f8844f18a6c",
"blk.5.attn_norm.weight": "a7808f27f164023d5cde2be00fc23cac6c71aa0ddeb60bc23e12411b80087672",
"blk.5.attn_output.weight": "8b65b2027a0842b68c5308f91d6a31de9599d794157d77df8418b19f9e0d9334",
"blk.5.attn_q.weight": "966bc626ef2c2394d872087a41c126bb1b67d1d5f6de920204ef5e5b16c34003",
"blk.5.attn_v.weight": "9a362aef3f4437fbf0ef6e1ba785f3329c3db2960f93fe36547d2795e9c254ea",
"blk.5.ffn_down.weight": "63e53541d34197720c06f297aa8142ac6b6eec002c7987b296f26e8b1400f931",
"blk.5.ffn_gate.weight": "d9591fdd32f783e0fc26e20d5d587ee8971ac8ae2e4c818c6eac1c125c7c7f37",
"blk.5.ffn_norm.weight": "677334cc60ecce3a7f4ab3acda15d359353d7358872f614ad8914e3780e9fc6e",
"blk.5.ffn_up.weight": "a63764110e1c655ffbd55af0669b2dfe4cc29d0e198d33a8e5426461b08a85f7",
"blk.5.post_attention_norm.weight": "c55499f859b2c0a7f5cabceaae47309a5ad38bc29d0f4a8db81f1357023162a9",
"blk.5.post_ffw_norm.weight": "82752754665f842418f3e302cb5f43d1e0504dcd124c4b8ddb77018b2c793837",
"blk.6.attn_k.weight": "e20a5f0d6c807273c8d491439566b428497ac02097cf0aa55e33748c28e14be6",
"blk.6.attn_norm.weight": "2c6ba42fd3c73d72073ced03a32dd28d70a89ed9bbbc8fea1ba03a7ade951e6c",
"blk.6.attn_output.weight": "4de7c5c2f4a133a266e17ed8c14c52959466b54cc7ab9e19f789a33b4850f284",
"blk.6.attn_q.weight": "56462d921800e6b8cd2213fef04c4ff16d728905cb2f4c58e966d0a053a3b0ae",
"blk.6.attn_v.weight": "b758dcbff769d6240c2245ede1dbc62c4170a67c77458e866312589220fe29af",
"blk.6.ffn_down.weight": "582247fb3c2bf687cbe9413fe18d18ad47bef4b65df7d78905e10335c6134764",
"blk.6.ffn_gate.weight": "3035444d5286aefb7a6d04e55bc27e1fac7cf895cd5be02319a431b8e047b4ae",
"blk.6.ffn_norm.weight": "e582d24c66e01b96faa20ce6adfda3d8583b11e809bff89969927398175e369a",
"blk.6.ffn_up.weight": "6f4b7bbfedeacf61a4866ae0616c4ba6c9e856662e8f00ae6aaec7f52c53e7b4",
"blk.6.post_attention_norm.weight": "8fe51b50bd677d21586aecab0b565c4bf9fa68ad50bfe366f45e8fea3c657ca8",
"blk.6.post_ffw_norm.weight": "81ba3cb4c2bf5c546b86855b7a885d3fafededc67eb3a35cd3598b03c9e26e65",
"blk.7.attn_k.weight": "2e044179cdcae0946708c86bfea7aa0391e1f7e2a09b33fca035d384cc3ca758",
"blk.7.attn_norm.weight": "94b48c546b046803c60e75a3acb17a356b710735989938021b565f68df9b4985",
"blk.7.attn_output.weight": "65709b4ad7a581f4d75793d39d4032a359f6bcc0c3835205242a0b99e5b66824",
"blk.7.attn_q.weight": "8ded993c95d1f7caf201ceb6fa035cd6ed6d351b50b999fa9355dfee9486cb5b",
"blk.7.attn_v.weight": "c92d5e2d2d48397542bc03bea25bf39154075e66c5bb1ead85188505aa04ae91",
"blk.7.ffn_down.weight": "e8ba8fb57208805ef1dc23cd7c86e9a2d1fb7c52c3940d292cd5bb2eb24b3fac",
"blk.7.ffn_gate.weight": "f0f06d6a2e06c5ac252083bc61d05c814e6289d3f4e4a87d2f06918254c02c36",
"blk.7.ffn_norm.weight": "ebf8ef775f72624148e09d68a4332187a7a5020c521fe0623da1cd3485ad33e0",
"blk.7.ffn_up.weight": "a554adc4fc7122c247c77670e169916ba1794c787b5be30a2b36705138f1f746",
"blk.7.post_attention_norm.weight": "3aa6bc21d85c3a0c12b964e82b12feaedfdd13130c3cd2229228e24e0967ebdf",
"blk.7.post_ffw_norm.weight": "508bc7b19ee8ff08f0007c890133a462fc57c7e72b16ee8f6dd64def264ef876",
"blk.8.attn_k.weight": "363c8e74056642fe9e7c2f3f9769d57319cd3fa0a6022810189ab8d894322885",
"blk.8.attn_norm.weight": "685b49a1f1acb169f4df0bdd8e3de6943f3033cebad14b898a72000595610d92",
"blk.8.attn_output.weight": "7bde571e4efef1c6a6143f0526721dfb59e0a0ea0e1a3616a322b2eb937efa48",
"blk.8.attn_q.weight": "fc993dbc1074c28a0e1d85e5ab2f4ea6a9c6c1affe7ee56027000a275daed9b6",
"blk.8.attn_v.weight": "281e8791d3aef9b3864f1cb054da0ae0c2fef4ce0a58b1bad8bc136b2fa0f62b",
"blk.8.ffn_down.weight": "b1164a2578a7f87ed99c2bbc76c5dfbbbc6a1a803605391acc3f320fc989ffd7",
"blk.8.ffn_gate.weight": "6b39a3b3aaaa79aee61416b54d62160b9258042650e61c6b47bc77c2dd17daf3",
"blk.8.ffn_norm.weight": "17ea1362c72da27f12bc936500492035bdef3fd8f940cb12b57f37d42ba8ecb1",
"blk.8.ffn_up.weight": "bc3a7c47afc440d2bdf8fbe9ddf2c9220467472c60c8b4ded8c0f181470ec96c",
"blk.8.post_attention_norm.weight": "5c506204e00411ef9c8b4134d40eedcc19fffe68dd0af7d7cc49dcabf2dfac7e",
"blk.8.post_ffw_norm.weight": "002faec235c3678864e2901eed275ce4e9dc229164a91c9cd4c965142ba62305",
"blk.9.attn_k.weight": "0bab39d8c237f1b6d0010db40467142625a9e6f2e0e4c49a56c12b41e4e0b1fa",
"blk.9.attn_norm.weight": "de5f38e873b17f07aa7598831b89cc1cae2c9bc3eb2e042ee9af059d2563e84e",
"blk.9.attn_output.weight": "8a8184702c25a62df9ff309c0c7badc8587208523b2be3e8fa90ce7080573e6f",
"blk.9.attn_q.weight": "7c961b2431b09ddf95377acd07201cb91bf13d9cd3ae0f2c25c7d6a0358d9f50",
"blk.9.attn_v.weight": "e22d240cb4743067033e659cbf210ebe2ebbab3e1dea6ccbe5eaa982382ca038",
"blk.9.ffn_down.weight": "a426f81210f03d6ad53277416e1fdcdf37d8065e4817613edaf6c67a343426be",
"blk.9.ffn_gate.weight": "a82eba825cb77b8e64f85ff99ede2fc71bc9b01751eeb17e9e6c246ee12ea62e",
"blk.9.ffn_norm.weight": "1a97f9b1302a3a326d534c5c3fed2db6db0ae45fd0edd381a3e4fc1c75d81030",
"blk.9.ffn_up.weight": "5f20bac2bbf03bb42adb92fbf99561651e1edda57e0b61935ac7f6c08c0ed7cb",
"blk.9.post_attention_norm.weight": "9f9866d13988e1946b1e1c80d9374a92a6e3be33748f8eaed3e126d1e1a4c796",
"blk.9.post_ffw_norm.weight": "a6896dbf698db4dbbe5dbf12417d4fd80e9cad0c539c858892ec0aa5b046bb58",
"blk.10.attn_k.weight": "ca8446e5d21ecd4e6a70dca8d321be480be4fba94d70cba065205436feb44270",
"blk.10.attn_norm.weight": "4f41fe290e8f21f63b82151b6cce94bf7318d121468816b0c58af0ff7c1658ab",
"blk.10.attn_output.weight": "c626d2e9681c5c941bbde43dddfae1a8d4986bf2be4470857bc8e8bd7f869044",
"blk.10.attn_q.weight": "1e61b210a13a429977325cf15d781ab77d604cfa862f4270329cbd94237d5835",
"blk.10.attn_v.weight": "8ff8d3e3f058ec3b35ada1057f2ed59c06494d0e0be6a8dc3ff9edf9f0e1a115",
"blk.10.ffn_down.weight": "bcebc04219f8081a5f483e58103c0ddbbbc631a0a54fd6dd9d55778e041f70ee",
"blk.10.ffn_gate.weight": "7a23a1e620ef871384ddf9611ccdcfb893fbf013cc203ac8e72f745420f1eea0",
"blk.10.ffn_norm.weight": "e3a375e43c349a1c6c66c22328e513cc1af3137fe839e43dc8e9be2f65914fd7",
"blk.10.ffn_up.weight": "5d182e7c94369194fca5f19cbbe668a999911e57f3d363bc7fb6088428700cb9",
"blk.10.post_attention_norm.weight": "b841c6308296e8984f3c5f549c6e3a242f4b3e19141e1f54cc08de9c46759c09",
"blk.10.post_ffw_norm.weight": "9d66fa05b5c940208f634f5053d809094c99a2a10a1d1e8847c8281fbd99fb49",
"blk.11.attn_k.weight": "14adf24ebb2bb17b336ca81cec3e690fd854782f4440ca6c66cc1d7e7bf1c850",
"blk.11.attn_norm.weight": "2d2213f311f50414702b5b34f22aafb9d9a0b6787243e7578562583dc40ad195",
"blk.11.attn_output.weight": "de1f14cc2a7fff00cf11b229f0576999205f17b9536e97abc9d6de3cc79a7884",
"blk.11.attn_q.weight": "2bcc5c147524003109ece0be08b89ac8b25baa71416ffa76573c6c052ffc6eea",
"blk.11.attn_v.weight": "2e6ab8573070c22dc1e0d7aebe4d52123226dacf7822dcce06fadbb38fb036a4",
"blk.11.ffn_down.weight": "1b86902f4e36868421e5228b9445051f8290b292df22a6d1af836dcecc1f25c3",
"blk.11.ffn_gate.weight": "e756e8081bd0a16aea4a9ef5076ad102113524f7a3d50a3a77aaa7f7938b63e8",
"blk.11.ffn_norm.weight": "6913887267be227cf9d1991a3dd8db2e7e74bb9b5fbdfcb9ac954fd7d7b95b3b",
"blk.11.ffn_up.weight": "619a3ac0609ebdf42c3fb2b6e4b1db48df79e6dd8418d7ab8f1bbff13d8a6a50",
"blk.11.post_attention_norm.weight": "e4b4ba92cef7b6a78407e8ab1b0307d47dac6c3df7b6817e28038317ff662d7e",
"blk.11.post_ffw_norm.weight": "40aceeec58cb855f0c158c9cc217168fcd5d0e735567d587217b1d78df17bc5f",
"blk.12.attn_k.weight": "c54c5a4d4892522022d1aa2204cfc624f0b4042caa536e678967316293fe5cb1",
"blk.12.attn_norm.weight": "7cd2ef58298569ffdf244d9b390f3917245276c8206e5780af5f96d8c0bbb446",
"blk.12.attn_output.weight": "85495ef9cc8b3deb21f741bde463ff6493acae2be51f02ecdeef952cbdec3375",
"blk.12.attn_q.weight": "d19383f83fd119bfb8c0280c9515705c11d8e7d502019fcf8f49efeef0d106d0",
"blk.12.attn_v.weight": "869ac669ba49531d9128892a0e27cef15de508ff40cdf80cc1681dde50d09204",
"blk.12.ffn_down.weight": "578f39f8f9fc2f09138afc884a952d7cc3a9a31de4216acd10e88e19e0b75f8c",
"blk.12.ffn_gate.weight": "e29a0186bc6c4a0720246306e922d3a83f777dadcf4ac80bad468287031cc8b5",
"blk.12.ffn_norm.weight": "e1ee95c6584b5cb57fcf1db8ce2bcc03aff91eb389238c094a61c00dde93d1f2",
"blk.12.ffn_up.weight": "2a826f06d7cdfb3edc6ae250ff44363ef77a2a9cdf96313e23a331b99ebfa17d",
"blk.12.post_attention_norm.weight": "4bafc7699b948d5cbc0d3e09b418b06c6abc4651a61ada9609d9a2f21c7e5607",
"blk.12.post_ffw_norm.weight": "bbb8c34a7176bb1a49f9fe2bacca0bd26b673d52c0835b2e90fa11f2962f077f",
"blk.13.attn_k.weight": "ffeefccfe8255d1b694382012ff4134eee5fec9d9491c8d0ff0a13832d1a37e8",
"blk.13.attn_norm.weight": "35713726529e3887c4135a88e86e8a4d7270ba5b9f2d1ab462622fbf40a7cdce",
"blk.13.attn_output.weight": "0d60b7c5cd71190a9ef4b873b0f516be15447c32d83914db2794b14592b0b460",
"blk.13.attn_q.weight": "8296069e65bef794cefc61257fc65789b3cb22955e30f3df129205e5041b2222",
"blk.13.attn_v.weight": "ca0f4ab9d16a748fc643a5c0c7a19826a811bf2a4e7316a8c935d4bf0ce8abc6",
"blk.13.ffn_down.weight": "d5514e0c8e7b3ed1cbcc1605eb5be1733b6ab3514cf8a0508fc72f7d05ed8bcb",
"blk.13.ffn_gate.weight": "8108e517a82e08a3aefbbd267bfa50a1668f92a76273280ce8a6bc1f6dd61521",
"blk.13.ffn_norm.weight": "5fcb6132d2134bf1f835b904a99820fa501dbc57d2224129f7098bf3cabc1d36",
"blk.13.ffn_up.weight": "6d744b7cd390a3cae3aa350dd379b81246acd056a2259996b6aaadece8465ccc",
"blk.13.post_attention_norm.weight": "e08b14698912509790e9575b8676971fbb0a4d82d719367e3756c0d0c4ab8cc0",
"blk.13.post_ffw_norm.weight": "2b196e4450fc5f1e7367b2cf7fe33a15fe919fbcdd861d11002346f16e980535",
"blk.14.attn_k.weight": "120e5f48d7268dfd9ab5f4bc9cc57a7cec63ea9635f56b80d435eb22936e9483",
"blk.14.attn_norm.weight": "146367bcce4db72cc894419a2e0145a6f533507dd68e4739c10ee480308c401f",
"blk.14.attn_output.weight": "720fa0165e756876c5cb6ad9e2780dd910390933f3f8849e5add5da04266650b",
"blk.14.attn_q.weight": "f5183466f56219ca1aca52d8b82c2d966a4198fea40fdd6b39f4d8b06ca2a6dd",
"blk.14.attn_v.weight": "24f8ea3d5512cd37c43c8329cb0da0c90d1895aef763ac2dcee3fe5157ec50a2",
"blk.14.ffn_down.weight": "e29960965b384ae5ab3d898a4dbaa8fddd28fa0e477ac28bcac49dec12a5ac67",
"blk.14.ffn_gate.weight": "6d0d6a74bfe9692e8f8eedff0fc34fc4fa1c8687794f35f2e2b033ab2d7510b8",
"blk.14.ffn_norm.weight": "f7036c1a9a71e046c9d2af16e9218fda5dbb0f7241ab44747abed1f0f9d602ca",
"blk.14.ffn_up.weight": "7d69ea1424007ffc9c12247dd0308c616e93ac02a59ec341cfa48f92d6ce3b10",
"blk.14.post_attention_norm.weight": "65b9712834d9445d4236bec362f3fb795c20d60c541b3dc6dbb7914d9b493e41",
"blk.14.post_ffw_norm.weight": "9c6a8da2e4e437d5cfdf3b9097e9f8b64bf07946a048badec20f4d374613f38f",
"blk.15.attn_k.weight": "864bc618303a0e4ee67fb1d5e751de61e936cd51e96669dd86f8cd08f2305045",
"blk.15.attn_norm.weight": "f9f4187da6eeadc2fc5921d8fe669741697d16c13d71e4aaeb73b82f50dc577e",
"blk.15.attn_output.weight": "ce2419a0b097036b2a31f2f4ad731d5814bcc2ef4c511786e24471e5eefd273b",
"blk.15.attn_q.weight": "9539db5a970d11ebe99722d1e13fcd635e250033630811efe583d2f97778e4a9",
"blk.15.attn_v.weight": "1c834b48ccd88adaeabb7d8bcb6be0bcd6d5ac1354ce88fc28f19a1a96b81ab3",
"blk.15.ffn_down.weight": "bc1f97a65dde6fa2c1e5397afb612266944b343f2eaa868b635ddd25829f8a42",
"blk.15.ffn_gate.weight": "1b14529d57056b79037f6cb5008132e62cc35992353b38dda59572274623103b",
"blk.15.ffn_norm.weight": "9af77458de9ee55c66f93865759f9c2c398557f94f3fa8fa6af30543d7339cde",
"blk.15.ffn_up.weight": "41d524a26b61a9595816b4fd53cf57ef50a702e4ef32933ff6136dca9136a267",
"blk.15.post_attention_norm.weight": "c60a03cd0e63a7db5c80015e58e9b97ba2208caa19f66a6fef5c4447eca900ce",
"blk.15.post_ffw_norm.weight": "34f7f9f96769215bbc3d17084df091864aef96a6645b7d0b3b7d9bd92f1a4b0b",
"blk.16.attn_k.weight": "7e27240d9f3a8c6cf0f4a980113d43234f514eadc3e3e1792b86efb29ffb1a6d",
"blk.16.attn_norm.weight": "af798acc0899282a30448edec48223b3e8efda177090273e612d8eca5e377301",
"blk.16.attn_output.weight": "79df39a3709d3d53e84146291e0944a7a653d06705293d9ccb5648dceadb432c",
"blk.16.attn_q.weight": "db58a1c3b83ad294804e5fd7321005719e200659173466df5a52a182b80b7165",
"blk.16.attn_v.weight": "2af6d48cbaeb225b5c1a704f76abd89c8ab1521417695b112b4dcc2cbd39b74d",
"blk.16.ffn_down.weight": "fc1c813eb5e7da3d6194569d6cb21602fc6eff2dc8e1b0eb753f2d5df148189c",
"blk.16.ffn_gate.weight": "7a80bcbc42464bd55df4814a6edbd7b5c153e0428323bbe49de55e2d2add33e7",
"blk.16.ffn_norm.weight": "2041685ee926d30f3f2ae4ec35b5688f1cd834167a6359a7d4057eac804c58b2",
"blk.16.ffn_up.weight": "8da4b718973ac1d43b928829bc45e062fd101984d6c98dd825bd7c5d08ebfbe3",
"blk.16.post_attention_norm.weight": "975c48fe680a6167438a106140a8872eee7765191f152d80e3b8ddf47693e095",
"blk.16.post_ffw_norm.weight": "4de2d4d483acfe4fc77860ea929025df2f4e15c10729413f36a18c94eaa6d689",
"blk.17.attn_k.weight": "f937e61f0af8c4cd98ee742648eb60e02e579683e21d421071295a3b70aebaad",
"blk.17.attn_norm.weight": "c3270583ed28b7e423f5b170c59113234f258169b93a867d9274f4c10b7cb115",
"blk.17.attn_output.weight": "b8c1150e81e685e539a5dcf2c19047a24eba2b281fabe166674b1d71ef4612ea",
"blk.17.attn_q.weight": "c255100ae2011e7dc7e3bf3bc3ccd96d859fbb98581cae993d7b82c1ba8e8b39",
"blk.17.attn_v.weight": "5830bb0a555984c6485348067f70b5d22ae337c011aa9248dac2ff4c95944551",
"blk.17.ffn_down.weight": "8ff9a7cccaa3776434a9d895aae4fb5c36c736bf2ec98784226b4c234940fbb0",
"blk.17.ffn_gate.weight": "1b52876739712831c272911533da206f407b46034a1a4ae8a88c1f96b6bd5747",
"blk.17.ffn_norm.weight": "d0e16ba5e87c91b545334e022058c7d03849665c3b1a6298771b656531366b66",
"blk.17.ffn_up.weight": "4dd6211d01dbebbe21052708eddc242b082a58b5f18ed16479e17987c1d3432e",
"blk.17.post_attention_norm.weight": "6f49c775c7417dade77ba8268a0f8441c1e5ec28b5d7e4dc5ed07a04d04600c8",
"blk.17.post_ffw_norm.weight": "b91a0bb2e6679e9c9be06ad323adae441d00a3d673efb19d7c4954be2aa84b27",
"blk.18.attn_k.weight": "22b565ace1b4da8b33865a58625be1d90beea9891f29686a69fa9cf7c93217db",
"blk.18.attn_norm.weight": "3e0160d7063c8753de65d2356a66648e47d921efdc5c917efb8209892120f8db",
"blk.18.attn_output.weight": "e3180f0bb4ca90b31e9b08158db38e332de62dfbaefe34aa94cc316409331e09",
"blk.18.attn_q.weight": "f3a5a83614c3ba7ea41cdd5b1b0819a241ee2a951a381ce4a9e001d3f700ed8f",
"blk.18.attn_v.weight": "f3350a5984fb951fc738adcf78147e6d812ff1c576670c460cafc99c253c1654",
"blk.18.ffn_down.weight": "9e9d09b13a33525e14bdaee6efc65c551ac7cf7680e534b940ab122a3a7c1ac9",
"blk.18.ffn_gate.weight": "ebaec8b4b578a2e8d815baac12f1675c208f80c68074d5a18288a2e1a60680ee",
"blk.18.ffn_norm.weight": "33e7687c53a242f2f8dc7093a491c97b18d4a5a8c14d183f02bd586a770f05aa",
"blk.18.ffn_up.weight": "78a1816662378ce56cc870e705174492781897b3afd2d4d97a51f10f2f2987c1",
"blk.18.post_attention_norm.weight": "a58dde3f12df3e94cbc27d87c8ea86f89af8a388a506446ff6758f05399b05fc",
"blk.18.post_ffw_norm.weight": "cebf90cc143577d483cca27b032dfd82031ee59bdf17c0e2cf60a0a3ad5bf996",
"blk.19.attn_k.weight": "4683375d0599ac9e2232196aae1e90af13a14cae26e865465de5c8e257bb2055",
"blk.19.attn_norm.weight": "f3eba936bfb1814bbcb0a1d62739eb66daac839df8c9c836fe0e94860df88525",
"blk.19.attn_output.weight": "51c0f01d38a9dcfe9bdbc4643576fab164c1d9e4b7168b7695c0ee55e6965667",
"blk.19.attn_q.weight": "28d15b69b8416f2e7ddc88fe381cb1e2ef2ad705fb1c268139ba96498cc74848",
"blk.19.attn_v.weight": "6860f1cd720638e63a981fa2c0b4db900129826bcb9823c9ddf9fb8b1b9f3383",
"blk.19.ffn_down.weight": "bc7f2d7827ee01c2dd41401c7b3b1700ad3a4ff620e8bb734f92630d342dcc7f",
"blk.19.ffn_gate.weight": "54d03ef69ba373fc410fbca8f1e34a565d58e4296d9a035ff7e48340b9c848e7",
"blk.19.ffn_norm.weight": "9178fc796a340ee6e8128ca74c0cb6203d1adbed6927af4e5ac7863da57affc7",
"blk.19.ffn_up.weight": "a77bd708026c6e83ad5c79c223278e74621bcf74a9641c7818d96b595daaad20",
"blk.19.post_attention_norm.weight": "ae94aa26f4c411bf9496a6fd4a6df64ee589ee1ae9a04b531d45acc95721e582",
"blk.19.post_ffw_norm.weight": "9ad210700edeef12133bdcff04bf1c7f62b49f6f4a9ba483c7cdc59857c24a5c",
"blk.20.attn_k.weight": "e35bce1e9f4a7a09ef34721f57ea38cfca68c272f52d923fe50af8308f66cfaa",
"blk.20.attn_norm.weight": "644800f6926fd34f233795c4dec1151a295d2138ca8cac33e3e48167d26f8b41",
"blk.20.attn_output.weight": "8d3758cd236471741e1ad66c0710cb79077dc8c7a3a292d35bc551c0c5abe627",
"blk.20.attn_q.weight": "c333b1f0f6f956b5d73891df10b1a0321e55fc31c40d623a24e1f52caa6a998b",
"blk.20.attn_v.weight": "8562b418d0c4868a050fb19fa3fcaf50a8cf1c669f537d666c80c7b3a04714e1",
"blk.20.ffn_down.weight": "97efb608ac44cc804198faec3ee66eafe56ced6b7ca5359700c6f1df75b7205e",
"blk.20.ffn_gate.weight": "5c61151d86f28415c73c73d90ec088c646cbe5c1640197caf58eb501ba7db293",
"blk.20.ffn_norm.weight": "24bbe0a701afd4bbeea65b3edde712b3cbb2281043bbc43dbf250582453116ed",
"blk.20.ffn_up.weight": "e170cf68e249566aa99eb6f6b265679bf9a5a6b76830ba24e7e130c2515910c4",
"blk.20.post_attention_norm.weight": "e092d751cfe20dbf2d348358f3b38397bd83e4ed94d6bbaa6bbaddcd902b2ac4",
"blk.20.post_ffw_norm.weight": "219a18a47dcba76e669e4322223a5a9227bd3db1de3fbd3d3cfb22e54a783c5a",
"blk.21.attn_k.weight": "c3a095ebddb42c63824f1c98da65263dc88e4d790a26aa1632840b44f5cc7cb1",
"blk.21.attn_norm.weight": "ef8bbaded5fbc45ad9cf3985ae02174524e7090fe6362811124f942ef643bec7",
"blk.21.attn_output.weight": "668f018aba72baac6252aa3ad58569ddd55ab751a0dd8d7bcc9fb9b6efb4bf53",
"blk.21.attn_q.weight": "e759c65663089f3bbbd51847934c185e680c82f1249065d5d487da638e519e6d",
"blk.21.attn_v.weight": "2ff57762686cf9ba1f5a6be76503454b97556ce67f4ac98254bd0562231197ba",
"blk.21.ffn_down.weight": "3fd106556fb721b1c28ae3f4026bc83eb1b08ed910f2ba5f466c6b5f327d91cb",
"blk.21.ffn_gate.weight": "338022d882f4b6619e8054a6fb909696fa3eef3013cf69b65c3cacdfc5b9e42c",
"blk.21.ffn_norm.weight": "1e77660c23a3f9653ee721a863d1960f773d87437cabc4dc0a6e17ee3d4e5e44",
"blk.21.ffn_up.weight": "7d31b20fbc2e6eba8f350f170069dc36f0cb12f68fbc4206ec5022a74085ebcb",
"blk.21.post_attention_norm.weight": "9638bae8d8bdcd7ed68da282979cd84a07c41ff9cabcaea94ebc846a1803db23",
"blk.21.post_ffw_norm.weight": "d622ef11115fe0cbe04b727d5a3b6371e7f39bf08c8d5eb9bc6da52e3f3cfb9d",
"blk.22.attn_k.weight": "5c321cb29deffbe57de200dd206a62005f1e80acb86c4fd2349dd44c8d3594fd",
"blk.22.attn_norm.weight": "198d949705d7170a331d75889d8c7500c3635254dac2cc6aa4dc35d556584536",
"blk.22.attn_output.weight": "19805cd5d7025b457e5d41d70db8b3fd63c2dd0e4a94d3ef1704d50ef4e749e8",
"blk.22.attn_q.weight": "177836cd583fc87405975ddc21ebfebdaa090a0363799664c72caa3da851ae2c",
"blk.22.attn_v.weight": "fea255692483e30d0108f9e4e250eb3ed7dbda8d83f499b06519b8c223ae6096",
"blk.22.ffn_down.weight": "00cb8939f03e5817d6d412de8cf2c923c9568d5493e382cec7faf5718fb034eb",
"blk.22.ffn_gate.weight": "b0591065b91281b2fbd8a9567f3568d40479f680e1f0a29e27ae213f37642489",
"blk.22.ffn_norm.weight": "96b5c5d0737c2ceb8fc869f54adb9e5f46e28cb7b177c40f49fa926b923c00f8",
"blk.22.ffn_up.weight": "81f472185b24344ab0594ea8246cc6e200e0dc1cab4943e74fbe4ca19d5a9701",
"blk.22.post_attention_norm.weight": "27fa9aa6260aa3071e0391e1a1d49322dcb6e8072315b8a9b7064087108dbd06",
"blk.22.post_ffw_norm.weight": "f37e1dcd7f643d9545675ffe9dc527a11eba86eb204989c2f44f636b266d896a",
"blk.23.attn_k.weight": "5d82f36658a56c3f94d0bb2d61f65509c966fa6568f81812e0d3e338b380ef8c",
"blk.23.attn_norm.weight": "b7983f88d9cad88bc88a528923e6da592ad20e699965b223ebc10840fe1f4fec",
"blk.23.attn_output.weight": "59f97f80f430d71606aab0158a195aed29ccd3405e6c0a5c41c809be8eb01898",
"blk.23.attn_q.weight": "53ac4789fe958919cc02ea4222bcd64c0ea1b4baa54304bff46635bdf42f7490",
"blk.23.attn_v.weight": "ec8abe09b9e84dbb52c7a068094657c6d3c62fe551ba8d7c3a3f23da622e9756",
"blk.23.ffn_down.weight": "3cf547eccb1b82aa64f208cee9682d7f558ca84e0aead7d9d3d1420d90f3d992",
"blk.23.ffn_gate.weight": "366aa2486d911ba81eb519119e13807deacf7e9908bc1975a2a63e00d6b10124",
"blk.23.ffn_norm.weight": "6d1d4a4af34bb7dc090ac87d6457d398c3e0fb68bd2e2b60b099dc318b6cfac3",
"blk.23.ffn_up.weight": "53f76692e253f5d2420b3f200c731b9f3b7a83e379920b4a067c729b4674aa4d",
"blk.23.post_attention_norm.weight": "7c952fa0efa76b3f048c8c4c9e8dcb5e3724d231327eda6423a34d3f3d3367de",
"blk.23.post_ffw_norm.weight": "7ab188cfe61f0a91b40309a0ab6bfa99f19d0ff2a37b6ac10e5f0c7f44eb5270",
"blk.24.attn_k.weight": "225798792f9bfdd10eff0505ebe61e0aad0209c17b431f6044ee7968ffe8c198",
"blk.24.attn_norm.weight": "635e3c1ebf5219bbebfc40ef164bc32d2b726ef595a94da64ac524ae878e2915",
"blk.24.attn_output.weight": "482f5bb2db8d9ed22b253d9a3296333b239efe698e5992e5d77e7e12dc2a5cf5",
"blk.24.attn_q.weight": "43805bbccddb65d58fffc4be9b5c374d4e1df1395ec1e1ffb4bcff03e98d5adb",
"blk.24.attn_v.weight": "fa741af54b4a3b1775d32f59134756090c5df2e7345a12a2d8db94fe289667a7",
"blk.24.ffn_down.weight": "83c6351e3162626b276f524a57836144625c2556dbe321b57cbd8fd486a68fab",
"blk.24.ffn_gate.weight": "fbe66be0d84d12cea5176cc7eaef64382ffc7324cd9d6266a3342dc43442f2ac",
"blk.24.ffn_norm.weight": "77c1445a8639ad24938bdf0280233eea2362d47391421833dfa72ec756dfc1e8",
"blk.24.ffn_up.weight": "78235ac729ee23c1cf1ae543751e3af32776d8808cee6e529c2a625a1f027654",
"blk.24.post_attention_norm.weight": "161f71b6d07628d43e4ae51a4c9088ec6ca2db123a17986a14505d83fdd04dad",
"blk.24.post_ffw_norm.weight": "cf1ba692aa683368b02ac413e69b2521b98c69a5274eacbb54165b53bf38a8b2",
"blk.25.attn_k.weight": "057a56bd8c8d2b41608d1f71faa3052902152ddf85e47669ad950c1c3e77c33f",
"blk.25.attn_norm.weight": "b7179fe02c334da556ddcf6c1b502245639a728c4cbba8b552d8e1df4565ee9d",
"blk.25.attn_output.weight": "4fed8b05b08a0ff75ffd022701bbeb52f17b23d09332a1ddcba737244bd0d3b0",
"blk.25.attn_q.weight": "c52e99f5d38bf7538d6106a0bbf38ac6dc6296bca9a3f849afa384ea67b4af01",
"blk.25.attn_v.weight": "c49c23d8e1cfa6a8eb971eb69942204890c6d7d830dc8774c84b108a80598912",
"blk.25.ffn_down.weight": "c08d4dc8412b19fdc870c164b83c341b236ec6fe7bb4a9bcfe0dc100faa20286",
"blk.25.ffn_gate.weight": "1a4cb3f36735d59181721471452807903006539e5e1b5ceb4f72d1d7ae134127",
"blk.25.ffn_norm.weight": "8fd6bd0dcec5198761525a36992a57c9ec5e9da60a22092839a84ae8c4e87f26",
"blk.25.ffn_up.weight": "3a00f39bdd5f31dc5e3b281d2002e1ac4f2475d49a0ac1d7720a25b377dcd04a",
"blk.25.post_attention_norm.weight": "e5f31a648612c859b6d21c9ee426e87a86cb1973dfdd86276c767371d9cef5ad",
"blk.25.post_ffw_norm.weight": "553c3bd774922c99c2384380a142d019881d30dbf0fe3bf9430dabfb3f6cbd33",
"output_norm.weight": "49445c4585ab0a8135717a0bdb1cda4a062a030177d0119561d91542aec5744b"
}

6
convert/testdata/gemma-2-9b-it.json vendored Normal file
View File

@@ -0,0 +1,6 @@
{
"general.architecture": "gemma2",
"gemma2.attention.sliding_window": "4096",
"gemma2.attn_logit_softcapping": "50",
"gemma2.final_logit_softcapping": "30"
}

View File

@@ -1,7 +1,6 @@
package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
@@ -11,6 +10,8 @@ import (
"log/slog"
"os"
"slices"
"golang.org/x/exp/maps"
)
const (
@@ -99,8 +100,21 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if template, ok := p["chat_template"]; ok {
if err := json.Unmarshal(template, &t.Template); err != nil {
return nil, err
var s []struct {
Name string `json:"name"`
Template string `json:"template"`
}
if err := json.Unmarshal(template, &t.Template); err == nil {
// noop
} else if err := json.Unmarshal(template, &s); err == nil {
for _, e := range s {
if e.Name == "default" {
t.Template = e.Template
break
}
}
} else {
return nil, fmt.Errorf("invalid chat_template: %w", err)
}
}
@@ -140,7 +154,6 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
type tokenizer struct {
Version string `json:"version"`
AddedTokens []token `json:"added_tokens"`
Model struct {
Type string `json:"type"`
@@ -184,32 +197,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
return nil, err
}
var tokens []token
tokens := make(map[int]token, len(t.Model.Vocab))
for k, v := range t.Model.Vocab {
tokens = append(tokens, token{
tokens[v] = token{
ID: v,
Content: k,
})
}
}
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
for _, token := range t.AddedTokens {
token.UserDefined = true
tokens[token.ID] = token
}
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
keys := maps.Keys(tokens)
slices.Sort(keys)
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
for _, k := range keys {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
switch {
case t.Special:
case token.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
case token.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)
@@ -238,7 +251,7 @@ func parseVocabulary(fsys fs.FS) (*Vocabulary, error) {
return pattern.Func(fsys)
}
return nil, errors.New("unknown tensor format")
return nil, errors.New("unknown tokenizer format")
}
type SpecialVocabulary struct {

View File

@@ -15,6 +15,11 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
}
bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil {
return nil, err
@@ -37,7 +42,12 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
v.Types = append(v.Types, tt)
}
}
@@ -81,3 +91,23 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
}

208
convert/tokenizer_test.go Normal file
View File

@@ -0,0 +1,208 @@
package convert
import (
"io"
"io/fs"
"os"
"path/filepath"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func createTokenizerFS(t *testing.T, dir string, files map[string]io.Reader) fs.FS {
t.Helper()
for k, v := range files {
if err := func() error {
f, err := os.Create(filepath.Join(dir, k))
if err != nil {
return err
}
defer f.Close()
if _, err := io.Copy(f, v); err != nil {
return err
}
return nil
}(); err != nil {
t.Fatalf("unexpected error: %v", err)
}
}
return os.DirFS(dir)
}
func TestParseTokenizer(t *testing.T) {
cases := []struct {
name string
fsys fs.FS
specialTokenTypes []string
want *Tokenizer
}{
{
name: "string chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": "<default template>"
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "list chat template",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{}`),
"tokenizer_config.json": strings.NewReader(`{
"chat_template": [
{
"name": "default",
"template": "<default template>"
},
{
"name": "tools",
"template": "<tools template>"
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{Model: "gpt2"},
Pre: "default",
Template: "<default template>",
},
},
{
name: "added tokens",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 999,
"content": "<unused999>",
"special": false
}
]
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<unused999>"},
Scores: []float32{999},
Types: []int32{4},
},
Pre: "default",
},
},
{
name: "added tokens overlap vocab",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0
}
}
}`),
}),
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>"},
Scores: []float32{0},
Types: []int32{3},
},
Pre: "default",
},
},
{
name: "special token types",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<pad>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<bos>",
"special": true
},
{
"id": 3,
"content": "<unk>",
"special": true
}
],
"model": {
"vocab": {
"<pad>": 0,
"<eos>": 1,
"<bos>": 2,
"<unk>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>",
"pad_token": "<pad>",
"unk_token": "<unk>"
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<pad>", "<eos>", "<bos>", "<unk>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "pad", Content: "<pad>", ID: 0, AddToken: false},
{Type: "eos", Content: "<eos>", ID: 1, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 2, AddToken: true},
{Type: "unk", Content: "<unk>", ID: 3, AddToken: false},
},
Pre: "default",
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
tokenizer, err := parseTokenizer(tt.fsys, tt.specialTokenTypes)
if err != nil {
t.Fatalf("unexpected error: %v", err)
}
if diff := cmp.Diff(tt.want, tokenizer); diff != "" {
t.Errorf("unexpected tokenizer (-want +got):\n%s", diff)
}
})
}
}

View File

@@ -69,7 +69,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?"
}'
```
@@ -80,7 +80,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@@ -102,7 +102,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
@@ -124,7 +124,7 @@ A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"stream": false
}'
@@ -136,7 +136,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -194,7 +194,7 @@ curl http://localhost:11434/api/generate -d '{
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
@@ -205,7 +205,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
@@ -327,7 +327,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
@@ -368,7 +368,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@@ -390,7 +390,7 @@ If an empty prompt is provided, the model will be loaded into memory.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3"
"model": "llama3.1"
}'
```
@@ -400,13 +400,40 @@ A single JSON object is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
}
```
#### Unload a model
If an empty prompt is provided and the `keep_alive` parameter is set to `0`, a model will be unloaded from memory.
##### Request
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"keep_alive": 0
}'
```
##### Response
A single JSON object is returned:
```json
{
"model": "llama3.1",
"created_at": "2024-09-12T03:54:03.516566Z",
"response": "",
"done": true,
"done_reason": "unload"
}
```
## Generate a chat completion
```shell
@@ -445,7 +472,7 @@ Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -461,7 +488,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -476,7 +503,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
@@ -494,7 +521,7 @@ Final response:
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -509,7 +536,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "llama3.1",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -533,7 +560,7 @@ Send a chat message with a conversation history. You can use this same approach
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -557,7 +584,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@@ -571,7 +598,7 @@ Final response:
```json
{
"model": "llama3",
"model": "llama3.1",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
@@ -629,7 +656,7 @@ curl http://localhost:11434/api/chat -d '{
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "user",
@@ -647,7 +674,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "registry.ollama.ai/library/llama3:latest",
"model": "llama3.1",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@@ -736,6 +763,64 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Load a model
If the messages array is empty, the model will be loaded into memory.
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": []
}'
```
##### Response
```json
{
"model": "llama3.1",
"created_at":"2024-09-12T21:17:29.110811Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "load",
"done": true
}
```
#### Unload a model
If the messages array is empty and the `keep_alive` parameter is set to `0`, a model will be unloaded from memory.
##### Request
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"messages": [],
"keep_alive": 0
}'
```
##### Response
A single JSON object is returned:
```json
{
"model": "llama3.1",
"created_at":"2024-09-12T21:33:17.547535Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "unload",
"done": true
}
```
## Create a Model
```shell
@@ -904,7 +989,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3"
"name": "llama3.1"
}'
```
@@ -965,7 +1050,7 @@ Copy a model. Creates a model with another name from an existing model.
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama3",
"source": "llama3.1",
"destination": "llama3-backup"
}'
```
@@ -1020,7 +1105,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3"
"name": "llama3.1"
}'
```

View File

@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
@@ -111,7 +111,10 @@ On Windows, Ollama inherits your user and system environment variables.
## How do I use Ollama behind a proxy?
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
> [!NOTE]
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
### How do I use Ollama behind a proxy in Docker?
@@ -191,6 +194,8 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
> Note: on Linux using the standard installer, the `ollama` user needs read and write access to the specified directory. To assign the directory to the `ollama` user run `sudo chown -R ollama:ollama <directory>`.
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
## How can I use Ollama in Visual Studio Code?
@@ -232,9 +237,13 @@ ollama run llama3.1 ""
## How do I keep a model loaded in memory or make it unload immediately?
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you are making numerous requests to the LLM. You may, however, want to free up the memory before the 5 minutes have elapsed or keep the model loaded indefinitely. Use the `keep_alive` parameter with either the `/api/generate` and `/api/chat` API endpoints to control how long the model is left in memory.
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you're making numerous requests to the LLM. If you want to immediately unload a model from memory, use the `ollama stop` command:
The `keep_alive` parameter can be set to:
```shell
ollama stop llama3.1
```
If you're using the API, use the `keep_alive` parameter with the `/api/generate` and `/api/chat` endpoints to set the amount of time that a model stays in memory. The `keep_alive` parameter can be set to:
* a duration string (such as "10m" or "24h")
* a number in seconds (such as 3600)
* any negative number which will keep the model loaded in memory (e.g. -1 or "-1m")
@@ -242,17 +251,17 @@ The `keep_alive` parameter can be set to:
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": -1}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": 0}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": 0}'
```
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to the section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.
If you wish to override the `OLLAMA_KEEP_ALIVE` setting, use the `keep_alive` API parameter with the `/api/generate` or `/api/chat` API endpoints.
The `keep_alive` API parameter with the `/api/generate` and `/api/chat` API endpoints will override the `OLLAMA_KEEP_ALIVE` setting.
## How do I manage the maximum number of requests the Ollama server can queue?

View File

@@ -10,7 +10,7 @@ Check your compute compatibility to see if your card is supported:
| 9.0 | NVIDIA | `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
| 8.0 | NVIDIA | `A100` `A30` |
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |

BIN
docs/images/ollama-keys.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

BIN
docs/images/signup.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@@ -1,44 +1,129 @@
# Import
# Importing a model
GGUF models and select Safetensors models can be imported directly into Ollama.
## Table of Contents
## Import GGUF
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
A binary GGUF file can be imported directly into Ollama through a Modelfile.
## Importing a fine tuned adapter from Safetensors weights
First, create a `Modelfile` with a `FROM` command pointing at the base model you used for fine tuning, and an `ADAPTER` command which points to the directory with your Safetensors adapter:
```dockerfile
FROM /path/to/file.gguf
FROM <base model name>
ADAPTER /path/to/safetensors/adapter/directory
```
## Import Safetensors
Make sure that you use the same base model in the `FROM` command as you used to create the adapter otherwise you will get erratic results. Most frameworks use different quantization methods, so it's best to use non-quantized (i.e. non-QLoRA) adapters. If your adapter is in the same directory as your `Modelfile`, use `ADAPTER .` to specify the adapter path.
If the model being imported is one of these architectures, it can be imported directly into Ollama through a Modelfile:
Now run `ollama create` from the directory where the `Modelfile` was created:
- LlamaForCausalLM
- MistralForCausalLM
- MixtralForCausalLM
- GemmaForCausalLM
- Phi3ForCausalLM
```bash
ollama create my-model
```
Lastly, test the model:
```bash
ollama run my-model
```
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
* Hugging Face [fine tuning framework](https://huggingface.co/docs/transformers/en/training)
* [Unsloth](https://github.com/unslothai/unsloth)
* [MLX](https://github.com/ml-explore/mlx)
## Importing a model from Safetensors weights
First, create a `Modelfile` with a `FROM` command which points to the directory containing your Safetensors weights:
```dockerfile
FROM /path/to/safetensors/directory
```
For architectures not directly convertable by Ollama, see llama.cpp's [guide](https://github.com/ggerganov/llama.cpp/blob/master/README.md#prepare-and-quantize) on conversion. After conversion, see [Import GGUF](#import-gguf).
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
## Automatic Quantization
Now run the `ollama create` command from the directory where you created the `Modelfile`:
> [!NOTE]
> Automatic quantization requires v0.1.35 or higher.
```shell
ollama create my-model
```
Ollama is capable of quantizing FP16 or FP32 models to any of the supported quantizations with the `-q/--quantize` flag in `ollama create`.
Lastly, test the model:
```shell
ollama run my-model
```
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containg:
```dockerfile
FROM /path/to/file.gguf
```
For a GGUF adapter, create the `Modelfile` with:
```dockerfile
FROM <model name>
ADAPTER /path/to/file.gguf
```
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
* a model from Ollama
* a GGUF file
* a Safetensors based model
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
```shell
ollama create my-model
```
## Quantizing a Model
Quantizing a model allows you to run models faster and with less memory consumption but at reduced accuracy. This allows you to run a model on more modest hardware.
Ollama can quantize FP16 and FP32 based models into different quantization levels using the `-q/--quantize` flag with the `ollama create` command.
First, create a Modelfile with the FP16 or FP32 based model you wish to quantize.
```dockerfile
FROM /path/to/my/gemma/f16/model
```
Use `ollama create` to then create the quantized model.
```shell
$ ollama create -q Q4_K_M mymodel
$ ollama create --quantize q4_K_M mymodel
transferring model data
quantizing F16 model to Q4_K_M
creating new layer sha256:735e246cc1abfd06e9cdcf95504d6789a6cd1ad7577108a70d9902fef503c1bd
@@ -49,42 +134,53 @@ success
### Supported Quantizations
- `Q4_0`
- `Q4_1`
- `Q5_0`
- `Q5_1`
- `Q8_0`
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `Q3_K_S`
- `Q3_K_M`
- `Q3_K_L`
- `Q4_K_S`
- `Q4_K_M`
- `Q5_K_S`
- `Q5_K_M`
- `Q6_K`
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Template Detection
> [!NOTE]
> Template detection requires v0.1.42 or higher.
## Sharing your model on ollama.com
Ollama uses model metadata, specifically `tokenizer.chat_template`, to automatically create a template appropriate for the model you're importing.
You can share any model you have created by pushing it to [ollama.com](https://ollama.com) so that other users can try it out.
```dockerfile
FROM /path/to/my/gemma/model
```
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
<img src="images/signup.png" alt="Sign-Up" width="40%">
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
Now that you have created an account and are signed-in, go to the [Ollama Keys Settings](https://ollama.com/settings/keys) page.
Follow the directions on the page to determine where your Ollama Public Key is located.
<img src="images/ollama-keys.png" alt="Ollama Keys" width="80%">
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
To push a model to [ollama.com](https://ollama.com), first make sure that it is named correctly with your username. You may have to use the `ollama cp` command to copy
your model to give it the correct name. Once you're happy with your model's name, use the `ollama push` command to push it to [ollama.com](https://ollama.com).
```shell
$ ollama create mymodel
transferring model data
using autodetected template gemma-instruct
creating new layer sha256:baa2a0edc27d19cc6b7537578a9a7ba1a4e3214dc185ed5ae43692b319af7b84
creating new layer sha256:ba66c3309914dbef07e5149a648fd1877f030d337a4f240d444ea335008943cb
writing manifest
success
ollama cp mymodel myuser/mymodel
ollama push myuser/mymodel
```
Once your model has been pushed, other users can pull and run it by using the command:
```shell
ollama run myuser/mymodel
```
Defining a template in the Modelfile will disable this feature which may be useful if you want to use a different template than the autodetected one.

View File

@@ -1,40 +1,59 @@
# Ollama on Linux
# Linux
## Install
Install Ollama running this one-liner:
To install Ollama, run the following command:
>
```bash
```shell
curl -fsSL https://ollama.com/install.sh | sh
```
## AMD Radeon GPU support
While AMD has contributed the `amdgpu` driver upstream to the official linux
kernel source, the version is older and may not support all ROCm features. We
recommend you install the latest driver from
https://www.amd.com/en/support/linux-drivers for best support of your Radeon
GPU.
## Manual install
### Download the `ollama` binary
Download and extract the package:
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
Start Ollama:
```shell
ollama serve
```
In another terminal, verify that Ollama is running:
```shell
ollama -v
```
### AMD GPU install
If you have an AMD GPU, also download and extract the additional ROCm package:
```shell
curl -L https://ollama.com/download/ollama-linux-amd64-rocm.tgz -o ollama-linux-amd64-rocm.tgz
sudo tar -C /usr -xzf ollama-linux-amd64-rocm.tgz
```
### ARM64 install
Download and extract the ARM64-specific package:
```shell
curl -L https://ollama.com/download/ollama-linux-arm64.tgz -o ollama-linux-arm64.tgz
sudo tar -C /usr -xzf ollama-linux-arm64.tgz
```
### Adding Ollama as a startup service (recommended)
Create a user for Ollama:
Create a user and group for Ollama:
```bash
sudo useradd -r -s /bin/false -m -d /usr/share/ollama ollama
```shell
sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama
sudo usermod -a -G ollama $(whoami)
```
Create a service file in `/etc/systemd/system/ollama.service`:
@@ -50,6 +69,7 @@ User=ollama
Group=ollama
Restart=always
RestartSec=3
Environment="PATH=$PATH"
[Install]
WantedBy=default.target
@@ -57,47 +77,54 @@ WantedBy=default.target
Then start the service:
```bash
```shell
sudo systemctl daemon-reload
sudo systemctl enable ollama
```
### Install CUDA drivers (optional for Nvidia GPUs)
### Install CUDA drivers (optional)
[Download and install](https://developer.nvidia.com/cuda-downloads) CUDA.
Verify that the drivers are installed by running the following command, which should print details about your GPU:
```bash
```shell
nvidia-smi
```
### Install ROCm (optional - for Radeon GPUs)
[Download and Install](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html)
### Install AMD ROCm drivers (optional)
Make sure to install ROCm v6
[Download and Install](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/quick-start.html) ROCm v6.
### Start Ollama
Start Ollama using `systemd`:
Start Ollama and verify it is running:
```bash
```shell
sudo systemctl start ollama
sudo systemctl status ollama
```
## Update
> [!NOTE]
> While AMD has contributed the `amdgpu` driver upstream to the official linux
> kernel source, the version is older and may not support all ROCm features. We
> recommend you install the latest driver from
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
> GPU.
Update ollama by running the install script again:
## Updating
```bash
Update Ollama by running the install script again:
```shell
curl -fsSL https://ollama.com/install.sh | sh
```
Or by downloading the ollama binary:
Or by re-downloading Ollama:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
```shell
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
```
## Installing specific versions
@@ -106,15 +133,15 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
For example:
```
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.1.32 sh
```shell
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
```
## Viewing logs
To view logs of Ollama running as a startup service, run:
```bash
```shell
journalctl -e -u ollama
```
@@ -122,7 +149,7 @@ journalctl -e -u ollama
Remove the ollama service:
```bash
```shell
sudo systemctl stop ollama
sudo systemctl disable ollama
sudo rm /etc/systemd/system/ollama.service
@@ -130,13 +157,13 @@ sudo rm /etc/systemd/system/ollama.service
Remove the ollama binary from your bin directory (either `/usr/local/bin`, `/usr/bin`, or `/bin`):
```bash
```shell
sudo rm $(which ollama)
```
Remove the downloaded models and Ollama service user and group:
```bash
```shell
sudo rm -r /usr/share/ollama
sudo userdel ollama
sudo groupdel ollama

View File

@@ -11,8 +11,9 @@ A model file is the blueprint to create and share models with Ollama.
- [Examples](#examples)
- [Instructions](#instructions)
- [FROM (Required)](#from-required)
- [Build from llama3](#build-from-llama3)
- [Build from a bin file](#build-from-a-bin-file)
- [Build from existing model](#build-from-existing-model)
- [Build from a Safetensors model](#build-from-a-safetensors-model)
- [Build from a GGUF file](#build-from-a-gguf-file)
- [PARAMETER](#parameter)
- [Valid Parameters and Values](#valid-parameters-and-values)
- [TEMPLATE](#template)
@@ -49,7 +50,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
FROM llama3
FROM llama3.1
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@@ -71,10 +72,10 @@ More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
> ollama show --modelfile llama3
> ollama show --modelfile llama3.1
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3:latest
# FROM llama3.1:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
@@ -99,22 +100,39 @@ The `FROM` instruction defines the base model to use when creating a model.
FROM <model name>:<tag>
```
#### Build from llama3
#### Build from existing model
```modelfile
FROM llama3
FROM llama3.1
```
A list of available base models:
<https://github.com/ollama/ollama#model-library>
Additional models can be found at:
<https://ollama.com/library>
#### Build from a `bin` file
#### Build from a Safetensors model
```modelfile
FROM ./ollama-model.bin
FROM <model directory>
```
This bin file location should be specified as an absolute path or relative to the `Modelfile` location.
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3
#### Build from a GGUF file
```modelfile
FROM ./ollama-model.gguf
```
The GGUF file location should be specified as an absolute path or relative to the `Modelfile` location.
### PARAMETER
@@ -174,10 +192,23 @@ SYSTEM """<system message>"""
### ADAPTER
The `ADAPTER` instruction is an optional instruction that specifies any LoRA adapter that should apply to the base model. The value of this instruction should be an absolute path or a path relative to the Modelfile and the file must be in a GGML file format. The adapter should be tuned from the base model otherwise the behaviour is undefined.
The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply to the base model. The value of the adapter should be an absolute path or a path relative to the Modelfile. The base model should be specified with a `FROM` instruction. If the base model is not the same as the base model that the adapter was tuned from the behaviour will be erratic.
#### Safetensor adapter
```modelfile
ADAPTER ./ollama-lora.bin
ADAPTER <path to safetensor adapter>
```
Currently supported Safetensor adapters:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
#### GGUF adapter
```modelfile
ADAPTER ./ollama-lora.gguf
```
### LICENSE

View File

@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
'content': 'Say this is a test',
}
],
model='llama3',
model='llama3.1',
)
response = client.chat.completions.create(
@@ -46,13 +46,13 @@ response = client.chat.completions.create(
)
completion = client.completions.create(
model="llama3",
model="llama3.1",
prompt="Say this is a test",
)
list_completion = client.models.list()
model = client.models.retrieve("llama3")
model = client.models.retrieve("llama3.1")
embeddings = client.embeddings.create(
model="all-minilm",
@@ -74,7 +74,7 @@ const openai = new OpenAI({
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3',
model: 'llama3.1',
})
const response = await openai.chat.completions.create({
@@ -94,13 +94,13 @@ const response = await openai.chat.completions.create({
})
const completion = await openai.completions.create({
model: "llama3",
model: "llama3.1",
prompt: "Say this is a test.",
})
const listCompletion = await openai.models.list()
const model = await openai.models.retrieve("llama3")
const model = await openai.models.retrieve("llama3.1")
const embedding = await openai.embeddings.create({
model: "all-minilm",
@@ -114,7 +114,7 @@ const embedding = await openai.embeddings.create({
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"model": "llama3.1",
"messages": [
{
"role": "system",
@@ -154,13 +154,13 @@ curl http://localhost:11434/v1/chat/completions \
curl http://localhost:11434/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3",
"model": "llama3.1",
"prompt": "Say this is a test"
}'
curl http://localhost:11434/v1/models
curl http://localhost:11434/v1/models/llama3
curl http://localhost:11434/v1/models/llama3.1
curl http://localhost:11434/v1/embeddings \
-H "Content-Type: application/json" \
@@ -274,7 +274,7 @@ curl http://localhost:11434/v1/embeddings \
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama3
ollama pull llama3.1
```
### Default model names
@@ -282,7 +282,7 @@ ollama pull llama3
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama3 gpt-3.5-turbo
ollama cp llama3.1 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:
@@ -300,3 +300,28 @@ curl http://localhost:11434/v1/chat/completions \
]
}'
```
### Setting the context size
The OpenAI API does not have a way of setting the context size for a model. If you need to change the context size, create a `Modelfile` which looks like:
```modelfile
FROM <some model>
PARAMETER num_ctx <context size>
```
Use the `ollama create mymodel` command to create a new model with the updated context size. Call the API with the updated model name:
```shell
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "mymodel",
"messages": [
{
"role": "user",
"content": "Hello!"
}
]
}'
```

View File

@@ -33,7 +33,7 @@ Omitting a template in these models puts the responsibility of correctly templat
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3
FROM llama3.1
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>

View File

@@ -91,6 +91,17 @@ If none of those resolve the problem, gather additional information and file an
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
## AMD GPU Discovery
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems
- `OLLAMA_DEBUG=1` During GPU discovery additional information will be reported
- Check dmesg for any errors from amdgpu or kfd drivers `sudo dmesg | grep -i amdgpu` and `sudo dmesg | grep -i kfd`
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View File

@@ -29,7 +29,7 @@ Ollama uses unicode characters for progress indication, which may render as unkn
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
(Invoke-WebRequest -method POST -Body '{"model":"llama3.1", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting
@@ -48,6 +48,9 @@ the explorer window by hitting `<cmd>+R` and type in:
- `explorer %HOMEPATH%\.ollama` contains models and configuration
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
## Uninstall
The Ollama Windows installer registers an Uninstaller application. Under `Add or remove programs` in Windows Settings, you can uninstall Ollama.
## Standalone CLI

View File

@@ -30,9 +30,7 @@ func Host() *url.URL {
defaultPort = "443"
}
// trim trailing slashes
hostport = strings.TrimRight(hostport, "/")
hostport, path, _ := strings.Cut(hostport, "/")
host, port, err := net.SplitHostPort(hostport)
if err != nil {
host, port = "127.0.0.1", defaultPort
@@ -45,15 +43,13 @@ func Host() *url.URL {
if n, err := strconv.ParseInt(port, 10, 32); err != nil || n > 65535 || n < 0 {
slog.Warn("invalid port, using default", "port", port, "default", defaultPort)
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, defaultPort),
}
port = defaultPort
}
return &url.URL{
Scheme: scheme,
Host: net.JoinHostPort(host, port),
Path: path,
}
}
@@ -116,6 +112,26 @@ func KeepAlive() (keepAlive time.Duration) {
return keepAlive
}
// LoadTimeout returns the duration for stall detection during model loads. LoadTimeout can be configured via the OLLAMA_LOAD_TIMEOUT environment variable.
// Zero or Negative values are treated as infinite.
// Default is 5 minutes.
func LoadTimeout() (loadTimeout time.Duration) {
loadTimeout = 5 * time.Minute
if s := Var("OLLAMA_LOAD_TIMEOUT"); s != "" {
if d, err := time.ParseDuration(s); err == nil {
loadTimeout = d
} else if n, err := strconv.ParseInt(s, 10, 64); err == nil {
loadTimeout = time.Duration(n) * time.Second
}
}
if loadTimeout <= 0 {
return time.Duration(math.MaxInt64)
}
return loadTimeout
}
func Bool(k string) func() bool {
return func() bool {
if s := Var(k); s != "" {
@@ -163,53 +179,6 @@ var (
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
)
func RunnersDir() (p string) {
if p := Var("OLLAMA_RUNNERS_DIR"); p != "" {
return p
}
if runtime.GOOS != "windows" {
return
}
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
}
}()
// On Windows we do not carry the payloads inside the main executable
exe, err := os.Executable()
if err != nil {
return
}
cwd, err := os.Getwd()
if err != nil {
return
}
var paths []string
for _, root := range []string{filepath.Dir(exe), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "ollama_runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break
}
}
return p
}
func Uint(key string, defaultValue uint) func() uint {
return func() uint {
if s := Var(key); s != "" {
@@ -235,6 +204,23 @@ var (
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
)
func Uint64(key string, defaultValue uint64) func() uint64 {
return func() uint64 {
if s := Var(key); s != "" {
if n, err := strconv.ParseUint(s, 10, 64); err != nil {
slog.Warn("invalid environment variable, using default", "key", key, "value", s, "default", defaultValue)
} else {
return n
}
}
return defaultValue
}
}
// Set aside VRAM per GPU
var GpuOverhead = Uint64("OLLAMA_GPU_OVERHEAD", 0)
type EnvVar struct {
Name string
Value any
@@ -245,9 +231,11 @@ func AsMap() map[string]EnvVar {
ret := map[string]EnvVar{
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
"OLLAMA_KEEP_ALIVE": {"OLLAMA_KEEP_ALIVE", KeepAlive(), "The duration that models stay loaded in memory (default \"5m\")"},
"OLLAMA_LLM_LIBRARY": {"OLLAMA_LLM_LIBRARY", LLMLibrary(), "Set LLM library to bypass autodetection"},
"OLLAMA_LOAD_TIMEOUT": {"OLLAMA_LOAD_TIMEOUT", LoadTimeout(), "How long to allow model loads to stall before giving up (default \"5m\")"},
"OLLAMA_MAX_LOADED_MODELS": {"OLLAMA_MAX_LOADED_MODELS", MaxRunners(), "Maximum number of loaded models per GPU"},
"OLLAMA_MAX_QUEUE": {"OLLAMA_MAX_QUEUE", MaxQueue(), "Maximum number of queued requests"},
"OLLAMA_MODELS": {"OLLAMA_MODELS", Models(), "The path to the models directory"},
@@ -255,10 +243,22 @@ func AsMap() map[string]EnvVar {
"OLLAMA_NOPRUNE": {"OLLAMA_NOPRUNE", NoPrune(), "Do not prune model blobs on startup"},
"OLLAMA_NUM_PARALLEL": {"OLLAMA_NUM_PARALLEL", NumParallel(), "Maximum number of parallel requests"},
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", Origins(), "A comma separated list of allowed origins"},
"OLLAMA_RUNNERS_DIR": {"OLLAMA_RUNNERS_DIR", RunnersDir(), "Location for runners"},
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
"OLLAMA_TMPDIR": {"OLLAMA_TMPDIR", TmpDir(), "Location for temporary files"},
// Informational
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
"HTTPS_PROXY": {"HTTPS_PROXY", String("HTTPS_PROXY")(), "HTTPS proxy"},
"NO_PROXY": {"NO_PROXY", String("NO_PROXY")(), "No proxy"},
}
if runtime.GOOS != "windows" {
// Windows environment variables are case-insensitive so there's no need to duplicate them
ret["http_proxy"] = EnvVar{"http_proxy", String("http_proxy")(), "HTTP proxy"}
ret["https_proxy"] = EnvVar{"https_proxy", String("https_proxy")(), "HTTPS proxy"}
ret["no_proxy"] = EnvVar{"no_proxy", String("no_proxy")(), "No proxy"}
}
if runtime.GOOS != "darwin" {
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible"}
@@ -267,6 +267,7 @@ func AsMap() map[string]EnvVar {
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
}
return ret
}
@@ -282,3 +283,12 @@ func Values() map[string]string {
func Var(key string) string {
return strings.Trim(strings.TrimSpace(os.Getenv(key)), "\"'")
}
// On windows, we keep the binary at the top directory, but
// other platforms use a "bin" directory, so this returns ".."
func LibRelativeToExe() string {
if runtime.GOOS == "windows" {
return "."
}
return ".."
}

View File

@@ -13,34 +13,35 @@ func TestHost(t *testing.T) {
value string
expect string
}{
"empty": {"", "127.0.0.1:11434"},
"only address": {"1.2.3.4", "1.2.3.4:11434"},
"only port": {":1234", ":1234"},
"address and port": {"1.2.3.4:1234", "1.2.3.4:1234"},
"hostname": {"example.com", "example.com:11434"},
"hostname and port": {"example.com:1234", "example.com:1234"},
"zero port": {":0", ":0"},
"too large port": {":66000", ":11434"},
"too small port": {":-1", ":11434"},
"ipv6 localhost": {"[::1]", "[::1]:11434"},
"ipv6 world open": {"[::]", "[::]:11434"},
"ipv6 no brackets": {"::1", "[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "[::1]:1337"},
"extra space": {" 1.2.3.4 ", "1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "1.2.3.4:11434"},
"http": {"http://1.2.3.4", "1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "1.2.3.4:4321"},
"https": {"https://1.2.3.4", "1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "1.2.3.4:4321"},
"empty": {"", "http://127.0.0.1:11434"},
"only address": {"1.2.3.4", "http://1.2.3.4:11434"},
"only port": {":1234", "http://:1234"},
"address and port": {"1.2.3.4:1234", "http://1.2.3.4:1234"},
"hostname": {"example.com", "http://example.com:11434"},
"hostname and port": {"example.com:1234", "http://example.com:1234"},
"zero port": {":0", "http://:0"},
"too large port": {":66000", "http://:11434"},
"too small port": {":-1", "http://:11434"},
"ipv6 localhost": {"[::1]", "http://[::1]:11434"},
"ipv6 world open": {"[::]", "http://[::]:11434"},
"ipv6 no brackets": {"::1", "http://[::1]:11434"},
"ipv6 + port": {"[::1]:1337", "http://[::1]:1337"},
"extra space": {" 1.2.3.4 ", "http://1.2.3.4:11434"},
"extra quotes": {"\"1.2.3.4\"", "http://1.2.3.4:11434"},
"extra space+quotes": {" \" 1.2.3.4 \" ", "http://1.2.3.4:11434"},
"extra single quotes": {"'1.2.3.4'", "http://1.2.3.4:11434"},
"http": {"http://1.2.3.4", "http://1.2.3.4:80"},
"http port": {"http://1.2.3.4:4321", "http://1.2.3.4:4321"},
"https": {"https://1.2.3.4", "https://1.2.3.4:443"},
"https port": {"https://1.2.3.4:4321", "https://1.2.3.4:4321"},
"proxy path": {"https://example.com/ollama", "https://example.com:443/ollama"},
}
for name, tt := range cases {
t.Run(name, func(t *testing.T) {
t.Setenv("OLLAMA_HOST", tt.value)
if host := Host(); host.Host != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.Host)
if host := Host(); host.String() != tt.expect {
t.Errorf("%s: expected %s, got %s", name, tt.expect, host.String())
}
})
}
@@ -214,6 +215,40 @@ func TestKeepAlive(t *testing.T) {
}
}
func TestLoadTimeout(t *testing.T) {
defaultTimeout := 5 * time.Minute
cases := map[string]time.Duration{
"": defaultTimeout,
"1s": time.Second,
"1m": time.Minute,
"1h": time.Hour,
"5m0s": defaultTimeout,
"1h2m3s": 1*time.Hour + 2*time.Minute + 3*time.Second,
"0": time.Duration(math.MaxInt64),
"60": 60 * time.Second,
"120": 2 * time.Minute,
"3600": time.Hour,
"-0": time.Duration(math.MaxInt64),
"-1": time.Duration(math.MaxInt64),
"-1m": time.Duration(math.MaxInt64),
// invalid values
" ": defaultTimeout,
"???": defaultTimeout,
"1d": defaultTimeout,
"1y": defaultTimeout,
"1w": defaultTimeout,
}
for tt, expect := range cases {
t.Run(tt, func(t *testing.T) {
t.Setenv("OLLAMA_LOAD_TIMEOUT", tt)
if actual := LoadTimeout(); actual != expect {
t.Errorf("%s: expected %s, got %s", tt, expect, actual)
}
})
}
}
func TestVar(t *testing.T) {
cases := map[string]string{
"value": "value",

View File

@@ -1,6 +1,6 @@
langchain==0.0.274
gpt4all==1.0.8
chromadb==0.4.7
chromadb==0.5.0
llama-cpp-python==0.1.81
urllib3==2.0.4
PyMuPDF==1.23.5

View File

@@ -0,0 +1,93 @@
# RAG Hallucination Checker using Bespoke-Minicheck
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.1` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
## Running the Example
1. Ensure `all-minilm` (embedding) `llama3.1` (chat) and `bespoke-minicheck` (check) models installed:
```bash
ollama pull all-minilm
ollama pull llama3.1
ollama pull bespoke-minicheck
```
2. Install the dependencies.
```bash
pip install -r requirements.txt
```
3. Run the example:
```bash
python main.py
```
## Expected Output
```text
Enter the URL of an article you want to chat with, or press Enter for default example:
Loaded, chunked, and embedded text from https://www.theverge.com/2024/9/12/24242439/openai-o1-model-reasoning-strawberry-chatgpt.
Enter your question or type quit: Who is the CEO of openai?
Retrieved chunks:
OpenAI is releasing a new model called o1 , the first in a planned series of “ reasoning ” models that have been trained to answer more complex questions , faster than a human can . It s being released alongside o1-mini , a smaller , cheaper version . And yes , if you re steeped in AI rumors : this is , in fact , the extremely hyped Strawberry model . For OpenAI , o1 represents a step toward its broader goal of human-like artificial intelligence .
OpenAI is releasing a new model called o1 , the first in a planned series of “ reasoning ” models that have been trained to answer more complex questions , faster than a human can . It s being released alongside o1-mini , a smaller , cheaper version . And yes , if you re steeped in AI rumors : this is , in fact , the extremely hyped Strawberry model . For OpenAI , o1 represents a step toward its broader goal of human-like artificial intelligence . More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week .
More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week . OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens .
OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens . The training behind o1 is fundamentally different from its predecessors , OpenAI s research lead , Jerry Tworek , tells me , though the company is being vague about the exact details . He says o1 “ has been trained using a completely new optimization algorithm and a new training dataset specifically tailored for it. ” Image : OpenAI OpenAI taught previous GPT models to mimic patterns from its training data .
LLM Answer:
The text does not mention the CEO of OpenAI. It only discusses the release of a new model called o1 and some details about it, but does not provide information on the company's leadership.
LLM Claim: The text does not mention the CEO of OpenAI.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: It only discusses the release of a new model called o1 and some details about it, but does not provide information on the company's leadership.
Is this claim supported by the context according to bespoke-minicheck? No
```
The second claim is unsupported since the text mentions the research lead.
Another tricky example:
```text
Enter your question or type quit: what sets o1 apart from gpt-4o?
Retrieved chunks:
OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens . The training behind o1 is fundamentally different from its predecessors , OpenAI s research lead , Jerry Tworek , tells me , though the company is being vague about the exact details . He says o1 “ has been trained using a completely new optimization algorithm and a new training dataset specifically tailored for it. ” Image : OpenAI OpenAI taught previous GPT models to mimic patterns from its training data .
He says OpenAI also tested o1 against a qualifying exam for the International Mathematics Olympiad , and while GPT-4o only correctly solved only 13 percent of problems , o1 scored 83 percent . “ We can t say we solved hallucinations ” In online programming contests known as Codeforces competitions , this new model reached the 89th percentile of participants , and OpenAI claims the next update of this model will perform “ similarly to PhD students on challenging benchmark tasks in physics , chemistry and biology. ” At the same time , o1 is not as capable as GPT-4o in a lot of areas . It doesn t do as well on factual knowledge about the world .
More practically , it does a better job at writing code and solving multistep problems than previous models . But it s also more expensive and slower to use than GPT-4o . OpenAI is calling this release of o1 a “ preview ” to emphasize how nascent it is . ChatGPT Plus and Team users get access to both o1-preview and o1-mini starting today , while Enterprise and Edu users will get access early next week . OpenAI says it plans to bring o1-mini access to all the free users of ChatGPT but hasn t set a release date yet . Developer access to o1 is really expensive : In the API , o1-preview is $ 15 per 1 million input tokens , or chunks of text parsed by the model , and $ 60 per 1 million output tokens . For comparison , GPT-4o costs $ 5 per 1 million input tokens and $ 15 per 1 million output tokens .
“ We can t say we solved hallucinations ” In online programming contests known as Codeforces competitions , this new model reached the 89th percentile of participants , and OpenAI claims the next update of this model will perform “ similarly to PhD students on challenging benchmark tasks in physics , chemistry and biology. ” At the same time , o1 is not as capable as GPT-4o in a lot of areas . It doesn t do as well on factual knowledge about the world . It also doesn t have the ability to browse the web or process files and images . Still , the company believes it represents a brand-new class of capabilities . It was named o1 to indicate “ resetting the counter back to 1. ” “ I m gon na be honest : I think we re terrible at naming , traditionally , ” McGrew says .
LLM Answer: According to the text, several things set o1 apart from GPT-4o:
* In online programming contests (Codeforces competitions), o1 scored 83% correct solutions compared to GPT-4o's 13%.
* The training behind o1 is "fundamentally different" from its predecessors, including a completely new optimization algorithm and a new training dataset specifically tailored for it.
* o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance.
* However, o1 is also less capable than GPT-4o in some areas, particularly with regard to factual knowledge about the world.
LLM Claim: According to the text, several things set o1 apart from GPT-4o:
* In online programming contests (Codeforces competitions), o1 scored 83% correct solutions compared to GPT-4o's 13%.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: * The training behind o1 is "fundamentally different" from its predecessors, including a completely new optimization algorithm and a new training dataset specifically tailored for it.
Is this claim supported by the context according to bespoke-minicheck? Yes
LLM Claim: * o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance.
Is this claim supported by the context according to bespoke-minicheck? No
LLM Claim: * However, o1 is also less capable than GPT-4o in some areas, particularly with regard to factual knowledge about the world.
Is this claim supported by the context according to bespoke-minicheck? Yes
```
We see that the third claim "* o1 has been shown to perform similarly to PhD students on challenging benchmark tasks in physics, chemistry, and biology, while GPT-4o does not have this level of performance." is not supported by the context. This is because the context only mentions that o1 "is claimed to perform" which is different from "has been shown to perform".

View File

@@ -0,0 +1,137 @@
import ollama
import warnings
from mattsollamatools import chunker
from newspaper import Article
import numpy as np
from sklearn.neighbors import NearestNeighbors
import nltk
warnings.filterwarnings(
"ignore", category=FutureWarning, module="transformers.tokenization_utils_base"
)
nltk.download("punkt", quiet=True)
def getArticleText(url):
"""Gets the text of an article from a URL.
Often there are a bunch of ads and menus on pages for a news article.
This uses newspaper3k to get just the text of just the article.
"""
article = Article(url)
article.download()
article.parse()
return article.text
def knn_search(question_embedding, embeddings, k=5):
"""Performs K-nearest neighbors (KNN) search"""
X = np.array(
[item["embedding"] for article in embeddings for item in article["embeddings"]]
)
source_texts = [
item["source"] for article in embeddings for item in article["embeddings"]
]
# Fit a KNN model on the embeddings
knn = NearestNeighbors(n_neighbors=k, metric="cosine")
knn.fit(X)
# Find the indices and distances of the k-nearest neighbors.
_, indices = knn.kneighbors(question_embedding, n_neighbors=k)
# Get the indices and source texts of the best matches
best_matches = [(indices[0][i], source_texts[indices[0][i]]) for i in range(k)]
return best_matches
def check(document, claim):
"""Checks if the claim is supported by the document by calling bespoke-minicheck.
Returns Yes/yes if the claim is supported by the document, No/no otherwise.
Support for logits will be added in the future.
bespoke-minicheck's system prompt is defined as:
'Determine whether the provided claim is consistent with the corresponding
document. Consistency in this context implies that all information presented in the claim
is substantiated by the document. If not, it should be considered inconsistent. Please
assess the claim's consistency with the document by responding with either "Yes" or "No".'
bespoke-minicheck's user prompt is defined as:
"Document: {document}\nClaim: {claim}"
"""
prompt = f"Document: {document}\nClaim: {claim}"
response = ollama.generate(
model="bespoke-minicheck", prompt=prompt, options={"num_predict": 2, "temperature": 0.0}
)
return response["response"].strip()
if __name__ == "__main__":
allEmbeddings = []
default_url = "https://www.theverge.com/2024/9/12/24242439/openai-o1-model-reasoning-strawberry-chatgpt"
user_input = input(
"Enter the URL of an article you want to chat with, or press Enter for default example: "
)
article_url = user_input.strip() if user_input.strip() else default_url
article = {}
article["embeddings"] = []
article["url"] = article_url
text = getArticleText(article_url)
chunks = chunker(text)
# Embed (batch) chunks using ollama
embeddings = ollama.embed(model="all-minilm", input=chunks)["embeddings"]
for chunk, embedding in zip(chunks, embeddings):
item = {}
item["source"] = chunk
item["embedding"] = embedding
item["sourcelength"] = len(chunk)
article["embeddings"].append(item)
allEmbeddings.append(article)
print(f"\nLoaded, chunked, and embedded text from {article_url}.\n")
while True:
# Input a question from the user
# For example, "Who is the chief research officer?"
question = input("Enter your question or type quit: ")
if question.lower() == "quit":
break
# Embed the user's question using ollama.embed
question_embedding = ollama.embed(model="all-minilm", input=question)[
"embeddings"
]
# Perform KNN search to find the best matches (indices and source text)
best_matches = knn_search(question_embedding, allEmbeddings, k=4)
sourcetext = "\n\n".join([source_text for (_, source_text) in best_matches])
print(f"\nRetrieved chunks: \n{sourcetext}\n")
# Give the retreived chunks and question to the chat model
system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
ollama_response = ollama.generate(
model="llama3.1",
prompt=question,
system=system_prompt,
options={"stream": False},
)
answer = ollama_response["response"]
print(f"LLM Answer:\n{answer}\n")
# Check each sentence in the response for grounded factuality
if answer:
for claim in nltk.sent_tokenize(answer):
print(f"LLM Claim: {claim}")
print(
f"Is this claim supported by the context according to bespoke-minicheck? {check(sourcetext, claim)}\n"
)

View File

@@ -0,0 +1,8 @@
ollama
lxml==5.3.0
lxml_html_clean==0.2.2
mattsollamatools==0.0.25
newspaper3k==0.2.8
nltk==3.9.1
numpy==1.26.4
scikit-learn==1.5.2

View File

@@ -0,0 +1,53 @@
"""Simple example to demonstrate how to use the bespoke-minicheck model."""
import ollama
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
def check(document, claim):
"""Checks if the claim is supported by the document by calling bespoke-minicheck.
Returns Yes/yes if the claim is supported by the document, No/no otherwise.
Support for logits will be added in the future.
bespoke-minicheck's system prompt is defined as:
'Determine whether the provided claim is consistent with the corresponding
document. Consistency in this context implies that all information presented in the claim
is substantiated by the document. If not, it should be considered inconsistent. Please
assess the claim's consistency with the document by responding with either "Yes" or "No".'
bespoke-minicheck's user prompt is defined as:
"Document: {document}\nClaim: {claim}"
"""
prompt = f"Document: {document}\nClaim: {claim}"
response = ollama.generate(
model="bespoke-minicheck", prompt=prompt, options={"num_predict": 2, "temperature": 0.0}
)
return response["response"].strip()
def get_user_input(prompt):
user_input = input(prompt)
if not user_input:
exit()
print()
return user_input
def main():
while True:
# Get a document from the user (e.g. "Ryan likes running and biking.")
document = get_user_input("Enter a document: ")
# Get a claim from the user (e.g. "Ryan likes to run.")
claim = get_user_input("Enter a claim: ")
# Check if the claim is supported by the document
grounded_factuality_check = check(document, claim)
print(
f"Is the claim supported by the document according to bespoke-minicheck? {grounded_factuality_check}"
)
print("\n\n")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,54 @@
# Simple Bespoke-Minicheck Example
`bespoke-minicheck` is a model for checking if a claim is supported by a document. It is used through the **generate** endpoint, which is called in this example with a `prompt` that includes the expected formatting of the user input.
## Running the Example
1. Ensure you have the `bespoke-minicheck` model installed:
```bash
ollama pull bespoke-minicheck
```
2. Install the dependencies:
```bash
pip install -r requirements.txt
```
3. Run the program:
```bash
python main.py
```
4. Enter a document and a claim when prompted:
```bash
Enter a document: Roses are red.
Enter a claim: Roses are blue.
```
The claim and document are then given to the `bespoke-minicheck` as inputs, which then generates a response (Yes or No) on whether the claim is supported by the document.
```bash
Is the claim supported by the document according to bespoke-minicheck? No
```
## More Examples
Document ([source](https://en.wikipedia.org/wiki/Apple_I)):
> The Apple Computer 1 (Apple-1[a]), later known predominantly as the Apple I(written with a Roman numeral),[b] is an 8-bit motherboard-only personal computer designed by Steve Wozniak[5][6] and released by the Apple Computer Company (now Apple Inc.) in 1976. The company was initially formed to sell the Apple I its first product and would later become the world's largest technology company.[7] The idea of starting a company and selling the computer came from Wozniak's friend and Apple co-founder Steve Jobs.[8][9] One of the main innovations of the Apple I was that it included video display terminal circuitry on its circuit board, allowing it to connect to a low-cost composite video monitor or television, instead of an expensive computer terminal, compared to most existing computers at the time.
Claim:
>The Apple I is a 16-bit computer.
Expected output:
>Is the claim supported by the document according to bespoke-minicheck? **No**
Claim:
>Apple was originally called the Apple Computer Company.
Expected output:
>Is the claim supported by the document according to bespoke-minicheck? **Yes**

View File

@@ -0,0 +1 @@
ollama

View File

@@ -4,5 +4,5 @@ SYSTEM """
You are a log file analyzer. You will receive a set of lines from a log file for some software application, find the errors and other interesting aspects of the logs, and explain them so a new user can understand what they mean. If there are any steps they can do to resolve them, list the steps in your answer.
"""
PARAMETER TEMPERATURE 0.3
PARAMETER temperature 0.3

View File

@@ -21,6 +21,8 @@ You can try this with the `logtest.logfile` file included in this directory.
2. Install the Python Requirements.
```bash
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
```

View File

@@ -1 +1 @@
Requests==2.31.0
Requests>=2.32.3

View File

@@ -9,6 +9,8 @@ import (
"path/filepath"
"runtime"
"strings"
"github.com/ollama/ollama/envconfig"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
@@ -54,7 +56,7 @@ func commonAMDValidateLibDir() (string, error) {
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -34,10 +34,10 @@ type HipLib struct {
}
func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs/ this repo will consist with v5.7
h, err := windows.LoadLibrary("amdhip64.dll")
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64.dll, please make sure to upgrade to the latest amd driver: %w", err)
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h

View File

@@ -5,6 +5,7 @@ import (
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
@@ -359,6 +360,10 @@ func AMDGetGPUInfo() []RocmGPUInfo {
if len(resp) == 0 {
slog.Info("no compatible amdgpu devices detected")
}
if err := verifyKFDDriverAccess(); err != nil {
slog.Error("amdgpu devices detected but permission problems block access", "error", err)
return nil
}
return resp
}
@@ -455,3 +460,19 @@ func getFreeMemory(usedFile string) (uint64, error) {
}
return usedMemory, nil
}
func verifyKFDDriverAccess() error {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
} else if errors.Is(err, fs.ErrNotExist) {
// Container runtime failure?
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
return nil
}

View File

@@ -23,7 +23,7 @@ const (
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\5.7\\bin"} // TODO glob?
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
func AMDGetGPUInfo() []RocmGPUInfo {
@@ -153,7 +153,7 @@ func AMDValidateLibDir() (string, error) {
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, "rocm")
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View File

@@ -1,148 +0,0 @@
package gpu
import (
"errors"
"fmt"
"log/slog"
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"syscall"
"time"
"github.com/ollama/ollama/envconfig"
)
var (
lock sync.Mutex
payloadsDir = ""
)
func PayloadsDir() (string, error) {
lock.Lock()
defer lock.Unlock()
var err error
if payloadsDir == "" {
runnersDir := envconfig.RunnersDir()
if runnersDir != "" {
payloadsDir = runnersDir
return payloadsDir, nil
}
// The remainder only applies on non-windows where we still carry payloads in the main executable
cleanupTmpDirs()
tmpDir := envconfig.TmpDir()
if tmpDir == "" {
tmpDir, err = os.MkdirTemp("", "ollama")
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir: %w", err)
}
} else {
err = os.MkdirAll(tmpDir, 0o755)
if err != nil {
return "", fmt.Errorf("failed to generate tmp dir %s: %w", tmpDir, err)
}
}
// Track our pid so we can clean up orphaned tmpdirs
n := filepath.Join(tmpDir, "ollama.pid")
if err := os.WriteFile(n, []byte(strconv.Itoa(os.Getpid())), 0o644); err != nil {
return "", fmt.Errorf("failed to write pid file %s: %w", n, err)
}
// We create a distinct subdirectory for payloads within the tmpdir
// This will typically look like /tmp/ollama3208993108/runners on linux
payloadsDir = filepath.Join(tmpDir, "runners")
}
return payloadsDir, nil
}
// Best effort to clean up prior tmpdirs
func cleanupTmpDirs() {
matches, err := filepath.Glob(filepath.Join(os.TempDir(), "ollama*", "ollama.pid"))
if err != nil {
return
}
for _, match := range matches {
raw, err := os.ReadFile(match)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("not a ollama runtime directory, skipping", "path", match)
continue
} else if err != nil {
slog.Warn("could not read ollama.pid, skipping", "path", match, "error", err)
continue
}
pid, err := strconv.Atoi(string(raw))
if err != nil {
slog.Warn("invalid pid, skipping", "path", match, "error", err)
continue
}
p, err := os.FindProcess(pid)
if err == nil && !errors.Is(p.Signal(syscall.Signal(0)), os.ErrProcessDone) {
slog.Warn("process still running, skipping", "pid", pid, "path", match)
continue
}
if err := os.Remove(match); err != nil {
slog.Warn("could not cleanup stale pidfile", "path", match, "error", err)
}
runners := filepath.Join(filepath.Dir(match), "runners")
if err := os.RemoveAll(runners); err != nil {
slog.Warn("could not cleanup stale runners", "path", runners, "error", err)
}
if err := os.Remove(filepath.Dir(match)); err != nil {
slog.Warn("could not cleanup stale tmpdir", "path", filepath.Dir(match), "error", err)
}
}
}
func Cleanup() {
lock.Lock()
defer lock.Unlock()
runnersDir := envconfig.RunnersDir()
if payloadsDir != "" && runnersDir == "" && runtime.GOOS != "windows" {
// We want to fully clean up the tmpdir parent of the payloads dir
tmpDir := filepath.Clean(filepath.Join(payloadsDir, ".."))
slog.Debug("cleaning up", "dir", tmpDir)
err := os.RemoveAll(tmpDir)
if err != nil {
// On windows, if we remove too quickly the llama.dll may still be in-use and fail to remove
time.Sleep(1000 * time.Millisecond)
err = os.RemoveAll(tmpDir)
if err != nil {
slog.Warn("failed to clean up", "dir", tmpDir, "err", err)
}
}
}
}
func UpdatePath(dir string) {
if runtime.GOOS == "windows" {
tmpDir := filepath.Dir(dir)
pathComponents := strings.Split(os.Getenv("PATH"), ";")
i := 0
for _, comp := range pathComponents {
if strings.EqualFold(comp, dir) {
return
}
// Remove any other prior paths to our temp dir
if !strings.HasPrefix(strings.ToLower(comp), strings.ToLower(tmpDir)) {
pathComponents[i] = comp
i++
}
}
newPath := strings.Join(append([]string{dir}, pathComponents...), ";")
slog.Info("updating", "PATH", newPath)
os.Setenv("PATH", newPath)
}
// linux and darwin rely on rpath
}

View File

@@ -4,9 +4,17 @@ package gpu
import (
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
@@ -19,3 +27,38 @@ func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
}
return "v12"
}

View File

@@ -64,10 +64,6 @@ var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
@@ -97,10 +93,9 @@ func initCudaHandles() *cudaHandles {
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
}
tmpDir, _ := PayloadsDir()
if tmpDir != "" {
// TODO - add "payloads" for subprocess
cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", CudartMgmtName)}
libDir := LibraryDir()
if libDir != "" {
cudartMgmtPatterns = []string{filepath.Join(libDir, CudartMgmtName)}
}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
@@ -215,7 +210,7 @@ func GetGPUInfo() GpuInfoList {
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: cpuCapability,
Variant: cpuCapability.String(),
ID: "0",
},
},
@@ -229,11 +224,7 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo}
}
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
}
depPath := LibraryDir()
// Load ALL libraries
cHandles = initCudaHandles()
@@ -269,11 +260,23 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
@@ -306,13 +309,6 @@ func GetGPUInfo() GpuInfoList {
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
}
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
@@ -467,10 +463,12 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
var patterns []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
@@ -479,13 +477,14 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
default:
return gpuLibPaths
}
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
patterns = append(patterns, filepath.Join(d, baseLibName))
}
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
@@ -641,3 +640,31 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
return "", ""
}
}
func LibraryDir() string {
// On Windows/linux we bundle the dependencies at the same level as the executable
appExe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Warn("failed to lookup working directory", "error", err)
}
// Scan for any of our dependeices, and pick first match
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe()), cwd} {
libDep := filepath.Join("lib", "ollama")
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
return filepath.Join(root, libDep)
}
// Developer mode, local build
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
}
slog.Warn("unable to locate gpu dependency libraries")
return ""
}

View File

@@ -25,7 +25,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUCapability(),
Variant: GetCPUCapability().String(),
memInfo: mem,
},
}
@@ -48,7 +48,7 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUCapability(),
Variant: GetCPUCapability().String(),
memInfo: mem,
},
}

View File

@@ -47,7 +47,7 @@ var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so"
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {

View File

@@ -32,4 +32,29 @@ func TestCPUMemInfo(t *testing.T) {
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

View File

@@ -19,7 +19,7 @@ type GpuInfo struct {
Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags)
Variant CPUCapability `json:"variant"`
Variant string `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"`
@@ -55,6 +55,8 @@ type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
@@ -81,8 +83,8 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != CPUCapabilityNone {
requested += "_" + info.Variant.String()
if info.Variant != CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
for i, lib := range libs {
if lib == requested {
@@ -92,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
}
}
if !found {
libs = append(libs, info.Library)
libs = append(libs, requested)
resp = append(resp, []GpuInfo{info})
}
}
@@ -105,6 +107,7 @@ func (l GpuInfoList) LogDetails() {
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"variant", g.Variant,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,

View File

@@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
}
}
@@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
}
}

View File

@@ -1,12 +1,13 @@
set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
add_executable(${TARGET} server.cpp utils.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

24596
llm/ext_server/json.hpp vendored

File diff suppressed because it is too large Load Diff

View File

@@ -262,7 +262,7 @@ struct server_slot {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
snprintf(buffer, sizeof(buffer), "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -276,7 +276,7 @@ struct server_slot {
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
snprintf(buffer, sizeof(buffer), "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
@@ -288,7 +288,7 @@ struct server_slot {
{"n_tokens_second", n_tokens_second},
});
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
snprintf(buffer, sizeof(buffer), " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
@@ -425,7 +425,7 @@ struct llama_server_context
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
add_bos_token = llama_add_bos_token(model);
return true;
}
@@ -913,7 +913,9 @@ struct llama_server_context
slot.sampled = result.tok;
// search stop word and delete it
if (!llama_token_is_eog(model, result.tok))
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
@@ -954,6 +956,8 @@ struct llama_server_context
if (!incomplete)
{
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
if (!llama_token_is_eog(model, result.tok)) {
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
@@ -979,6 +983,10 @@ struct llama_server_context
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
} else {
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
}
if (slot.params.stream)
{
@@ -1031,7 +1039,7 @@ struct llama_server_context
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.cpuparams.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
@@ -1117,9 +1125,7 @@ struct llama_server_context
{"multimodal", multimodal}
};
if (!llama_token_is_eog(model, tkn.tok)) {
res.result_json["content"] = tkn.text_to_send;
}
if (slot.sparams.n_probs > 0)
{
@@ -1429,7 +1435,13 @@ struct llama_server_context
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
server_slot *slot = prefix_slot(task.data["prompt"]);
server_slot *slot = nullptr;
if (task.embedding_mode) {
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
slot = slots[0].available() ? &slots[0] : nullptr;
} else {
slot = prefix_slot(task.data["prompt"]);
}
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later
@@ -2008,7 +2020,7 @@ static void server_print_usage(const char *argv0, const gpt_params &params,
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.cpuparams.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
@@ -2281,7 +2293,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
params.cpuparams.n_threads = std::stoi(argv[i]);
}
else if (arg == "--grp-attn-n" || arg == "-gan")
{
@@ -2309,7 +2321,7 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
params.cpuparams_batch.n_threads = std::stoi(argv[i]);
}
else if (arg == "--threads-http")
{
@@ -2620,6 +2632,11 @@ static void server_params_parse(int argc, char **argv, server_params &sparams, g
params.kv_overrides.back().key[0] = 0;
}
postprocess_cpu_params(params.cpuparams, nullptr);
postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams, &params.cpuparams);
postprocess_cpu_params(params.draft_cpuparams_batch, &params.cpuparams_batch);
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
@@ -2769,8 +2786,8 @@ int main(int argc, char **argv) {
{"commit", LLAMA_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
{"n_threads_batch", params.n_threads_batch},
{"n_threads", params.cpuparams.n_threads},
{"n_threads_batch", params.cpuparams_batch.n_threads},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});

View File

@@ -9,11 +9,14 @@ init_vars() {
ARCH="arm64"
;;
*)
ARCH=$(uname -m | sed -e "s/aarch64/arm64/g")
echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
exit 1
;;
esac
LLAMACPP_DIR=../llama.cpp
CMAKE_DEFS=""
CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on"
CMAKE_TARGETS="--target ollama_llama_server"
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
@@ -27,6 +30,8 @@ init_vars() {
WHOLE_ARCHIVE="-Wl,-force_load"
NO_WHOLE_ARCHIVE=""
GCC_ARCH="-arch ${ARCH}"
DIST_BASE=../../dist/darwin-${GOARCH}/
PAYLOAD_BASE=../../build/darwin/${GOARCH}
;;
"Linux")
LIB_EXT="so"
@@ -35,6 +40,8 @@ init_vars() {
# Cross compiling not supported on linux - Use docker
GCC_ARCH=""
DIST_BASE=../../dist/linux-${GOARCH}/
PAYLOAD_BASE=../../build/linux/${GOARCH}
;;
*)
;;
@@ -42,6 +49,8 @@ init_vars() {
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
fi
GZIP=$(command -v pigz 2>/dev/null || echo "gzip")
RUNNER_BASE="${DIST_BASE}/lib/ollama/runners"
}
git_module_setup() {
@@ -60,51 +69,68 @@ git_module_setup() {
}
apply_patches() {
# Wire up our CMakefile
if ! grep ollama ${LLAMACPP_DIR}/CMakeLists.txt; then
echo 'add_subdirectory(../ext_server ext_server) # ollama' >>${LLAMACPP_DIR}/CMakeLists.txt
fi
if [ -n "$(ls -A ../patches/*.diff)" ]; then
# apply temporary patches until fix is upstream
for patch in ../patches/*.diff; do
for file in $(grep "^+++ " ${patch} | cut -f2 -d' ' | cut -f2- -d/); do
(cd ${LLAMACPP_DIR}; git checkout ${file})
for patch in ../patches/*.patch; do
git -c 'user.name=nobody' -c 'user.email=<>' -C ${LLAMACPP_DIR} am ${patch}
done
done
for patch in ../patches/*.diff; do
(cd ${LLAMACPP_DIR} && git apply ${patch})
done
fi
}
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
# remove unnecessary build artifacts
rm -f ${BUILD_DIR}/bin/ggml-common.h ${BUILD_DIR}/bin/ggml-metal.metal
}
compress() {
echo "Compressing payloads to reduce overall binary size..."
pids=""
rm -rf ${BUILD_DIR}/bin/*.gz
dist() {
[ -z "${RUNNER}" ] && exit 1
mkdir -p ${RUNNER_BASE}/${RUNNER}/
for f in ${BUILD_DIR}/bin/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
cp ${f} ${RUNNER_BASE}/${RUNNER}/
done
fi
}
# Compress from the build $BUILD_DIR into the $PAYLOAD_BASE/$RUNNER dir
compress() {
[ -z "${RUNNER}" ] && exit 1
echo "Compressing payloads with ${GZIP} to reduce overall binary size..."
rm -rf "${PAYLOAD_BASE}/${RUNNER}/"
mkdir -p "${PAYLOAD_BASE}/${RUNNER}/"
for f in ${BUILD_DIR}/bin/* ; do
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
${GZIP} -c --best ${f} > "${PAYLOAD_BASE}/${RUNNER}/$(basename ${f}).gz" &
compress_pids+=" $!"
done
fi
echo
for pid in ${pids}; do
}
wait_for_compress() {
for pid in ${compress_pids}; do
wait $pid
done
echo "Finished compression"
}
install() {
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT} | grep -v "${BUILD_DIR}/bin/" ); do
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
cp -af "${lib}" "${BUILD_DIR}/bin/"
done
}
# Keep the local tree clean after we're done with the build
cleanup() {
(cd ${LLAMACPP_DIR}/ && git checkout CMakeLists.txt)

View File

@@ -6,6 +6,7 @@
set -ex
set -o pipefail
compress_pids=""
echo "Starting darwin generate script"
source $(dirname $0)/gen_common.sh
init_vars
@@ -18,7 +19,7 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
COMMON_DARWIN_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DGGML_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
case "${GOARCH}" in
"amd64")
@@ -38,7 +39,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu"
RUNNER=cpu
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building LCD CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
@@ -50,7 +52,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
RUNNER=cpu_avx
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX CPU"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
@@ -62,7 +65,8 @@ case "${GOARCH}" in
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
RUNNER=cpu_avx2
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
build
@@ -83,7 +87,8 @@ case "${GOARCH}" in
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
init_vars
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/metal"
RUNNER="metal"
BUILD_DIR="../build/darwin/${GOARCH}/${RUNNER}"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
build
sign ${BUILD_DIR}/bin/ollama_llama_server
@@ -98,4 +103,5 @@ case "${GOARCH}" in
esac
cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@@ -13,6 +13,7 @@
set -ex
set -o pipefail
compress_pids=""
# See https://llvm.org/docs/AMDGPUUsage.html#processors for reference
amdGPUs() {
@@ -60,7 +61,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc)
fi
fi
COMMON_CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
COMMON_CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
source $(dirname $0)/gen_common.sh
init_vars
git_module_setup
@@ -86,10 +87,13 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
init_vars
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
RUNNER="cpu"
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building custom CPU"
build
install
dist
compress
else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
@@ -102,16 +106,19 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
RUNNER=cpu
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building LCD CPU"
build
install
dist
compress
fi
@@ -126,9 +133,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
RUNNER=cpu_avx
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building AVX CPU"
build
install
dist
compress
fi
@@ -139,9 +149,12 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
RUNNER=cpu_avx2
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
echo "Building AVX2 CPU"
build
install
dist
compress
fi
fi
@@ -169,7 +182,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
echo "CUDA libraries detected - building dynamic CUDA library"
init_vars
CUDA_MAJOR=$(ls "${CUDA_LIB_DIR}"/libcudart.so.* | head -1 | cut -f3 -d. || true)
if [ -n "${CUDA_MAJOR}" ]; then
if [ -n "${CUDA_MAJOR}" -a -z "${CUDA_VARIANT}" ]; then
CUDA_VARIANT=_v${CUDA_MAJOR}
fi
if [ "${ARCH}" == "arm64" ]; then
@@ -187,29 +200,21 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
export CUDAFLAGS="-t8"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS} -DGGML_STATIC=off"
RUNNER=cuda${CUDA_VARIANT}
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
export LLAMA_SERVER_LDFLAGS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
CUDA_DIST_DIR="${CUDA_DIST_DIR:-${DIST_BASE}/lib/ollama}"
build
# Carry the CUDA libs as payloads to help reduce dependency burden on users
#
# TODO - in the future we may shift to packaging these separately and conditionally
# downloading them in the install script.
DEPS="$(ldd ${BUILD_DIR}/bin/ollama_llama_server )"
for lib in libcudart.so libcublas.so libcublasLt.so ; do
DEP=$(echo "${DEPS}" | grep ${lib} | cut -f1 -d' ' | xargs || true)
if [ -n "${DEP}" -a -e "${CUDA_LIB_DIR}/${DEP}" ]; then
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" ]; then
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDART_LIB_DIR}/${lib}" ]; then
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/bin/"
else
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/bin/"
fi
install
dist
echo "Installing CUDA dependencies in ${CUDA_DIST_DIR}"
mkdir -p "${CUDA_DIST_DIR}"
for lib in ${CUDA_LIB_DIR}/libcudart.so* ${CUDA_LIB_DIR}/libcublas.so* ${CUDA_LIB_DIR}/libcublasLt.so* ; do
cp -a "${lib}" "${CUDA_DIST_DIR}"
done
compress
@@ -226,22 +231,27 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
source ${ONEAPI_ROOT}/setvars.sh --force # set up environment variables for oneAPI
CC=icx
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
BUILD_DIR="../build/linux/${ARCH}/oneapi"
EXTRA_LIBS="-fsycl -Wl,-rpath,${ONEAPI_ROOT}/compiler/latest/lib,-rpath,${ONEAPI_ROOT}/mkl/latest/lib,-rpath,${ONEAPI_ROOT}/tbb/latest/lib,-rpath,${ONEAPI_ROOT}/compiler/latest/opt/oclfpga/linux64/lib -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
RUNNER=oneapi
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
ONEAPI_DIST_DIR="${DIST_BASE}/lib/ollama"
export LLAMA_SERVER_LDFLAGS="-fsycl -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
build
# copy oneAPI dependencies
mkdir -p "${ONEAPI_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e sycl -e mkl -e tbb); do
cp "${dep}" "${BUILD_DIR}/bin/"
cp -a "${dep}" "${ONEAPI_DIST_DIR}"
done
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${ONEAPI_DIST_DIR}"
install
dist
compress
fi
@@ -263,31 +273,35 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
CMAKE_DEFS="${CMAKE_DEFS} ${OLLAMA_CUSTOM_ROCM_DEFS}"
echo "Building custom ROCM GPU"
fi
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
EXTRA_LIBS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -Wl,-rpath,\$ORIGIN/../../rocm/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
RUNNER=rocm${ROCM_VARIANT}
BUILD_DIR="../build/linux/${GOARCH}/${RUNNER}"
# ROCm dependencies are too large to fit into a unified bundle
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
# TODO figure out how to disable runpath (rpath)
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
build
# Record the ROCM dependencies
rm -f "${BUILD_DIR}/bin/deps.txt"
touch "${BUILD_DIR}/bin/deps.txt"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
echo "${dep}" >> "${BUILD_DIR}/bin/deps.txt"
done
# bomb out if for some reason we didn't get a few deps
if [ $(cat "${BUILD_DIR}/bin/deps.txt" | wc -l ) -lt 8 ] ; then
cat "${BUILD_DIR}/bin/deps.txt"
echo "ERROR: deps file short"
exit 1
# copy the ROCM dependencies
mkdir -p "${ROCM_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${GOARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo -e libnuma -e libelf ); do
cp -a "${dep}"* "${ROCM_DIST_DIR}"
if [ $(readlink -f "${dep}") != "${dep}" ] ; then
cp $(readlink -f "${dep}") "${ROCM_DIST_DIR}"
fi
done
install
dist
compress
fi
cleanup
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${PAYLOAD_BASE}; echo *)"

View File

@@ -53,7 +53,7 @@ function init_vars {
)
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\ollama_runners"
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\runners"
md "$script:DIST_BASE" -ea 0 > $null
if ($env:CGO_CFLAGS -contains "-g") {
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
@@ -101,29 +101,9 @@ function git_module_setup {
}
function apply_patches {
# Wire up our CMakefile
if (!(Select-String -Path "${script:llamacppDir}/CMakeLists.txt" -Pattern 'ollama')) {
Add-Content -Path "${script:llamacppDir}/CMakeLists.txt" -Value 'add_subdirectory(../ext_server ext_server) # ollama'
}
# Apply temporary patches until fix is upstream
$patches = Get-ChildItem "../patches/*.diff"
foreach ($patch in $patches) {
# Extract file paths from the patch file
$filePaths = Get-Content $patch.FullName | Where-Object { $_ -match '^\+\+\+ ' } | ForEach-Object {
$parts = $_ -split ' '
($parts[1] -split '/', 2)[1]
}
# Checkout each file
foreach ($file in $filePaths) {
git -C "${script:llamacppDir}" checkout $file
}
}
# Apply each patch
foreach ($patch in $patches) {
git -C "${script:llamacppDir}" apply $patch.FullName
foreach ($patch in $(Get-ChildItem "../patches/*.patch")) {
git -c 'user.name=nobody' -c 'user.email=<>' -C "${script:llamacppDir}" am $patch.FullName
}
}
@@ -135,7 +115,7 @@ function build {
if ($cmakeDefs -contains "-G") {
$extra=@("-j8")
} else {
$extra= @("--", "/p:CL_MPcount=8")
$extra= @("--", "/maxCpuCount:8")
}
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
@@ -279,7 +259,7 @@ function build_cuda() {
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
# Then build cuda as a dynamically loaded library
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename
$script:CUDA_VERSION=((get-item ($nvcc | split-path | split-path)).Basename -Split "\.")[0]
if ($null -ne $script:CUDA_VERSION) {
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
}
@@ -291,9 +271,9 @@ function build_cuda() {
"-DGGML_CUDA=ON",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
"-DCMAKE_CUDA_FLAGS=-t8",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
"-DCMAKE_CUDA_FLAGS=-t6",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}",
"-DCMAKE_CUDA_COMPILER_TOOLKIT_ROOT=$env:CUDA_PATH"
)
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
@@ -304,12 +284,11 @@ function build_cuda() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" -ea 0 > $null
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
} else {
write-host "Skipping CUDA generation step"
}
@@ -343,18 +322,17 @@ function build_oneapi() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
} else {
Write-Host "Skipping oneAPI generation step"
}
@@ -375,7 +353,7 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on",
"-DGGML_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
@@ -404,12 +382,11 @@ function build_rocm() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\"
} else {
write-host "Skipping ROCm generation step"
}

View File

@@ -43,6 +43,14 @@ func (kv KV) Architecture() string {
return "unknown"
}
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
}
@@ -352,11 +360,13 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
switch llm.KV().Architecture() {
case "llama":
fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
4*batch*(embedding+vocab),
)
partialOffload = 4 * batch * embedding
partialOffload += max(
// 4*batch*(4+6*embedding+context*(2*heads)+llm.KV().GQA()),
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)

View File

@@ -1,11 +1,7 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/arm64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,11 +0,0 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/darwin/x86_64/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,11 +1,7 @@
package llm
import (
"embed"
"syscall"
)
//go:embed build/linux/*/*/bin/*
var libEmbed embed.FS
var LlamaServerSysProcAttr = &syscall.SysProcAttr{}

View File

@@ -1,13 +1,9 @@
package llm
import (
"embed"
"syscall"
)
// unused on windows
var libEmbed embed.FS
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
var LlamaServerSysProcAttr = &syscall.SysProcAttr{

View File

@@ -7,6 +7,7 @@ import (
"strings"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/gpu"
)
@@ -94,6 +95,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
// Overflow that didn't fit into the GPU
var overflow uint64
overhead := envconfig.GpuOverhead()
availableList := make([]string, len(gpus))
for i, gpu := range gpus {
availableList[i] = format.HumanBytes2(gpu.FreeMemory)
@@ -164,8 +166,22 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
gzo = gpuZeroOverhead
}
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
if (gpus[i].FreeMemory - overhead) < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
slog.Debug("gpu has too little memory to allocate any layers",
"id", gpus[i].ID,
"library", gpus[i].Library,
"variant", gpus[i].Variant,
"compute", gpus[i].Compute,
"driver", fmt.Sprintf("%d.%d", gpus[i].DriverMajor, gpus[i].DriverMinor),
"name", gpus[i].Name,
"total", format.HumanBytes2(gpus[i].TotalMemory),
"available", format.HumanBytes2(gpus[i].FreeMemory),
"minimum_memory", gpus[i].MinimumMemory,
"layer_size", format.HumanBytes2(layerSize),
"gpu_zer_overhead", format.HumanBytes2(gzo),
"partial_offload", format.HumanBytes2(graphPartialOffload),
"full_offload", format.HumanBytes2(graphFullOffload),
)
continue
}
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
@@ -196,7 +212,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[i%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+layerSize {
if (g.g.FreeMemory - overhead) > used+layerSize {
gpuAllocations[g.i] += layerSize
layerCounts[g.i]++
layerCount++
@@ -219,7 +235,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
for j := len(gpusWithSpace); j > 0; j-- {
g := gpusWithSpace[layerCount%j]
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
if g.g.FreeMemory > used+memoryLayerOutput {
if (g.g.FreeMemory - overhead) > used+memoryLayerOutput {
gpuAllocations[g.i] += memoryLayerOutput
layerCounts[g.i]++
layerCount++
@@ -306,6 +322,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
}
func (m MemoryEstimate) log() {
overhead := envconfig.GpuOverhead()
slog.Info(
"offload to "+m.inferenceLibrary,
slog.Group(
@@ -323,6 +340,7 @@ func (m MemoryEstimate) log() {
"memory",
// memory available by GPU for offloading
"available", m.availableList,
"gpu_overhead", format.HumanBytes2(overhead),
slog.Group(
"required",
// memory required for full offloading

View File

@@ -33,7 +33,6 @@ func TestEstimateGPULayers(t *testing.T) {
assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),

View File

@@ -0,0 +1,22 @@
From 8b8d83ffca775840acc5dc700f3b3703e9f5cfe4 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Fri, 23 Aug 2024 11:27:48 -0700
Subject: [PATCH] patch cmakelist
---
CMakeLists.txt | 2 ++
1 file changed, 2 insertions(+)
diff --git a/CMakeLists.txt b/CMakeLists.txt
index a3132063..6a2a9912 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -199,3 +199,5 @@ if (LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
+
+add_subdirectory(../ext_server ext_server) # ollama
--
2.45.2

View File

@@ -1,8 +1,18 @@
From 2cfaa0a04faa9c87ba8f1ac8527eb953e69c6cde Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:10 -0700
Subject: [PATCH] 01-load-progress.diff
---
common/common.cpp | 2 ++
common/common.h | 7 +++++++
2 files changed, 9 insertions(+)
diff --git a/common/common.cpp b/common/common.cpp
index 2c05a4d4..927f0e3d 100644
index 9fa18472..48ff41e9 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2093,6 +2093,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
@@ -2573,6 +2573,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
@@ -12,10 +22,10 @@ index 2c05a4d4..927f0e3d 100644
mparams.kv_overrides = NULL;
} else {
diff --git a/common/common.h b/common/common.h
index 65c0ef81..ebca2c77 100644
index cb5e7f6d..d8f043f7 100644
--- a/common/common.h
+++ b/common/common.h
@@ -184,6 +184,13 @@ struct gpt_params {
@@ -204,6 +204,13 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
@@ -29,3 +39,6 @@ index 65c0ef81..ebca2c77 100644
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
--
2.46.0

View File

@@ -1,5 +1,14 @@
From ba4bba80a744f76ac67b8234451c259a3c5da83b Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:11 -0700
Subject: [PATCH] 02-clip-log.diff
---
examples/llava/clip.cpp | 1 +
1 file changed, 1 insertion(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index e431c7f7..f077e688 100644
index 9b890571..cb51793d 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -3,6 +3,7 @@
@@ -10,3 +19,6 @@ index e431c7f7..f077e688 100644
#include "log.h"
#include "ggml.h"
#include "ggml-alloc.h"
--
2.46.0

View File

@@ -1,8 +1,17 @@
From e43bfd3f607a6dfcaba2d490d35f412a52e55e30 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:12 -0700
Subject: [PATCH] 03-load_exception.diff
---
src/llama.cpp | 25 ++++++++++++++++---------
1 file changed, 16 insertions(+), 9 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index 73f52435..58a00fb1 100644
index 88355971..926bb71a 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -7241,7 +7241,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
@@ -8635,7 +8635,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
@@ -11,7 +20,7 @@ index 73f52435..58a00fb1 100644
}
return 0;
@@ -17564,16 +17564,23 @@ struct llama_model * llama_load_model_from_file(
@@ -18022,16 +18022,23 @@ struct llama_model * llama_load_model_from_file(
}
model->rpc_servers.push_back(servers);
}
@@ -43,3 +52,6 @@ index 73f52435..58a00fb1 100644
}
return model;
--
2.46.0

View File

@@ -1,8 +1,17 @@
From 29411d9a9d2b6a0af6425ffe88498f17f71f7d5d Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:12 -0700
Subject: [PATCH] 04-metal.diff
---
ggml/src/ggml-metal.m | 30 +++++++++++++-----------------
1 file changed, 13 insertions(+), 17 deletions(-)
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index 0207b787..b5e9884b 100644
index 91b5e61b..9cfa72ac 100644
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -1396,27 +1396,23 @@ static enum ggml_status ggml_metal_graph_compute(
@@ -1734,27 +1734,23 @@ static enum ggml_status ggml_metal_graph_compute(
// to the matrix-vector kernel
int ne11_mm_min = 1;
@@ -43,3 +52,6 @@ index 0207b787..b5e9884b 100644
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
--
2.46.0

View File

@@ -1,8 +1,17 @@
From b298ac8614d1e38da28f760eb1d2ae8af0fbbe62 Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Mon, 16 Sep 2024 15:53:13 -0700
Subject: [PATCH] 05-default-pretokenizer.diff
---
src/llama.cpp | 14 +++-----------
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama.cpp b/src/llama.cpp
index a207451f..2ddf431d 100644
index 926bb71a..d1e959fc 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5347,16 +5347,7 @@ static void llm_load_vocab(
@@ -6083,16 +6083,7 @@ static void llm_load_vocab(
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
vocab.tokenizer_add_space_prefix = false;
vocab.tokenizer_clean_spaces = true;
@@ -20,9 +29,9 @@ index a207451f..2ddf431d 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -5443,7 +5434,8 @@ static void llm_load_vocab(
tokenizer_pre == "codeshell") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_CODESHELL;
@@ -6188,7 +6179,8 @@ static void llm_load_vocab(
tokenizer_pre == "exaone") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_EXAONE;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
@@ -30,3 +39,6 @@ index a207451f..2ddf431d 100644
}
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
--
2.46.0

Some files were not shown because too many files have changed in this diff Show More