mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 23:03:55 +00:00
Compare commits
696 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
71a4057fcf | ||
|
|
5ab7422508 | ||
|
|
8bcb3125c1 | ||
|
|
6baf1e31e2 | ||
|
|
ed567ef43b | ||
|
|
a6e64fbdf2 | ||
|
|
60cfa2a203 | ||
|
|
55bbf3b4a1 | ||
|
|
6bda1d2479 | ||
|
|
50f2219dd6 | ||
|
|
9e125d884c | ||
|
|
a6fbfc880c | ||
|
|
502028968d | ||
|
|
5a8eb0e151 | ||
|
|
9f8a18ec05 | ||
|
|
6b04cad7e8 | ||
|
|
45f56355d5 | ||
|
|
0dabb4ef6a | ||
|
|
2e77aa1ae7 | ||
|
|
deaabe292d | ||
|
|
af21a5ac39 | ||
|
|
f63d7f68eb | ||
|
|
82ad1dbc07 | ||
|
|
feeabdadd2 | ||
|
|
fc0309615e | ||
|
|
09d308d6b6 | ||
|
|
a8ed68bd93 | ||
|
|
2ae65ae471 | ||
|
|
a3b6886b7d | ||
|
|
c6a6d7294d | ||
|
|
2cf007c9d1 | ||
|
|
0683efa637 | ||
|
|
0943001193 | ||
|
|
5c42800fca | ||
|
|
65f10c2823 | ||
|
|
aaa7818000 | ||
|
|
f15ffc4320 | ||
|
|
d008f108cc | ||
|
|
5f57b0ef42 | ||
|
|
aa25aff10d | ||
|
|
ea79003180 | ||
|
|
9239a254e0 | ||
|
|
066d0f4746 | ||
|
|
aea6fb9b58 | ||
|
|
012cf65340 | ||
|
|
a45231af47 | ||
|
|
2307fc2bcd | ||
|
|
6623898198 | ||
|
|
eda472df1b | ||
|
|
f18e0cb550 | ||
|
|
68b58c5cb8 | ||
|
|
e8b981fa5d | ||
|
|
884d26093c | ||
|
|
1f371ea92f | ||
|
|
73d6a82cce | ||
|
|
6db8a3771c | ||
|
|
d950ff12c0 | ||
|
|
adff143bcd | ||
|
|
fbe6ae285a | ||
|
|
fdd4d479a3 | ||
|
|
61aeaf7e81 | ||
|
|
7359b02707 | ||
|
|
c890011322 | ||
|
|
e0ed984cde | ||
|
|
139f84cf21 | ||
|
|
375839ea2d | ||
|
|
69b2fe9282 | ||
|
|
9ed8bf14cb | ||
|
|
e6a800ca11 | ||
|
|
ff180c3466 | ||
|
|
3fe74fba42 | ||
|
|
1a0cfd080a | ||
|
|
94ab428e3f | ||
|
|
d755577473 | ||
|
|
a2cc8571c5 | ||
|
|
7edfdd2f5f | ||
|
|
333e360422 | ||
|
|
cb104a2082 | ||
|
|
27da2cddc5 | ||
|
|
feb8923ada | ||
|
|
fe623c2cf4 | ||
|
|
3c14461d5d | ||
|
|
499ae7311f | ||
|
|
ef202789fa | ||
|
|
55760195e6 | ||
|
|
bd68d3ae50 | ||
|
|
ff80718e9c | ||
|
|
0aa8b371dd | ||
|
|
23125648b8 | ||
|
|
0478d440f0 | ||
|
|
8cc33f4c2b | ||
|
|
f46df4e5d2 | ||
|
|
c6bcdc4223 | ||
|
|
4b903f088a | ||
|
|
c7f4ae7b9c | ||
|
|
526b2ed102 | ||
|
|
a7240c6d63 | ||
|
|
9d6df90805 | ||
|
|
0cefd46f23 | ||
|
|
ad035ad595 | ||
|
|
f95a1f2bef | ||
|
|
82a9e9462a | ||
|
|
76724e2f29 | ||
|
|
ecf14a220f | ||
|
|
69ce44b33c | ||
|
|
5969674cf1 | ||
|
|
867d75b21e | ||
|
|
3fa78598a1 | ||
|
|
0d6e35d3c6 | ||
|
|
6e9a7a2568 | ||
|
|
b585a58121 | ||
|
|
fa9973cd7f | ||
|
|
3d9498a425 | ||
|
|
3098c8b29b | ||
|
|
5e380c3b42 | ||
|
|
392de84031 | ||
|
|
5d967d59b1 | ||
|
|
af31ccefc0 | ||
|
|
fa393554b9 | ||
|
|
307e3b3e1d | ||
|
|
4090aca97b | ||
|
|
92ce438de0 | ||
|
|
424810450f | ||
|
|
95e744beeb | ||
|
|
3b2d2c8326 | ||
|
|
d931ee8f22 | ||
|
|
7073600797 | ||
|
|
b1c40138da | ||
|
|
17466217e5 | ||
|
|
1703d1472e | ||
|
|
913905028b | ||
|
|
7e5c8eee5c | ||
|
|
6a74bba7e7 | ||
|
|
76ea735aaf | ||
|
|
dd1d4e99e7 | ||
|
|
a6ef73f4f2 | ||
|
|
c2f5d6662b | ||
|
|
57fb759f3c | ||
|
|
8dd12c873d | ||
|
|
e6d2d04121 | ||
|
|
074bac8447 | ||
|
|
8e8f2c6d67 | ||
|
|
938e8447e8 | ||
|
|
d5d5f0c445 | ||
|
|
5478571e92 | ||
|
|
a7835c6716 | ||
|
|
ad3c7c9bda | ||
|
|
415c8fcc3d | ||
|
|
718eda1b3e | ||
|
|
421b7edeb4 | ||
|
|
7b68e254c2 | ||
|
|
7bec2724a5 | ||
|
|
a27462b708 | ||
|
|
6bf0b8193a | ||
|
|
db428adbb8 | ||
|
|
fe5b9bb21b | ||
|
|
6ec71d8fb6 | ||
|
|
44b466eeb2 | ||
|
|
a25f3f8260 | ||
|
|
dd93e1af85 | ||
|
|
5cfc1c39f3 | ||
|
|
f0ad49ea17 | ||
|
|
7ba9fa9c7d | ||
|
|
8bf11b84c1 | ||
|
|
470af8ab89 | ||
|
|
178761aef3 | ||
|
|
f0c66e6dea | ||
|
|
54055a6dae | ||
|
|
340448d2d1 | ||
|
|
ced7d0e53d | ||
|
|
a0dba0f8ae | ||
|
|
5e20b170a7 | ||
|
|
d26c18e25c | ||
|
|
8d376acc9b | ||
|
|
dc1e81f027 | ||
|
|
5d0279164c | ||
|
|
214a7678ea | ||
|
|
4892872c18 | ||
|
|
0b9198bf47 | ||
|
|
e9e5f61c45 | ||
|
|
11dde41824 | ||
|
|
a53d744b01 | ||
|
|
e82cdb5f24 | ||
|
|
40b10eee6d | ||
|
|
424f648632 | ||
|
|
2eb1fb3231 | ||
|
|
0806521642 | ||
|
|
88738b357b | ||
|
|
4e535e6188 | ||
|
|
40b8fdbdca | ||
|
|
d9472e31b7 | ||
|
|
1d99451ad7 | ||
|
|
09bb2e30f6 | ||
|
|
dc264be6ff | ||
|
|
fbe7039618 | ||
|
|
943464ccb8 | ||
|
|
369de832cd | ||
|
|
3457a315b2 | ||
|
|
ed4e139314 | ||
|
|
56dc316a57 | ||
|
|
2fec73eef6 | ||
|
|
1e7f62cb42 | ||
|
|
ccb7eb8135 | ||
|
|
637fd21230 | ||
|
|
0fe487e732 | ||
|
|
6bfaa6e282 | ||
|
|
378d3210dc | ||
|
|
97fe45e36d | ||
|
|
64a9cc8f05 | ||
|
|
f50d691254 | ||
|
|
34c3b68fc8 | ||
|
|
f33ccd5d27 | ||
|
|
bc108b9ad6 | ||
|
|
0c3d27ae42 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
76014b9ac7 | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
eceb276901 | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
cc2978039c | ||
|
|
e9c7bade80 | ||
|
|
0bd0454ea7 | ||
|
|
6097b74894 | ||
|
|
2c9f7a9e17 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 | ||
|
|
5e0b904e88 | ||
|
|
9bd1a6116c | ||
|
|
131f0355a5 | ||
|
|
17bb5ea679 | ||
|
|
ce929984a3 | ||
|
|
4b34930a31 | ||
|
|
74bd09652d | ||
|
|
fb6252d786 | ||
|
|
c794fef2f2 | ||
|
|
00ebda8cc4 | ||
|
|
d14ce75b95 | ||
|
|
2d6eac9084 | ||
|
|
3ed7ad3ab3 | ||
|
|
6d1103048e | ||
|
|
0ff28758b3 | ||
|
|
d3e9ca3eda | ||
|
|
0fbfcf3c9c | ||
|
|
0c220935bd | ||
|
|
ffbfe833da | ||
|
|
42a14f7f63 | ||
|
|
f8c3dbe5b5 | ||
|
|
b078dd157c | ||
|
|
2ddacd7516 | ||
|
|
da0e345200 | ||
|
|
df94175a0f | ||
|
|
61a8825216 | ||
|
|
a69a1e6e63 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
457576739f | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 | ||
|
|
4e320b8b90 | ||
|
|
4cd0c73408 | ||
|
|
eb2b22b042 | ||
|
|
4ea4d2b189 | ||
|
|
8d76fa23ef | ||
|
|
74b44fdf8f | ||
|
|
65b88c544f | ||
|
|
a422ba39c9 | ||
|
|
d2ec22371e | ||
|
|
033cec232a | ||
|
|
543240fb5f | ||
|
|
4bed739259 | ||
|
|
80c7ce381b | ||
|
|
ccfd41c4f0 | ||
|
|
3e102b7dad | ||
|
|
ec46f3286c | ||
|
|
5e2e0b46b1 | ||
|
|
45a13b1dec | ||
|
|
5c0b663969 | ||
|
|
30d7a59ba8 | ||
|
|
4aeb67ef4c | ||
|
|
3ba91634c1 | ||
|
|
1b7433b71e | ||
|
|
a70820daa0 | ||
|
|
6b45b1d6b4 | ||
|
|
85ab552028 | ||
|
|
c3945aaa1d | ||
|
|
b3af953a55 | ||
|
|
3a65093078 | ||
|
|
ad4e0bf3be | ||
|
|
88ab587807 | ||
|
|
aee28501b5 | ||
|
|
83f0ec8269 | ||
|
|
c6b6938b3a | ||
|
|
fb4664fcec | ||
|
|
20e3593863 | ||
|
|
63a394068c | ||
|
|
ab39e08eb9 | ||
|
|
11bfa62796 | ||
|
|
f63e62e546 | ||
|
|
65b0f329d1 | ||
|
|
06007c0a18 | ||
|
|
a8e83a7654 | ||
|
|
475005504e | ||
|
|
2c40c4d35e | ||
|
|
e95278932b | ||
|
|
9d2a20a763 | ||
|
|
2e54d72fc3 | ||
|
|
6b32a2d549 | ||
|
|
c5cbe4fc2a | ||
|
|
f888912870 | ||
|
|
9e4642e9b3 | ||
|
|
6b0486c216 | ||
|
|
d368c039f0 | ||
|
|
9b54267e69 | ||
|
|
46bb0169c4 | ||
|
|
8934324b72 | ||
|
|
0e886595bf | ||
|
|
c62861f4fa | ||
|
|
0df1800436 | ||
|
|
631fecc6d9 | ||
|
|
4346c2409d | ||
|
|
4b037a97dc | ||
|
|
5f74d1fd47 | ||
|
|
4dcf80167a | ||
|
|
26a26998fb | ||
|
|
9926eae015 | ||
|
|
8585b7b151 | ||
|
|
7e34f4fbfa | ||
|
|
fe776293f7 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
642a2496fe | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
25248f4bd5 | ||
|
|
e82001c122 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
d80ea37d36 | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
92731dfc6f | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
1f7de23036 | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 | ||
|
|
8cc0064cf3 | ||
|
|
98d44fa39d | ||
|
|
2099e2d267 | ||
|
|
0c1041ad85 | ||
|
|
c245b0406f | ||
|
|
8b194b7520 | ||
|
|
3e8b8a1933 | ||
|
|
41dc280491 | ||
|
|
53d2990d9b | ||
|
|
e185c08ad9 | ||
|
|
2412adf42b | ||
|
|
be2ac1ed93 | ||
|
|
dc13813a03 | ||
|
|
d6af13efed | ||
|
|
a59f665235 | ||
|
|
688925aca9 | ||
|
|
76e903cf9d | ||
|
|
a5272130c4 | ||
|
|
d7d7e99662 | ||
|
|
2db96c18e7 | ||
|
|
e12af460ed | ||
|
|
88936d5c9a | ||
|
|
3ad4bc8afe | ||
|
|
0d694793f2 | ||
|
|
e91ae3d47d | ||
|
|
6ecd7f64ba | ||
|
|
888855675e | ||
|
|
b16367b4b2 | ||
|
|
a499390648 | ||
|
|
4df98f3eb5 | ||
|
|
348b3e0983 | ||
|
|
0b7e1676eb | ||
|
|
314573bfe8 | ||
|
|
4604b10306 | ||
|
|
8c13cfa4dd | ||
|
|
7cfd4aee4d | ||
|
|
b026930aba | ||
|
|
5eb640b20a | ||
|
|
f374747b0d | ||
|
|
68bac1e0a6 | ||
|
|
f53f4198c3 | ||
|
|
2192a28eed | ||
|
|
5d81c1a184 | ||
|
|
5c5535c064 | ||
|
|
e5bcc51ae1 | ||
|
|
bd6a7d5e64 | ||
|
|
14b5a9a150 | ||
|
|
ba9ec3d05e | ||
|
|
7c168b08c9 | ||
|
|
3d4cc7833c | ||
|
|
351a85d9ea | ||
|
|
bda4ef6c56 | ||
|
|
1e438b237c | ||
|
|
d721a02e7d | ||
|
|
778603a818 | ||
|
|
3c874df46e | ||
|
|
0d5897fadc | ||
|
|
d2eb226c91 | ||
|
|
e13e7c8d94 | ||
|
|
78f403ff45 | ||
|
|
5f8c03189e | ||
|
|
08a299e1d0 | ||
|
|
7b5d916a9a | ||
|
|
33ad61b112 | ||
|
|
716e365615 | ||
|
|
3b4424ff98 | ||
|
|
f9c7ead160 | ||
|
|
5930aaeb1a | ||
|
|
faf67db089 | ||
|
|
0667baddc6 | ||
|
|
d006e1e09b | ||
|
|
df2680b4b9 | ||
|
|
010313bb63 | ||
|
|
51a157d3d8 | ||
|
|
5296f487a8 | ||
|
|
f05774b04c | ||
|
|
6600bd7d91 | ||
|
|
ed443a0393 | ||
|
|
6945617af5 | ||
|
|
7916f55009 | ||
|
|
d650ad398f | ||
|
|
d223f3b697 | ||
|
|
60830695c2 | ||
|
|
01d9a46854 | ||
|
|
d773b7d671 | ||
|
|
4d4463b2bd | ||
|
|
0e38297f87 | ||
|
|
7e13f568dc | ||
|
|
58245413f4 | ||
|
|
8cf16063a5 | ||
|
|
3a4449e2f1 | ||
|
|
10d59d5f90 | ||
|
|
a4f69a0191 | ||
|
|
82658c3eec | ||
|
|
378d6e1e6a | ||
|
|
afa55bc70c | ||
|
|
2629a7aca4 | ||
|
|
d89b2f0fe7 | ||
|
|
a364232373 | ||
|
|
0e9767093d | ||
|
|
49df03da9a | ||
|
|
0189bdd0b7 | ||
|
|
be3653df11 | ||
|
|
f4711da7bd | ||
|
|
3ffa0e920b | ||
|
|
23a2e85bf8 | ||
|
|
38117fba83 | ||
|
|
1f766c36fb | ||
|
|
484a99e428 | ||
|
|
ec6121c331 | ||
|
|
b86c0a1500 | ||
|
|
7e402ebb8c | ||
|
|
b901a712c6 | ||
|
|
abb8dd57f8 | ||
|
|
a400df48c0 | ||
|
|
6ab4ba4c26 | ||
|
|
e8d4eb3e68 | ||
|
|
ae7e368f75 | ||
|
|
31acd1ebf9 | ||
|
|
9a4757ae66 | ||
|
|
7814019708 | ||
|
|
b698f9a0d8 | ||
|
|
32285a6d19 | ||
|
|
1c198977ec | ||
|
|
330b6c50b0 | ||
|
|
928911bc68 | ||
|
|
5b446cc815 | ||
|
|
451c1596af | ||
|
|
932bded12f | ||
|
|
070ad913ac | ||
|
|
8d8b9f83ae | ||
|
|
f00d359a67 | ||
|
|
291def6adb | ||
|
|
cd3fbf1c49 | ||
|
|
c852b8e021 | ||
|
|
d8932c55e7 | ||
|
|
63f0269f7f | ||
|
|
4759ecae19 | ||
|
|
65b7ecac7b | ||
|
|
f9d2d89135 | ||
|
|
669dc31cf3 | ||
|
|
d4d338c224 | ||
|
|
bfdeffc375 | ||
|
|
e806184023 | ||
|
|
50566113ac | ||
|
|
ad22ace439 | ||
|
|
f4321a421c | ||
|
|
475333d533 | ||
|
|
39fd89308c | ||
|
|
548a9f56a6 | ||
|
|
3f0cb36bdb | ||
|
|
bea1f1fac6 | ||
|
|
5d75d837ef | ||
|
|
711648c9bb | ||
|
|
dcfb7a105c | ||
|
|
2ef3c803a1 | ||
|
|
453e4d090b | ||
|
|
ca2f9843c8 | ||
|
|
294b6f5a22 | ||
|
|
7bb356c680 | ||
|
|
021817e59a | ||
|
|
a420a453b4 | ||
|
|
42cf4db601 | ||
|
|
93a8daf285 | ||
|
|
a041b4df7c | ||
|
|
2539f2dbf9 | ||
|
|
61676fb506 | ||
|
|
f6f3713001 | ||
|
|
a30f347201 | ||
|
|
74ea4fb604 | ||
|
|
6982e9cc96 | ||
|
|
ab39872cb4 | ||
|
|
84a2314463 | ||
|
|
17fcdea698 | ||
|
|
fdef326dcd | ||
|
|
32bd37adf8 | ||
|
|
9446c2c902 | ||
|
|
9aa141d023 | ||
|
|
8bccae4f92 | ||
|
|
6ae2adc1af | ||
|
|
1deafd8254 | ||
|
|
57f038ec7b | ||
|
|
cdf3a181dc | ||
|
|
6c7ce09dda | ||
|
|
3919f4ba3d | ||
|
|
2d33c4e97d | ||
|
|
29a8975c66 | ||
|
|
86a622cbdc | ||
|
|
459d822b51 | ||
|
|
844899440a | ||
|
|
103db4216d | ||
|
|
6daddcde01 | ||
|
|
07f7e69b36 | ||
|
|
b68e8e5727 | ||
|
|
369fb529e2 | ||
|
|
643c2cb88b | ||
|
|
023e4bca14 | ||
|
|
51af455f62 | ||
|
|
ffe3549064 | ||
|
|
928de9050e | ||
|
|
36aea6154a | ||
|
|
dd352ab27f | ||
|
|
cb40d60469 | ||
|
|
d8bab8ea44 | ||
|
|
9ab62eb96f | ||
|
|
290cf2040a | ||
|
|
08b8916a45 | ||
|
|
d46d05d636 | ||
|
|
a72f2dce45 | ||
|
|
08a832b482 | ||
|
|
2ddc32d5c5 | ||
|
|
a1b7b955a3 | ||
|
|
2cde4b8817 | ||
|
|
87f0a49fe6 | ||
|
|
0f06a6daa7 | ||
|
|
8f805dd74b | ||
|
|
89d5e2f2fd | ||
|
|
297ada6c87 | ||
|
|
8c9fb8eb73 | ||
|
|
b75ccfc5ec | ||
|
|
7a81daf026 | ||
|
|
60f75560a2 | ||
|
|
e28f2d4900 | ||
|
|
c216850523 | ||
|
|
4839cee4fb | ||
|
|
0e4d604b02 | ||
|
|
a64347c6d4 | ||
|
|
18f6a98bd6 | ||
|
|
b1fd7fef86 | ||
|
|
36d111e788 | ||
|
|
9039c821a2 | ||
|
|
581a4a5553 | ||
|
|
cf4d7c52c4 | ||
|
|
6a6328a5e9 | ||
|
|
527cc97899 | ||
|
|
a37f4a86a7 | ||
|
|
46f74e0cb5 | ||
|
|
7622ea21af | ||
|
|
c5d3947084 | ||
|
|
757eeacc1b | ||
|
|
dd42acf737 | ||
|
|
b9ccb3741e | ||
|
|
abfdc4710f | ||
|
|
82a02e18d9 | ||
|
|
4879a234c4 | ||
|
|
63269668c0 | ||
|
|
900f64e6be | ||
|
|
da09488fbf | ||
|
|
7f0ccc8a9d |
@@ -3,7 +3,9 @@ ollama
|
|||||||
app
|
app
|
||||||
macapp
|
macapp
|
||||||
dist
|
dist
|
||||||
|
build
|
||||||
.env
|
.env
|
||||||
.cache
|
.cache
|
||||||
test_data
|
test_data
|
||||||
llama/build
|
.git
|
||||||
|
|
||||||
|
|||||||
13
.gitattributes
vendored
13
.gitattributes
vendored
@@ -7,5 +7,18 @@ llama/**/*.cuh linguist-vendored
|
|||||||
llama/**/*.m linguist-vendored
|
llama/**/*.m linguist-vendored
|
||||||
llama/**/*.metal linguist-vendored
|
llama/**/*.metal linguist-vendored
|
||||||
|
|
||||||
|
ml/backend/**/*.c linguist-vendored
|
||||||
|
ml/backend/**/*.h linguist-vendored
|
||||||
|
ml/backend/**/*.cpp linguist-vendored
|
||||||
|
ml/backend/**/*.hpp linguist-vendored
|
||||||
|
ml/backend/**/*.cu linguist-vendored
|
||||||
|
ml/backend/**/*.cuh linguist-vendored
|
||||||
|
ml/backend/**/*.m linguist-vendored
|
||||||
|
ml/backend/**/*.metal linguist-vendored
|
||||||
|
ml/backend/**/CMakeLists.txt linguist-vendored
|
||||||
|
|
||||||
|
llama/build-info.cpp linguist-generated
|
||||||
|
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.s linguist-generated
|
||||||
|
|
||||||
* text=auto
|
* text=auto
|
||||||
*.go text eol=lf
|
*.go text eol=lf
|
||||||
|
|||||||
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
8
.github/ISSUE_TEMPLATE/10_bug_report.yml
vendored
@@ -9,6 +9,14 @@ body:
|
|||||||
description: What happened? What did you expect to happen?
|
description: What happened? What did you expect to happen?
|
||||||
validations:
|
validations:
|
||||||
required: true
|
required: true
|
||||||
|
- type: textarea
|
||||||
|
id: logs
|
||||||
|
attributes:
|
||||||
|
label: Relevant log output
|
||||||
|
description: Please copy and paste any relevant log output. See [Troubleshooting Guide](https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md#how-to-troubleshoot-issues) for details.
|
||||||
|
render: shell
|
||||||
|
validations:
|
||||||
|
required: false
|
||||||
- type: dropdown
|
- type: dropdown
|
||||||
id: os
|
id: os
|
||||||
attributes:
|
attributes:
|
||||||
|
|||||||
1037
.github/workflows/release.yaml
vendored
1037
.github/workflows/release.yaml
vendored
File diff suppressed because it is too large
Load Diff
438
.github/workflows/test.yaml
vendored
438
.github/workflows/test.yaml
vendored
@@ -1,11 +1,5 @@
|
|||||||
name: test
|
name: test
|
||||||
|
|
||||||
env:
|
|
||||||
ROCM_WINDOWS_URL: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
|
|
||||||
MSYS2_URL: https://github.com/msys2/msys2-installer/releases/download/2024-07-27/msys2-x86_64-20240727.exe
|
|
||||||
CUDA_12_WINDOWS_URL: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
|
|
||||||
CUDA_12_WINDOWS_VER: 12.4
|
|
||||||
|
|
||||||
concurrency:
|
concurrency:
|
||||||
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
# For PRs, later CI runs preempt previous ones. e.g. a force push on a PR
|
||||||
# cancels running CI jobs and starts all new ones.
|
# cancels running CI jobs and starts all new ones.
|
||||||
@@ -27,7 +21,7 @@ jobs:
|
|||||||
changes:
|
changes:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
outputs:
|
outputs:
|
||||||
RUNNERS: ${{ steps.changes.outputs.RUNNERS }}
|
changed: ${{ steps.changes.outputs.changed }}
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
with:
|
with:
|
||||||
@@ -35,291 +29,213 @@ jobs:
|
|||||||
- id: changes
|
- id: changes
|
||||||
run: |
|
run: |
|
||||||
changed() {
|
changed() {
|
||||||
git diff-tree -r --no-commit-id --name-only \
|
local BASE=${{ github.event.pull_request.base.sha }}
|
||||||
$(git merge-base ${{ github.event.pull_request.base.sha }} ${{ github.event.pull_request.head.sha }}) \
|
local HEAD=${{ github.event.pull_request.head.sha }}
|
||||||
${{ github.event.pull_request.head.sha }} \
|
local MERGE_BASE=$(git merge-base $BASE $HEAD)
|
||||||
|
git diff-tree -r --no-commit-id --name-only "$MERGE_BASE" "$HEAD" \
|
||||||
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
||||||
}
|
}
|
||||||
|
|
||||||
{
|
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
|
||||||
echo RUNNERS=$(changed 'llama/**')
|
|
||||||
} >>$GITHUB_OUTPUT
|
|
||||||
|
|
||||||
runners-linux-cuda:
|
linux:
|
||||||
needs: [changes]
|
needs: [changes]
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
if: needs.changes.outputs.changed == 'True'
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
cuda-version:
|
include:
|
||||||
- '11.8.0'
|
- preset: CPU
|
||||||
|
- preset: CUDA
|
||||||
|
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
|
||||||
|
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||||
|
- preset: ROCm
|
||||||
|
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||||
|
extra-packages: rocm-libs
|
||||||
|
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
|
||||||
runs-on: linux
|
runs-on: linux
|
||||||
container: nvidia/cuda:${{ matrix.cuda-version }}-devel-ubuntu20.04
|
container: ${{ matrix.container }}
|
||||||
steps:
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
- run: |
|
- run: |
|
||||||
apt-get update && apt-get install -y git build-essential curl
|
[ -n "${{ matrix.container }}" ] || sudo=sudo
|
||||||
|
$sudo apt-get update
|
||||||
|
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
|
||||||
env:
|
env:
|
||||||
DEBIAN_FRONTEND: noninteractive
|
DEBIAN_FRONTEND: noninteractive
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/cache@v4
|
||||||
- uses: actions/setup-go@v4
|
|
||||||
with:
|
with:
|
||||||
go-version-file: go.mod
|
path: /github/home/.cache/ccache
|
||||||
cache: true
|
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||||
- run: go get ./...
|
|
||||||
- run: |
|
- run: |
|
||||||
git config --global --add safe.directory /__w/ollama/ollama
|
cmake --preset ${{ matrix.preset }} ${{ matrix.flags }}
|
||||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
cmake --build --preset ${{ matrix.preset }} --parallel
|
||||||
make -j $cores cuda_v11
|
|
||||||
runners-linux-rocm:
|
windows:
|
||||||
needs: [changes]
|
needs: [changes]
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
if: needs.changes.outputs.changed == 'True'
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
rocm-version:
|
include:
|
||||||
- '6.1.2'
|
- preset: CPU
|
||||||
runs-on: linux
|
- preset: CUDA
|
||||||
container: rocm/dev-ubuntu-20.04:${{ matrix.rocm-version }}
|
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||||
steps:
|
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||||
- run: |
|
- preset: ROCm
|
||||||
apt-get update && apt-get install -y git build-essential curl rocm-libs
|
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||||
env:
|
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||||
DEBIAN_FRONTEND: noninteractive
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
- uses: actions/setup-go@v4
|
|
||||||
with:
|
|
||||||
go-version-file: go.mod
|
|
||||||
cache: true
|
|
||||||
- run: go get ./...
|
|
||||||
- run: |
|
|
||||||
git config --global --add safe.directory /__w/ollama/ollama
|
|
||||||
cores=$(grep '^core id' /proc/cpuinfo |sort -u|wc -l)
|
|
||||||
make -j $cores rocm
|
|
||||||
|
|
||||||
# ROCm generation step
|
|
||||||
runners-windows-rocm:
|
|
||||||
needs: [changes]
|
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
|
||||||
runs-on: windows
|
runs-on: windows
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- run: |
|
||||||
- uses: actions/setup-go@v5
|
choco install -y --no-progress ccache ninja
|
||||||
|
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||||
|
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
|
||||||
|
id: cache-install
|
||||||
|
uses: actions/cache/restore@v4
|
||||||
with:
|
with:
|
||||||
go-version-file: go.mod
|
path: |
|
||||||
cache: true
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
- name: Set make jobs default
|
C:\Program Files\AMD\ROCm
|
||||||
run: |
|
key: ${{ matrix.install }}
|
||||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
- if: matrix.preset == 'CUDA'
|
||||||
|
name: Install CUDA ${{ matrix.cuda-version }}
|
||||||
# ROCM installation steps
|
|
||||||
- name: 'Cache ROCm installer'
|
|
||||||
id: cache-rocm
|
|
||||||
uses: actions/cache@v4
|
|
||||||
with:
|
|
||||||
path: rocm-install.exe
|
|
||||||
key: ${{ env.ROCM_WINDOWS_URL }}
|
|
||||||
- name: 'Conditionally Download ROCm'
|
|
||||||
if: steps.cache-rocm.outputs.cache-hit != 'true'
|
|
||||||
run: |
|
run: |
|
||||||
$ErrorActionPreference = "Stop"
|
$ErrorActionPreference = "Stop"
|
||||||
Invoke-WebRequest -Uri "${env:ROCM_WINDOWS_URL}" -OutFile "rocm-install.exe"
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
- name: 'Install ROCm'
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
run: |
|
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
||||||
Start-Process "rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
}
|
||||||
- name: 'Verify ROCm'
|
|
||||||
run: |
|
|
||||||
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
|
||||||
echo "HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path | select -first 1)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
|
||||||
|
|
||||||
- name: Add msys paths
|
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||||
run: |
|
|
||||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
- name: Install msys2 tools
|
|
||||||
run: |
|
|
||||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
|
||||||
|
|
||||||
- name: make rocm runner
|
|
||||||
run: |
|
|
||||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
|
||||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
|
||||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
|
||||||
make -C llama print-HIP_PATH print-HIP_LIB_DIR
|
|
||||||
make rocm
|
|
||||||
|
|
||||||
# CUDA generation step
|
|
||||||
runners-windows-cuda:
|
|
||||||
needs: [changes]
|
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
|
||||||
runs-on: windows
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
- uses: actions/setup-go@v5
|
|
||||||
with:
|
|
||||||
go-version-file: go.mod
|
|
||||||
cache: true
|
|
||||||
- name: Set make jobs default
|
|
||||||
run: |
|
|
||||||
echo "MAKEFLAGS=--jobs=$((Get-ComputerInfo -Property CsProcessors).CsProcessors.NumberOfCores)" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
|
||||||
|
|
||||||
# CUDA installation steps
|
|
||||||
- name: 'Cache CUDA installer'
|
|
||||||
id: cache-cuda
|
|
||||||
uses: actions/cache@v4
|
|
||||||
with:
|
|
||||||
path: cuda-install.exe
|
|
||||||
key: ${{ env.CUDA_12_WINDOWS_URL }}
|
|
||||||
- name: 'Conditionally Download CUDA'
|
|
||||||
if: steps.cache-cuda.outputs.cache-hit != 'true'
|
|
||||||
run: |
|
|
||||||
$ErrorActionPreference = "Stop"
|
|
||||||
Invoke-WebRequest -Uri "${env:CUDA_12_WINDOWS_URL}" -OutFile "cuda-install.exe"
|
|
||||||
- name: 'Install CUDA'
|
|
||||||
run: |
|
|
||||||
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | foreach-object {"${_}_${{ env.CUDA_12_WINDOWS_VER }}"}
|
|
||||||
Start-Process "cuda-install.exe" -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
|
||||||
- name: 'Verify CUDA'
|
|
||||||
run: |
|
|
||||||
& (resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0] --version
|
|
||||||
$cudaPath=((resolve-path "c:\Program Files\NVIDIA*\CUDA\v*\bin\nvcc.exe")[0].path | split-path | split-path)
|
|
||||||
$cudaVer=($cudaPath | split-path -leaf ) -replace 'v(\d+).(\d+)', '$1_$2'
|
|
||||||
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
echo "$cudaPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
echo "CUDA_PATH=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
- if: matrix.preset == 'ROCm'
|
||||||
echo "CUDA_PATH_V${cudaVer}=$cudaPath" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
name: Install ROCm ${{ matrix.rocm-version }}
|
||||||
echo "CUDA_PATH_VX_Y=CUDA_PATH_V${cudaVer}" | Out-File -FilePath $env:GITHUB_ENV -Encoding utf8 -Append
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||||
|
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||||
|
Start-Process -FilePath .\install.exe -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
|
}
|
||||||
|
|
||||||
- name: Add msys paths
|
$hipPath = (Resolve-Path "C:\Program Files\AMD\ROCm\*").path
|
||||||
run: |
|
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||||
- name: Install msys2 tools
|
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||||
run: |
|
uses: actions/cache/save@v4
|
||||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
with:
|
||||||
- name: make cuda runner
|
path: |
|
||||||
run: |
|
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
C:\Program Files\AMD\ROCm
|
||||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
key: ${{ matrix.install }}
|
||||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
|
||||||
make cuda_v$(($env:CUDA_PATH | split-path -leaf) -replace 'v(\d+).*', '$1')
|
|
||||||
|
|
||||||
runners-cpu:
|
|
||||||
needs: [changes]
|
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
|
||||||
arch: [amd64, arm64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-2019
|
|
||||||
arch: arm64
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
env:
|
|
||||||
GOARCH: ${{ matrix.arch }}
|
|
||||||
ARCH: ${{ matrix.arch }}
|
|
||||||
CGO_ENABLED: '1'
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
- uses: actions/setup-go@v5
|
- uses: actions/cache@v4
|
||||||
with:
|
with:
|
||||||
go-version-file: go.mod
|
path: ${{ github.workspace }}\.ccache
|
||||||
cache: true
|
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||||
- name: Add msys paths
|
|
||||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
|
||||||
run: |
|
|
||||||
echo "c:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
|
||||||
- name: Install msys2 tools
|
|
||||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
|
||||||
run: |
|
|
||||||
Start-Process "c:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
|
||||||
- name: 'Build Windows Go Runners'
|
|
||||||
if: ${{ startsWith(matrix.os, 'windows-') }}
|
|
||||||
run: |
|
|
||||||
$gopath=(get-command go).source | split-path -parent
|
|
||||||
$gccpath=(get-command gcc).source | split-path -parent
|
|
||||||
import-module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
|
||||||
Enter-VsDevShell -vsinstallpath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -skipautomaticlocation -DevCmdArguments '-arch=x64 -no_logo'
|
|
||||||
$env:CMAKE_SYSTEM_VERSION="10.0.22621.0"
|
|
||||||
$env:PATH="$gopath;$gccpath;$env:PATH"
|
|
||||||
echo $env:PATH
|
|
||||||
if (!(gcc --version | select-string -quiet clang)) { throw "wrong gcc compiler detected - must be clang" }
|
|
||||||
make -j 4
|
|
||||||
- name: 'Build Unix Go Runners'
|
|
||||||
if: ${{ ! startsWith(matrix.os, 'windows-') }}
|
|
||||||
run: make -j 4
|
|
||||||
- run: go build .
|
|
||||||
|
|
||||||
lint:
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
|
||||||
arch: [amd64, arm64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-2019
|
|
||||||
arch: arm64
|
|
||||||
- os: macos-latest
|
|
||||||
arch: amd64
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
env:
|
|
||||||
GOARCH: ${{ matrix.arch }}
|
|
||||||
CGO_ENABLED: '1'
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
submodules: recursive
|
|
||||||
- uses: actions/setup-go@v5
|
|
||||||
with:
|
|
||||||
go-version-file: go.mod
|
|
||||||
cache: false
|
|
||||||
- run: |
|
- run: |
|
||||||
case ${{ matrix.arch }} in
|
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||||
amd64) echo ARCH=x86_64 ;;
|
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||||
arm64) echo ARCH=arm64 ;;
|
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
|
||||||
esac >>$GITHUB_ENV
|
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||||
shell: bash
|
env:
|
||||||
- uses: golangci/golangci-lint-action@v6
|
CMAKE_GENERATOR: Ninja
|
||||||
with:
|
|
||||||
args: --timeout 10m0s -v
|
|
||||||
test:
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
os: [ubuntu-latest, macos-latest, windows-2019]
|
|
||||||
arch: [amd64]
|
|
||||||
exclude:
|
|
||||||
- os: ubuntu-latest
|
|
||||||
arch: arm64
|
|
||||||
- os: windows-2019
|
|
||||||
arch: arm64
|
|
||||||
runs-on: ${{ matrix.os }}
|
|
||||||
env:
|
|
||||||
GOARCH: ${{ matrix.arch }}
|
|
||||||
CGO_ENABLED: '1'
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
submodules: recursive
|
|
||||||
- uses: actions/setup-go@v5
|
|
||||||
with:
|
|
||||||
go-version-file: go.mod
|
|
||||||
cache: true
|
|
||||||
- run: |
|
|
||||||
case ${{ matrix.arch }} in
|
|
||||||
amd64) echo ARCH=amd64 ;;
|
|
||||||
arm64) echo ARCH=arm64 ;;
|
|
||||||
esac >>$GITHUB_ENV
|
|
||||||
shell: bash
|
|
||||||
- run: go test ./...
|
|
||||||
|
|
||||||
patches:
|
go_mod_tidy:
|
||||||
needs: [changes]
|
|
||||||
if: ${{ needs.changes.outputs.RUNNERS == 'True' }}
|
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v4
|
- uses: actions/checkout@v4
|
||||||
|
- name: check that 'go mod tidy' is clean
|
||||||
|
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
|
||||||
|
|
||||||
|
test:
|
||||||
|
strategy:
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
env:
|
||||||
|
CGO_ENABLED: '1'
|
||||||
|
GOEXPERIMENT: 'synctest'
|
||||||
|
steps:
|
||||||
|
- name: checkout
|
||||||
|
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
|
||||||
|
|
||||||
|
- name: cache restore
|
||||||
|
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||||
with:
|
with:
|
||||||
submodules: recursive
|
# Note: unlike the other setups, this is only grabbing the mod download
|
||||||
- name: Verify patches carry all the changes
|
# cache, rather than the whole mod directory, as the download cache
|
||||||
|
# contains zips that can be unpacked in parallel faster than they can be
|
||||||
|
# fetched and extracted by tar
|
||||||
|
path: |
|
||||||
|
~/.cache/go-build
|
||||||
|
~/go/pkg/mod/cache
|
||||||
|
~\AppData\Local\go-build
|
||||||
|
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||||
|
# cached changes (e.g. path above changes).
|
||||||
|
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||||
|
restore-keys: |
|
||||||
|
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
|
||||||
|
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
|
||||||
|
|
||||||
|
- name: Setup Go
|
||||||
|
uses: actions/setup-go@v5
|
||||||
|
with:
|
||||||
|
# The caching strategy of setup-go is less than ideal, and wastes
|
||||||
|
# time by not saving artifacts due to small failures like the linter
|
||||||
|
# complaining, etc. This means subsequent have to rebuild their world
|
||||||
|
# again until all checks pass. For instance, if you mispell a word,
|
||||||
|
# you're punished until you fix it. This is more hostile than
|
||||||
|
# helpful.
|
||||||
|
cache: false
|
||||||
|
|
||||||
|
go-version-file: go.mod
|
||||||
|
|
||||||
|
# It is tempting to run this in a platform independent way, but the past
|
||||||
|
# shows this codebase will see introductions of platform specific code
|
||||||
|
# generation, and so we need to check this per platform to ensure we
|
||||||
|
# don't abuse go generate on specific platforms.
|
||||||
|
- name: check that 'go generate' is clean
|
||||||
|
if: always()
|
||||||
run: |
|
run: |
|
||||||
make apply-patches sync && git diff --compact-summary --exit-code llama
|
go generate ./...
|
||||||
|
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
|
||||||
|
|
||||||
|
- name: go test
|
||||||
|
if: always()
|
||||||
|
run: go test -count=1 -benchtime=1x ./...
|
||||||
|
|
||||||
|
# TODO(bmizerany): replace this heavy tool with just the
|
||||||
|
# tools/checks/binaries we want and then make them all run in parallel
|
||||||
|
# across jobs, not on a single tiny vm on Github Actions.
|
||||||
|
- uses: golangci/golangci-lint-action@v6
|
||||||
|
with:
|
||||||
|
args: --timeout 10m0s -v
|
||||||
|
|
||||||
|
- name: cache save
|
||||||
|
# Always save the cache, even if the job fails. The artifacts produced
|
||||||
|
# during the building of test binaries are not all for naught. They can
|
||||||
|
# be used to speed up subsequent runs.
|
||||||
|
if: always()
|
||||||
|
|
||||||
|
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
|
||||||
|
with:
|
||||||
|
# Note: unlike the other setups, this is only grabbing the mod download
|
||||||
|
# cache, rather than the whole mod directory, as the download cache
|
||||||
|
# contains zips that can be unpacked in parallel faster than they can be
|
||||||
|
# fetched and extracted by tar
|
||||||
|
path: |
|
||||||
|
~/.cache/go-build
|
||||||
|
~/go/pkg/mod/cache
|
||||||
|
~\AppData\Local\go-build
|
||||||
|
# NOTE: The -3- here should be incremented when the scheme of data to be
|
||||||
|
# cached changes (e.g. path above changes).
|
||||||
|
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
|
||||||
|
|
||||||
|
patches:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Verify patches apply cleanly and do not change files
|
||||||
|
run: |
|
||||||
|
make -f Makefile.sync clean checkout apply-patches sync
|
||||||
|
git diff --compact-summary --exit-code
|
||||||
59
.github/workflows/upload-release-asset.yaml
vendored
Normal file
59
.github/workflows/upload-release-asset.yaml
vendored
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
name: Upload Release Assets
|
||||||
|
|
||||||
|
on:
|
||||||
|
release:
|
||||||
|
types: [created]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
upload-release-assets:
|
||||||
|
runs-on: windows
|
||||||
|
steps:
|
||||||
|
- name: Checkout code
|
||||||
|
uses: actions/checkout@v2
|
||||||
|
# This step checks out the code from the repository to the runner.
|
||||||
|
|
||||||
|
# Assuming you already have compilation and packaging steps that generate the following files:
|
||||||
|
# dist/ollama-windows-amd64.7z
|
||||||
|
# dist/OllamaSetup.exe
|
||||||
|
|
||||||
|
- name: Get the version
|
||||||
|
id: get_version
|
||||||
|
run: |
|
||||||
|
echo ::set-output name=VERSION::${GITHUB_REF#refs/tags/}
|
||||||
|
# This step extracts the version number from the tag name.
|
||||||
|
|
||||||
|
- name: Create Release
|
||||||
|
id: create_release
|
||||||
|
uses: actions/create-release@v1
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
with:
|
||||||
|
tag_name: ${{ github.ref_name }}
|
||||||
|
release_name: Release ${{ github.ref_name }}
|
||||||
|
body: |
|
||||||
|
Description of the release goes here.
|
||||||
|
# draft: false (Uncomment if you want to create a non-draft release)
|
||||||
|
# prerelease: false (Uncomment if you want to create a non-prerelease version)
|
||||||
|
# This step creates a new release on GitHub.
|
||||||
|
|
||||||
|
- name: Upload ollama-windows-amd64.7z Release Asset
|
||||||
|
uses: actions/upload-release-asset@v1
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
with:
|
||||||
|
upload_url: ${{ steps.create_release.outputs.upload_url }}
|
||||||
|
asset_path: dist/ollama-windows-amd64.7z
|
||||||
|
asset_name: ollama-windows-amd64.7z
|
||||||
|
asset_content_type: application/x-7z-compressed
|
||||||
|
# This step uploads the .7z file as a release asset.
|
||||||
|
|
||||||
|
- name: Upload OllamaSetup.exe Release Asset
|
||||||
|
uses: actions/upload-release-asset@v1
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
with:
|
||||||
|
upload_url: ${{ steps.create_release.outputs.upload_url }}
|
||||||
|
asset_path: dist/OllamaSetup.exe
|
||||||
|
asset_name: OllamaSetup.exe
|
||||||
|
asset_content_type: application/vnd.microsoft.portable-executable
|
||||||
|
# This step uploads the .exe file as a release asset.
|
||||||
8
.gitignore
vendored
8
.gitignore
vendored
@@ -6,15 +6,13 @@
|
|||||||
.swp
|
.swp
|
||||||
0
|
0
|
||||||
dist
|
dist
|
||||||
ollama
|
build
|
||||||
.cache
|
.cache
|
||||||
*.exe
|
*.exe
|
||||||
.idea
|
.idea
|
||||||
test_data
|
test_data
|
||||||
*.crt
|
*.crt
|
||||||
llm/build
|
|
||||||
build/*/*/*
|
|
||||||
!build/**/placeholder
|
|
||||||
llama/build
|
|
||||||
__debug_bin*
|
__debug_bin*
|
||||||
|
llama/build
|
||||||
llama/vendor
|
llama/vendor
|
||||||
|
/ollama
|
||||||
|
|||||||
4
.gitmodules
vendored
4
.gitmodules
vendored
@@ -1,4 +0,0 @@
|
|||||||
[submodule "llama.cpp"]
|
|
||||||
path = llm/llama.cpp
|
|
||||||
url = https://github.com/ggerganov/llama.cpp.git
|
|
||||||
shallow = true
|
|
||||||
@@ -6,10 +6,6 @@ linters:
|
|||||||
- bidichk
|
- bidichk
|
||||||
- bodyclose
|
- bodyclose
|
||||||
- containedctx
|
- containedctx
|
||||||
- contextcheck
|
|
||||||
- errcheck
|
|
||||||
- exportloopref
|
|
||||||
- gci
|
|
||||||
- gocheckcompilerdirectives
|
- gocheckcompilerdirectives
|
||||||
- gofmt
|
- gofmt
|
||||||
- gofumpt
|
- gofumpt
|
||||||
@@ -23,15 +19,14 @@ linters:
|
|||||||
- nolintlint
|
- nolintlint
|
||||||
- nosprintfhostport
|
- nosprintfhostport
|
||||||
- staticcheck
|
- staticcheck
|
||||||
- tenv
|
|
||||||
- unconvert
|
- unconvert
|
||||||
- unused
|
- usetesting
|
||||||
- usestdlibvars
|
|
||||||
- wastedassign
|
- wastedassign
|
||||||
- whitespace
|
- whitespace
|
||||||
|
disable:
|
||||||
|
- usestdlibvars
|
||||||
|
- errcheck
|
||||||
linters-settings:
|
linters-settings:
|
||||||
gci:
|
|
||||||
sections: [standard, default, localmodule]
|
|
||||||
staticcheck:
|
staticcheck:
|
||||||
checks:
|
checks:
|
||||||
- all
|
- all
|
||||||
@@ -43,5 +38,4 @@ severity:
|
|||||||
- gofmt
|
- gofmt
|
||||||
- goimports
|
- goimports
|
||||||
- intrange
|
- intrange
|
||||||
- usestdlibvars
|
|
||||||
severity: info
|
severity: info
|
||||||
|
|||||||
@@ -1,10 +0,0 @@
|
|||||||
{
|
|
||||||
"trailingComma": "es5",
|
|
||||||
"tabWidth": 2,
|
|
||||||
"useTabs": false,
|
|
||||||
"semi": false,
|
|
||||||
"singleQuote": true,
|
|
||||||
"jsxSingleQuote": true,
|
|
||||||
"printWidth": 120,
|
|
||||||
"arrowParens": "avoid"
|
|
||||||
}
|
|
||||||
136
CMakeLists.txt
Normal file
136
CMakeLists.txt
Normal file
@@ -0,0 +1,136 @@
|
|||||||
|
cmake_minimum_required(VERSION 3.21)
|
||||||
|
|
||||||
|
project(Ollama C CXX)
|
||||||
|
|
||||||
|
include(CheckLanguage)
|
||||||
|
|
||||||
|
find_package(Threads REQUIRED)
|
||||||
|
|
||||||
|
set(CMAKE_BUILD_TYPE Release)
|
||||||
|
set(BUILD_SHARED_LIBS ON)
|
||||||
|
|
||||||
|
set(CMAKE_CXX_STANDARD 17)
|
||||||
|
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||||
|
set(CMAKE_CXX_EXTENSIONS OFF)
|
||||||
|
|
||||||
|
set(GGML_BUILD ON)
|
||||||
|
set(GGML_SHARED ON)
|
||||||
|
set(GGML_CCACHE ON)
|
||||||
|
set(GGML_BACKEND_DL ON)
|
||||||
|
set(GGML_BACKEND_SHARED ON)
|
||||||
|
set(GGML_SCHED_MAX_COPIES 4)
|
||||||
|
|
||||||
|
set(GGML_LLAMAFILE ON)
|
||||||
|
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||||
|
set(GGML_CUDA_GRAPHS ON)
|
||||||
|
set(GGML_CUDA_FA ON)
|
||||||
|
set(GGML_CUDA_COMPRESSION_MODE default)
|
||||||
|
|
||||||
|
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||||
|
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||||
|
set(GGML_CPU_ALL_VARIANTS ON)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
|
||||||
|
set(CMAKE_BUILD_RPATH "@loader_path")
|
||||||
|
set(CMAKE_INSTALL_RPATH "@loader_path")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
|
||||||
|
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
|
||||||
|
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||||
|
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY_RELEASE ${OLLAMA_BUILD_DIR})
|
||||||
|
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||||
|
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||||
|
|
||||||
|
add_compile_definitions(NDEBUG)
|
||||||
|
|
||||||
|
set(GGML_CPU ON)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||||
|
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||||
|
|
||||||
|
get_target_property(CPU_VARIANTS ggml-cpu MANUALLY_ADDED_DEPENDENCIES)
|
||||||
|
if(NOT CPU_VARIANTS)
|
||||||
|
set(CPU_VARIANTS "ggml-cpu")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
install(TARGETS ggml-base ${CPU_VARIANTS}
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
FRAMEWORK DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CPU
|
||||||
|
)
|
||||||
|
|
||||||
|
check_language(CUDA)
|
||||||
|
if(CMAKE_CUDA_COMPILER)
|
||||||
|
if(CMAKE_VERSION VERSION_GREATER_EQUAL "3.24" AND NOT CMAKE_CUDA_ARCHITECTURES)
|
||||||
|
set(CMAKE_CUDA_ARCHITECTURES "native")
|
||||||
|
endif()
|
||||||
|
|
||||||
|
find_package(CUDAToolkit)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
|
||||||
|
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
|
||||||
|
install(TARGETS ggml-cuda
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
|
||||||
|
PRE_INCLUDE_REGEXES cublas cublasLt cudart
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||||
|
)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
|
||||||
|
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX ""
|
||||||
|
CACHE STRING
|
||||||
|
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(908|90a):xnack[+-]$\"."
|
||||||
|
)
|
||||||
|
|
||||||
|
check_language(HIP)
|
||||||
|
if(CMAKE_HIP_COMPILER)
|
||||||
|
set(HIP_PLATFORM "amd")
|
||||||
|
|
||||||
|
find_package(hip REQUIRED)
|
||||||
|
if(NOT AMDGPU_TARGETS)
|
||||||
|
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011(:xnack-)|1012(:xnack-)|103[0-6]|110[0-3]|115[01]|1201)$")
|
||||||
|
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||||
|
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if(AMDGPU_TARGETS)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||||
|
|
||||||
|
if (WIN32)
|
||||||
|
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||||
|
|
||||||
|
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||||
|
install(TARGETS ggml-hip
|
||||||
|
RUNTIME_DEPENDENCIES
|
||||||
|
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
|
||||||
|
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
|
||||||
|
PRE_EXCLUDE_REGEXES ".*"
|
||||||
|
POST_EXCLUDE_REGEXES "system32"
|
||||||
|
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||||
|
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||||
|
)
|
||||||
|
|
||||||
|
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
|
||||||
|
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
|
||||||
|
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
|
||||||
|
break()
|
||||||
|
endif()
|
||||||
|
endforeach()
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
112
CMakePresets.json
Normal file
112
CMakePresets.json
Normal file
@@ -0,0 +1,112 @@
|
|||||||
|
{
|
||||||
|
"version": 3,
|
||||||
|
"configurePresets": [
|
||||||
|
{
|
||||||
|
"name": "Default",
|
||||||
|
"binaryDir": "${sourceDir}/build",
|
||||||
|
"installDir": "${sourceDir}/dist",
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_BUILD_TYPE": "Release"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CPU",
|
||||||
|
"inherits": [ "Default" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA",
|
||||||
|
"inherits": [ "Default" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 11",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86",
|
||||||
|
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 12",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
|
||||||
|
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 5",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "72;87"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 6",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_CUDA_ARCHITECTURES": "87"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm",
|
||||||
|
"inherits": [ "Default" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_HIP_PLATFORM": "amd"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm 6",
|
||||||
|
"inherits": [ "ROCm" ],
|
||||||
|
"cacheVariables": {
|
||||||
|
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx1200;gfx1201;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1011:xnack-;gfx1012:xnack-;"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"buildPresets": [
|
||||||
|
{
|
||||||
|
"name": "Default",
|
||||||
|
"configurePreset": "Default",
|
||||||
|
"configuration": "Release"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CPU",
|
||||||
|
"configurePreset": "Default",
|
||||||
|
"targets": [ "ggml-cpu" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA",
|
||||||
|
"configurePreset": "CUDA",
|
||||||
|
"targets": [ "ggml-cuda" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 11",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "CUDA 11"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "CUDA 12",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "CUDA 12"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 5",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "JetPack 5"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "JetPack 6",
|
||||||
|
"inherits": [ "CUDA" ],
|
||||||
|
"configurePreset": "JetPack 6"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm",
|
||||||
|
"configurePreset": "ROCm",
|
||||||
|
"targets": [ "ggml-hip" ]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "ROCm 6",
|
||||||
|
"inherits": [ "ROCm" ],
|
||||||
|
"configurePreset": "ROCm 6"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
|
|||||||
|
|
||||||
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
|
||||||
|
|
||||||
## Pull requests
|
|
||||||
|
|
||||||
### Ideal issues
|
### Ideal issues
|
||||||
|
|
||||||
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
|
||||||
@@ -26,11 +24,64 @@ See the [development documentation](./docs/development.md) for instructions on h
|
|||||||
* Changes that add significant friction to the user experience
|
* Changes that add significant friction to the user experience
|
||||||
* Changes that create a large future maintenance burden for maintainers and contributors
|
* Changes that create a large future maintenance burden for maintainers and contributors
|
||||||
|
|
||||||
### Best practices
|
## Proposing a (non-trivial) change
|
||||||
|
|
||||||
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
|
> By "non-trivial", we mean a change that is not a bug fix or small
|
||||||
* Tests: please add test coverage to changes where possible.
|
> documentation update. If you are unsure, please ask us on our [Discord
|
||||||
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
|
> server](https://discord.gg/ollama).
|
||||||
|
|
||||||
|
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
|
||||||
|
get feedback from the maintainers. This helps us understand the context of the
|
||||||
|
change and how it fits into Ollama's roadmap and prevents us from duplicating
|
||||||
|
work or you from spending time on a change that we may not be able to accept.
|
||||||
|
|
||||||
|
Tips for proposals:
|
||||||
|
|
||||||
|
* Explain the problem you are trying to solve, not what you are trying to do.
|
||||||
|
* Explain why the change is important.
|
||||||
|
* Explain how the change will be used.
|
||||||
|
* Explain how the change will be tested.
|
||||||
|
|
||||||
|
Additionally, for bonus points: Provide draft documentation you would expect to
|
||||||
|
see if the change were accepted.
|
||||||
|
|
||||||
|
## Pull requests
|
||||||
|
|
||||||
|
**Commit messages**
|
||||||
|
|
||||||
|
The title should look like:
|
||||||
|
|
||||||
|
<package>: <short description>
|
||||||
|
|
||||||
|
The package is the most affected Go package. If the change does not affect Go
|
||||||
|
code, then use the directory name instead. Changes to a single well-known
|
||||||
|
file in the root directory may use the file name.
|
||||||
|
|
||||||
|
The short description should start with a lowercase letter and be a
|
||||||
|
continuation of the sentence:
|
||||||
|
|
||||||
|
"This changes Ollama to..."
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
|
||||||
|
llm/backend/mlx: support the llama architecture
|
||||||
|
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||||
|
|
||||||
|
Bad Examples:
|
||||||
|
|
||||||
|
feat: add more emoji
|
||||||
|
fix: was not using famous web framework
|
||||||
|
chore: generify code
|
||||||
|
|
||||||
|
**Tests**
|
||||||
|
|
||||||
|
Please include tests. Strive to test behavior, not implementation.
|
||||||
|
|
||||||
|
**New dependencies**
|
||||||
|
|
||||||
|
Dependencies should be added sparingly. If you are adding a new dependency,
|
||||||
|
please explain why it is necessary and what other ways you attempted that
|
||||||
|
did not work without it.
|
||||||
|
|
||||||
## Need help?
|
## Need help?
|
||||||
|
|
||||||
|
|||||||
353
Dockerfile
353
Dockerfile
@@ -1,272 +1,131 @@
|
|||||||
ARG GOLANG_VERSION=1.22.8
|
# vim: filetype=dockerfile
|
||||||
ARG CMAKE_VERSION=3.22.1
|
|
||||||
ARG CUDA_VERSION_11=11.3.1
|
|
||||||
ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
|
|
||||||
ARG CUDA_VERSION_12=12.4.0
|
|
||||||
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
|
|
||||||
ARG ROCM_VERSION=6.1.2
|
|
||||||
ARG JETPACK_6=r36.2.0
|
|
||||||
ARG JETPACK_5=r35.4.1
|
|
||||||
|
|
||||||
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
|
ARG FLAVOR=${TARGETARCH}
|
||||||
#
|
|
||||||
# docker build --platform linux/amd64 -t builder-amd64 -f Dockerfile --target unified-builder-amd64 .
|
|
||||||
# docker run --platform linux/amd64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-amd64
|
|
||||||
#
|
|
||||||
### Then incremental builds will be much faster in this container
|
|
||||||
#
|
|
||||||
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
|
|
||||||
#
|
|
||||||
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
|
|
||||||
ARG CMAKE_VERSION
|
|
||||||
ARG GOLANG_VERSION
|
|
||||||
ARG CUDA_VERSION_11
|
|
||||||
ARG CUDA_VERSION_12
|
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:/usr/local/cuda/bin:$PATH
|
|
||||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
|
||||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
|
||||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo && \
|
|
||||||
dnf clean all && \
|
|
||||||
dnf install -y \
|
|
||||||
zsh \
|
|
||||||
cuda-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
|
||||||
cuda-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
|
||||||
# TODO intel oneapi goes here...
|
|
||||||
ENV GOARCH amd64
|
|
||||||
ENV CGO_ENABLED 1
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama/
|
|
||||||
ENTRYPOINT [ "zsh" ]
|
|
||||||
|
|
||||||
### To create a local image for building linux binaries on mac or linux/arm64 with efficient incremental builds
|
ARG ROCMVERSION=6.3.3
|
||||||
# Note: this does not contain jetson variants
|
ARG JETPACK5VERSION=r35.4.1
|
||||||
#
|
ARG JETPACK6VERSION=r36.4.0
|
||||||
# docker build --platform linux/arm64 -t builder-arm64 -f Dockerfile --target unified-builder-arm64 .
|
ARG CMAKEVERSION=3.31.2
|
||||||
# docker run --platform linux/arm64 --rm -it -v $(pwd):/go/src/github.com/ollama/ollama/ builder-arm64
|
|
||||||
#
|
|
||||||
FROM --platform=linux/arm64 rockylinux:8 AS unified-builder-arm64
|
|
||||||
ARG CMAKE_VERSION
|
|
||||||
ARG GOLANG_VERSION
|
|
||||||
ARG CUDA_VERSION_11
|
|
||||||
ARG CUDA_VERSION_12
|
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
|
||||||
RUN yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo && \
|
|
||||||
dnf config-manager --set-enabled appstream && \
|
|
||||||
dnf clean all && \
|
|
||||||
dnf install -y \
|
|
||||||
zsh \
|
|
||||||
cuda-toolkit-$(echo ${CUDA_VERSION_11} | cut -f1-2 -d. | sed -e "s/\./-/g") \
|
|
||||||
cuda-toolkit-$(echo ${CUDA_VERSION_12} | cut -f1-2 -d. | sed -e "s/\./-/g")
|
|
||||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH:/usr/local/cuda/bin
|
|
||||||
ENV LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64
|
|
||||||
ENV LIBRARY_PATH=/usr/local/cuda/lib64/stubs:/opt/amdgpu/lib64
|
|
||||||
ENV GOARCH amd64
|
|
||||||
ENV CGO_ENABLED 1
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama/
|
|
||||||
ENTRYPOINT [ "zsh" ]
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 unified-builder-amd64 AS runners-amd64
|
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||||
COPY . .
|
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
RUN yum install -y yum-utils \
|
||||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||||
ARG CUDA_V11_ARCHITECTURES
|
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||||
ARG CUDA_V12_ARCHITECTURES
|
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||||
ARG OLLAMA_FAST_BUILD
|
|
||||||
|
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||||
|
# install epel-release for ccache
|
||||||
|
RUN yum install -y yum-utils epel-release \
|
||||||
|
&& dnf install -y clang ccache \
|
||||||
|
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
|
||||||
|
ENV CC=clang CXX=clang++
|
||||||
|
|
||||||
|
FROM base-${TARGETARCH} AS base
|
||||||
|
ARG CMAKEVERSION
|
||||||
|
RUN curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
|
ENV LDFLAGS=-s
|
||||||
|
|
||||||
|
FROM base AS cpu
|
||||||
|
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||||
|
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
|
cmake --preset 'CPU' \
|
||||||
make -j $(expr $(nproc) / 2 ) ; \
|
&& cmake --build --parallel --preset 'CPU' \
|
||||||
else \
|
&& cmake --install build --component CPU --strip --parallel 8
|
||||||
make -j 5 ; \
|
|
||||||
fi
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
|
FROM base AS cuda-11
|
||||||
COPY . .
|
ARG CUDA11VERSION=11.3
|
||||||
ARG OLLAMA_SKIP_CUDA_GENERATE
|
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||||
ARG OLLAMA_SKIP_CUDA_11_GENERATE
|
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||||
ARG OLLAMA_SKIP_CUDA_12_GENERATE
|
|
||||||
ARG CUDA_V11_ARCHITECTURES
|
|
||||||
ARG CUDA_V12_ARCHITECTURES
|
|
||||||
ARG OLLAMA_FAST_BUILD
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
make -j 5
|
cmake --preset 'CUDA 11' \
|
||||||
|
&& cmake --build --parallel --preset 'CUDA 11' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
# Jetsons need to be built in discrete stages
|
FROM base AS cuda-12
|
||||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
|
ARG CUDA12VERSION=12.8
|
||||||
ARG GOLANG_VERSION
|
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
|
||||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
|
||||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
|
||||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama/
|
|
||||||
COPY . .
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
ENV GOARCH arm64
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
make -j 5 cuda_v11 \
|
cmake --preset 'CUDA 12' \
|
||||||
CUDA_ARCHITECTURES="72;87" \
|
&& cmake --build --parallel --preset 'CUDA 12' \
|
||||||
GPU_RUNNER_VARIANT=_jetpack5 \
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
|
||||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
|
|
||||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
|
FROM base AS rocm-6
|
||||||
ARG GOLANG_VERSION
|
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||||
RUN apt-get update && apt-get install -y git curl ccache && \
|
|
||||||
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
|
|
||||||
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
|
|
||||||
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
|
|
||||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama/
|
|
||||||
COPY . .
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
ENV GOARCH arm64
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
make -j 5 cuda_v12 \
|
cmake --preset 'ROCm 6' \
|
||||||
CUDA_ARCHITECTURES="87" \
|
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||||
GPU_RUNNER_VARIANT=_jetpack6 \
|
&& cmake --install build --component HIP --strip --parallel 8
|
||||||
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
|
|
||||||
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
|
|
||||||
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
|
|
||||||
|
|
||||||
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
|
||||||
|
ARG CMAKEVERSION
|
||||||
|
RUN apt-get update && apt-get install -y curl ccache \
|
||||||
|
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
|
cmake --preset 'JetPack 5' \
|
||||||
|
&& cmake --build --parallel --preset 'JetPack 5' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
# Intermediate stages used for ./scripts/build_linux.sh
|
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
|
||||||
FROM --platform=linux/amd64 centos:7 AS builder-amd64
|
ARG CMAKEVERSION
|
||||||
ARG CMAKE_VERSION
|
RUN apt-get update && apt-get install -y curl ccache \
|
||||||
ARG GOLANG_VERSION
|
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
COPY CMakeLists.txt CMakePresets.json .
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||||
ENV PATH /opt/rh/devtoolset-10/root/usr/bin:$PATH
|
RUN --mount=type=cache,target=/root/.ccache \
|
||||||
ENV CGO_ENABLED 1
|
cmake --preset 'JetPack 6' \
|
||||||
ENV GOARCH amd64
|
&& cmake --build --parallel --preset 'JetPack 6' \
|
||||||
|
&& cmake --install build --component CUDA --strip --parallel 8
|
||||||
|
|
||||||
|
FROM base AS build
|
||||||
WORKDIR /go/src/github.com/ollama/ollama
|
WORKDIR /go/src/github.com/ollama/ollama
|
||||||
|
COPY go.mod go.sum .
|
||||||
FROM --platform=linux/amd64 builder-amd64 AS build-amd64
|
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||||
|
ENV PATH=/usr/local/go/bin:$PATH
|
||||||
|
RUN go mod download
|
||||||
COPY . .
|
COPY . .
|
||||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/dist/ dist/
|
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||||
COPY --from=runners-amd64 /go/src/github.com/ollama/ollama/build/ build/
|
ENV CGO_ENABLED=1
|
||||||
ARG GOFLAGS
|
RUN --mount=type=cache,target=/root/.cache/go-build \
|
||||||
ARG CGO_CFLAGS
|
go build -trimpath -buildmode=pie -o /bin/ollama .
|
||||||
ARG OLLAMA_SKIP_ROCM_GENERATE
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
|
||||||
RUN cd dist/linux-$GOARCH && \
|
|
||||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
|
||||||
RUN if [ -z ${OLLAMA_SKIP_ROCM_GENERATE} ] ; then \
|
|
||||||
cd dist/linux-$GOARCH-rocm && \
|
|
||||||
tar -cf - . | pigz --best > ../ollama-linux-$GOARCH-rocm.tgz ;\
|
|
||||||
fi
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 rockylinux:8 AS builder-arm64
|
FROM --platform=linux/amd64 scratch AS amd64
|
||||||
ARG CMAKE_VERSION
|
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||||
ARG GOLANG_VERSION
|
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||||
COPY ./scripts/rh_linux_deps.sh /
|
|
||||||
RUN CMAKE_VERSION=${CMAKE_VERSION} GOLANG_VERSION=${GOLANG_VERSION} sh /rh_linux_deps.sh
|
|
||||||
ENV PATH /opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
|
||||||
ENV CGO_ENABLED 1
|
|
||||||
ENV GOARCH arm64
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 builder-arm64 AS build-arm64
|
FROM --platform=linux/arm64 scratch AS arm64
|
||||||
COPY . .
|
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_jetpack5
|
||||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_jetpack6
|
||||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
|
||||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
|
|
||||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
|
|
||||||
ARG GOFLAGS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
|
||||||
RUN cd dist/linux-$GOARCH && \
|
|
||||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
|
|
||||||
RUN cd dist/linux-$GOARCH-jetpack5 && \
|
|
||||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
|
|
||||||
RUN cd dist/linux-$GOARCH-jetpack6 && \
|
|
||||||
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 scratch AS dist-amd64
|
FROM scratch AS rocm
|
||||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||||
FROM --platform=linux/arm64 scratch AS dist-arm64
|
|
||||||
COPY --from=build-arm64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
|
|
||||||
FROM dist-$TARGETARCH AS dist
|
|
||||||
|
|
||||||
|
FROM ${FLAVOR} AS archive
|
||||||
|
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||||
|
COPY --from=build /bin/ollama /bin/ollama
|
||||||
|
|
||||||
# Optimized container images do not cary nested payloads
|
FROM ubuntu:20.04
|
||||||
FROM --platform=linux/amd64 builder-amd64 AS container-build-amd64
|
RUN apt-get update \
|
||||||
WORKDIR /go/src/github.com/ollama/ollama
|
&& apt-get install -y ca-certificates \
|
||||||
COPY . .
|
&& apt-get clean \
|
||||||
ARG GOFLAGS
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
ARG CGO_CFLAGS
|
COPY --from=archive /bin /usr/bin
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
go build -trimpath -o dist/linux-amd64/bin/ollama .
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 builder-arm64 AS container-build-arm64
|
|
||||||
WORKDIR /go/src/github.com/ollama/ollama
|
|
||||||
COPY . .
|
|
||||||
ARG GOFLAGS
|
|
||||||
ARG CGO_CFLAGS
|
|
||||||
RUN --mount=type=cache,target=/root/.ccache \
|
|
||||||
go build -trimpath -o dist/linux-arm64/bin/ollama .
|
|
||||||
|
|
||||||
# For amd64 container images, filter out cuda/rocm to minimize size
|
|
||||||
FROM runners-amd64 AS runners-cuda-amd64
|
|
||||||
RUN rm -rf \
|
|
||||||
./dist/linux-amd64/lib/ollama/libggml_hipblas.so \
|
|
||||||
./dist/linux-amd64/lib/ollama/runners/rocm*
|
|
||||||
|
|
||||||
FROM runners-amd64 AS runners-rocm-amd64
|
|
||||||
RUN rm -rf \
|
|
||||||
./dist/linux-amd64/lib/ollama/libggml_cuda*.so \
|
|
||||||
./dist/linux-amd64/lib/ollama/libcu*.so* \
|
|
||||||
./dist/linux-amd64/lib/ollama/runners/cuda*
|
|
||||||
|
|
||||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y ca-certificates && \
|
|
||||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
||||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
|
||||||
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
|
||||||
|
|
||||||
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y ca-certificates && \
|
|
||||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
||||||
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
|
|
||||||
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
|
|
||||||
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
|
|
||||||
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
|
|
||||||
|
|
||||||
|
|
||||||
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
|
|
||||||
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
|
|
||||||
# Frontload the rocm libraries which are large, and rarely change to increase chance of a common layer
|
|
||||||
# across releases
|
|
||||||
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
|
|
||||||
RUN apt-get update && \
|
|
||||||
apt-get install -y ca-certificates && \
|
|
||||||
apt-get clean && rm -rf /var/lib/apt/lists/*
|
|
||||||
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
|
|
||||||
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
|
|
||||||
|
|
||||||
EXPOSE 11434
|
|
||||||
ENV OLLAMA_HOST 0.0.0.0
|
|
||||||
|
|
||||||
ENTRYPOINT ["/bin/ollama"]
|
|
||||||
CMD ["serve"]
|
|
||||||
|
|
||||||
FROM runtime-$TARGETARCH
|
|
||||||
EXPOSE 11434
|
|
||||||
ENV OLLAMA_HOST 0.0.0.0
|
|
||||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||||
|
COPY --from=archive /lib/ollama /usr/lib/ollama
|
||||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||||
|
ENV OLLAMA_HOST=0.0.0.0:11434
|
||||||
|
EXPOSE 11434
|
||||||
ENTRYPOINT ["/bin/ollama"]
|
ENTRYPOINT ["/bin/ollama"]
|
||||||
CMD ["serve"]
|
CMD ["serve"]
|
||||||
|
|||||||
4
Makefile
4
Makefile
@@ -1,4 +0,0 @@
|
|||||||
GOALS := $(or $(MAKECMDGOALS),all)
|
|
||||||
.PHONY: $(GOALS)
|
|
||||||
$(GOALS):
|
|
||||||
$(MAKE) -C llama $@
|
|
||||||
63
Makefile.sync
Normal file
63
Makefile.sync
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||||
|
WORKDIR=llama/vendor
|
||||||
|
FETCH_HEAD=de4c07f93783a1a96456a44dc16b9db538ee1618
|
||||||
|
|
||||||
|
.PHONY: help
|
||||||
|
help:
|
||||||
|
@echo "Available targets:"
|
||||||
|
@echo " sync Sync with upstream repositories"
|
||||||
|
@echo " checkout Checkout upstream repository"
|
||||||
|
@echo " apply-patches Apply patches to local repository"
|
||||||
|
@echo " format-patches Format patches from local repository"
|
||||||
|
@echo " clean Clean local repository"
|
||||||
|
@echo
|
||||||
|
@echo "Example:"
|
||||||
|
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||||
|
|
||||||
|
.PHONY: sync
|
||||||
|
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||||
|
|
||||||
|
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
||||||
|
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
||||||
|
|
||||||
|
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
||||||
|
go generate ./$(@D)
|
||||||
|
|
||||||
|
.PHONY: llama/llama.cpp
|
||||||
|
llama/llama.cpp: llama/vendor/
|
||||||
|
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||||
|
|
||||||
|
.PHONY: ml/backend/ggml/ggml
|
||||||
|
ml/backend/ggml/ggml: llama/vendor/ggml/
|
||||||
|
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||||
|
|
||||||
|
PATCHES=$(wildcard llama/patches/*.patch)
|
||||||
|
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
||||||
|
|
||||||
|
.PHONY: apply-patches
|
||||||
|
.NOTPARALLEL:
|
||||||
|
apply-patches: $(PATCHED)
|
||||||
|
|
||||||
|
llama/patches/.%.patched: llama/patches/%.patch
|
||||||
|
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||||
|
|
||||||
|
.PHONY: checkout
|
||||||
|
checkout: $(WORKDIR)
|
||||||
|
git -C $(WORKDIR) fetch
|
||||||
|
git -C $(WORKDIR) checkout -f $(FETCH_HEAD)
|
||||||
|
|
||||||
|
$(WORKDIR):
|
||||||
|
git clone $(UPSTREAM) $(WORKDIR)
|
||||||
|
|
||||||
|
.PHONE: format-patches
|
||||||
|
format-patches: llama/patches
|
||||||
|
git -C $(WORKDIR) format-patch \
|
||||||
|
--no-signature \
|
||||||
|
--no-numbered \
|
||||||
|
--zero-commit \
|
||||||
|
-o $(realpath $<) \
|
||||||
|
$(FETCH_HEAD)
|
||||||
|
|
||||||
|
.PHONE: clean
|
||||||
|
clean: checkout
|
||||||
|
$(RM) llama/patches/.*.patched
|
||||||
191
README.md
191
README.md
@@ -1,11 +1,11 @@
|
|||||||
<div align="center">
|
<div align="center">
|
||||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
<a href="https://ollama.com">
|
||||||
|
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||||
|
</a>
|
||||||
</div>
|
</div>
|
||||||
|
|
||||||
# Ollama
|
# Ollama
|
||||||
|
|
||||||
[](https://discord.gg/ollama)
|
|
||||||
|
|
||||||
Get up and running with large language models.
|
Get up and running with large language models.
|
||||||
|
|
||||||
### macOS
|
### macOS
|
||||||
@@ -26,22 +26,26 @@ Please download from ollama [official](https://ollama.com/download/OllamaSetup.e
|
|||||||
|
|
||||||
Example extra list add on this repo.
|
Example extra list add on this repo.
|
||||||
```
|
```
|
||||||
"gfx803" "gfx902" "gfx90c:xnack-" "gfx904" "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1033" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150(tests only)"
|
(ROCm5) "gfx803" "gfx900:xnack-" "gfx902" (ROCm6) gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150" "gfx1201" (expertimental)"...
|
||||||
```
|
```
|
||||||
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
|
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
|
||||||
|
|
||||||
Note: `gfx803` reported partialy working on HIP SDK 5.7 by the wiki method ,and disabled in HIP SDK 6.1.2
|
Note: **gfx803:** Reported as partially functional in HIP SDK 5.7 using the wiki method, but disabled in HIP SDK 6.1.2.
|
||||||
|
|
||||||
|
Note: **gfx90c (with xnack-):** Reported as partially functional in HIP SDK 5.7, with some testers experiencing partial success while others encountered issues in recent update. removed from
|
||||||
|
support lists. Explore its through self-build as guided on the wiki.
|
||||||
|
|
||||||
|
|
||||||
### Linux
|
### Linux
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl -fsSL https://ollama.com/install.sh | sh
|
curl -fsSL https://ollama.com/install.sh | sh
|
||||||
```
|
```
|
||||||
|
|
||||||
[Manual install instructions](https://github.com/ollama/ollama/blob/main/docs/linux.md)
|
[Manual install instructions](https://github.com/ollama/ollama/blob/main/docs/linux.md)
|
||||||
|
|
||||||
|
[Configuring Environment Variables Tip For Unsupport GPUs](https://github.com/likelovewant/ollama-for-amd/wiki#troubleshooting-amd-gpu-support-in-linux)
|
||||||
|
|
||||||
### Docker
|
### Docker
|
||||||
|
|
||||||
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
|
The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub.
|
||||||
@@ -51,12 +55,17 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
|||||||
- [ollama-python](https://github.com/ollama/ollama-python)
|
- [ollama-python](https://github.com/ollama/ollama-python)
|
||||||
- [ollama-js](https://github.com/ollama/ollama-js)
|
- [ollama-js](https://github.com/ollama/ollama-js)
|
||||||
|
|
||||||
|
### Community
|
||||||
|
|
||||||
|
- [Discord](https://discord.gg/ollama)
|
||||||
|
- [Reddit](https://reddit.com/r/ollama)
|
||||||
|
|
||||||
## Quickstart
|
## Quickstart
|
||||||
|
|
||||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama run llama3.2
|
ollama run gemma3
|
||||||
```
|
```
|
||||||
|
|
||||||
## Model library
|
## Model library
|
||||||
@@ -67,6 +76,15 @@ Here are some example models that can be downloaded:
|
|||||||
|
|
||||||
| Model | Parameters | Size | Download |
|
| Model | Parameters | Size | Download |
|
||||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||||
|
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
||||||
|
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
||||||
|
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
||||||
|
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
||||||
|
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||||
|
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||||
|
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||||
|
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
||||||
|
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
||||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||||
@@ -74,11 +92,8 @@ Here are some example models that can be downloaded:
|
|||||||
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
|
||||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||||
| Phi 3 Medium | 14B | 7.9GB | `ollama run phi3:medium` |
|
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
|
||||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
|
||||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
|
||||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||||
@@ -86,7 +101,7 @@ Here are some example models that can be downloaded:
|
|||||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||||
|
|
||||||
> [!NOTE]
|
> [!NOTE]
|
||||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||||
@@ -105,17 +120,17 @@ Ollama supports importing GGUF models in the Modelfile:
|
|||||||
|
|
||||||
2. Create the model in Ollama
|
2. Create the model in Ollama
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama create example -f Modelfile
|
ollama create example -f Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run the model
|
3. Run the model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama run example
|
ollama run example
|
||||||
```
|
```
|
||||||
|
|
||||||
### Import from PyTorch or Safetensors
|
### Import from Safetensors
|
||||||
|
|
||||||
See the [guide](docs/import.md) on importing models for more information.
|
See the [guide](docs/import.md) on importing models for more information.
|
||||||
|
|
||||||
@@ -123,7 +138,7 @@ See the [guide](docs/import.md) on importing models for more information.
|
|||||||
|
|
||||||
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama pull llama3.2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -150,7 +165,7 @@ ollama run mario
|
|||||||
Hello! It's your friend Mario.
|
Hello! It's your friend Mario.
|
||||||
```
|
```
|
||||||
|
|
||||||
For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation.
|
||||||
|
|
||||||
## CLI Reference
|
## CLI Reference
|
||||||
|
|
||||||
@@ -158,13 +173,13 @@ For more examples, see the [examples](examples) directory. For more information
|
|||||||
|
|
||||||
`ollama create` is used to create a model from a Modelfile.
|
`ollama create` is used to create a model from a Modelfile.
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama create mymodel -f ./Modelfile
|
ollama create mymodel -f ./Modelfile
|
||||||
```
|
```
|
||||||
|
|
||||||
### Pull a model
|
### Pull a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama pull llama3.2
|
ollama pull llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -172,13 +187,13 @@ ollama pull llama3.2
|
|||||||
|
|
||||||
### Remove a model
|
### Remove a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama rm llama3.2
|
ollama rm llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### Copy a model
|
### Copy a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama cp llama3.2 my-model
|
ollama cp llama3.2 my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -197,37 +212,39 @@ I'm a basic program that prints the famous "Hello, world!" message to the consol
|
|||||||
|
|
||||||
```
|
```
|
||||||
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
ollama run llava "What's in this image? /Users/jmorgan/Desktop/smile.png"
|
||||||
The image features a yellow smiley face, which is likely the central focus of the picture.
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> **Output**: The image features a yellow smiley face, which is likely the central focus of the picture.
|
||||||
|
|
||||||
### Pass the prompt as an argument
|
### Pass the prompt as an argument
|
||||||
|
|
||||||
|
```shell
|
||||||
|
ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
||||||
```
|
```
|
||||||
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
|
|
||||||
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
> **Output**: Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
|
||||||
```
|
|
||||||
|
|
||||||
### Show model information
|
### Show model information
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama show llama3.2
|
ollama show llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
### List models on your computer
|
### List models on your computer
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama list
|
ollama list
|
||||||
```
|
```
|
||||||
|
|
||||||
### List which models are currently loaded
|
### List which models are currently loaded
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama ps
|
ollama ps
|
||||||
```
|
```
|
||||||
|
|
||||||
### Stop a model which is currently running
|
### Stop a model which is currently running
|
||||||
|
|
||||||
```
|
```shell
|
||||||
ollama stop llama3.2
|
ollama stop llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -243,13 +260,13 @@ See the [developer guide](https://github.com/ollama/ollama/blob/main/docs/develo
|
|||||||
|
|
||||||
Next, start the server:
|
Next, start the server:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
./ollama serve
|
./ollama serve
|
||||||
```
|
```
|
||||||
|
|
||||||
Finally, in a separate shell, run a model:
|
Finally, in a separate shell, run a model:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
./ollama run llama3.2
|
./ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -259,7 +276,7 @@ Ollama has a REST API for running and managing models.
|
|||||||
|
|
||||||
### Generate a response
|
### Generate a response
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{
|
curl http://localhost:11434/api/generate -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"prompt":"Why is the sky blue?"
|
"prompt":"Why is the sky blue?"
|
||||||
@@ -268,7 +285,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
### Chat with a model
|
### Chat with a model
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [
|
"messages": [
|
||||||
@@ -284,6 +301,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
### Web & Desktop
|
### Web & Desktop
|
||||||
|
|
||||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||||
|
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||||
- [Hollama](https://github.com/fmaclen/hollama)
|
- [Hollama](https://github.com/fmaclen/hollama)
|
||||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||||
@@ -291,12 +309,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||||
|
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||||
- [Amica](https://github.com/semperai/amica)
|
- [Amica](https://github.com/semperai/amica)
|
||||||
- [chatd](https://github.com/BruceMacD/chatd)
|
- [chatd](https://github.com/BruceMacD/chatd)
|
||||||
@@ -316,6 +335,9 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
- [AnythingLLM (Docker + MacOs/Windows/Linux native app)](https://github.com/Mintplex-Labs/anything-llm)
|
||||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||||
|
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||||
|
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
||||||
|
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
|
||||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||||
@@ -329,13 +351,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||||
|
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
||||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
||||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
||||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||||
@@ -344,15 +367,16 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
||||||
|
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
||||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||||
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||||
@@ -364,20 +388,49 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
||||||
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
- [Promptery](https://github.com/promptery/promptery) (desktop client for Ollama.)
|
||||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
|
- [chat-ollama](https://github.com/annilq/chat-ollama) (a React Native client for Ollama)
|
||||||
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
- [SpaceLlama](https://github.com/tcsenpai/spacellama) (Firefox and Chrome extension to quickly summarize web pages with ollama in a sidebar)
|
||||||
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
- [YouLama](https://github.com/tcsenpai/youlama) (Webapp to quickly summarize any YouTube video, supporting Invidious as well)
|
||||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
||||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||||
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
|
- [VT](https://github.com/vinhnx/vt.ai) (A minimal multimodal AI chat app, with dynamic conversation routing. Supports local models via Ollama)
|
||||||
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
|
- [Nosia](https://github.com/nosia-ai/nosia) (Easy to install and use RAG platform based on Ollama)
|
||||||
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application avaiable for Mac/Windows/Linux)
|
- [Witsy](https://github.com/nbonamy/witsy) (An AI Desktop application available for Mac/Windows/Linux)
|
||||||
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
- [Abbey](https://github.com/US-Artificial-Intelligence/abbey) (A configurable AI interface server with notebooks, document storage, and YouTube support)
|
||||||
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
- [Minima](https://github.com/dmayboroda/minima) (RAG with on-premises or fully local workflow)
|
||||||
|
- [aidful-ollama-model-delete](https://github.com/AidfulAI/aidful-ollama-model-delete) (User interface for simplified model cleanup)
|
||||||
|
- [Perplexica](https://github.com/ItzCrazyKns/Perplexica) (An AI-powered search engine & an open-source alternative to Perplexity AI)
|
||||||
|
- [Ollama Chat WebUI for Docker ](https://github.com/oslook/ollama-webui) (Support for local docker deployment, lightweight ollama webui)
|
||||||
|
- [AI Toolkit for Visual Studio Code](https://aka.ms/ai-tooklit/ollama-docs) (Microsoft-official VSCode extension to chat, test, evaluate models with Ollama support, and use them in your AI applications.)
|
||||||
|
- [MinimalNextOllamaChat](https://github.com/anilkay/MinimalNextOllamaChat) (Minimal Web UI for Chat and Model Control)
|
||||||
|
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
|
||||||
|
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||||
|
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||||
|
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||||
|
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
||||||
|
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||||
|
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||||
|
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||||
|
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||||
|
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||||
|
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||||
|
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||||
|
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
||||||
|
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||||
|
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||||
|
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||||
|
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||||
|
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||||
|
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||||
|
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
|
||||||
|
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||||
|
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
|
||||||
|
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
|
||||||
|
|
||||||
### Cloud
|
### Cloud
|
||||||
|
|
||||||
@@ -390,6 +443,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [oterm](https://github.com/ggozad/oterm)
|
- [oterm](https://github.com/ggozad/oterm)
|
||||||
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
- [Ellama Emacs client](https://github.com/s-kostyaev/ellama)
|
||||||
- [Emacs client](https://github.com/zweifisch/ollama)
|
- [Emacs client](https://github.com/zweifisch/ollama)
|
||||||
|
- [neollama](https://github.com/paradoxical-dev/neollama) UI client for interacting with models from within Neovim
|
||||||
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
- [gen.nvim](https://github.com/David-Kunz/gen.nvim)
|
||||||
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
- [ollama.nvim](https://github.com/nomnivore/ollama.nvim)
|
||||||
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
- [ollero.nvim](https://github.com/marco-souza/ollero.nvim)
|
||||||
@@ -416,35 +470,47 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||||
|
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||||
|
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
||||||
|
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||||
|
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
|
||||||
|
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
|
||||||
|
|
||||||
### Apple Vision Pro
|
### Apple Vision Pro
|
||||||
|
|
||||||
|
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
|
|
||||||
### Database
|
### Database
|
||||||
|
|
||||||
|
- [pgai](https://github.com/timescale/pgai) - PostgreSQL as a vector database (Create and search embeddings from Ollama models using pgvector)
|
||||||
|
- [Get started guide](https://github.com/timescale/pgai/blob/main/docs/vectorizer-quick-start.md)
|
||||||
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
- [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) (Connects Ollama models with nearly 200 data platforms and apps)
|
||||||
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
- [chromem-go](https://github.com/philippgille/chromem-go/blob/v0.5.0/embed_ollama.go) with [example](https://github.com/philippgille/chromem-go/tree/v0.5.0/examples/rag-wikipedia-ollama)
|
||||||
|
- [Kangaroo](https://github.com/dbkangaroo/kangaroo) (AI-powered SQL client and admin tool for popular databases)
|
||||||
|
|
||||||
### Package managers
|
### Package managers
|
||||||
|
|
||||||
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
|
||||||
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
|
||||||
|
- [Homebrew](https://formulae.brew.sh/formula/ollama)
|
||||||
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
|
||||||
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
|
||||||
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
|
||||||
- [Flox](https://flox.dev/blog/ollama-part-one)
|
- [Flox](https://flox.dev/blog/ollama-part-one)
|
||||||
|
|
||||||
### Libraries
|
### Libraries
|
||||||
|
|
||||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||||
|
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||||
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
- [Spring AI](https://github.com/spring-projects/spring-ai) with [reference](https://docs.spring.io/spring-ai/reference/api/chat/ollama-chat.html) and [example](https://github.com/tzolov/ollama-tools)
|
||||||
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
|
||||||
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
|
||||||
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
|
||||||
|
- [LangChain for .NET](https://github.com/tryAGI/LangChain) with [example](https://github.com/tryAGI/LangChain/blob/main/examples/LangChain.Samples.OpenAI/Program.cs)
|
||||||
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
- [LLPhant](https://github.com/theodo-group/LLPhant?tab=readme-ov-file#ollama)
|
||||||
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
|
||||||
- [LiteLLM](https://github.com/BerriAI/litellm)
|
- [LiteLLM](https://github.com/BerriAI/litellm)
|
||||||
@@ -483,14 +549,23 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||||
- [GoLamify](https://github.com/prasad89/golamify)
|
- [GoLamify](https://github.com/prasad89/golamify)
|
||||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||||
|
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||||
|
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||||
|
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||||
|
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||||
|
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||||
|
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
|
||||||
|
|
||||||
### Mobile
|
### Mobile
|
||||||
|
|
||||||
|
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
||||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||||
|
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||||
|
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||||
|
|
||||||
### Extensions & Plugins
|
### Extensions & Plugins
|
||||||
|
|
||||||
@@ -512,7 +587,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
||||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||||
@@ -522,22 +597,32 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
|||||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
||||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
||||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||||
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
|
||||||
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)
|
||||||
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
- [Obsidian Quiz Generator plugin](https://github.com/ECuiDev/obsidian-quiz-generator)
|
||||||
|
- [AI Summmary Helper plugin](https://github.com/philffm/ai-summary-helper)
|
||||||
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
- [TextCraft](https://github.com/suncloudsmoon/TextCraft) (Copilot in Word alternative using Ollama)
|
||||||
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
|
||||||
|
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||||
|
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||||
|
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||||
|
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||||
|
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
|
||||||
|
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
||||||
|
|
||||||
### Supported backends
|
### Supported backends
|
||||||
|
|
||||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||||
|
|
||||||
### Observability
|
### Observability
|
||||||
|
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||||
|
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||||
|
- [Langfuse](https://langfuse.com/docs/integrations/ollama) is an open source LLM observability platform that enables teams to collaboratively monitor, evaluate and debug AI applications.
|
||||||
|
- [MLflow Tracing](https://mlflow.org/docs/latest/llms/tracing/index.html#automatic-tracing) is an open source LLM observability tool with a convenient API to log and visualize traces, making it easy to debug and evaluate GenAI applications.
|
||||||
|
|||||||
@@ -10,7 +10,7 @@
|
|||||||
// repository].
|
// repository].
|
||||||
//
|
//
|
||||||
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
|
||||||
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
|
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
|
||||||
package api
|
package api
|
||||||
|
|
||||||
import (
|
import (
|
||||||
@@ -24,7 +24,10 @@ import (
|
|||||||
"net/http"
|
"net/http"
|
||||||
"net/url"
|
"net/url"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
"strconv"
|
||||||
|
"time"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/auth"
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
"github.com/ollama/ollama/version"
|
"github.com/ollama/ollama/version"
|
||||||
@@ -76,6 +79,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
|
||||||
|
token, err := auth.Sign(ctx, []byte(challenge))
|
||||||
|
if err != nil {
|
||||||
|
return "", err
|
||||||
|
}
|
||||||
|
return token, nil
|
||||||
|
}
|
||||||
|
|
||||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||||
var reqBody io.Reader
|
var reqBody io.Reader
|
||||||
var data []byte
|
var data []byte
|
||||||
@@ -97,6 +108,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
|||||||
}
|
}
|
||||||
|
|
||||||
requestURL := c.base.JoinPath(path)
|
requestURL := c.base.JoinPath(path)
|
||||||
|
|
||||||
|
var token string
|
||||||
|
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||||
|
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||||
|
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||||
|
token, err = getAuthorizationToken(ctx, chal)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
q := requestURL.Query()
|
||||||
|
q.Set("ts", now)
|
||||||
|
requestURL.RawQuery = q.Encode()
|
||||||
|
}
|
||||||
|
|
||||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -106,6 +132,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
|||||||
request.Header.Set("Accept", "application/json")
|
request.Header.Set("Accept", "application/json")
|
||||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||||
|
|
||||||
|
if token != "" {
|
||||||
|
request.Header.Set("Authorization", token)
|
||||||
|
}
|
||||||
|
|
||||||
respObj, err := c.http.Do(request)
|
respObj, err := c.http.Do(request)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -132,7 +162,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
|||||||
const maxBufferSize = 512 * format.KiloByte
|
const maxBufferSize = 512 * format.KiloByte
|
||||||
|
|
||||||
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
|
||||||
var buf *bytes.Buffer
|
var buf io.Reader
|
||||||
if data != nil {
|
if data != nil {
|
||||||
bts, err := json.Marshal(data)
|
bts, err := json.Marshal(data)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -143,6 +173,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
|||||||
}
|
}
|
||||||
|
|
||||||
requestURL := c.base.JoinPath(path)
|
requestURL := c.base.JoinPath(path)
|
||||||
|
|
||||||
|
var token string
|
||||||
|
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||||
|
var err error
|
||||||
|
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||||
|
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||||
|
token, err = getAuthorizationToken(ctx, chal)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
q := requestURL.Query()
|
||||||
|
q.Set("ts", now)
|
||||||
|
requestURL.RawQuery = q.Encode()
|
||||||
|
}
|
||||||
|
|
||||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -152,6 +198,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
|||||||
request.Header.Set("Accept", "application/x-ndjson")
|
request.Header.Set("Accept", "application/x-ndjson")
|
||||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||||
|
|
||||||
|
if token != "" {
|
||||||
|
request.Header.Set("Authorization", token)
|
||||||
|
}
|
||||||
|
|
||||||
response, err := c.http.Do(request)
|
response, err := c.http.Do(request)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
|
|||||||
@@ -1,6 +1,12 @@
|
|||||||
package api
|
package api
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"encoding/json"
|
||||||
|
"fmt"
|
||||||
|
"net/http"
|
||||||
|
"net/http/httptest"
|
||||||
|
"net/url"
|
||||||
|
"strings"
|
||||||
"testing"
|
"testing"
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -43,3 +49,206 @@ func TestClientFromEnvironment(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// testError represents an internal error type with status code and message
|
||||||
|
// this is used since the error response from the server is not a standard error struct
|
||||||
|
type testError struct {
|
||||||
|
message string
|
||||||
|
statusCode int
|
||||||
|
}
|
||||||
|
|
||||||
|
func (e testError) Error() string {
|
||||||
|
return e.message
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestClientStream(t *testing.T) {
|
||||||
|
testCases := []struct {
|
||||||
|
name string
|
||||||
|
responses []any
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "immediate error response",
|
||||||
|
responses: []any{
|
||||||
|
testError{
|
||||||
|
message: "test error message",
|
||||||
|
statusCode: http.StatusBadRequest,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantErr: "test error message",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "error after successful chunks, ok response",
|
||||||
|
responses: []any{
|
||||||
|
ChatResponse{Message: Message{Content: "partial response 1"}},
|
||||||
|
ChatResponse{Message: Message{Content: "partial response 2"}},
|
||||||
|
testError{
|
||||||
|
message: "mid-stream error",
|
||||||
|
statusCode: http.StatusOK,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
wantErr: "mid-stream error",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "successful stream completion",
|
||||||
|
responses: []any{
|
||||||
|
ChatResponse{Message: Message{Content: "chunk 1"}},
|
||||||
|
ChatResponse{Message: Message{Content: "chunk 2"}},
|
||||||
|
ChatResponse{
|
||||||
|
Message: Message{Content: "final chunk"},
|
||||||
|
Done: true,
|
||||||
|
DoneReason: "stop",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range testCases {
|
||||||
|
t.Run(tc.name, func(t *testing.T) {
|
||||||
|
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
flusher, ok := w.(http.Flusher)
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected http.Flusher")
|
||||||
|
}
|
||||||
|
|
||||||
|
w.Header().Set("Content-Type", "application/x-ndjson")
|
||||||
|
|
||||||
|
for _, resp := range tc.responses {
|
||||||
|
if errResp, ok := resp.(testError); ok {
|
||||||
|
w.WriteHeader(errResp.statusCode)
|
||||||
|
err := json.NewEncoder(w).Encode(map[string]string{
|
||||||
|
"error": errResp.message,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal("failed to encode error response:", err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
t.Fatalf("failed to encode response: %v", err)
|
||||||
|
}
|
||||||
|
flusher.Flush()
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer ts.Close()
|
||||||
|
|
||||||
|
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||||
|
|
||||||
|
var receivedChunks []ChatResponse
|
||||||
|
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||||
|
var resp ChatResponse
|
||||||
|
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||||
|
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||||
|
}
|
||||||
|
receivedChunks = append(receivedChunks, resp)
|
||||||
|
return nil
|
||||||
|
})
|
||||||
|
|
||||||
|
if tc.wantErr != "" {
|
||||||
|
if err == nil {
|
||||||
|
t.Fatal("expected error but got nil")
|
||||||
|
}
|
||||||
|
if !strings.Contains(err.Error(), tc.wantErr) {
|
||||||
|
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestClientDo(t *testing.T) {
|
||||||
|
testCases := []struct {
|
||||||
|
name string
|
||||||
|
response any
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "immediate error response",
|
||||||
|
response: testError{
|
||||||
|
message: "test error message",
|
||||||
|
statusCode: http.StatusBadRequest,
|
||||||
|
},
|
||||||
|
wantErr: "test error message",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "server error response",
|
||||||
|
response: testError{
|
||||||
|
message: "internal error",
|
||||||
|
statusCode: http.StatusInternalServerError,
|
||||||
|
},
|
||||||
|
wantErr: "internal error",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "successful response",
|
||||||
|
response: struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}{
|
||||||
|
ID: "msg_123",
|
||||||
|
Success: true,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range testCases {
|
||||||
|
t.Run(tc.name, func(t *testing.T) {
|
||||||
|
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if errResp, ok := tc.response.(testError); ok {
|
||||||
|
w.WriteHeader(errResp.statusCode)
|
||||||
|
err := json.NewEncoder(w).Encode(map[string]string{
|
||||||
|
"error": errResp.message,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal("failed to encode error response:", err)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
w.Header().Set("Content-Type", "application/json")
|
||||||
|
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
|
||||||
|
t.Fatalf("failed to encode response: %v", err)
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer ts.Close()
|
||||||
|
|
||||||
|
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||||
|
|
||||||
|
var resp struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}
|
||||||
|
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||||
|
|
||||||
|
if tc.wantErr != "" {
|
||||||
|
if err == nil {
|
||||||
|
t.Fatalf("got nil, want error %q", tc.wantErr)
|
||||||
|
}
|
||||||
|
if err.Error() != tc.wantErr {
|
||||||
|
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
|
||||||
|
}
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if err != nil {
|
||||||
|
t.Fatalf("got error %q, want nil", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if expectedResp, ok := tc.response.(struct {
|
||||||
|
ID string `json:"id"`
|
||||||
|
Success bool `json:"success"`
|
||||||
|
}); ok {
|
||||||
|
if resp.ID != expectedResp.ID {
|
||||||
|
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
|
||||||
|
}
|
||||||
|
if resp.Success != expectedResp.Success {
|
||||||
|
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
18
api/examples/README.md
Normal file
18
api/examples/README.md
Normal file
@@ -0,0 +1,18 @@
|
|||||||
|
# Ollama API Examples
|
||||||
|
|
||||||
|
Run the examples in this directory with:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
go run example_name/main.go
|
||||||
|
```
|
||||||
|
|
||||||
|
## Chat - Chat with a model
|
||||||
|
- [chat/main.go](chat/main.go)
|
||||||
|
|
||||||
|
## Generate - Generate text from a model
|
||||||
|
- [generate/main.go](generate/main.go)
|
||||||
|
- [generate-streaming/main.go](generate-streaming/main.go)
|
||||||
|
|
||||||
|
## Pull - Pull a model
|
||||||
|
- [pull-progress/main.go](pull-progress/main.go)
|
||||||
|
|
||||||
181
api/types.go
181
api/types.go
@@ -10,6 +10,9 @@ import (
|
|||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"time"
|
"time"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/envconfig"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
)
|
)
|
||||||
|
|
||||||
// StatusError is an error with an HTTP status code and message.
|
// StatusError is an error with an HTTP status code and message.
|
||||||
@@ -73,13 +76,19 @@ type GenerateRequest struct {
|
|||||||
// this request.
|
// this request.
|
||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
// Images is an optional list of base64-encoded images accompanying this
|
// Images is an optional list of raw image bytes accompanying this
|
||||||
// request, for multimodal models.
|
// request, for multimodal models.
|
||||||
Images []ImageData `json:"images,omitempty"`
|
Images []ImageData `json:"images,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options. For example, temperature can be
|
// Options lists model-specific options. For example, temperature can be
|
||||||
// set through this field, if the model supports it.
|
// set through this field, if the model supports it.
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
|
|
||||||
|
// Think controls whether thinking/reasoning models will think before
|
||||||
|
// responding. Needs to be a pointer so we can distinguish between false
|
||||||
|
// (request that thinking _not_ be used) and unset (use the old behavior
|
||||||
|
// before this option was introduced)
|
||||||
|
Think *bool `json:"think,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// ChatRequest describes a request sent by [Client.Chat].
|
// ChatRequest describes a request sent by [Client.Chat].
|
||||||
@@ -104,7 +113,11 @@ type ChatRequest struct {
|
|||||||
Tools `json:"tools,omitempty"`
|
Tools `json:"tools,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
|
|
||||||
|
// Think controls whether thinking/reasoning models will think before
|
||||||
|
// responding
|
||||||
|
Think *bool `json:"think,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type Tools []Tool
|
type Tools []Tool
|
||||||
@@ -123,8 +136,11 @@ func (t Tool) String() string {
|
|||||||
// role ("system", "user", or "assistant"), the content and an optional list
|
// role ("system", "user", or "assistant"), the content and an optional list
|
||||||
// of images.
|
// of images.
|
||||||
type Message struct {
|
type Message struct {
|
||||||
Role string `json:"role"`
|
Role string `json:"role"`
|
||||||
Content string `json:"content"`
|
Content string `json:"content"`
|
||||||
|
// Thinking contains the text that was inside thinking tags in the
|
||||||
|
// original model output when ChatRequest.Think is enabled.
|
||||||
|
Thinking string `json:"thinking,omitempty"`
|
||||||
Images []ImageData `json:"images,omitempty"`
|
Images []ImageData `json:"images,omitempty"`
|
||||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||||
}
|
}
|
||||||
@@ -160,19 +176,65 @@ func (t *ToolCallFunctionArguments) String() string {
|
|||||||
|
|
||||||
type Tool struct {
|
type Tool struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
|
Items any `json:"items,omitempty"`
|
||||||
Function ToolFunction `json:"function"`
|
Function ToolFunction `json:"function"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// PropertyType can be either a string or an array of strings
|
||||||
|
type PropertyType []string
|
||||||
|
|
||||||
|
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||||
|
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||||
|
// Try to unmarshal as a string first
|
||||||
|
var s string
|
||||||
|
if err := json.Unmarshal(data, &s); err == nil {
|
||||||
|
*pt = []string{s}
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// If that fails, try to unmarshal as an array of strings
|
||||||
|
var a []string
|
||||||
|
if err := json.Unmarshal(data, &a); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
*pt = a
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
|
// MarshalJSON implements the json.Marshaler interface
|
||||||
|
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||||
|
if len(pt) == 1 {
|
||||||
|
// If there's only one type, marshal as a string
|
||||||
|
return json.Marshal(pt[0])
|
||||||
|
}
|
||||||
|
// Otherwise marshal as an array
|
||||||
|
return json.Marshal([]string(pt))
|
||||||
|
}
|
||||||
|
|
||||||
|
// String returns a string representation of the PropertyType
|
||||||
|
func (pt PropertyType) String() string {
|
||||||
|
if len(pt) == 0 {
|
||||||
|
return ""
|
||||||
|
}
|
||||||
|
if len(pt) == 1 {
|
||||||
|
return pt[0]
|
||||||
|
}
|
||||||
|
return fmt.Sprintf("%v", []string(pt))
|
||||||
|
}
|
||||||
|
|
||||||
type ToolFunction struct {
|
type ToolFunction struct {
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
Description string `json:"description"`
|
Description string `json:"description"`
|
||||||
Parameters struct {
|
Parameters struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
|
Defs any `json:"$defs,omitempty"`
|
||||||
|
Items any `json:"items,omitempty"`
|
||||||
Required []string `json:"required"`
|
Required []string `json:"required"`
|
||||||
Properties map[string]struct {
|
Properties map[string]struct {
|
||||||
Type string `json:"type"`
|
Type PropertyType `json:"type"`
|
||||||
Description string `json:"description"`
|
Items any `json:"items,omitempty"`
|
||||||
Enum []string `json:"enum,omitempty"`
|
Description string `json:"description"`
|
||||||
|
Enum []any `json:"enum,omitempty"`
|
||||||
} `json:"properties"`
|
} `json:"properties"`
|
||||||
} `json:"parameters"`
|
} `json:"parameters"`
|
||||||
}
|
}
|
||||||
@@ -216,17 +278,12 @@ type Options struct {
|
|||||||
TopK int `json:"top_k,omitempty"`
|
TopK int `json:"top_k,omitempty"`
|
||||||
TopP float32 `json:"top_p,omitempty"`
|
TopP float32 `json:"top_p,omitempty"`
|
||||||
MinP float32 `json:"min_p,omitempty"`
|
MinP float32 `json:"min_p,omitempty"`
|
||||||
TFSZ float32 `json:"tfs_z,omitempty"`
|
|
||||||
TypicalP float32 `json:"typical_p,omitempty"`
|
TypicalP float32 `json:"typical_p,omitempty"`
|
||||||
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
RepeatLastN int `json:"repeat_last_n,omitempty"`
|
||||||
Temperature float32 `json:"temperature,omitempty"`
|
Temperature float32 `json:"temperature,omitempty"`
|
||||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||||
Mirostat int `json:"mirostat,omitempty"`
|
|
||||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
|
||||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
|
||||||
PenalizeNewline bool `json:"penalize_newline,omitempty"`
|
|
||||||
Stop []string `json:"stop,omitempty"`
|
Stop []string `json:"stop,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -236,12 +293,7 @@ type Runner struct {
|
|||||||
NumBatch int `json:"num_batch,omitempty"`
|
NumBatch int `json:"num_batch,omitempty"`
|
||||||
NumGPU int `json:"num_gpu,omitempty"`
|
NumGPU int `json:"num_gpu,omitempty"`
|
||||||
MainGPU int `json:"main_gpu,omitempty"`
|
MainGPU int `json:"main_gpu,omitempty"`
|
||||||
LowVRAM bool `json:"low_vram,omitempty"`
|
|
||||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
|
||||||
LogitsAll bool `json:"logits_all,omitempty"`
|
|
||||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
|
||||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||||
UseMLock bool `json:"use_mlock,omitempty"`
|
|
||||||
NumThread int `json:"num_thread,omitempty"`
|
NumThread int `json:"num_thread,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -260,7 +312,7 @@ type EmbedRequest struct {
|
|||||||
Truncate *bool `json:"truncate,omitempty"`
|
Truncate *bool `json:"truncate,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// EmbedResponse is the response from [Client.Embed].
|
// EmbedResponse is the response from [Client.Embed].
|
||||||
@@ -286,7 +338,7 @@ type EmbeddingRequest struct {
|
|||||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||||
|
|
||||||
// Options lists model-specific options.
|
// Options lists model-specific options.
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||||
@@ -296,17 +348,21 @@ type EmbeddingResponse struct {
|
|||||||
|
|
||||||
// CreateRequest is the request passed to [Client.Create].
|
// CreateRequest is the request passed to [Client.Create].
|
||||||
type CreateRequest struct {
|
type CreateRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Modelfile string `json:"modelfile"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Quantize string `json:"quantize,omitempty"`
|
||||||
Quantize string `json:"quantize,omitempty"`
|
|
||||||
|
From string `json:"from,omitempty"`
|
||||||
|
Files map[string]string `json:"files,omitempty"`
|
||||||
|
Adapters map[string]string `json:"adapters,omitempty"`
|
||||||
|
Template string `json:"template,omitempty"`
|
||||||
|
License any `json:"license,omitempty"`
|
||||||
|
System string `json:"system,omitempty"`
|
||||||
|
Parameters map[string]any `json:"parameters,omitempty"`
|
||||||
|
Messages []Message `json:"messages,omitempty"`
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
|
|
||||||
// Deprecated: set the file content with Modelfile instead
|
|
||||||
Path string `json:"path"`
|
|
||||||
|
|
||||||
// Deprecated: use Quantize instead
|
// Deprecated: use Quantize instead
|
||||||
Quantization string `json:"quantization,omitempty"`
|
Quantization string `json:"quantization,omitempty"`
|
||||||
}
|
}
|
||||||
@@ -328,7 +384,7 @@ type ShowRequest struct {
|
|||||||
Template string `json:"template"`
|
Template string `json:"template"`
|
||||||
Verbose bool `json:"verbose"`
|
Verbose bool `json:"verbose"`
|
||||||
|
|
||||||
Options map[string]interface{} `json:"options"`
|
Options map[string]any `json:"options"`
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
Name string `json:"name"`
|
Name string `json:"name"`
|
||||||
@@ -336,16 +392,18 @@ type ShowRequest struct {
|
|||||||
|
|
||||||
// ShowResponse is the response returned from [Client.Show].
|
// ShowResponse is the response returned from [Client.Show].
|
||||||
type ShowResponse struct {
|
type ShowResponse struct {
|
||||||
License string `json:"license,omitempty"`
|
License string `json:"license,omitempty"`
|
||||||
Modelfile string `json:"modelfile,omitempty"`
|
Modelfile string `json:"modelfile,omitempty"`
|
||||||
Parameters string `json:"parameters,omitempty"`
|
Parameters string `json:"parameters,omitempty"`
|
||||||
Template string `json:"template,omitempty"`
|
Template string `json:"template,omitempty"`
|
||||||
System string `json:"system,omitempty"`
|
System string `json:"system,omitempty"`
|
||||||
Details ModelDetails `json:"details,omitempty"`
|
Details ModelDetails `json:"details,omitempty"`
|
||||||
Messages []Message `json:"messages,omitempty"`
|
Messages []Message `json:"messages,omitempty"`
|
||||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
Tensors []Tensor `json:"tensors,omitempty"`
|
||||||
|
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||||
|
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||||
}
|
}
|
||||||
|
|
||||||
// CopyRequest is the request passed to [Client.Copy].
|
// CopyRequest is the request passed to [Client.Copy].
|
||||||
@@ -357,9 +415,9 @@ type CopyRequest struct {
|
|||||||
// PullRequest is the request passed to [Client.Pull].
|
// PullRequest is the request passed to [Client.Pull].
|
||||||
type PullRequest struct {
|
type PullRequest struct {
|
||||||
Model string `json:"model"`
|
Model string `json:"model"`
|
||||||
Insecure bool `json:"insecure,omitempty"`
|
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||||
Username string `json:"username"`
|
Username string `json:"username"` // Deprecated: ignored
|
||||||
Password string `json:"password"`
|
Password string `json:"password"` // Deprecated: ignored
|
||||||
Stream *bool `json:"stream,omitempty"`
|
Stream *bool `json:"stream,omitempty"`
|
||||||
|
|
||||||
// Deprecated: set the model name with Model instead
|
// Deprecated: set the model name with Model instead
|
||||||
@@ -418,13 +476,6 @@ type ProcessModelResponse struct {
|
|||||||
SizeVRAM int64 `json:"size_vram"`
|
SizeVRAM int64 `json:"size_vram"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type RetrieveModelResponse struct {
|
|
||||||
Id string `json:"id"`
|
|
||||||
Object string `json:"object"`
|
|
||||||
Created int64 `json:"created"`
|
|
||||||
OwnedBy string `json:"owned_by"`
|
|
||||||
}
|
|
||||||
|
|
||||||
type TokenResponse struct {
|
type TokenResponse struct {
|
||||||
Token string `json:"token"`
|
Token string `json:"token"`
|
||||||
}
|
}
|
||||||
@@ -440,6 +491,10 @@ type GenerateResponse struct {
|
|||||||
// Response is the textual response itself.
|
// Response is the textual response itself.
|
||||||
Response string `json:"response"`
|
Response string `json:"response"`
|
||||||
|
|
||||||
|
// Thinking contains the text that was inside thinking tags in the
|
||||||
|
// original model output when ChatRequest.Think is enabled.
|
||||||
|
Thinking string `json:"thinking,omitempty"`
|
||||||
|
|
||||||
// Done specifies if the response is complete.
|
// Done specifies if the response is complete.
|
||||||
Done bool `json:"done"`
|
Done bool `json:"done"`
|
||||||
|
|
||||||
@@ -463,6 +518,13 @@ type ModelDetails struct {
|
|||||||
QuantizationLevel string `json:"quantization_level"`
|
QuantizationLevel string `json:"quantization_level"`
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Tensor describes the metadata for a given tensor.
|
||||||
|
type Tensor struct {
|
||||||
|
Name string `json:"name"`
|
||||||
|
Type string `json:"type"`
|
||||||
|
Shape []uint64 `json:"shape"`
|
||||||
|
}
|
||||||
|
|
||||||
func (m *Metrics) Summary() {
|
func (m *Metrics) Summary() {
|
||||||
if m.TotalDuration > 0 {
|
if m.TotalDuration > 0 {
|
||||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||||
@@ -491,7 +553,7 @@ func (m *Metrics) Summary() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
func (opts *Options) FromMap(m map[string]any) error {
|
||||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||||
|
|
||||||
@@ -548,12 +610,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
|||||||
}
|
}
|
||||||
field.SetString(val)
|
field.SetString(val)
|
||||||
case reflect.Slice:
|
case reflect.Slice:
|
||||||
// JSON unmarshals to []interface{}, not []string
|
// JSON unmarshals to []any, not []string
|
||||||
val, ok := val.([]interface{})
|
val, ok := val.([]any)
|
||||||
if !ok {
|
if !ok {
|
||||||
return fmt.Errorf("option %q must be of type array", key)
|
return fmt.Errorf("option %q must be of type array", key)
|
||||||
}
|
}
|
||||||
// convert []interface{} to []string
|
// convert []any to []string
|
||||||
slice := make([]string, len(val))
|
slice := make([]string, len(val))
|
||||||
for i, item := range val {
|
for i, item := range val {
|
||||||
str, ok := item.(string)
|
str, ok := item.(string)
|
||||||
@@ -595,26 +657,19 @@ func DefaultOptions() Options {
|
|||||||
Temperature: 0.8,
|
Temperature: 0.8,
|
||||||
TopK: 40,
|
TopK: 40,
|
||||||
TopP: 0.9,
|
TopP: 0.9,
|
||||||
TFSZ: 1.0,
|
|
||||||
TypicalP: 1.0,
|
TypicalP: 1.0,
|
||||||
RepeatLastN: 64,
|
RepeatLastN: 64,
|
||||||
RepeatPenalty: 1.1,
|
RepeatPenalty: 1.1,
|
||||||
PresencePenalty: 0.0,
|
PresencePenalty: 0.0,
|
||||||
FrequencyPenalty: 0.0,
|
FrequencyPenalty: 0.0,
|
||||||
Mirostat: 0,
|
|
||||||
MirostatTau: 5.0,
|
|
||||||
MirostatEta: 0.1,
|
|
||||||
PenalizeNewline: true,
|
|
||||||
Seed: -1,
|
Seed: -1,
|
||||||
|
|
||||||
Runner: Runner{
|
Runner: Runner{
|
||||||
// options set when the model is loaded
|
// options set when the model is loaded
|
||||||
NumCtx: 2048,
|
NumCtx: int(envconfig.ContextLength()),
|
||||||
NumBatch: 512,
|
NumBatch: 512,
|
||||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||||
NumThread: 0, // let the runtime decide
|
NumThread: 0, // let the runtime decide
|
||||||
LowVRAM: false,
|
|
||||||
UseMLock: false,
|
|
||||||
UseMMap: nil,
|
UseMMap: nil,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
@@ -662,7 +717,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// FormatParams converts specified parameter options to their correct types
|
// FormatParams converts specified parameter options to their correct types
|
||||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||||
opts := Options{}
|
opts := Options{}
|
||||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||||
@@ -676,7 +731,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
out := make(map[string]interface{})
|
out := make(map[string]any)
|
||||||
// iterate params and set values based on json struct tags
|
// iterate params and set values based on json struct tags
|
||||||
for key, vals := range params {
|
for key, vals := range params {
|
||||||
if opt, ok := jsonOpts[key]; !ok {
|
if opt, ok := jsonOpts[key]; !ok {
|
||||||
|
|||||||
@@ -134,7 +134,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
|||||||
|
|
||||||
for _, test := range tests {
|
for _, test := range tests {
|
||||||
t.Run(test.name, func(t *testing.T) {
|
t.Run(test.name, func(t *testing.T) {
|
||||||
var oMap map[string]interface{}
|
var oMap map[string]any
|
||||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||||
require.NoError(t, err)
|
require.NoError(t, err)
|
||||||
opts := DefaultOptions()
|
opts := DefaultOptions()
|
||||||
@@ -231,3 +231,191 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input string
|
||||||
|
wantErr string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "valid enum with same types",
|
||||||
|
input: `{
|
||||||
|
"name": "test",
|
||||||
|
"description": "test function",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"required": ["test"],
|
||||||
|
"properties": {
|
||||||
|
"test": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "test prop",
|
||||||
|
"enum": ["a", "b", "c"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}`,
|
||||||
|
wantErr: "",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "empty enum array",
|
||||||
|
input: `{
|
||||||
|
"name": "test",
|
||||||
|
"description": "test function",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"required": ["test"],
|
||||||
|
"properties": {
|
||||||
|
"test": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "test prop",
|
||||||
|
"enum": []
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}`,
|
||||||
|
wantErr: "",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
var tf ToolFunction
|
||||||
|
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||||
|
|
||||||
|
if tt.wantErr != "" {
|
||||||
|
require.Error(t, err)
|
||||||
|
assert.Contains(t, err.Error(), tt.wantErr)
|
||||||
|
} else {
|
||||||
|
require.NoError(t, err)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input string
|
||||||
|
expected PropertyType
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "string type",
|
||||||
|
input: `"string"`,
|
||||||
|
expected: PropertyType{"string"},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "array of types",
|
||||||
|
input: `["string", "number"]`,
|
||||||
|
expected: PropertyType{"string", "number"},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "array with single type",
|
||||||
|
input: `["string"]`,
|
||||||
|
expected: PropertyType{"string"},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
var pt PropertyType
|
||||||
|
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||||
|
t.Errorf("Unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(pt) != len(test.expected) {
|
||||||
|
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||||
|
}
|
||||||
|
|
||||||
|
for i, v := range pt {
|
||||||
|
if v != test.expected[i] {
|
||||||
|
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input PropertyType
|
||||||
|
expected string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "single type",
|
||||||
|
input: PropertyType{"string"},
|
||||||
|
expected: `"string"`,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "multiple types",
|
||||||
|
input: PropertyType{"string", "number"},
|
||||||
|
expected: `["string","number"]`,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "empty type",
|
||||||
|
input: PropertyType{},
|
||||||
|
expected: `[]`,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
data, err := json.Marshal(test.input)
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("Unexpected error: %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if string(data) != test.expected {
|
||||||
|
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestThinking_UnmarshalJSON(t *testing.T) {
|
||||||
|
trueVal := true
|
||||||
|
falseVal := false
|
||||||
|
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
input string
|
||||||
|
expectedThinking *bool
|
||||||
|
expectedError bool
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "true",
|
||||||
|
input: `{ "think": true }`,
|
||||||
|
expectedThinking: &trueVal,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "false",
|
||||||
|
input: `{ "think": false }`,
|
||||||
|
expectedThinking: &falseVal,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "unset",
|
||||||
|
input: `{ }`,
|
||||||
|
expectedThinking: nil,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "invalid",
|
||||||
|
input: `{ "think": "true" }`,
|
||||||
|
expectedThinking: nil,
|
||||||
|
expectedError: true,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, test := range tests {
|
||||||
|
t.Run(test.name, func(t *testing.T) {
|
||||||
|
var req GenerateRequest
|
||||||
|
err := json.Unmarshal([]byte(test.input), &req)
|
||||||
|
if test.expectedError {
|
||||||
|
require.Error(t, err)
|
||||||
|
} else {
|
||||||
|
require.NoError(t, err)
|
||||||
|
assert.Equal(t, test.expectedThinking, req.Think)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
@@ -17,6 +17,6 @@ If you want to build the installer, youll need to install
|
|||||||
In the top directory of this repo, run the following powershell script
|
In the top directory of this repo, run the following powershell script
|
||||||
to build the ollama CLI, ollama app, and ollama installer.
|
to build the ollama CLI, ollama app, and ollama installer.
|
||||||
|
|
||||||
```
|
```powershell
|
||||||
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
powershell -ExecutionPolicy Bypass -File .\scripts\build_windows.ps1
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -4,20 +4,14 @@ import (
|
|||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
|
||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
|
"github.com/ollama/ollama/logutil"
|
||||||
)
|
)
|
||||||
|
|
||||||
func InitLogging() {
|
func InitLogging() {
|
||||||
level := slog.LevelInfo
|
|
||||||
|
|
||||||
if envconfig.Debug() {
|
|
||||||
level = slog.LevelDebug
|
|
||||||
}
|
|
||||||
|
|
||||||
var logFile *os.File
|
var logFile *os.File
|
||||||
var err error
|
var err error
|
||||||
// Detect if we're a GUI app on windows, and if not, send logs to console
|
// Detect if we're a GUI app on windows, and if not, send logs to console
|
||||||
@@ -33,20 +27,8 @@ func InitLogging() {
|
|||||||
return
|
return
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
|
|
||||||
Level: level,
|
|
||||||
AddSource: true,
|
|
||||||
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
|
||||||
if attr.Key == slog.SourceKey {
|
|
||||||
source := attr.Value.Any().(*slog.Source)
|
|
||||||
source.File = filepath.Base(source.File)
|
|
||||||
}
|
|
||||||
return attr
|
|
||||||
},
|
|
||||||
})
|
|
||||||
|
|
||||||
slog.SetDefault(slog.New(handler))
|
|
||||||
|
|
||||||
|
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
|
||||||
slog.Info("ollama app started")
|
slog.Info("ollama app started")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -97,7 +97,6 @@ Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Chec
|
|||||||
Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall
|
Source: "..\dist\windows-arm64\vc_redist.arm64.exe"; DestDir: "{tmp}"; Check: IsArm64() and vc_redist_needed(); Flags: deleteafterinstall
|
||||||
Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64(); Flags: ignoreversion 64bit
|
Source: "..\dist\windows-arm64-app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ;Check: IsArm64(); Flags: ignoreversion 64bit
|
||||||
Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit
|
Source: "..\dist\windows-arm64\ollama.exe"; DestDir: "{app}"; Check: IsArm64(); Flags: ignoreversion 64bit
|
||||||
Source: "..\dist\windows-arm64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Check: IsArm64(); Flags: ignoreversion 64bit recursesubdirs
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
|
||||||
|
|||||||
@@ -98,7 +98,7 @@ func (t *winTray) wndProc(hWnd windows.Handle, message uint32, wParam, lParam ui
|
|||||||
}
|
}
|
||||||
err = t.wcex.unregister()
|
err = t.wcex.unregister()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Error(fmt.Sprintf("failed to uregister windo %s", err))
|
slog.Error(fmt.Sprintf("failed to unregister window %s", err))
|
||||||
}
|
}
|
||||||
case WM_DESTROY:
|
case WM_DESTROY:
|
||||||
// same as WM_ENDSESSION, but throws 0 exit code after all
|
// same as WM_ENDSESSION, but throws 0 exit code after all
|
||||||
|
|||||||
@@ -1 +0,0 @@
|
|||||||
This is here to make sure the build/ directory exists for the go:embed command
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
This is here to make sure the build/ directory exists for the go:embed command
|
|
||||||
@@ -1,8 +0,0 @@
|
|||||||
package build
|
|
||||||
|
|
||||||
import "embed"
|
|
||||||
|
|
||||||
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
|
|
||||||
|
|
||||||
//go:embed darwin/amd64/*
|
|
||||||
var EmbedFS embed.FS
|
|
||||||
@@ -1,8 +0,0 @@
|
|||||||
package build
|
|
||||||
|
|
||||||
import "embed"
|
|
||||||
|
|
||||||
// Darwin payloads separated by architecture to avoid duplicate payloads when cross compiling
|
|
||||||
|
|
||||||
//go:embed darwin/arm64/*
|
|
||||||
var EmbedFS embed.FS
|
|
||||||
@@ -1,6 +0,0 @@
|
|||||||
package build
|
|
||||||
|
|
||||||
import "embed"
|
|
||||||
|
|
||||||
//go:embed linux/*
|
|
||||||
var EmbedFS embed.FS
|
|
||||||
@@ -1,8 +0,0 @@
|
|||||||
//go:build !linux && !darwin
|
|
||||||
|
|
||||||
package build
|
|
||||||
|
|
||||||
import "embed"
|
|
||||||
|
|
||||||
// unused on windows
|
|
||||||
var EmbedFS embed.FS
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
This is here to make sure the build/ directory exists for the go:embed command
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
This is here to make sure the build/ directory exists for the go:embed command
|
|
||||||
622
cmd/cmd.go
622
cmd/cmd.go
@@ -1,13 +1,10 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
"archive/zip"
|
|
||||||
"bufio"
|
"bufio"
|
||||||
"bytes"
|
|
||||||
"context"
|
"context"
|
||||||
"crypto/ed25519"
|
"crypto/ed25519"
|
||||||
"crypto/rand"
|
"crypto/rand"
|
||||||
"crypto/sha256"
|
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"encoding/pem"
|
"encoding/pem"
|
||||||
"errors"
|
"errors"
|
||||||
@@ -21,6 +18,8 @@ import (
|
|||||||
"os/signal"
|
"os/signal"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
"slices"
|
||||||
|
"sort"
|
||||||
"strconv"
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"sync/atomic"
|
"sync/atomic"
|
||||||
@@ -32,6 +31,7 @@ import (
|
|||||||
"github.com/olekukonko/tablewriter"
|
"github.com/olekukonko/tablewriter"
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
"golang.org/x/crypto/ssh"
|
"golang.org/x/crypto/ssh"
|
||||||
|
"golang.org/x/sync/errgroup"
|
||||||
"golang.org/x/term"
|
"golang.org/x/term"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
@@ -39,20 +39,36 @@ import (
|
|||||||
"github.com/ollama/ollama/format"
|
"github.com/ollama/ollama/format"
|
||||||
"github.com/ollama/ollama/parser"
|
"github.com/ollama/ollama/parser"
|
||||||
"github.com/ollama/ollama/progress"
|
"github.com/ollama/ollama/progress"
|
||||||
|
"github.com/ollama/ollama/readline"
|
||||||
|
"github.com/ollama/ollama/runner"
|
||||||
"github.com/ollama/ollama/server"
|
"github.com/ollama/ollama/server"
|
||||||
"github.com/ollama/ollama/types/model"
|
"github.com/ollama/ollama/types/model"
|
||||||
|
"github.com/ollama/ollama/types/syncmap"
|
||||||
"github.com/ollama/ollama/version"
|
"github.com/ollama/ollama/version"
|
||||||
)
|
)
|
||||||
|
|
||||||
var (
|
// ensureThinkingSupport emits a warning if the model does not advertise thinking support
|
||||||
errModelNotFound = errors.New("no Modelfile or safetensors files found")
|
func ensureThinkingSupport(ctx context.Context, client *api.Client, name string) {
|
||||||
errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
if name == "" {
|
||||||
)
|
return
|
||||||
|
}
|
||||||
|
resp, err := client.Show(ctx, &api.ShowRequest{Model: name})
|
||||||
|
if err != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
for _, cap := range resp.Capabilities {
|
||||||
|
if cap == model.CapabilityThinking {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fmt.Fprintf(os.Stderr, "warning: model %q does not support thinking output\n", name)
|
||||||
|
}
|
||||||
|
|
||||||
|
var errModelfileNotFound = errors.New("specified Modelfile wasn't found")
|
||||||
|
|
||||||
func getModelfileName(cmd *cobra.Command) (string, error) {
|
func getModelfileName(cmd *cobra.Command) (string, error) {
|
||||||
fn, _ := cmd.Flags().GetString("file")
|
filename, _ := cmd.Flags().GetString("file")
|
||||||
|
|
||||||
filename := fn
|
|
||||||
if filename == "" {
|
if filename == "" {
|
||||||
filename = "Modelfile"
|
filename = "Modelfile"
|
||||||
}
|
}
|
||||||
@@ -64,7 +80,7 @@ func getModelfileName(cmd *cobra.Command) (string, error) {
|
|||||||
|
|
||||||
_, err = os.Stat(absName)
|
_, err = os.Stat(absName)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return fn, err
|
return "", err
|
||||||
}
|
}
|
||||||
|
|
||||||
return absName, nil
|
return absName, nil
|
||||||
@@ -100,71 +116,75 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
home, err := os.UserHomeDir()
|
status := "gathering model components"
|
||||||
|
spinner := progress.NewSpinner(status)
|
||||||
|
p.Add(status, spinner)
|
||||||
|
|
||||||
|
req, err := modelfile.CreateRequest(filepath.Dir(filename))
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
spinner.Stop()
|
||||||
|
|
||||||
status := "transferring model data"
|
req.Model = args[0]
|
||||||
spinner := progress.NewSpinner(status)
|
quantize, _ := cmd.Flags().GetString("quantize")
|
||||||
p.Add(status, spinner)
|
if quantize != "" {
|
||||||
defer p.Stop()
|
req.Quantize = quantize
|
||||||
|
}
|
||||||
|
|
||||||
client, err := api.ClientFromEnvironment()
|
client, err := api.ClientFromEnvironment()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
for i := range modelfile.Commands {
|
var g errgroup.Group
|
||||||
switch modelfile.Commands[i].Name {
|
g.SetLimit(max(runtime.GOMAXPROCS(0)-1, 1))
|
||||||
case "model", "adapter":
|
|
||||||
path := modelfile.Commands[i].Args
|
|
||||||
if path == "~" {
|
|
||||||
path = home
|
|
||||||
} else if strings.HasPrefix(path, "~/") {
|
|
||||||
path = filepath.Join(home, path[2:])
|
|
||||||
}
|
|
||||||
|
|
||||||
if !filepath.IsAbs(path) {
|
files := syncmap.NewSyncMap[string, string]()
|
||||||
path = filepath.Join(filepath.Dir(filename), path)
|
for f, digest := range req.Files {
|
||||||
}
|
g.Go(func() error {
|
||||||
|
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||||
fi, err := os.Stat(path)
|
|
||||||
if errors.Is(err, os.ErrNotExist) && modelfile.Commands[i].Name == "model" {
|
|
||||||
continue
|
|
||||||
} else if err != nil {
|
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
if fi.IsDir() {
|
// TODO: this is incorrect since the file might be in a subdirectory
|
||||||
// this is likely a safetensors or pytorch directory
|
// instead this should take the path relative to the model directory
|
||||||
// TODO make this work w/ adapters
|
// but the current implementation does not allow this
|
||||||
tempfile, err := tempZipFiles(path)
|
files.Store(filepath.Base(f), digest)
|
||||||
if err != nil {
|
return nil
|
||||||
return err
|
})
|
||||||
}
|
|
||||||
defer os.RemoveAll(tempfile)
|
|
||||||
|
|
||||||
path = tempfile
|
|
||||||
}
|
|
||||||
|
|
||||||
digest, err := createBlob(cmd, client, path, spinner)
|
|
||||||
if err != nil {
|
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
modelfile.Commands[i].Args = "@" + digest
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
adapters := syncmap.NewSyncMap[string, string]()
|
||||||
|
for f, digest := range req.Adapters {
|
||||||
|
g.Go(func() error {
|
||||||
|
if _, err := createBlob(cmd, client, f, digest, p); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: same here
|
||||||
|
adapters.Store(filepath.Base(f), digest)
|
||||||
|
return nil
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := g.Wait(); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
req.Files = files.Items()
|
||||||
|
req.Adapters = adapters.Items()
|
||||||
|
|
||||||
bars := make(map[string]*progress.Bar)
|
bars := make(map[string]*progress.Bar)
|
||||||
fn := func(resp api.ProgressResponse) error {
|
fn := func(resp api.ProgressResponse) error {
|
||||||
if resp.Digest != "" {
|
if resp.Digest != "" {
|
||||||
spinner.Stop()
|
|
||||||
|
|
||||||
bar, ok := bars[resp.Digest]
|
bar, ok := bars[resp.Digest]
|
||||||
if !ok {
|
if !ok {
|
||||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
msg := resp.Status
|
||||||
|
if msg == "" {
|
||||||
|
msg = fmt.Sprintf("pulling %s...", resp.Digest[7:19])
|
||||||
|
}
|
||||||
|
bar = progress.NewBar(msg, resp.Total, resp.Completed)
|
||||||
bars[resp.Digest] = bar
|
bars[resp.Digest] = bar
|
||||||
p.Add(resp.Digest, bar)
|
p.Add(resp.Digest, bar)
|
||||||
}
|
}
|
||||||
@@ -181,145 +201,23 @@ func CreateHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
quantize, _ := cmd.Flags().GetString("quantize")
|
if err := client.Create(cmd.Context(), req, fn); err != nil {
|
||||||
|
if strings.Contains(err.Error(), "path or Modelfile are required") {
|
||||||
request := api.CreateRequest{Name: args[0], Modelfile: modelfile.String(), Quantize: quantize}
|
return fmt.Errorf("the ollama server must be updated to use `ollama create` with this client")
|
||||||
if err := client.Create(cmd.Context(), &request, fn); err != nil {
|
}
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func tempZipFiles(path string) (string, error) {
|
func createBlob(cmd *cobra.Command, client *api.Client, path string, digest string, p *progress.Progress) (string, error) {
|
||||||
tempfile, err := os.CreateTemp("", "ollama-tf")
|
realPath, err := filepath.EvalSymlinks(path)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
defer tempfile.Close()
|
|
||||||
|
|
||||||
detectContentType := func(path string) (string, error) {
|
bin, err := os.Open(realPath)
|
||||||
f, err := os.Open(path)
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
defer f.Close()
|
|
||||||
|
|
||||||
var b bytes.Buffer
|
|
||||||
b.Grow(512)
|
|
||||||
|
|
||||||
if _, err := io.CopyN(&b, f, 512); err != nil && !errors.Is(err, io.EOF) {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
contentType, _, _ := strings.Cut(http.DetectContentType(b.Bytes()), ";")
|
|
||||||
return contentType, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
glob := func(pattern, contentType string) ([]string, error) {
|
|
||||||
matches, err := filepath.Glob(pattern)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
for _, safetensor := range matches {
|
|
||||||
if ct, err := detectContentType(safetensor); err != nil {
|
|
||||||
return nil, err
|
|
||||||
} else if ct != contentType {
|
|
||||||
return nil, fmt.Errorf("invalid content type: expected %s for %s", ct, safetensor)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return matches, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
var files []string
|
|
||||||
if st, _ := glob(filepath.Join(path, "model*.safetensors"), "application/octet-stream"); len(st) > 0 {
|
|
||||||
// safetensors files might be unresolved git lfs references; skip if they are
|
|
||||||
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
|
|
||||||
files = append(files, st...)
|
|
||||||
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
|
|
||||||
// covers adapters.safetensors
|
|
||||||
files = append(files, st...)
|
|
||||||
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
|
|
||||||
// covers adapter_model.safetensors
|
|
||||||
files = append(files, st...)
|
|
||||||
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
|
|
||||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
|
||||||
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
|
|
||||||
files = append(files, pt...)
|
|
||||||
} else if pt, _ := glob(filepath.Join(path, "consolidated*.pth"), "application/zip"); len(pt) > 0 {
|
|
||||||
// pytorch files might also be unresolved git lfs references; skip if they are
|
|
||||||
// covers consolidated.x.pth, consolidated.pth
|
|
||||||
files = append(files, pt...)
|
|
||||||
} else {
|
|
||||||
return "", errModelNotFound
|
|
||||||
}
|
|
||||||
|
|
||||||
// add configuration files, json files are detected as text/plain
|
|
||||||
js, err := glob(filepath.Join(path, "*.json"), "text/plain")
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
files = append(files, js...)
|
|
||||||
|
|
||||||
// bert models require a nested config.json
|
|
||||||
// TODO(mxyng): merge this with the glob above
|
|
||||||
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
files = append(files, js...)
|
|
||||||
|
|
||||||
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
|
|
||||||
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
|
|
||||||
// tokenizer.model might be a unresolved git lfs reference; error if it is
|
|
||||||
files = append(files, tks...)
|
|
||||||
} else if tks, _ := glob(filepath.Join(path, "**/tokenizer.model"), "text/plain"); len(tks) > 0 {
|
|
||||||
// some times tokenizer.model is in a subdirectory (e.g. meta-llama/Meta-Llama-3-8B)
|
|
||||||
files = append(files, tks...)
|
|
||||||
}
|
|
||||||
|
|
||||||
zipfile := zip.NewWriter(tempfile)
|
|
||||||
defer zipfile.Close()
|
|
||||||
|
|
||||||
for _, file := range files {
|
|
||||||
f, err := os.Open(file)
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
defer f.Close()
|
|
||||||
|
|
||||||
fi, err := f.Stat()
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
zfi, err := zip.FileInfoHeader(fi)
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
zfi.Name, err = filepath.Rel(path, file)
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
zf, err := zipfile.CreateHeader(zfi)
|
|
||||||
if err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
if _, err := io.Copy(zf, f); err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return tempfile.Name(), nil
|
|
||||||
}
|
|
||||||
|
|
||||||
func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *progress.Spinner) (string, error) {
|
|
||||||
bin, err := os.Open(path)
|
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
@@ -332,18 +230,11 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *pr
|
|||||||
}
|
}
|
||||||
fileSize := fileInfo.Size()
|
fileSize := fileInfo.Size()
|
||||||
|
|
||||||
hash := sha256.New()
|
|
||||||
if _, err := io.Copy(hash, bin); err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
if _, err := bin.Seek(0, io.SeekStart); err != nil {
|
|
||||||
return "", err
|
|
||||||
}
|
|
||||||
|
|
||||||
var pw progressWriter
|
var pw progressWriter
|
||||||
status := "transferring model data 0%"
|
status := fmt.Sprintf("copying file %s 0%%", digest)
|
||||||
spinner.SetMessage(status)
|
spinner := progress.NewSpinner(status)
|
||||||
|
p.Add(status, spinner)
|
||||||
|
defer spinner.Stop()
|
||||||
|
|
||||||
done := make(chan struct{})
|
done := make(chan struct{})
|
||||||
defer close(done)
|
defer close(done)
|
||||||
@@ -354,16 +245,15 @@ func createBlob(cmd *cobra.Command, client *api.Client, path string, spinner *pr
|
|||||||
for {
|
for {
|
||||||
select {
|
select {
|
||||||
case <-ticker.C:
|
case <-ticker.C:
|
||||||
spinner.SetMessage(fmt.Sprintf("transferring model data %d%%", int(100*pw.n.Load()/fileSize)))
|
spinner.SetMessage(fmt.Sprintf("copying file %s %d%%", digest, int(100*pw.n.Load()/fileSize)))
|
||||||
case <-done:
|
case <-done:
|
||||||
spinner.SetMessage("transferring model data 100%")
|
spinner.SetMessage(fmt.Sprintf("copying file %s 100%%", digest))
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}()
|
}()
|
||||||
|
|
||||||
digest := fmt.Sprintf("sha256:%x", hash.Sum(nil))
|
if err := client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
||||||
if err = client.CreateBlob(cmd.Context(), digest, io.TeeReader(bin, &pw)); err != nil {
|
|
||||||
return "", err
|
return "", err
|
||||||
}
|
}
|
||||||
return digest, nil
|
return digest, nil
|
||||||
@@ -393,6 +283,9 @@ func loadOrUnloadModel(cmd *cobra.Command, opts *runOptions) error {
|
|||||||
req := &api.GenerateRequest{
|
req := &api.GenerateRequest{
|
||||||
Model: opts.Model,
|
Model: opts.Model,
|
||||||
KeepAlive: opts.KeepAlive,
|
KeepAlive: opts.KeepAlive,
|
||||||
|
|
||||||
|
// pass Think here so we fail before getting to the chat prompt if the model doesn't support it
|
||||||
|
Think: opts.Think,
|
||||||
}
|
}
|
||||||
|
|
||||||
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
|
return client.Generate(cmd.Context(), req, func(api.GenerateResponse) error { return nil })
|
||||||
@@ -407,6 +300,7 @@ func StopHandler(cmd *cobra.Command, args []string) error {
|
|||||||
if strings.Contains(err.Error(), "not found") {
|
if strings.Contains(err.Error(), "not found") {
|
||||||
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
return fmt.Errorf("couldn't find model \"%s\" to stop", args[0])
|
||||||
}
|
}
|
||||||
|
return err
|
||||||
}
|
}
|
||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
@@ -417,7 +311,7 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||||||
opts := runOptions{
|
opts := runOptions{
|
||||||
Model: args[0],
|
Model: args[0],
|
||||||
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
WordWrap: os.Getenv("TERM") == "xterm-256color",
|
||||||
Options: map[string]interface{}{},
|
Options: map[string]any{},
|
||||||
}
|
}
|
||||||
|
|
||||||
format, err := cmd.Flags().GetString("format")
|
format, err := cmd.Flags().GetString("format")
|
||||||
@@ -426,6 +320,22 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||||||
}
|
}
|
||||||
opts.Format = format
|
opts.Format = format
|
||||||
|
|
||||||
|
thinkFlag := cmd.Flags().Lookup("think")
|
||||||
|
if thinkFlag.Changed {
|
||||||
|
think, err := cmd.Flags().GetBool("think")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
opts.Think = &think
|
||||||
|
} else {
|
||||||
|
opts.Think = nil
|
||||||
|
}
|
||||||
|
hidethinking, err := cmd.Flags().GetBool("hidethinking")
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
opts.HideThinking = hidethinking
|
||||||
|
|
||||||
keepAlive, err := cmd.Flags().GetString("keepalive")
|
keepAlive, err := cmd.Flags().GetString("keepalive")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -489,7 +399,26 @@ func RunHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
opts.MultiModal = len(info.ProjectorInfo) != 0
|
opts.Think, err = inferThinkingOption(&info.Capabilities, &opts, thinkFlag.Changed)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
opts.MultiModal = slices.Contains(info.Capabilities, model.CapabilityVision)
|
||||||
|
|
||||||
|
// TODO: remove the projector info and vision info checks below,
|
||||||
|
// these are left in for backwards compatibility with older servers
|
||||||
|
// that don't have the capabilities field in the model info
|
||||||
|
if len(info.ProjectorInfo) != 0 {
|
||||||
|
opts.MultiModal = true
|
||||||
|
}
|
||||||
|
for k := range info.ModelInfo {
|
||||||
|
if strings.Contains(k, ".vision.") {
|
||||||
|
opts.MultiModal = true
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
opts.ParentModel = info.Details.ParentModel
|
opts.ParentModel = info.Details.ParentModel
|
||||||
|
|
||||||
if interactive {
|
if interactive {
|
||||||
@@ -599,7 +528,7 @@ func ListHandler(cmd *cobra.Command, args []string) error {
|
|||||||
var data [][]string
|
var data [][]string
|
||||||
|
|
||||||
for _, m := range models.Models {
|
for _, m := range models.Models {
|
||||||
if len(args) == 0 || strings.HasPrefix(m.Name, args[0]) {
|
if len(args) == 0 || strings.HasPrefix(strings.ToLower(m.Name), strings.ToLower(args[0])) {
|
||||||
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
|
data = append(data, []string{m.Name, m.Digest[:12], format.HumanBytes(m.Size), format.HumanTime(m.ModifiedAt, "Never")})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -710,8 +639,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
parameters, errParams := cmd.Flags().GetBool("parameters")
|
parameters, errParams := cmd.Flags().GetBool("parameters")
|
||||||
system, errSystem := cmd.Flags().GetBool("system")
|
system, errSystem := cmd.Flags().GetBool("system")
|
||||||
template, errTemplate := cmd.Flags().GetBool("template")
|
template, errTemplate := cmd.Flags().GetBool("template")
|
||||||
|
verbose, errVerbose := cmd.Flags().GetBool("verbose")
|
||||||
|
|
||||||
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate} {
|
for _, boolErr := range []error{errLicense, errModelfile, errParams, errSystem, errTemplate, errVerbose} {
|
||||||
if boolErr != nil {
|
if boolErr != nil {
|
||||||
return errors.New("error retrieving flags")
|
return errors.New("error retrieving flags")
|
||||||
}
|
}
|
||||||
@@ -749,7 +679,7 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
return errors.New("only one of '--license', '--modelfile', '--parameters', '--system', or '--template' can be specified")
|
||||||
}
|
}
|
||||||
|
|
||||||
req := api.ShowRequest{Name: args[0]}
|
req := api.ShowRequest{Name: args[0], Verbose: verbose}
|
||||||
resp, err := client.Show(cmd.Context(), &req)
|
resp, err := client.Show(cmd.Context(), &req)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -772,10 +702,10 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
return showInfo(resp, os.Stdout)
|
return showInfo(resp, verbose, os.Stdout)
|
||||||
}
|
}
|
||||||
|
|
||||||
func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
func showInfo(resp *api.ShowResponse, verbose bool, w io.Writer) error {
|
||||||
tableRender := func(header string, rows func() [][]string) {
|
tableRender := func(header string, rows func() [][]string) {
|
||||||
fmt.Fprintln(w, " ", header)
|
fmt.Fprintln(w, " ", header)
|
||||||
table := tablewriter.NewWriter(w)
|
table := tablewriter.NewWriter(w)
|
||||||
@@ -809,6 +739,15 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
|||||||
return
|
return
|
||||||
})
|
})
|
||||||
|
|
||||||
|
if len(resp.Capabilities) > 0 {
|
||||||
|
tableRender("Capabilities", func() (rows [][]string) {
|
||||||
|
for _, capability := range resp.Capabilities {
|
||||||
|
rows = append(rows, []string{"", capability.String()})
|
||||||
|
}
|
||||||
|
return
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
if resp.ProjectorInfo != nil {
|
if resp.ProjectorInfo != nil {
|
||||||
tableRender("Projector", func() (rows [][]string) {
|
tableRender("Projector", func() (rows [][]string) {
|
||||||
arch := resp.ProjectorInfo["general.architecture"].(string)
|
arch := resp.ProjectorInfo["general.architecture"].(string)
|
||||||
@@ -832,12 +771,89 @@ func showInfo(resp *api.ShowResponse, w io.Writer) error {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if resp.ModelInfo != nil && verbose {
|
||||||
|
tableRender("Metadata", func() (rows [][]string) {
|
||||||
|
keys := make([]string, 0, len(resp.ModelInfo))
|
||||||
|
for k := range resp.ModelInfo {
|
||||||
|
keys = append(keys, k)
|
||||||
|
}
|
||||||
|
sort.Strings(keys)
|
||||||
|
|
||||||
|
for _, k := range keys {
|
||||||
|
var v string
|
||||||
|
switch vData := resp.ModelInfo[k].(type) {
|
||||||
|
case bool:
|
||||||
|
v = fmt.Sprintf("%t", vData)
|
||||||
|
case string:
|
||||||
|
v = vData
|
||||||
|
case float64:
|
||||||
|
v = fmt.Sprintf("%g", vData)
|
||||||
|
case []any:
|
||||||
|
targetWidth := 10 // Small width where we are displaying the data in a column
|
||||||
|
|
||||||
|
var itemsToShow int
|
||||||
|
totalWidth := 1 // Start with 1 for opening bracket
|
||||||
|
|
||||||
|
// Find how many we can fit
|
||||||
|
for i := range vData {
|
||||||
|
itemStr := fmt.Sprintf("%v", vData[i])
|
||||||
|
width := runewidth.StringWidth(itemStr)
|
||||||
|
|
||||||
|
// Add separator width (", ") for all items except the first
|
||||||
|
if i > 0 {
|
||||||
|
width += 2
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if adding this item would exceed our width limit
|
||||||
|
if totalWidth+width > targetWidth && i > 0 {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
|
||||||
|
totalWidth += width
|
||||||
|
itemsToShow++
|
||||||
|
}
|
||||||
|
|
||||||
|
// Format the output
|
||||||
|
if itemsToShow < len(vData) {
|
||||||
|
v = fmt.Sprintf("%v", vData[:itemsToShow])
|
||||||
|
v = strings.TrimSuffix(v, "]")
|
||||||
|
v += fmt.Sprintf(" ...+%d more]", len(vData)-itemsToShow)
|
||||||
|
} else {
|
||||||
|
v = fmt.Sprintf("%v", vData)
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
v = fmt.Sprintf("%T", vData)
|
||||||
|
}
|
||||||
|
rows = append(rows, []string{"", k, v})
|
||||||
|
}
|
||||||
|
return
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(resp.Tensors) > 0 && verbose {
|
||||||
|
tableRender("Tensors", func() (rows [][]string) {
|
||||||
|
for _, t := range resp.Tensors {
|
||||||
|
rows = append(rows, []string{"", t.Name, t.Type, fmt.Sprint(t.Shape)})
|
||||||
|
}
|
||||||
|
return
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
head := func(s string, n int) (rows [][]string) {
|
head := func(s string, n int) (rows [][]string) {
|
||||||
scanner := bufio.NewScanner(strings.NewReader(s))
|
scanner := bufio.NewScanner(strings.NewReader(s))
|
||||||
for scanner.Scan() && (len(rows) < n || n < 0) {
|
count := 0
|
||||||
if text := scanner.Text(); text != "" {
|
for scanner.Scan() {
|
||||||
rows = append(rows, []string{"", strings.TrimSpace(text)})
|
text := strings.TrimSpace(scanner.Text())
|
||||||
|
if text == "" {
|
||||||
|
continue
|
||||||
}
|
}
|
||||||
|
count++
|
||||||
|
if n < 0 || count <= n {
|
||||||
|
rows = append(rows, []string{"", text})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if n >= 0 && count > n {
|
||||||
|
rows = append(rows, []string{"", "..."})
|
||||||
}
|
}
|
||||||
return
|
return
|
||||||
}
|
}
|
||||||
@@ -892,13 +908,38 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
|||||||
|
|
||||||
fn := func(resp api.ProgressResponse) error {
|
fn := func(resp api.ProgressResponse) error {
|
||||||
if resp.Digest != "" {
|
if resp.Digest != "" {
|
||||||
|
if resp.Completed == 0 {
|
||||||
|
// This is the initial status update for the
|
||||||
|
// layer, which the server sends before
|
||||||
|
// beginning the download, for clients to
|
||||||
|
// compute total size and prepare for
|
||||||
|
// downloads, if needed.
|
||||||
|
//
|
||||||
|
// Skipping this here to avoid showing a 0%
|
||||||
|
// progress bar, which *should* clue the user
|
||||||
|
// into the fact that many things are being
|
||||||
|
// downloaded and that the current active
|
||||||
|
// download is not that last. However, in rare
|
||||||
|
// cases it seems to be triggering to some, and
|
||||||
|
// it isn't worth explaining, so just ignore
|
||||||
|
// and regress to the old UI that keeps giving
|
||||||
|
// you the "But wait, there is more!" after
|
||||||
|
// each "100% done" bar, which is "better."
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
|
||||||
if spinner != nil {
|
if spinner != nil {
|
||||||
spinner.Stop()
|
spinner.Stop()
|
||||||
}
|
}
|
||||||
|
|
||||||
bar, ok := bars[resp.Digest]
|
bar, ok := bars[resp.Digest]
|
||||||
if !ok {
|
if !ok {
|
||||||
bar = progress.NewBar(fmt.Sprintf("pulling %s...", resp.Digest[7:19]), resp.Total, resp.Completed)
|
name, isDigest := strings.CutPrefix(resp.Digest, "sha256:")
|
||||||
|
name = strings.TrimSpace(name)
|
||||||
|
if isDigest {
|
||||||
|
name = name[:min(12, len(name))]
|
||||||
|
}
|
||||||
|
bar = progress.NewBar(fmt.Sprintf("pulling %s:", name), resp.Total, resp.Completed)
|
||||||
bars[resp.Digest] = bar
|
bars[resp.Digest] = bar
|
||||||
p.Add(resp.Digest, bar)
|
p.Add(resp.Digest, bar)
|
||||||
}
|
}
|
||||||
@@ -918,27 +959,25 @@ func PullHandler(cmd *cobra.Command, args []string) error {
|
|||||||
}
|
}
|
||||||
|
|
||||||
request := api.PullRequest{Name: args[0], Insecure: insecure}
|
request := api.PullRequest{Name: args[0], Insecure: insecure}
|
||||||
if err := client.Pull(cmd.Context(), &request, fn); err != nil {
|
return client.Pull(cmd.Context(), &request, fn)
|
||||||
return err
|
|
||||||
}
|
|
||||||
|
|
||||||
return nil
|
|
||||||
}
|
}
|
||||||
|
|
||||||
type generateContextKey string
|
type generateContextKey string
|
||||||
|
|
||||||
type runOptions struct {
|
type runOptions struct {
|
||||||
Model string
|
Model string
|
||||||
ParentModel string
|
ParentModel string
|
||||||
Prompt string
|
Prompt string
|
||||||
Messages []api.Message
|
Messages []api.Message
|
||||||
WordWrap bool
|
WordWrap bool
|
||||||
Format string
|
Format string
|
||||||
System string
|
System string
|
||||||
Images []api.ImageData
|
Images []api.ImageData
|
||||||
Options map[string]interface{}
|
Options map[string]any
|
||||||
MultiModal bool
|
MultiModal bool
|
||||||
KeepAlive *api.Duration
|
KeepAlive *api.Duration
|
||||||
|
Think *bool
|
||||||
|
HideThinking bool
|
||||||
}
|
}
|
||||||
|
|
||||||
type displayResponseState struct {
|
type displayResponseState struct {
|
||||||
@@ -994,6 +1033,26 @@ func displayResponse(content string, wordWrap bool, state *displayResponseState)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func thinkingOutputOpeningText(plainText bool) string {
|
||||||
|
text := "Thinking...\n"
|
||||||
|
|
||||||
|
if plainText {
|
||||||
|
return text
|
||||||
|
}
|
||||||
|
|
||||||
|
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault + readline.ColorGrey
|
||||||
|
}
|
||||||
|
|
||||||
|
func thinkingOutputClosingText(plainText bool) string {
|
||||||
|
text := "...done thinking.\n\n"
|
||||||
|
|
||||||
|
if plainText {
|
||||||
|
return text
|
||||||
|
}
|
||||||
|
|
||||||
|
return readline.ColorGrey + readline.ColorBold + text + readline.ColorDefault
|
||||||
|
}
|
||||||
|
|
||||||
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
||||||
client, err := api.ClientFromEnvironment()
|
client, err := api.ClientFromEnvironment()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -1021,14 +1080,34 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
|||||||
var latest api.ChatResponse
|
var latest api.ChatResponse
|
||||||
var fullResponse strings.Builder
|
var fullResponse strings.Builder
|
||||||
var role string
|
var role string
|
||||||
|
var thinkTagOpened bool = false
|
||||||
|
var thinkTagClosed bool = false
|
||||||
|
|
||||||
fn := func(response api.ChatResponse) error {
|
fn := func(response api.ChatResponse) error {
|
||||||
p.StopAndClear()
|
if response.Message.Content != "" || !opts.HideThinking {
|
||||||
|
p.StopAndClear()
|
||||||
|
}
|
||||||
|
|
||||||
latest = response
|
latest = response
|
||||||
|
|
||||||
role = response.Message.Role
|
role = response.Message.Role
|
||||||
|
if response.Message.Thinking != "" && !opts.HideThinking {
|
||||||
|
if !thinkTagOpened {
|
||||||
|
fmt.Print(thinkingOutputOpeningText(false))
|
||||||
|
thinkTagOpened = true
|
||||||
|
}
|
||||||
|
displayResponse(response.Message.Thinking, opts.WordWrap, state)
|
||||||
|
}
|
||||||
|
|
||||||
content := response.Message.Content
|
content := response.Message.Content
|
||||||
|
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||||
|
fmt.Print(thinkingOutputClosingText(false))
|
||||||
|
thinkTagClosed = true
|
||||||
|
}
|
||||||
|
// purposefully not putting thinking blocks in the response, which would
|
||||||
|
// only be needed if we later added tool calling to the cli (they get
|
||||||
|
// filtered out anyway since current models don't expect them unless you're
|
||||||
|
// about to finish some tool calls)
|
||||||
fullResponse.WriteString(content)
|
fullResponse.WriteString(content)
|
||||||
|
|
||||||
displayResponse(content, opts.WordWrap, state)
|
displayResponse(content, opts.WordWrap, state)
|
||||||
@@ -1045,6 +1124,7 @@ func chat(cmd *cobra.Command, opts runOptions) (*api.Message, error) {
|
|||||||
Messages: opts.Messages,
|
Messages: opts.Messages,
|
||||||
Format: json.RawMessage(opts.Format),
|
Format: json.RawMessage(opts.Format),
|
||||||
Options: opts.Options,
|
Options: opts.Options,
|
||||||
|
Think: opts.Think,
|
||||||
}
|
}
|
||||||
|
|
||||||
if opts.KeepAlive != nil {
|
if opts.KeepAlive != nil {
|
||||||
@@ -1106,13 +1186,32 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
|||||||
}()
|
}()
|
||||||
|
|
||||||
var state *displayResponseState = &displayResponseState{}
|
var state *displayResponseState = &displayResponseState{}
|
||||||
|
var thinkTagOpened bool = false
|
||||||
|
var thinkTagClosed bool = false
|
||||||
|
|
||||||
|
plainText := !term.IsTerminal(int(os.Stdout.Fd()))
|
||||||
|
|
||||||
fn := func(response api.GenerateResponse) error {
|
fn := func(response api.GenerateResponse) error {
|
||||||
p.StopAndClear()
|
|
||||||
|
|
||||||
latest = response
|
latest = response
|
||||||
content := response.Response
|
content := response.Response
|
||||||
|
|
||||||
|
if response.Response != "" || !opts.HideThinking {
|
||||||
|
p.StopAndClear()
|
||||||
|
}
|
||||||
|
|
||||||
|
if response.Thinking != "" && !opts.HideThinking {
|
||||||
|
if !thinkTagOpened {
|
||||||
|
fmt.Print(thinkingOutputOpeningText(plainText))
|
||||||
|
thinkTagOpened = true
|
||||||
|
}
|
||||||
|
displayResponse(response.Thinking, opts.WordWrap, state)
|
||||||
|
}
|
||||||
|
|
||||||
|
if thinkTagOpened && !thinkTagClosed && content != "" {
|
||||||
|
fmt.Print(thinkingOutputClosingText(plainText))
|
||||||
|
thinkTagClosed = true
|
||||||
|
}
|
||||||
|
|
||||||
displayResponse(content, opts.WordWrap, state)
|
displayResponse(content, opts.WordWrap, state)
|
||||||
|
|
||||||
return nil
|
return nil
|
||||||
@@ -1138,6 +1237,7 @@ func generate(cmd *cobra.Command, opts runOptions) error {
|
|||||||
System: opts.System,
|
System: opts.System,
|
||||||
Options: opts.Options,
|
Options: opts.Options,
|
||||||
KeepAlive: opts.KeepAlive,
|
KeepAlive: opts.KeepAlive,
|
||||||
|
Think: opts.Think,
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := client.Generate(ctx, &request, fn); err != nil {
|
if err := client.Generate(ctx, &request, fn); err != nil {
|
||||||
@@ -1241,11 +1341,11 @@ func checkServerHeartbeat(cmd *cobra.Command, _ []string) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
if err := client.Heartbeat(cmd.Context()); err != nil {
|
if err := client.Heartbeat(cmd.Context()); err != nil {
|
||||||
if !strings.Contains(err.Error(), " refused") {
|
if !(strings.Contains(err.Error(), " refused") || strings.Contains(err.Error(), "could not connect")) {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
if err := startApp(cmd.Context(), client); err != nil {
|
if err := startApp(cmd.Context(), client); err != nil {
|
||||||
return errors.New("could not connect to ollama app, is it running?")
|
return fmt.Errorf("ollama server not responding - %w", err)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return nil
|
return nil
|
||||||
@@ -1323,7 +1423,7 @@ func NewCLI() *cobra.Command {
|
|||||||
}
|
}
|
||||||
|
|
||||||
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
createCmd.Flags().StringP("file", "f", "", "Name of the Modelfile (default \"Modelfile\"")
|
||||||
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_0)")
|
createCmd.Flags().StringP("quantize", "q", "", "Quantize model to this level (e.g. q4_K_M)")
|
||||||
|
|
||||||
showCmd := &cobra.Command{
|
showCmd := &cobra.Command{
|
||||||
Use: "show MODEL",
|
Use: "show MODEL",
|
||||||
@@ -1338,6 +1438,7 @@ func NewCLI() *cobra.Command {
|
|||||||
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
showCmd.Flags().Bool("parameters", false, "Show parameters of a model")
|
||||||
showCmd.Flags().Bool("template", false, "Show template of a model")
|
showCmd.Flags().Bool("template", false, "Show template of a model")
|
||||||
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
showCmd.Flags().Bool("system", false, "Show system message of a model")
|
||||||
|
showCmd.Flags().BoolP("verbose", "v", false, "Show detailed model information")
|
||||||
|
|
||||||
runCmd := &cobra.Command{
|
runCmd := &cobra.Command{
|
||||||
Use: "run MODEL [PROMPT]",
|
Use: "run MODEL [PROMPT]",
|
||||||
@@ -1352,6 +1453,8 @@ func NewCLI() *cobra.Command {
|
|||||||
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
|
runCmd.Flags().Bool("insecure", false, "Use an insecure registry")
|
||||||
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
|
runCmd.Flags().Bool("nowordwrap", false, "Don't wrap words to the next line automatically")
|
||||||
runCmd.Flags().String("format", "", "Response format (e.g. json)")
|
runCmd.Flags().String("format", "", "Response format (e.g. json)")
|
||||||
|
runCmd.Flags().Bool("think", false, "Whether to use thinking mode for supported models")
|
||||||
|
runCmd.Flags().Bool("hidethinking", false, "Hide thinking output (if provided)")
|
||||||
|
|
||||||
stopCmd := &cobra.Command{
|
stopCmd := &cobra.Command{
|
||||||
Use: "stop MODEL",
|
Use: "stop MODEL",
|
||||||
@@ -1403,7 +1506,6 @@ func NewCLI() *cobra.Command {
|
|||||||
PreRunE: checkServerHeartbeat,
|
PreRunE: checkServerHeartbeat,
|
||||||
RunE: ListRunningHandler,
|
RunE: ListRunningHandler,
|
||||||
}
|
}
|
||||||
|
|
||||||
copyCmd := &cobra.Command{
|
copyCmd := &cobra.Command{
|
||||||
Use: "cp SOURCE DESTINATION",
|
Use: "cp SOURCE DESTINATION",
|
||||||
Short: "Copy a model",
|
Short: "Copy a model",
|
||||||
@@ -1420,6 +1522,18 @@ func NewCLI() *cobra.Command {
|
|||||||
RunE: DeleteHandler,
|
RunE: DeleteHandler,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
runnerCmd := &cobra.Command{
|
||||||
|
Use: "runner",
|
||||||
|
Hidden: true,
|
||||||
|
RunE: func(cmd *cobra.Command, args []string) error {
|
||||||
|
return runner.Execute(os.Args[1:])
|
||||||
|
},
|
||||||
|
FParseErrWhitelist: cobra.FParseErrWhitelist{UnknownFlags: true},
|
||||||
|
}
|
||||||
|
runnerCmd.SetHelpFunc(func(cmd *cobra.Command, args []string) {
|
||||||
|
_ = runner.Execute(args[1:])
|
||||||
|
})
|
||||||
|
|
||||||
envVars := envconfig.AsMap()
|
envVars := envconfig.AsMap()
|
||||||
|
|
||||||
envs := []envconfig.EnvVar{envVars["OLLAMA_HOST"]}
|
envs := []envconfig.EnvVar{envVars["OLLAMA_HOST"]}
|
||||||
@@ -1452,7 +1566,6 @@ func NewCLI() *cobra.Command {
|
|||||||
envVars["OLLAMA_NOPRUNE"],
|
envVars["OLLAMA_NOPRUNE"],
|
||||||
envVars["OLLAMA_ORIGINS"],
|
envVars["OLLAMA_ORIGINS"],
|
||||||
envVars["OLLAMA_SCHED_SPREAD"],
|
envVars["OLLAMA_SCHED_SPREAD"],
|
||||||
envVars["OLLAMA_TMPDIR"],
|
|
||||||
envVars["OLLAMA_FLASH_ATTENTION"],
|
envVars["OLLAMA_FLASH_ATTENTION"],
|
||||||
envVars["OLLAMA_KV_CACHE_TYPE"],
|
envVars["OLLAMA_KV_CACHE_TYPE"],
|
||||||
envVars["OLLAMA_LLM_LIBRARY"],
|
envVars["OLLAMA_LLM_LIBRARY"],
|
||||||
@@ -1476,7 +1589,50 @@ func NewCLI() *cobra.Command {
|
|||||||
psCmd,
|
psCmd,
|
||||||
copyCmd,
|
copyCmd,
|
||||||
deleteCmd,
|
deleteCmd,
|
||||||
|
runnerCmd,
|
||||||
)
|
)
|
||||||
|
|
||||||
return rootCmd
|
return rootCmd
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// If the user has explicitly set thinking options, either through the CLI or
|
||||||
|
// through the `/set think` or `set nothink` interactive options, then we
|
||||||
|
// respect them. Otherwise, we check model capabilities to see if the model
|
||||||
|
// supports thinking. If the model does support thinking, we enable it.
|
||||||
|
// Otherwise, we unset the thinking option (which is different than setting it
|
||||||
|
// to false).
|
||||||
|
//
|
||||||
|
// If capabilities are not provided, we fetch them from the server.
|
||||||
|
func inferThinkingOption(caps *[]model.Capability, runOpts *runOptions, explicitlySetByUser bool) (*bool, error) {
|
||||||
|
if explicitlySetByUser {
|
||||||
|
return runOpts.Think, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
if caps == nil {
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
ret, err := client.Show(context.Background(), &api.ShowRequest{
|
||||||
|
Model: runOpts.Model,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
caps = &ret.Capabilities
|
||||||
|
}
|
||||||
|
|
||||||
|
thinkingSupported := false
|
||||||
|
for _, cap := range *caps {
|
||||||
|
if cap == model.CapabilityThinking {
|
||||||
|
thinkingSupported = true
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if thinkingSupported {
|
||||||
|
thinking := true
|
||||||
|
return &thinking, nil
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil, nil
|
||||||
|
}
|
||||||
|
|||||||
460
cmd/cmd_test.go
460
cmd/cmd_test.go
@@ -2,7 +2,6 @@ package cmd
|
|||||||
|
|
||||||
import (
|
import (
|
||||||
"bytes"
|
"bytes"
|
||||||
"context"
|
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"io"
|
"io"
|
||||||
"net/http"
|
"net/http"
|
||||||
@@ -10,11 +9,13 @@ import (
|
|||||||
"os"
|
"os"
|
||||||
"strings"
|
"strings"
|
||||||
"testing"
|
"testing"
|
||||||
|
"time"
|
||||||
|
|
||||||
"github.com/google/go-cmp/cmp"
|
"github.com/google/go-cmp/cmp"
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestShowInfo(t *testing.T) {
|
func TestShowInfo(t *testing.T) {
|
||||||
@@ -26,7 +27,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
ParameterSize: "7B",
|
ParameterSize: "7B",
|
||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -56,7 +57,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
ParameterSize: "7B",
|
ParameterSize: "7B",
|
||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -67,6 +68,60 @@ func TestShowInfo(t *testing.T) {
|
|||||||
embedding length 0
|
embedding length 0
|
||||||
quantization FP16
|
quantization FP16
|
||||||
|
|
||||||
|
`
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("verbose model", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "8B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
Parameters: `
|
||||||
|
stop up`,
|
||||||
|
ModelInfo: map[string]any{
|
||||||
|
"general.architecture": "test",
|
||||||
|
"general.parameter_count": float64(8_000_000_000),
|
||||||
|
"some.true_bool": true,
|
||||||
|
"some.false_bool": false,
|
||||||
|
"test.context_length": float64(1000),
|
||||||
|
"test.embedding_length": float64(11434),
|
||||||
|
},
|
||||||
|
Tensors: []api.Tensor{
|
||||||
|
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
||||||
|
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
||||||
|
},
|
||||||
|
}, true, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := ` Model
|
||||||
|
architecture test
|
||||||
|
parameters 8B
|
||||||
|
context length 1000
|
||||||
|
embedding length 11434
|
||||||
|
quantization FP16
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
stop up
|
||||||
|
|
||||||
|
Metadata
|
||||||
|
general.architecture test
|
||||||
|
general.parameter_count 8e+09
|
||||||
|
some.false_bool false
|
||||||
|
some.true_bool true
|
||||||
|
test.context_length 1000
|
||||||
|
test.embedding_length 11434
|
||||||
|
|
||||||
|
Tensors
|
||||||
|
blk.0.attn_k.weight BF16 [42 3117]
|
||||||
|
blk.0.attn_q.weight FP16 [3117 42]
|
||||||
|
|
||||||
`
|
`
|
||||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
@@ -88,7 +143,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
stop you
|
stop you
|
||||||
stop up
|
stop up
|
||||||
temperature 99`,
|
temperature 99`,
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -125,7 +180,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
"clip.vision.embedding_length": float64(0),
|
"clip.vision.embedding_length": float64(0),
|
||||||
"clip.vision.projection_dim": float64(0),
|
"clip.vision.projection_dim": float64(0),
|
||||||
},
|
},
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -158,7 +213,7 @@ func TestShowInfo(t *testing.T) {
|
|||||||
Ahoy, matey!
|
Ahoy, matey!
|
||||||
Weigh anchor!
|
Weigh anchor!
|
||||||
`,
|
`,
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -170,6 +225,7 @@ Weigh anchor!
|
|||||||
System
|
System
|
||||||
You are a pirate!
|
You are a pirate!
|
||||||
Ahoy, matey!
|
Ahoy, matey!
|
||||||
|
...
|
||||||
|
|
||||||
`
|
`
|
||||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
@@ -187,7 +243,7 @@ Weigh anchor!
|
|||||||
QuantizationLevel: "FP16",
|
QuantizationLevel: "FP16",
|
||||||
},
|
},
|
||||||
License: license,
|
License: license,
|
||||||
}, &b); err != nil {
|
}, false, &b); err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -205,6 +261,34 @@ Weigh anchor!
|
|||||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
|
t.Run("capabilities", func(t *testing.T) {
|
||||||
|
var b bytes.Buffer
|
||||||
|
if err := showInfo(&api.ShowResponse{
|
||||||
|
Details: api.ModelDetails{
|
||||||
|
Family: "test",
|
||||||
|
ParameterSize: "7B",
|
||||||
|
QuantizationLevel: "FP16",
|
||||||
|
},
|
||||||
|
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||||
|
}, false, &b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
expect := " Model\n" +
|
||||||
|
" architecture test \n" +
|
||||||
|
" parameters 7B \n" +
|
||||||
|
" quantization FP16 \n" +
|
||||||
|
"\n" +
|
||||||
|
" Capabilities\n" +
|
||||||
|
" vision \n" +
|
||||||
|
" tools \n" +
|
||||||
|
"\n"
|
||||||
|
|
||||||
|
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||||
|
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||||
|
}
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestDeleteHandler(t *testing.T) {
|
func TestDeleteHandler(t *testing.T) {
|
||||||
@@ -253,7 +337,7 @@ func TestDeleteHandler(t *testing.T) {
|
|||||||
t.Cleanup(mockServer.Close)
|
t.Cleanup(mockServer.Close)
|
||||||
|
|
||||||
cmd := &cobra.Command{}
|
cmd := &cobra.Command{}
|
||||||
cmd.SetContext(context.TODO())
|
cmd.SetContext(t.Context())
|
||||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||||
t.Fatalf("DeleteHandler failed: %v", err)
|
t.Fatalf("DeleteHandler failed: %v", err)
|
||||||
}
|
}
|
||||||
@@ -293,7 +377,7 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
name: "modelfile specified, no modelfile exists",
|
name: "modelfile specified, no modelfile exists",
|
||||||
modelfileName: "crazyfile",
|
modelfileName: "crazyfile",
|
||||||
fileExists: false,
|
fileExists: false,
|
||||||
expectedName: "crazyfile",
|
expectedName: "",
|
||||||
expectedErr: os.ErrNotExist,
|
expectedErr: os.ErrNotExist,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -315,11 +399,6 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
var expectedFilename string
|
var expectedFilename string
|
||||||
|
|
||||||
if tt.fileExists {
|
if tt.fileExists {
|
||||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
|
||||||
defer os.RemoveAll(tempDir)
|
|
||||||
if err != nil {
|
|
||||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
|
||||||
}
|
|
||||||
var fn string
|
var fn string
|
||||||
if tt.modelfileName != "" {
|
if tt.modelfileName != "" {
|
||||||
fn = tt.modelfileName
|
fn = tt.modelfileName
|
||||||
@@ -327,10 +406,11 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
fn = "Modelfile"
|
fn = "Modelfile"
|
||||||
}
|
}
|
||||||
|
|
||||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||||
}
|
}
|
||||||
|
defer tempFile.Close()
|
||||||
|
|
||||||
expectedFilename = tempFile.Name()
|
expectedFilename = tempFile.Name()
|
||||||
err = cmd.Flags().Set("file", expectedFilename)
|
err = cmd.Flags().Set("file", expectedFilename)
|
||||||
@@ -338,8 +418,8 @@ func TestGetModelfileName(t *testing.T) {
|
|||||||
t.Fatalf("couldn't set file flag: %v", err)
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
|
expectedFilename = tt.expectedName
|
||||||
if tt.modelfileName != "" {
|
if tt.modelfileName != "" {
|
||||||
expectedFilename = tt.modelfileName
|
|
||||||
err := cmd.Flags().Set("file", tt.modelfileName)
|
err := cmd.Flags().Set("file", tt.modelfileName)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatalf("couldn't set file flag: %v", err)
|
t.Fatalf("couldn't set file flag: %v", err)
|
||||||
@@ -445,7 +525,7 @@ func TestPushHandler(t *testing.T) {
|
|||||||
|
|
||||||
cmd := &cobra.Command{}
|
cmd := &cobra.Command{}
|
||||||
cmd.Flags().Bool("insecure", false, "")
|
cmd.Flags().Bool("insecure", false, "")
|
||||||
cmd.SetContext(context.TODO())
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
// Redirect stderr to capture progress output
|
// Redirect stderr to capture progress output
|
||||||
oldStderr := os.Stderr
|
oldStderr := os.Stderr
|
||||||
@@ -489,3 +569,349 @@ func TestPushHandler(t *testing.T) {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func TestListHandler(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
args []string
|
||||||
|
serverResponse []api.ListModelResponse
|
||||||
|
expectedError string
|
||||||
|
expectedOutput string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "list all models",
|
||||||
|
args: []string{},
|
||||||
|
serverResponse: []api.ListModelResponse{
|
||||||
|
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
|
||||||
|
},
|
||||||
|
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||||
|
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
|
||||||
|
"model2 sha256:def45 2.0 KB 2 days ago \n",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "filter models by prefix",
|
||||||
|
args: []string{"model1"},
|
||||||
|
serverResponse: []api.ListModelResponse{
|
||||||
|
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
|
||||||
|
},
|
||||||
|
expectedOutput: "NAME ID SIZE MODIFIED \n" +
|
||||||
|
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "server error",
|
||||||
|
args: []string{},
|
||||||
|
expectedError: "server error",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
|
||||||
|
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
|
||||||
|
http.Error(w, "not found", http.StatusNotFound)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.expectedError != "" {
|
||||||
|
http.Error(w, tt.expectedError, http.StatusInternalServerError)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
response := api.ListResponse{Models: tt.serverResponse}
|
||||||
|
if err := json.NewEncoder(w).Encode(response); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer mockServer.Close()
|
||||||
|
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
|
// Capture stdout
|
||||||
|
oldStdout := os.Stdout
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stdout = w
|
||||||
|
|
||||||
|
err := ListHandler(cmd, tt.args)
|
||||||
|
|
||||||
|
// Restore stdout and get output
|
||||||
|
w.Close()
|
||||||
|
os.Stdout = oldStdout
|
||||||
|
output, _ := io.ReadAll(r)
|
||||||
|
|
||||||
|
if tt.expectedError == "" {
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("expected no error, got %v", err)
|
||||||
|
}
|
||||||
|
if got := string(output); got != tt.expectedOutput {
|
||||||
|
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
|
||||||
|
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestCreateHandler(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
modelName string
|
||||||
|
modelFile string
|
||||||
|
serverResponse map[string]func(w http.ResponseWriter, r *http.Request)
|
||||||
|
expectedError string
|
||||||
|
expectedOutput string
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "successful create",
|
||||||
|
modelName: "test-model",
|
||||||
|
modelFile: "FROM foo",
|
||||||
|
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||||
|
"/api/create": func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.Method != http.MethodPost {
|
||||||
|
t.Errorf("expected POST request, got %s", r.Method)
|
||||||
|
}
|
||||||
|
|
||||||
|
req := api.CreateRequest{}
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusBadRequest)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
|
||||||
|
if req.Model != "test-model" {
|
||||||
|
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if req.From != "foo" {
|
||||||
|
t.Errorf("expected from 'foo', got %s", req.From)
|
||||||
|
}
|
||||||
|
|
||||||
|
responses := []api.ProgressResponse{
|
||||||
|
{Status: "using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"},
|
||||||
|
{Status: "writing manifest"},
|
||||||
|
{Status: "success"},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, resp := range responses {
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
http.Error(w, err.Error(), http.StatusInternalServerError)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
w.(http.Flusher).Flush()
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
expectedOutput: "",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
handler, ok := tt.serverResponse[r.URL.Path]
|
||||||
|
if !ok {
|
||||||
|
t.Errorf("unexpected request to %s", r.URL.Path)
|
||||||
|
http.Error(w, "not found", http.StatusNotFound)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
handler(w, r)
|
||||||
|
}))
|
||||||
|
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||||
|
t.Cleanup(mockServer.Close)
|
||||||
|
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
defer os.Remove(tempFile.Name())
|
||||||
|
|
||||||
|
if _, err := tempFile.WriteString(tt.modelFile); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
if err := tempFile.Close(); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
cmd := &cobra.Command{}
|
||||||
|
cmd.Flags().String("file", "", "")
|
||||||
|
if err := cmd.Flags().Set("file", tempFile.Name()); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
cmd.Flags().Bool("insecure", false, "")
|
||||||
|
cmd.SetContext(t.Context())
|
||||||
|
|
||||||
|
// Redirect stderr to capture progress output
|
||||||
|
oldStderr := os.Stderr
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stderr = w
|
||||||
|
|
||||||
|
// Capture stdout for the "Model pushed" message
|
||||||
|
oldStdout := os.Stdout
|
||||||
|
outR, outW, _ := os.Pipe()
|
||||||
|
os.Stdout = outW
|
||||||
|
|
||||||
|
err = CreateHandler(cmd, []string{tt.modelName})
|
||||||
|
|
||||||
|
// Restore stderr
|
||||||
|
w.Close()
|
||||||
|
os.Stderr = oldStderr
|
||||||
|
// drain the pipe
|
||||||
|
if _, err := io.ReadAll(r); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Restore stdout and get output
|
||||||
|
outW.Close()
|
||||||
|
os.Stdout = oldStdout
|
||||||
|
stdout, _ := io.ReadAll(outR)
|
||||||
|
|
||||||
|
if tt.expectedError == "" {
|
||||||
|
if err != nil {
|
||||||
|
t.Errorf("expected no error, got %v", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.expectedOutput != "" {
|
||||||
|
if got := string(stdout); got != tt.expectedOutput {
|
||||||
|
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestNewCreateRequest(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
from string
|
||||||
|
opts runOptions
|
||||||
|
expected *api.CreateRequest
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
"basic test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "",
|
||||||
|
Prompt: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model as filepath test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "/some/file/like/etc/passwd",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"parent model as windows filepath test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||||
|
Messages: []api.Message{},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "mymodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"options test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
Options: map[string]any{
|
||||||
|
"temperature": 1.0,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
Parameters: map[string]any{
|
||||||
|
"temperature": 1.0,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages test",
|
||||||
|
"newmodel",
|
||||||
|
runOptions{
|
||||||
|
Model: "mymodel",
|
||||||
|
ParentModel: "parentmodel",
|
||||||
|
System: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{
|
||||||
|
{
|
||||||
|
Role: "user",
|
||||||
|
Content: "hello there!",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Role: "assistant",
|
||||||
|
Content: "hello to you!",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
WordWrap: true,
|
||||||
|
},
|
||||||
|
&api.CreateRequest{
|
||||||
|
From: "parentmodel",
|
||||||
|
Model: "newmodel",
|
||||||
|
System: "You are a fun AI agent",
|
||||||
|
Messages: []api.Message{
|
||||||
|
{
|
||||||
|
Role: "user",
|
||||||
|
Content: "hello there!",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
Role: "assistant",
|
||||||
|
Content: "hello to you!",
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
actual := NewCreateRequest(tt.from, tt.opts)
|
||||||
|
if !cmp.Equal(actual, tt.expected) {
|
||||||
|
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||
@@ -13,13 +13,12 @@ import (
|
|||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/spf13/cobra"
|
"github.com/spf13/cobra"
|
||||||
"golang.org/x/exp/maps"
|
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
"github.com/ollama/ollama/envconfig"
|
"github.com/ollama/ollama/envconfig"
|
||||||
"github.com/ollama/ollama/parser"
|
|
||||||
"github.com/ollama/ollama/readline"
|
"github.com/ollama/ollama/readline"
|
||||||
"github.com/ollama/ollama/types/errtypes"
|
"github.com/ollama/ollama/types/errtypes"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
)
|
)
|
||||||
|
|
||||||
type MultilineState int
|
type MultilineState int
|
||||||
@@ -45,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||||
|
|
||||||
if opts.MultiModal {
|
if opts.MultiModal {
|
||||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
|
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
|
||||||
}
|
}
|
||||||
|
|
||||||
fmt.Fprintln(os.Stderr, "")
|
fmt.Fprintln(os.Stderr, "")
|
||||||
@@ -63,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
||||||
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
||||||
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
||||||
|
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
|
||||||
|
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
|
||||||
fmt.Fprintln(os.Stderr, "")
|
fmt.Fprintln(os.Stderr, "")
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -129,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
|
|
||||||
var sb strings.Builder
|
var sb strings.Builder
|
||||||
var multiline MultilineState
|
var multiline MultilineState
|
||||||
|
var thinkExplicitlySet bool = opts.Think != nil
|
||||||
|
|
||||||
for {
|
for {
|
||||||
line, err := scanner.Readline()
|
line, err := scanner.Readline()
|
||||||
@@ -196,7 +198,19 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
opts.Model = args[1]
|
opts.Model = args[1]
|
||||||
opts.Messages = []api.Message{}
|
opts.Messages = []api.Message{}
|
||||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||||
|
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
|
||||||
|
if err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||||
|
if strings.Contains(err.Error(), "not found") {
|
||||||
|
fmt.Printf("error: %v\n", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
if strings.Contains(err.Error(), "does not support thinking") {
|
||||||
|
fmt.Printf("error: %v\n", err)
|
||||||
|
continue
|
||||||
|
}
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
continue
|
continue
|
||||||
@@ -213,10 +227,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
req := &api.CreateRequest{
|
req := NewCreateRequest(args[1], opts)
|
||||||
Name: args[1],
|
|
||||||
Modelfile: buildModelfile(opts),
|
|
||||||
}
|
|
||||||
fn := func(resp api.ProgressResponse) error { return nil }
|
fn := func(resp api.ProgressResponse) error { return nil }
|
||||||
err = client.Create(cmd.Context(), req, fn)
|
err = client.Create(cmd.Context(), req, fn)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -260,6 +271,22 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
fmt.Println("Set 'quiet' mode.")
|
fmt.Println("Set 'quiet' mode.")
|
||||||
|
case "think":
|
||||||
|
think := true
|
||||||
|
opts.Think = &think
|
||||||
|
thinkExplicitlySet = true
|
||||||
|
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||||
|
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||||
|
}
|
||||||
|
fmt.Println("Set 'think' mode.")
|
||||||
|
case "nothink":
|
||||||
|
think := false
|
||||||
|
opts.Think = &think
|
||||||
|
thinkExplicitlySet = true
|
||||||
|
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||||
|
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||||
|
}
|
||||||
|
fmt.Println("Set 'nothink' mode.")
|
||||||
case "format":
|
case "format":
|
||||||
if len(args) < 3 || args[2] != "json" {
|
if len(args) < 3 || args[2] != "json" {
|
||||||
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
||||||
@@ -348,7 +375,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
|
|
||||||
switch args[1] {
|
switch args[1] {
|
||||||
case "info":
|
case "info":
|
||||||
_ = showInfo(resp, os.Stderr)
|
_ = showInfo(resp, false, os.Stderr)
|
||||||
case "license":
|
case "license":
|
||||||
if resp.License == "" {
|
if resp.License == "" {
|
||||||
fmt.Println("No license was specified for this model.")
|
fmt.Println("No license was specified for this model.")
|
||||||
@@ -448,6 +475,11 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
|
|
||||||
assistant, err := chat(cmd, opts)
|
assistant, err := chat(cmd, opts)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
|
if strings.Contains(err.Error(), "does not support thinking") {
|
||||||
|
fmt.Printf("error: %v\n", err)
|
||||||
|
sb.Reset()
|
||||||
|
continue
|
||||||
|
}
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
if assistant != nil {
|
if assistant != nil {
|
||||||
@@ -459,36 +491,32 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func buildModelfile(opts runOptions) string {
|
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||||
var f parser.File
|
parentModel := opts.ParentModel
|
||||||
f.Commands = append(f.Commands, parser.Command{Name: "model", Args: cmp.Or(opts.ParentModel, opts.Model)})
|
|
||||||
|
modelName := model.ParseName(parentModel)
|
||||||
|
if !modelName.IsValid() {
|
||||||
|
parentModel = ""
|
||||||
|
}
|
||||||
|
|
||||||
|
req := &api.CreateRequest{
|
||||||
|
Model: name,
|
||||||
|
From: cmp.Or(parentModel, opts.Model),
|
||||||
|
}
|
||||||
|
|
||||||
if opts.System != "" {
|
if opts.System != "" {
|
||||||
f.Commands = append(f.Commands, parser.Command{Name: "system", Args: opts.System})
|
req.System = opts.System
|
||||||
}
|
}
|
||||||
|
|
||||||
keys := maps.Keys(opts.Options)
|
if len(opts.Options) > 0 {
|
||||||
slices.Sort(keys)
|
req.Parameters = opts.Options
|
||||||
for _, k := range keys {
|
|
||||||
v := opts.Options[k]
|
|
||||||
var cmds []parser.Command
|
|
||||||
switch t := v.(type) {
|
|
||||||
case []string:
|
|
||||||
for _, s := range t {
|
|
||||||
cmds = append(cmds, parser.Command{Name: k, Args: s})
|
|
||||||
}
|
|
||||||
default:
|
|
||||||
cmds = append(cmds, parser.Command{Name: k, Args: fmt.Sprintf("%v", t)})
|
|
||||||
}
|
|
||||||
|
|
||||||
f.Commands = append(f.Commands, cmds...)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, msg := range opts.Messages {
|
if len(opts.Messages) > 0 {
|
||||||
f.Commands = append(f.Commands, parser.Command{Name: "message", Args: fmt.Sprintf("%s: %s", msg.Role, msg.Content)})
|
req.Messages = opts.Messages
|
||||||
}
|
}
|
||||||
|
|
||||||
return f.String()
|
return req
|
||||||
}
|
}
|
||||||
|
|
||||||
func normalizeFilePath(fp string) string {
|
func normalizeFilePath(fp string) string {
|
||||||
@@ -507,6 +535,7 @@ func normalizeFilePath(fp string) string {
|
|||||||
"\\\\", "\\", // Escaped backslash
|
"\\\\", "\\", // Escaped backslash
|
||||||
"\\*", "*", // Escaped asterisk
|
"\\*", "*", // Escaped asterisk
|
||||||
"\\?", "?", // Escaped question mark
|
"\\?", "?", // Escaped question mark
|
||||||
|
"\\~", "~", // Escaped tilde
|
||||||
).Replace(fp)
|
).Replace(fp)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -514,7 +543,7 @@ func extractFileNames(input string) []string {
|
|||||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||||
// and followed by more characters and a file extension
|
// and followed by more characters and a file extension
|
||||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
|
||||||
re := regexp.MustCompile(regexPattern)
|
re := regexp.MustCompile(regexPattern)
|
||||||
|
|
||||||
return re.FindAllString(input, -1)
|
return re.FindAllString(input, -1)
|
||||||
@@ -534,6 +563,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
|||||||
return "", imgs, err
|
return "", imgs, err
|
||||||
}
|
}
|
||||||
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
||||||
|
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
|
||||||
|
input = strings.ReplaceAll(input, "'"+fp+"'", "")
|
||||||
input = strings.ReplaceAll(input, fp, "")
|
input = strings.ReplaceAll(input, fp, "")
|
||||||
imgs = append(imgs, data)
|
imgs = append(imgs, data)
|
||||||
}
|
}
|
||||||
@@ -554,7 +585,7 @@ func getImageData(filePath string) ([]byte, error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
contentType := http.DetectContentType(buf)
|
contentType := http.DetectContentType(buf)
|
||||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
|
||||||
if !slices.Contains(allowedTypes, contentType) {
|
if !slices.Contains(allowedTypes, contentType) {
|
||||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,26 +1,28 @@
|
|||||||
package cmd
|
package cmd
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
"testing"
|
"testing"
|
||||||
|
|
||||||
"github.com/google/go-cmp/cmp"
|
|
||||||
"github.com/stretchr/testify/assert"
|
"github.com/stretchr/testify/assert"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func TestExtractFilenames(t *testing.T) {
|
func TestExtractFilenames(t *testing.T) {
|
||||||
// Unix style paths
|
// Unix style paths
|
||||||
input := ` some preamble
|
input := ` some preamble
|
||||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
|
||||||
|
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
|
||||||
res := extractFileNames(input)
|
res := extractFileNames(input)
|
||||||
assert.Len(t, res, 5)
|
assert.Len(t, res, 7)
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[1], "two.jpg")
|
assert.Contains(t, res[1], "two.jpg")
|
||||||
assert.Contains(t, res[2], "three.jpeg")
|
assert.Contains(t, res[2], "three.jpeg")
|
||||||
assert.Contains(t, res[3], "four.png")
|
assert.Contains(t, res[3], "four.png")
|
||||||
assert.Contains(t, res[4], "five.JPG")
|
assert.Contains(t, res[4], "five.JPG")
|
||||||
|
assert.Contains(t, res[5], "six.webp")
|
||||||
|
assert.Contains(t, res[6], "seven.WEBP")
|
||||||
assert.NotContains(t, res[4], '"')
|
assert.NotContains(t, res[4], '"')
|
||||||
assert.NotContains(t, res, "inbetween1")
|
assert.NotContains(t, res, "inbetween1")
|
||||||
assert.NotContains(t, res, "./1.svg")
|
assert.NotContains(t, res, "./1.svg")
|
||||||
@@ -31,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
|
|||||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
|
||||||
|
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
|
||||||
|
d:\path with\spaces\thirteen.WEBP some ending
|
||||||
`
|
`
|
||||||
res = extractFileNames(input)
|
res = extractFileNames(input)
|
||||||
assert.Len(t, res, 10)
|
assert.Len(t, res, 13)
|
||||||
assert.NotContains(t, res, "inbetween2")
|
assert.NotContains(t, res, "inbetween2")
|
||||||
assert.Contains(t, res[0], "one.png")
|
assert.Contains(t, res[0], "one.png")
|
||||||
assert.Contains(t, res[0], "c:")
|
assert.Contains(t, res[0], "c:")
|
||||||
@@ -52,57 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
|||||||
assert.Contains(t, res[8], "d:")
|
assert.Contains(t, res[8], "d:")
|
||||||
assert.Contains(t, res[9], "ten.PNG")
|
assert.Contains(t, res[9], "ten.PNG")
|
||||||
assert.Contains(t, res[9], "E:")
|
assert.Contains(t, res[9], "E:")
|
||||||
|
assert.Contains(t, res[10], "eleven.webp")
|
||||||
|
assert.Contains(t, res[10], "c:")
|
||||||
|
assert.Contains(t, res[11], "twelve.WebP")
|
||||||
|
assert.Contains(t, res[11], "c:")
|
||||||
|
assert.Contains(t, res[12], "thirteen.WEBP")
|
||||||
|
assert.Contains(t, res[12], "d:")
|
||||||
}
|
}
|
||||||
|
|
||||||
func TestModelfileBuilder(t *testing.T) {
|
// Ensure that file paths wrapped in single quotes are removed with the quotes.
|
||||||
opts := runOptions{
|
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
|
||||||
Model: "hork",
|
dir := t.TempDir()
|
||||||
System: "You are part horse and part shark, but all hork. Do horklike things",
|
fp := filepath.Join(dir, "img.jpg")
|
||||||
Messages: []api.Message{
|
data := make([]byte, 600)
|
||||||
{Role: "user", Content: "Hey there hork!"},
|
copy(data, []byte{
|
||||||
{Role: "assistant", Content: "Yes it is true, I am half horse, half shark."},
|
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
|
||||||
},
|
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||||
Options: map[string]any{
|
0xff, 0xd9,
|
||||||
"temperature": 0.9,
|
})
|
||||||
"seed": 42,
|
if err := os.WriteFile(fp, data, 0o600); err != nil {
|
||||||
"penalize_newline": false,
|
t.Fatalf("failed to write test image: %v", err)
|
||||||
"stop": []string{"hi", "there"},
|
|
||||||
},
|
|
||||||
}
|
}
|
||||||
|
|
||||||
t.Run("model", func(t *testing.T) {
|
input := "before '" + fp + "' after"
|
||||||
expect := `FROM hork
|
cleaned, imgs, err := extractFileData(input)
|
||||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
assert.NoError(t, err)
|
||||||
PARAMETER penalize_newline false
|
assert.Len(t, imgs, 1)
|
||||||
PARAMETER seed 42
|
assert.Equal(t, cleaned, "before after")
|
||||||
PARAMETER stop hi
|
|
||||||
PARAMETER stop there
|
|
||||||
PARAMETER temperature 0.9
|
|
||||||
MESSAGE user Hey there hork!
|
|
||||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
|
||||||
`
|
|
||||||
|
|
||||||
actual := buildModelfile(opts)
|
|
||||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
|
||||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
|
|
||||||
t.Run("parent model", func(t *testing.T) {
|
|
||||||
opts.ParentModel = "horseshark"
|
|
||||||
expect := `FROM horseshark
|
|
||||||
SYSTEM You are part horse and part shark, but all hork. Do horklike things
|
|
||||||
PARAMETER penalize_newline false
|
|
||||||
PARAMETER seed 42
|
|
||||||
PARAMETER stop hi
|
|
||||||
PARAMETER stop there
|
|
||||||
PARAMETER temperature 0.9
|
|
||||||
MESSAGE user Hey there hork!
|
|
||||||
MESSAGE assistant Yes it is true, I am half horse, half shark.
|
|
||||||
`
|
|
||||||
actual := buildModelfile(opts)
|
|
||||||
if diff := cmp.Diff(expect, actual); diff != "" {
|
|
||||||
t.Errorf("mismatch (-want +got):\n%s", diff)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
|
|||||||
15
cmd/runner/main.go
Normal file
15
cmd/runner/main.go
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"fmt"
|
||||||
|
"os"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/runner"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
if err := runner.Execute(os.Args[1:]); err != nil {
|
||||||
|
fmt.Fprintf(os.Stderr, "error: %s\n", err)
|
||||||
|
os.Exit(1)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -5,7 +5,7 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"os"
|
"os"
|
||||||
"os/exec"
|
"os/exec"
|
||||||
"strings"
|
"regexp"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
)
|
)
|
||||||
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
if !strings.Contains(link, "Ollama.app") {
|
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
|
||||||
|
m := r.FindStringSubmatch(link)
|
||||||
|
if len(m) != 1 {
|
||||||
return errors.New("could not find ollama app")
|
return errors.New("could not find ollama app")
|
||||||
}
|
}
|
||||||
path := strings.Split(link, "Ollama.app")
|
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
|
||||||
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
|
||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
return waitForServer(ctx, client)
|
return waitForServer(ctx, client)
|
||||||
|
|||||||
@@ -4,17 +4,27 @@ import (
|
|||||||
"context"
|
"context"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
"os/exec"
|
"os/exec"
|
||||||
|
"path"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"strings"
|
"strings"
|
||||||
"syscall"
|
"syscall"
|
||||||
|
"unsafe"
|
||||||
|
|
||||||
"github.com/ollama/ollama/api"
|
"github.com/ollama/ollama/api"
|
||||||
|
"golang.org/x/sys/windows"
|
||||||
|
)
|
||||||
|
|
||||||
|
const (
|
||||||
|
Installer = "OllamaSetup.exe"
|
||||||
)
|
)
|
||||||
|
|
||||||
func startApp(ctx context.Context, client *api.Client) error {
|
func startApp(ctx context.Context, client *api.Client) error {
|
||||||
// log.Printf("XXX Attempting to find and start ollama app")
|
if len(isProcRunning(Installer)) > 0 {
|
||||||
|
return fmt.Errorf("upgrade in progress...")
|
||||||
|
}
|
||||||
AppName := "ollama app.exe"
|
AppName := "ollama app.exe"
|
||||||
exe, err := os.Executable()
|
exe, err := os.Executable()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// log.Printf("XXX attempting to start app %s", appExe)
|
|
||||||
|
|
||||||
cmd_path := "c:\\Windows\\system32\\cmd.exe"
|
cmd_path := "c:\\Windows\\system32\\cmd.exe"
|
||||||
cmd := exec.Command(cmd_path, "/c", appExe)
|
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
|
||||||
// TODO - these hide flags aren't working - still pops up a command window for some reason
|
|
||||||
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
|
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
|
||||||
|
|
||||||
// TODO this didn't help either...
|
|
||||||
cmd.Stdin = strings.NewReader("")
|
cmd.Stdin = strings.NewReader("")
|
||||||
cmd.Stdout = os.Stdout
|
cmd.Stdout = os.Stdout
|
||||||
cmd.Stderr = os.Stderr
|
cmd.Stderr = os.Stderr
|
||||||
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
|
|||||||
}
|
}
|
||||||
return waitForServer(ctx, client)
|
return waitForServer(ctx, client)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func isProcRunning(procName string) []uint32 {
|
||||||
|
pids := make([]uint32, 2048)
|
||||||
|
var ret uint32
|
||||||
|
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||||
|
slog.Debug("failed to check for running installers", "error", err)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
if ret > uint32(len(pids)) {
|
||||||
|
pids = make([]uint32, ret+10)
|
||||||
|
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||||
|
slog.Debug("failed to check for running installers", "error", err)
|
||||||
|
return nil
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if ret < uint32(len(pids)) {
|
||||||
|
pids = pids[:ret]
|
||||||
|
}
|
||||||
|
var matches []uint32
|
||||||
|
for _, pid := range pids {
|
||||||
|
if pid == 0 {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
|
||||||
|
if err != nil {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
defer windows.CloseHandle(hProcess)
|
||||||
|
var module windows.Handle
|
||||||
|
var cbNeeded uint32
|
||||||
|
cb := (uint32)(unsafe.Sizeof(module))
|
||||||
|
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
var sz uint32 = 1024 * 8
|
||||||
|
moduleName := make([]uint16, sz)
|
||||||
|
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
|
||||||
|
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
|
||||||
|
if strings.EqualFold(exeFile, procName) {
|
||||||
|
matches = append(matches, pid)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return matches
|
||||||
|
}
|
||||||
|
|||||||
63
cmd/warn_thinking_test.go
Normal file
63
cmd/warn_thinking_test.go
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
package cmd
|
||||||
|
|
||||||
|
import (
|
||||||
|
"encoding/json"
|
||||||
|
"io"
|
||||||
|
"net/http"
|
||||||
|
"net/http/httptest"
|
||||||
|
"os"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/api"
|
||||||
|
"github.com/ollama/ollama/types/model"
|
||||||
|
)
|
||||||
|
|
||||||
|
// Test that a warning is printed when thinking is requested but not supported.
|
||||||
|
func TestWarnMissingThinking(t *testing.T) {
|
||||||
|
cases := []struct {
|
||||||
|
capabilities []model.Capability
|
||||||
|
expectWarn bool
|
||||||
|
}{
|
||||||
|
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
|
||||||
|
{capabilities: []model.Capability{}, expectWarn: true},
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, tc := range cases {
|
||||||
|
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||||
|
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
|
||||||
|
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
|
||||||
|
}
|
||||||
|
var req api.ShowRequest
|
||||||
|
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||||
|
t.Fatalf("decode request: %v", err)
|
||||||
|
}
|
||||||
|
resp := api.ShowResponse{Capabilities: tc.capabilities}
|
||||||
|
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||||
|
t.Fatalf("encode response: %v", err)
|
||||||
|
}
|
||||||
|
}))
|
||||||
|
defer srv.Close()
|
||||||
|
|
||||||
|
t.Setenv("OLLAMA_HOST", srv.URL)
|
||||||
|
client, err := api.ClientFromEnvironment()
|
||||||
|
if err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
oldStderr := os.Stderr
|
||||||
|
r, w, _ := os.Pipe()
|
||||||
|
os.Stderr = w
|
||||||
|
ensureThinkingSupport(t.Context(), client, "m")
|
||||||
|
w.Close()
|
||||||
|
os.Stderr = oldStderr
|
||||||
|
out, _ := io.ReadAll(r)
|
||||||
|
|
||||||
|
warned := strings.Contains(string(out), "warning:")
|
||||||
|
if tc.expectWarn && !warned {
|
||||||
|
t.Errorf("expected warning, got none")
|
||||||
|
}
|
||||||
|
if !tc.expectWarn && warned {
|
||||||
|
t.Errorf("did not expect warning, got: %s", string(out))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,20 +1,26 @@
|
|||||||
package convert
|
package convert
|
||||||
|
|
||||||
import (
|
import (
|
||||||
|
"cmp"
|
||||||
"encoding/json"
|
"encoding/json"
|
||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
|
||||||
"io/fs"
|
"io/fs"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
|
"os"
|
||||||
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type ModelParameters struct {
|
type ModelParameters struct {
|
||||||
Architectures []string `json:"architectures"`
|
Architectures []string `json:"architectures"`
|
||||||
VocabSize uint32 `json:"vocab_size"`
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
|
||||||
|
TextModel struct {
|
||||||
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
} `json:"text_config"`
|
||||||
}
|
}
|
||||||
|
|
||||||
type AdapterParameters struct {
|
type AdapterParameters struct {
|
||||||
@@ -27,8 +33,8 @@ type AdapterParameters struct {
|
|||||||
} `json:"lora_parameters"`
|
} `json:"lora_parameters"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := llm.KV{
|
kv := ggml.KV{
|
||||||
"general.file_type": uint32(1),
|
"general.file_type": uint32(1),
|
||||||
"general.quantization_version": uint32(2),
|
"general.quantization_version": uint32(2),
|
||||||
"tokenizer.ggml.pre": t.Pre,
|
"tokenizer.ggml.pre": t.Pre,
|
||||||
@@ -47,14 +53,17 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
|
|||||||
}
|
}
|
||||||
|
|
||||||
for _, sv := range t.SpecialVocabulary {
|
for _, sv := range t.SpecialVocabulary {
|
||||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
|
||||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||||
|
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||||
|
if len(sv.IDs) > 0 {
|
||||||
|
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p AdapterParameters) KV() llm.KV {
|
func (p AdapterParameters) KV() ggml.KV {
|
||||||
var alpha float32
|
var alpha float32
|
||||||
if p.LoraParameters.Alpha == 0 {
|
if p.LoraParameters.Alpha == 0 {
|
||||||
alpha = float32(p.Alpha)
|
alpha = float32(p.Alpha)
|
||||||
@@ -62,7 +71,7 @@ func (p AdapterParameters) KV() llm.KV {
|
|||||||
alpha = p.LoraParameters.Alpha
|
alpha = p.LoraParameters.Alpha
|
||||||
}
|
}
|
||||||
|
|
||||||
kv := llm.KV{
|
kv := ggml.KV{
|
||||||
"adapter.lora.alpha": alpha,
|
"adapter.lora.alpha": alpha,
|
||||||
"adapter.type": "lora",
|
"adapter.type": "lora",
|
||||||
"general.file_type": uint32(1),
|
"general.file_type": uint32(1),
|
||||||
@@ -79,27 +88,17 @@ func (ModelParameters) specialTokenTypes() []string {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
|
||||||
return llm.WriteGGUF(ws, kv, ts)
|
|
||||||
}
|
|
||||||
|
|
||||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
|
|
||||||
return llm.WriteGGUF(ws, kv, ts)
|
|
||||||
}
|
|
||||||
|
|
||||||
type ModelConverter interface {
|
type ModelConverter interface {
|
||||||
// KV maps parameters to LLM key-values
|
// KV maps parameters to LLM key-values
|
||||||
KV(*Tokenizer) llm.KV
|
KV(*Tokenizer) ggml.KV
|
||||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||||
Tensors([]Tensor) []llm.Tensor
|
Tensors([]Tensor) []*ggml.Tensor
|
||||||
// Replacements returns a list of string pairs to replace in tensor names.
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
Replacements() []string
|
Replacements() []string
|
||||||
|
|
||||||
// specialTokenTypes returns any special token types the model uses
|
// specialTokenTypes returns any special token types the model uses
|
||||||
specialTokenTypes() []string
|
specialTokenTypes() []string
|
||||||
// writeFile writes the model to the provided io.WriteSeeker
|
|
||||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
|
||||||
}
|
}
|
||||||
|
|
||||||
type moreParser interface {
|
type moreParser interface {
|
||||||
@@ -108,17 +107,15 @@ type moreParser interface {
|
|||||||
|
|
||||||
type AdapterConverter interface {
|
type AdapterConverter interface {
|
||||||
// KV maps parameters to LLM key-values
|
// KV maps parameters to LLM key-values
|
||||||
KV(llm.KV) llm.KV
|
KV(ggml.KV) ggml.KV
|
||||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||||
Tensors([]Tensor) []llm.Tensor
|
Tensors([]Tensor) []*ggml.Tensor
|
||||||
// Replacements returns a list of string pairs to replace in tensor names.
|
// Replacements returns a list of string pairs to replace in tensor names.
|
||||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||||
Replacements() []string
|
Replacements() []string
|
||||||
|
|
||||||
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
|
|
||||||
}
|
}
|
||||||
|
|
||||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -153,14 +150,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||||
// and files it finds in the input path.
|
// and files it finds in the input path.
|
||||||
// Supported input model formats include safetensors.
|
// Supported input model formats include safetensors.
|
||||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||||
bts, err := fs.ReadFile(fsys, "config.json")
|
bts, err := fs.ReadFile(fsys, "config.json")
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return err
|
return err
|
||||||
@@ -177,20 +174,34 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
|||||||
|
|
||||||
var conv ModelConverter
|
var conv ModelConverter
|
||||||
switch p.Architectures[0] {
|
switch p.Architectures[0] {
|
||||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
case "LlamaForCausalLM":
|
||||||
conv = &llamaModel{}
|
conv = &llamaModel{}
|
||||||
|
case "MllamaForConditionalGeneration":
|
||||||
|
conv = &mllamaModel{}
|
||||||
|
case "Llama4ForConditionalGeneration":
|
||||||
|
conv = &llama4Model{}
|
||||||
|
case "Mistral3ForConditionalGeneration":
|
||||||
|
conv = &mistral3Model{}
|
||||||
case "MixtralForCausalLM":
|
case "MixtralForCausalLM":
|
||||||
conv = &mixtralModel{}
|
conv = &mixtralModel{}
|
||||||
case "GemmaForCausalLM":
|
case "GemmaForCausalLM":
|
||||||
conv = &gemmaModel{}
|
conv = &gemmaModel{}
|
||||||
case "Gemma2ForCausalLM":
|
case "Gemma2ForCausalLM":
|
||||||
conv = &gemma2Model{}
|
conv = &gemma2Model{}
|
||||||
|
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||||
|
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||||
case "Phi3ForCausalLM":
|
case "Phi3ForCausalLM":
|
||||||
conv = &phi3Model{}
|
conv = &phi3Model{}
|
||||||
|
case "Qwen2ForCausalLM":
|
||||||
|
conv = &qwen2Model{}
|
||||||
|
case "Qwen2_5_VLForConditionalGeneration":
|
||||||
|
conv = &qwen25VLModel{}
|
||||||
case "BertModel":
|
case "BertModel":
|
||||||
conv = &bertModel{}
|
conv = &bertModel{}
|
||||||
|
case "CohereForCausalLM":
|
||||||
|
conv = &commandrModel{}
|
||||||
default:
|
default:
|
||||||
return errors.New("unsupported architecture")
|
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := json.Unmarshal(bts, conv); err != nil {
|
if err := json.Unmarshal(bts, conv); err != nil {
|
||||||
@@ -208,17 +219,22 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
vocabSize := int(p.VocabSize)
|
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
||||||
|
|
||||||
switch {
|
switch {
|
||||||
|
case vocabSize == 0:
|
||||||
|
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||||
case vocabSize > len(t.Vocabulary.Tokens):
|
case vocabSize > len(t.Vocabulary.Tokens):
|
||||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||||
}
|
}
|
||||||
case vocabSize < len(t.Vocabulary.Tokens):
|
case vocabSize < len(t.Vocabulary.Tokens):
|
||||||
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
||||||
|
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||||
|
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||||
default:
|
default:
|
||||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||||
}
|
}
|
||||||
@@ -228,5 +244,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
|||||||
return err
|
return err
|
||||||
}
|
}
|
||||||
|
|
||||||
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
||||||
|
}
|
||||||
|
|
||||||
|
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
||||||
|
for i := range ts {
|
||||||
|
ts[i].Shape = slices.Clone(ts[i].Shape)
|
||||||
|
slices.Reverse(ts[i].Shape)
|
||||||
|
}
|
||||||
|
return ggml.WriteGGUF(f, kv, ts)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ import (
|
|||||||
"slices"
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type bertModel struct {
|
type bertModel struct {
|
||||||
@@ -85,7 +85,7 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "bert"
|
kv["general.architecture"] = "bert"
|
||||||
kv["bert.attention.causal"] = false
|
kv["bert.attention.causal"] = false
|
||||||
@@ -132,8 +132,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if slices.Contains([]string{
|
if slices.Contains([]string{
|
||||||
"embeddings.position_ids",
|
"embeddings.position_ids",
|
||||||
@@ -143,7 +143,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
|||||||
76
convert/convert_commandr.go
Normal file
76
convert/convert_commandr.go
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type commandrModel struct {
|
||||||
|
ModelParameters
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
UseQKNorm bool `json:"use_qk_norm"`
|
||||||
|
MaxLength uint32 `json:"model_max_length"`
|
||||||
|
LogitScale float32 `json:"logit_scale"`
|
||||||
|
NCtx uint32 `json:"n_ctx"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*commandrModel)(nil)
|
||||||
|
|
||||||
|
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "command-r"
|
||||||
|
kv["general.name"] = "command-r"
|
||||||
|
kv["command-r.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
||||||
|
kv["command-r.embedding_length"] = p.HiddenSize
|
||||||
|
kv["command-r.block_count"] = p.HiddenLayers
|
||||||
|
kv["command-r.feed_forward_length"] = p.IntermediateSize
|
||||||
|
kv["command-r.attention.head_count"] = p.NumAttentionHeads
|
||||||
|
kv["command-r.attention.head_count_kv"] = p.NumKeyValueHeads
|
||||||
|
kv["command-r.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
||||||
|
kv["command-r.rope.freq_base"] = p.RopeTheta
|
||||||
|
kv["command-r.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
||||||
|
kv["command-r.logit_scale"] = p.LogitScale
|
||||||
|
kv["command-r.rope.scaling.type"] = "none"
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *commandrModel) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"self_attn.q_norm", "attn_q_norm",
|
||||||
|
"self_attn.k_norm", "attn_k_norm",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -6,7 +6,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type gemmaModel struct {
|
type gemmaModel struct {
|
||||||
@@ -23,7 +23,7 @@ type gemmaModel struct {
|
|||||||
|
|
||||||
var _ ModelConverter = (*gemmaModel)(nil)
|
var _ ModelConverter = (*gemmaModel)(nil)
|
||||||
|
|
||||||
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma"
|
kv["general.architecture"] = "gemma"
|
||||||
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
kv["gemma.context_length"] = p.MaxPositionEmbeddings
|
||||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||||
t.SetRepacker(p.addOne)
|
t.SetRepacker(p.addOne)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
|||||||
@@ -1,8 +1,6 @@
|
|||||||
package convert
|
package convert
|
||||||
|
|
||||||
import (
|
import "github.com/ollama/ollama/fs/ggml"
|
||||||
"github.com/ollama/ollama/llm"
|
|
||||||
)
|
|
||||||
|
|
||||||
type gemma2Model struct {
|
type gemma2Model struct {
|
||||||
gemmaModel
|
gemmaModel
|
||||||
@@ -11,7 +9,7 @@ type gemma2Model struct {
|
|||||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
|
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "gemma2"
|
kv["general.architecture"] = "gemma2"
|
||||||
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
|||||||
@@ -6,7 +6,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type gemma2Adapter struct {
|
type gemma2Adapter struct {
|
||||||
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
|
|||||||
|
|
||||||
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
var _ AdapterConverter = (*gemma2Adapter)(nil)
|
||||||
|
|
||||||
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
|
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||||
kv := p.AdapterParameters.KV()
|
kv := p.AdapterParameters.KV()
|
||||||
kv["general.architecture"] = "gemma2"
|
kv["general.architecture"] = "gemma2"
|
||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
shape := t.Shape()
|
shape := t.Shape()
|
||||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
t.SetRepacker(p.repack)
|
t.SetRepacker(p.repack)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
|
|||||||
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type gemma3Model struct {
|
||||||
|
gemmaModel
|
||||||
|
Architecture string
|
||||||
|
TextModel struct {
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||||
|
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||||
|
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||||
|
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||||
|
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||||
|
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||||
|
} `json:"vision_config"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||||
|
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||||
|
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||||
|
SlidingWindow uint32 `json:"sliding_window"`
|
||||||
|
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||||
|
}
|
||||||
|
|
||||||
|
const (
|
||||||
|
gemma4BLayerCount = 34
|
||||||
|
gemma12BLayerCount = 48
|
||||||
|
gemma27BLayerCount = 62
|
||||||
|
)
|
||||||
|
|
||||||
|
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "gemma3"
|
||||||
|
|
||||||
|
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||||
|
kv["gemma3.block_count"] = numBlocks
|
||||||
|
|
||||||
|
var (
|
||||||
|
numHeads uint32
|
||||||
|
numKVHeads uint32
|
||||||
|
)
|
||||||
|
|
||||||
|
switch numBlocks {
|
||||||
|
case gemma4BLayerCount:
|
||||||
|
numHeads = 8
|
||||||
|
numKVHeads = 4
|
||||||
|
case gemma12BLayerCount:
|
||||||
|
numHeads = 16
|
||||||
|
numKVHeads = 8
|
||||||
|
case gemma27BLayerCount:
|
||||||
|
numHeads = 32
|
||||||
|
numKVHeads = 16
|
||||||
|
default:
|
||||||
|
numHeads = p.NumAttentionHeads
|
||||||
|
numKVHeads = p.NumKeyValueHeads
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["gemma3.attention.head_count"] = numHeads
|
||||||
|
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||||
|
|
||||||
|
switch p.Architecture {
|
||||||
|
case "Gemma3ForCausalLM":
|
||||||
|
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||||
|
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||||
|
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||||
|
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||||
|
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||||
|
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||||
|
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||||
|
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||||
|
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||||
|
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||||
|
default:
|
||||||
|
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
||||||
|
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
|
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||||
|
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||||
|
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||||
|
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
|
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||||
|
}
|
||||||
|
|
||||||
|
if p.MultiModalTokensPerImage > 0 {
|
||||||
|
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *gemma3Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
"vision_tower.vision_model.embeddings", "v",
|
||||||
|
"vision_tower.vision_model", "v",
|
||||||
|
"vision_model.vision_model.embeddings", "v",
|
||||||
|
"vision_model.vision_model", "v",
|
||||||
|
"language_model.", "",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"encoder.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.q_norm", "attn_q_norm",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.k_norm", "attn_k_norm",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"self_attn.out_proj", "attn_output",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "post_attention_norm",
|
||||||
|
"pre_feedforward_layernorm", "ffn_norm",
|
||||||
|
"post_feedforward_layernorm", "post_ffw_norm",
|
||||||
|
"input_projection_weight", "input_projection.weight",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -9,7 +9,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type llamaModel struct {
|
type llamaModel struct {
|
||||||
@@ -28,12 +28,12 @@ type llamaModel struct {
|
|||||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
RopeTheta float32 `json:"rope_theta"`
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
RopeScaling struct {
|
RopeScaling struct {
|
||||||
Type string `json:"type"`
|
Type string `json:"type"`
|
||||||
RopeType string `json:"rope_type"`
|
RopeType string `json:"rope_type"`
|
||||||
Factor float32 `json:"factor"`
|
Factor float32 `json:"factor"`
|
||||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||||
|
|
||||||
factors ropeFactor
|
factors ropeFactor
|
||||||
} `json:"rope_scaling"`
|
} `json:"rope_scaling"`
|
||||||
@@ -42,11 +42,13 @@ type llamaModel struct {
|
|||||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||||
NormEpsilon float32 `json:"norm_epsilon"`
|
NormEpsilon float32 `json:"norm_epsilon"`
|
||||||
HeadDim uint32 `json:"head_dim"`
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
|
||||||
|
skipRepack bool
|
||||||
}
|
}
|
||||||
|
|
||||||
var _ ModelConverter = (*llamaModel)(nil)
|
var _ ModelConverter = (*llamaModel)(nil)
|
||||||
|
|
||||||
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "llama"
|
kv["general.architecture"] = "llama"
|
||||||
kv["llama.vocab_size"] = p.VocabSize
|
kv["llama.vocab_size"] = p.VocabSize
|
||||||
@@ -70,6 +72,10 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
|||||||
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if p.HeadDim > 0 {
|
||||||
|
kv["llama.attention.head_dim"] = p.HeadDim
|
||||||
|
}
|
||||||
|
|
||||||
if p.RopeTheta > 0 {
|
if p.RopeTheta > 0 {
|
||||||
kv["llama.rope.freq_base"] = p.RopeTheta
|
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||||
}
|
}
|
||||||
@@ -84,7 +90,7 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
|||||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||||
|
|
||||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
|
||||||
lambdaLow := float32(original) / factorLow
|
lambdaLow := float32(original) / factorLow
|
||||||
lambdaHigh := float32(original) / factorHigh
|
lambdaHigh := float32(original) / factorHigh
|
||||||
|
|
||||||
@@ -120,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
if p.RopeScaling.factors != nil {
|
if p.RopeScaling.factors != nil {
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: "rope_freqs.weight",
|
Name: "rope_freqs.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||||
@@ -133,12 +139,14 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
}
|
}
|
||||||
|
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
|
||||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
|
||||||
t.SetRepacker(p.repack)
|
if !p.skipRepack {
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
@@ -174,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
|
|||||||
}
|
}
|
||||||
|
|
||||||
var heads uint32
|
var heads uint32
|
||||||
if strings.HasSuffix(name, "attn_q.weight") {
|
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
|
||||||
heads = p.NumAttentionHeads
|
heads = p.NumAttentionHeads
|
||||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
|
||||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||||
} else {
|
} else {
|
||||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||||
|
|||||||
169
convert/convert_llama4.go
Normal file
169
convert/convert_llama4.go
Normal file
@@ -0,0 +1,169 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type llama4Model struct {
|
||||||
|
ModelParameters
|
||||||
|
TextModel struct {
|
||||||
|
llamaModel
|
||||||
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||||
|
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||||
|
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
|
||||||
|
UseQKNorm bool `json:"use_qk_norm"`
|
||||||
|
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
|
||||||
|
AttentionChunkSize uint32 `json:"attention_chunk_size"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
ImageSize uint32 `json:"image_size"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
NormEpsilon float32 `json:"norm_eps"`
|
||||||
|
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
}
|
||||||
|
|
||||||
|
// KV implements ModelConverter.
|
||||||
|
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "llama4"
|
||||||
|
|
||||||
|
for k, v := range p.TextModel.KV(t) {
|
||||||
|
if strings.HasPrefix(k, "llama.") {
|
||||||
|
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
|
||||||
|
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
|
||||||
|
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
|
||||||
|
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
|
||||||
|
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
|
||||||
|
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
|
||||||
|
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
|
||||||
|
|
||||||
|
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||||
|
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
|
||||||
|
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
// Replacements implements ModelConverter.
|
||||||
|
func (p *llama4Model) Replacements() []string {
|
||||||
|
return append(
|
||||||
|
p.TextModel.Replacements(),
|
||||||
|
"language_model.", "",
|
||||||
|
"vision_model", "v",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
"feed_forward.down_proj", "ffn_down",
|
||||||
|
"feed_forward.up_proj", "ffn_up",
|
||||||
|
"feed_forward.gate_proj", "ffn_gate",
|
||||||
|
"feed_forward.", "ffn_",
|
||||||
|
"shared_expert.down_proj", "down_shexp",
|
||||||
|
"shared_expert.gate_proj", "gate_shexp",
|
||||||
|
"shared_expert.up_proj", "up_shexp",
|
||||||
|
"experts.down_proj", "down_exps.weight",
|
||||||
|
"experts.gate_up_proj", "gate_up_exps.weight",
|
||||||
|
"router", "gate_inp",
|
||||||
|
"patch_embedding.linear", "patch_embedding",
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tensors implements ModelConverter.
|
||||||
|
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
var textTensors []Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
|
||||||
|
// gate and up projectors are fused
|
||||||
|
// dims[1], dims[2] must be swapped
|
||||||
|
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
|
||||||
|
halfDim := int(t.Shape()[2]) / 2
|
||||||
|
|
||||||
|
newShape := slices.Clone(t.Shape())
|
||||||
|
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
|
||||||
|
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
|
||||||
|
// clone tensor since we need separate repackers
|
||||||
|
tt := t.Clone()
|
||||||
|
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
||||||
|
Kind: tt.Kind(),
|
||||||
|
Shape: newShape,
|
||||||
|
WriterTo: tt,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
} else if strings.Contains(t.Name(), "ffn_down_exps") {
|
||||||
|
// dims[1], dims[2] must be swapped
|
||||||
|
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
|
||||||
|
t.SetRepacker(p.repack())
|
||||||
|
newShape := slices.Clone(t.Shape())
|
||||||
|
newShape[1], newShape[2] = newShape[2], newShape[1]
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: newShape,
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
} else {
|
||||||
|
textTensors = append(textTensors, t)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
p.TextModel.skipRepack = true
|
||||||
|
out = append(out, p.TextModel.Tensors(textTensors)...)
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
|
||||||
|
return func(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := make([]int, len(shape))
|
||||||
|
for i, dim := range shape {
|
||||||
|
dims[i] = int(dim)
|
||||||
|
}
|
||||||
|
|
||||||
|
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
t, err := t.Slice(slice...)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := t.T(0, 2, 1); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
t = tensor.Materialize(t)
|
||||||
|
// flatten tensor so it can be return as a vector
|
||||||
|
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return native.VectorF32(t.(*tensor.Dense))
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -7,7 +7,7 @@ import (
|
|||||||
"github.com/pdevine/tensor"
|
"github.com/pdevine/tensor"
|
||||||
"github.com/pdevine/tensor/native"
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type llamaAdapter struct {
|
type llamaAdapter struct {
|
||||||
@@ -18,7 +18,7 @@ type llamaAdapter struct {
|
|||||||
|
|
||||||
var _ AdapterConverter = (*llamaAdapter)(nil)
|
var _ AdapterConverter = (*llamaAdapter)(nil)
|
||||||
|
|
||||||
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||||
kv := p.AdapterParameters.KV()
|
kv := p.AdapterParameters.KV()
|
||||||
kv["general.architecture"] = "llama"
|
kv["general.architecture"] = "llama"
|
||||||
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
|
||||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
shape := t.Shape()
|
shape := t.Shape()
|
||||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
t.SetRepacker(p.repack)
|
t.SetRepacker(p.repack)
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: shape,
|
Shape: shape,
|
||||||
|
|||||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"fmt"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type mistral3Model struct {
|
||||||
|
ModelParameters
|
||||||
|
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||||
|
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||||
|
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||||
|
TextModel struct {
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
SlidingWindow *uint32 `json:"sliding_window"`
|
||||||
|
HiddenAct string `json:"hidden_act"`
|
||||||
|
VocabSize uint32 `json:"vocab_size"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
ImageSize uint32 `json:"image_size"`
|
||||||
|
NumChannels uint32 `json:"num_channels"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
HeadDim uint32 `json:"head_dim"`
|
||||||
|
HiddenAct string `json:"hidden_act"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||||
|
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := p.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "mistral3"
|
||||||
|
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||||
|
|
||||||
|
// Text configuration
|
||||||
|
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||||
|
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||||
|
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||||
|
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||||
|
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||||
|
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||||
|
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||||
|
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||||
|
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||||
|
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||||
|
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||||
|
|
||||||
|
// Vision configuration
|
||||||
|
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||||
|
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||||
|
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||||
|
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||||
|
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||||
|
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||||
|
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||||
|
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||||
|
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||||
|
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||||
|
|
||||||
|
// Multimodal configuration
|
||||||
|
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||||
|
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||||
|
|
||||||
|
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||||
|
|
||||||
|
if p.ProjectorHiddenAct != "" {
|
||||||
|
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||||
|
}
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
for _, t := range ts {
|
||||||
|
if !strings.HasPrefix(t.Name(), "v.") {
|
||||||
|
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||||
|
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||||
|
t.SetRepacker(p.repack)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"language_model.model.norm", "output_norm",
|
||||||
|
"language_model.model.", "",
|
||||||
|
"language_model.", "",
|
||||||
|
"layers", "blk",
|
||||||
|
"transformer.layers", "blk",
|
||||||
|
"vision_tower", "v",
|
||||||
|
"ln_pre", "encoder_norm",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
"embed_tokens", "token_embd",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"attention.q_proj", "attn_q",
|
||||||
|
"attention.k_proj", "attn_k",
|
||||||
|
"attention.v_proj", "attn_v",
|
||||||
|
"attention.o_proj", "attn_output",
|
||||||
|
"attention_norm", "attn_norm",
|
||||||
|
"feed_forward.gate_proj", "ffn_gate",
|
||||||
|
"feed_forward.down_proj", "ffn_down",
|
||||||
|
"feed_forward.up_proj", "ffn_up",
|
||||||
|
"multi_modal_projector", "mm",
|
||||||
|
"ffn_norm", "ffn_norm",
|
||||||
|
"lm_head", "output",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
var dims []int
|
||||||
|
for _, dim := range shape {
|
||||||
|
dims = append(dims, int(dim))
|
||||||
|
}
|
||||||
|
|
||||||
|
var heads uint32
|
||||||
|
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||||
|
heads = p.TextModel.NumAttentionHeads
|
||||||
|
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||||
|
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||||
|
} else {
|
||||||
|
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||||
|
}
|
||||||
|
|
||||||
|
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := n.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ts, err := native.SelectF32(n, 1)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var f32s []float32
|
||||||
|
for _, t := range ts {
|
||||||
|
f32s = append(f32s, t...)
|
||||||
|
}
|
||||||
|
|
||||||
|
return f32s, nil
|
||||||
|
}
|
||||||
@@ -6,7 +6,7 @@ import (
|
|||||||
"slices"
|
"slices"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type mixtralModel struct {
|
type mixtralModel struct {
|
||||||
@@ -15,7 +15,7 @@ type mixtralModel struct {
|
|||||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.llamaModel.KV(t)
|
kv := p.llamaModel.KV(t)
|
||||||
|
|
||||||
if p.NumLocalExperts > 0 {
|
if p.NumLocalExperts > 0 {
|
||||||
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
oldnew := []string{
|
oldnew := []string{
|
||||||
"model.layers", "blk",
|
"model.layers", "blk",
|
||||||
"w1", "ffn_gate_exps",
|
"w1", "ffn_gate_exps",
|
||||||
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
return true
|
return true
|
||||||
})
|
})
|
||||||
|
|
||||||
var out []llm.Tensor
|
var out []*ggml.Tensor
|
||||||
for n, e := range experts {
|
for n, e := range experts {
|
||||||
// TODO(mxyng): sanity check experts
|
// TODO(mxyng): sanity check experts
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: n,
|
Name: n,
|
||||||
Kind: e[0].Kind(),
|
Kind: e[0].Kind(),
|
||||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||||
|
|||||||
179
convert/convert_mllama.go
Normal file
179
convert/convert_mllama.go
Normal file
@@ -0,0 +1,179 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
)
|
||||||
|
|
||||||
|
type mllamaModel struct {
|
||||||
|
ModelParameters
|
||||||
|
TextModel struct {
|
||||||
|
llamaModel
|
||||||
|
|
||||||
|
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
||||||
|
} `json:"text_config"`
|
||||||
|
VisionModel struct {
|
||||||
|
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
NumGlobalLayers uint32 `json:"num_global_layers"`
|
||||||
|
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
||||||
|
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
|
||||||
|
AttentionHeads uint32 `json:"attention_heads"`
|
||||||
|
|
||||||
|
ImageSize uint32 `json:"image_size"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
NumChannels uint32 `json:"num_channels"`
|
||||||
|
MaxNumTiles uint32 `json:"max_num_tiles"`
|
||||||
|
NormEpsilon float32 `json:"norm_eps"`
|
||||||
|
RopeTheta float32 `json:"rope.freq_base"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := m.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "mllama"
|
||||||
|
|
||||||
|
for k, v := range m.TextModel.KV(t) {
|
||||||
|
if strings.HasPrefix(k, "llama.") {
|
||||||
|
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
||||||
|
|
||||||
|
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
||||||
|
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
||||||
|
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
||||||
|
|
||||||
|
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
||||||
|
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
||||||
|
|
||||||
|
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
||||||
|
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
||||||
|
|
||||||
|
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
||||||
|
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
||||||
|
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
||||||
|
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *mllamaModel) Replacements() []string {
|
||||||
|
return append(
|
||||||
|
m.TextModel.Replacements(),
|
||||||
|
"language_model.", "",
|
||||||
|
"gate_attn", "attn_gate",
|
||||||
|
"gate_ffn", "ffn_gate",
|
||||||
|
"cross_attn.", "cross_attn_",
|
||||||
|
"vision_model", "v",
|
||||||
|
"class_embedding", "class_embd",
|
||||||
|
"patch_embedding", "patch_embd",
|
||||||
|
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
||||||
|
"gated_positional_embedding.embedding", "position_embd.weight",
|
||||||
|
"gated_positional_embedding", "position_embd",
|
||||||
|
"embedding.weight", "weight",
|
||||||
|
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
||||||
|
"post_tile_positional_embedding", "post_tile_position_embd",
|
||||||
|
"layernorm_pre", "pre_ln",
|
||||||
|
"layernorm_post", "post_ln",
|
||||||
|
"global_transformer.layers", "global.blk",
|
||||||
|
"transformer.layers", "blk",
|
||||||
|
"mlp.fc1", "ffn_up",
|
||||||
|
"mlp.fc2", "ffn_down",
|
||||||
|
"multi_modal_projector", "mm.0",
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
var text []Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
|
||||||
|
text = append(text, t)
|
||||||
|
} else if t.Name() == "v.position_embd.gate" {
|
||||||
|
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
||||||
|
tt := t.Clone()
|
||||||
|
tt.SetRepacker(m.repack(name))
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: name,
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: tt,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
||||||
|
t.SetRepacker(m.repack(t.Name()))
|
||||||
|
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||||
|
t.SetRepacker(m.repack(t.Name()))
|
||||||
|
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
|
||||||
|
t.SetRepacker(m.repack(t.Name()))
|
||||||
|
}
|
||||||
|
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return append(out, m.TextModel.Tensors(text)...)
|
||||||
|
}
|
||||||
|
|
||||||
|
func (m *mllamaModel) repack(name string) Repacker {
|
||||||
|
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||||
|
dims := make([]int, len(shape))
|
||||||
|
for i, dim := range shape {
|
||||||
|
dims[i] = int(dim)
|
||||||
|
}
|
||||||
|
|
||||||
|
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
|
||||||
|
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
|
||||||
|
heads := m.VisionModel.AttentionHeads
|
||||||
|
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := t.T(0, 2, 1, 3); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := t.Reshape(dims...); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := t.Transpose(); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
t, err = tensor.Tanh(t)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
if name == "v.position_embd.gate" {
|
||||||
|
t, err = tensor.Sub(float32(1), t)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
t = tensor.Materialize(t)
|
||||||
|
// flatten tensor so it can be return as a vector
|
||||||
|
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return native.VectorF32(t.(*tensor.Dense))
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -8,7 +8,7 @@ import (
|
|||||||
"strings"
|
"strings"
|
||||||
"sync"
|
"sync"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type phi3Model struct {
|
type phi3Model struct {
|
||||||
@@ -37,7 +37,7 @@ type phi3Model struct {
|
|||||||
|
|
||||||
var _ ModelConverter = (*phi3Model)(nil)
|
var _ ModelConverter = (*phi3Model)(nil)
|
||||||
|
|
||||||
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||||
kv := p.ModelParameters.KV(t)
|
kv := p.ModelParameters.KV(t)
|
||||||
kv["general.architecture"] = "phi3"
|
kv["general.architecture"] = "phi3"
|
||||||
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
kv["phi3.context_length"] = p.MaxPositionEmbeddings
|
||||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
|
|||||||
return kv
|
return kv
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
var addRopeFactors sync.Once
|
var addRopeFactors sync.Once
|
||||||
|
|
||||||
out := make([]llm.Tensor, 0, len(ts)+2)
|
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
||||||
for _, t := range ts {
|
for _, t := range ts {
|
||||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||||
addRopeFactors.Do(func() {
|
addRopeFactors.Do(func() {
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: "rope_factors_long.weight",
|
Name: "rope_factors_long.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||||
WriterTo: p.RopeScaling.LongFactor,
|
WriterTo: p.RopeScaling.LongFactor,
|
||||||
}, llm.Tensor{
|
}, &ggml.Tensor{
|
||||||
Name: "rope_factors_short.weight",
|
Name: "rope_factors_short.weight",
|
||||||
Kind: 0,
|
Kind: 0,
|
||||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
out = append(out, llm.Tensor{
|
out = append(out, &ggml.Tensor{
|
||||||
Name: t.Name(),
|
Name: t.Name(),
|
||||||
Kind: t.Kind(),
|
Kind: t.Kind(),
|
||||||
Shape: t.Shape(),
|
Shape: t.Shape(),
|
||||||
@@ -118,6 +118,5 @@ func (p *phi3Model) Replacements() []string {
|
|||||||
type ropeFactor []float32
|
type ropeFactor []float32
|
||||||
|
|
||||||
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
||||||
err := binary.Write(w, binary.LittleEndian, r)
|
return 0, binary.Write(w, binary.LittleEndian, r)
|
||||||
return 0, err
|
|
||||||
}
|
}
|
||||||
|
|||||||
81
convert/convert_qwen2.go
Normal file
81
convert/convert_qwen2.go
Normal file
@@ -0,0 +1,81 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import "github.com/ollama/ollama/fs/ggml"
|
||||||
|
|
||||||
|
type qwen2Model struct {
|
||||||
|
ModelParameters
|
||||||
|
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||||
|
IntermediateSize uint32 `json:"intermediate_size"`
|
||||||
|
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||||
|
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
RopeScaling struct {
|
||||||
|
Type string `json:"type"`
|
||||||
|
Factor ropeFactor `json:"factor"`
|
||||||
|
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||||
|
MropeSection []int32 `json:"mrope_section"`
|
||||||
|
} `json:"rope_scaling"`
|
||||||
|
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*qwen2Model)(nil)
|
||||||
|
|
||||||
|
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := q.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "qwen2"
|
||||||
|
kv["qwen2.block_count"] = q.HiddenLayers
|
||||||
|
kv["qwen2.context_length"] = q.MaxPositionEmbeddings
|
||||||
|
kv["qwen2.embedding_length"] = q.HiddenSize
|
||||||
|
kv["qwen2.feed_forward_length"] = q.IntermediateSize
|
||||||
|
kv["qwen2.attention.head_count"] = q.NumAttentionHeads
|
||||||
|
kv["qwen2.attention.head_count_kv"] = q.NumKeyValueHeads
|
||||||
|
kv["qwen2.rope.freq_base"] = q.RopeTheta
|
||||||
|
kv["qwen2.attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
|
||||||
|
|
||||||
|
switch q.RopeScaling.Type {
|
||||||
|
case "":
|
||||||
|
// no scaling
|
||||||
|
case "yarn":
|
||||||
|
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||||
|
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||||
|
case "mrope", "default":
|
||||||
|
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||||
|
default:
|
||||||
|
panic("unknown rope scaling type")
|
||||||
|
}
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
for _, t := range ts {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *qwen2Model) Replacements() []string {
|
||||||
|
return []string{
|
||||||
|
"lm_head", "output",
|
||||||
|
"model.embed_tokens", "token_embd",
|
||||||
|
"model.layers", "blk",
|
||||||
|
"input_layernorm", "attn_norm",
|
||||||
|
"self_attn.k_proj", "attn_k",
|
||||||
|
"self_attn.v_proj", "attn_v",
|
||||||
|
"self_attn.q_proj", "attn_q",
|
||||||
|
"self_attn.o_proj", "attn_output",
|
||||||
|
"mlp.down_proj", "ffn_down",
|
||||||
|
"mlp.gate_proj", "ffn_gate",
|
||||||
|
"mlp.up_proj", "ffn_up",
|
||||||
|
"post_attention_layernorm", "ffn_norm",
|
||||||
|
"model.norm", "output_norm",
|
||||||
|
}
|
||||||
|
}
|
||||||
102
convert/convert_qwen25vl.go
Normal file
102
convert/convert_qwen25vl.go
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type qwen25VLModel struct {
|
||||||
|
qwen2Model
|
||||||
|
|
||||||
|
VisionModel struct {
|
||||||
|
Depth uint32 `json:"depth"`
|
||||||
|
HiddenSize uint32 `json:"hidden_size"`
|
||||||
|
NumHeads uint32 `json:"num_heads"`
|
||||||
|
InChannels uint32 `json:"in_chans"`
|
||||||
|
PatchSize uint32 `json:"patch_size"`
|
||||||
|
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||||
|
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||||
|
WindowSize uint32 `json:"window_size"`
|
||||||
|
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||||
|
RopeTheta float32 `json:"rope_theta"`
|
||||||
|
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
||||||
|
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||||
|
} `json:"vision_config"`
|
||||||
|
}
|
||||||
|
|
||||||
|
var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||||
|
|
||||||
|
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||||
|
kv := q.ModelParameters.KV(t)
|
||||||
|
kv["general.architecture"] = "qwen25vl"
|
||||||
|
|
||||||
|
for k, v := range q.qwen2Model.KV(t) {
|
||||||
|
if strings.HasPrefix(k, "qwen2.") {
|
||||||
|
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if q.VisionModel.FullAttentionBlocks == nil {
|
||||||
|
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
||||||
|
}
|
||||||
|
|
||||||
|
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
||||||
|
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||||
|
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
||||||
|
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||||
|
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
||||||
|
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
||||||
|
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||||
|
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
||||||
|
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||||
|
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
||||||
|
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
||||||
|
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
||||||
|
|
||||||
|
return kv
|
||||||
|
}
|
||||||
|
|
||||||
|
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||||
|
var out []*ggml.Tensor
|
||||||
|
|
||||||
|
for _, t := range ts {
|
||||||
|
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||||
|
for t := range splitDim(t, 2,
|
||||||
|
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
|
||||||
|
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
|
||||||
|
) {
|
||||||
|
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||||
|
out = append(out, t)
|
||||||
|
}
|
||||||
|
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||||
|
out = append(out, slices.Collect(splitDim(t, 0,
|
||||||
|
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
|
||||||
|
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
|
||||||
|
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
|
||||||
|
))...)
|
||||||
|
} else {
|
||||||
|
out = append(out, &ggml.Tensor{
|
||||||
|
Name: t.Name(),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: t.Shape(),
|
||||||
|
WriterTo: t,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return out
|
||||||
|
}
|
||||||
|
|
||||||
|
func (p *qwen25VLModel) Replacements() []string {
|
||||||
|
return append(
|
||||||
|
p.qwen2Model.Replacements(),
|
||||||
|
"visual", "v",
|
||||||
|
"blocks", "blk",
|
||||||
|
"attn.proj", "attn_out",
|
||||||
|
"norm1", "ln1",
|
||||||
|
"norm2", "ln2",
|
||||||
|
)
|
||||||
|
}
|
||||||
@@ -11,7 +11,6 @@ import (
|
|||||||
"io"
|
"io"
|
||||||
"io/fs"
|
"io/fs"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"math"
|
|
||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"slices"
|
"slices"
|
||||||
@@ -20,7 +19,7 @@ import (
|
|||||||
|
|
||||||
"golang.org/x/exp/maps"
|
"golang.org/x/exp/maps"
|
||||||
|
|
||||||
"github.com/ollama/ollama/llm"
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
)
|
)
|
||||||
|
|
||||||
type tensorData struct {
|
type tensorData struct {
|
||||||
@@ -29,7 +28,7 @@ type tensorData struct {
|
|||||||
Shape []int `json:"shape"`
|
Shape []int `json:"shape"`
|
||||||
}
|
}
|
||||||
|
|
||||||
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||||
t.Helper()
|
t.Helper()
|
||||||
|
|
||||||
f, err := os.CreateTemp(t.TempDir(), "f16")
|
f, err := os.CreateTemp(t.TempDir(), "f16")
|
||||||
@@ -48,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
|||||||
}
|
}
|
||||||
t.Cleanup(func() { r.Close() })
|
t.Cleanup(func() { r.Close() })
|
||||||
|
|
||||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
m, err := ggml.Decode(r, -1)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
@@ -60,7 +59,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
|
|||||||
return r, m.KV(), m.Tensors()
|
return r, m.KV(), m.Tensors()
|
||||||
}
|
}
|
||||||
|
|
||||||
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
|
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
|
||||||
actual := make(map[string]string)
|
actual := make(map[string]string)
|
||||||
for k, v := range kv {
|
for k, v := range kv {
|
||||||
if s, ok := v.(json.Marshaler); !ok {
|
if s, ok := v.(json.Marshaler); !ok {
|
||||||
@@ -75,7 +74,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tenso
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, tensor := range tensors.Items {
|
for _, tensor := range tensors.Items() {
|
||||||
sha256sum := sha256.New()
|
sha256sum := sha256.New()
|
||||||
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
|
||||||
if _, err := io.Copy(sha256sum, sr); err != nil {
|
if _, err := io.Copy(sha256sum, sr); err != nil {
|
||||||
@@ -108,6 +107,8 @@ func TestConvertModel(t *testing.T) {
|
|||||||
"Phi-3-mini-128k-instruct",
|
"Phi-3-mini-128k-instruct",
|
||||||
"all-MiniLM-L6-v2",
|
"all-MiniLM-L6-v2",
|
||||||
"gemma-2-9b-it",
|
"gemma-2-9b-it",
|
||||||
|
"Qwen2.5-0.5B-Instruct",
|
||||||
|
"c4ai-command-r-v01",
|
||||||
}
|
}
|
||||||
|
|
||||||
for i := range cases {
|
for i := range cases {
|
||||||
@@ -129,6 +130,7 @@ func TestConvertModel(t *testing.T) {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
defer expectFile.Close()
|
||||||
|
|
||||||
var expect map[string]string
|
var expect map[string]string
|
||||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||||
@@ -330,7 +332,7 @@ func TestConvertAdapter(t *testing.T) {
|
|||||||
}
|
}
|
||||||
defer r.Close()
|
defer r.Close()
|
||||||
|
|
||||||
m, _, err := llm.DecodeGGML(r, math.MaxInt)
|
m, err := ggml.Decode(r, -1)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
t.Fatal(err)
|
t.Fatal(err)
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,58 +0,0 @@
|
|||||||
package convert
|
|
||||||
|
|
||||||
import (
|
|
||||||
"archive/zip"
|
|
||||||
"errors"
|
|
||||||
"io"
|
|
||||||
"io/fs"
|
|
||||||
"os"
|
|
||||||
"path/filepath"
|
|
||||||
)
|
|
||||||
|
|
||||||
type ZipReader struct {
|
|
||||||
r *zip.Reader
|
|
||||||
p string
|
|
||||||
|
|
||||||
// limit is the maximum size of a file that can be read directly
|
|
||||||
// from the zip archive. Files larger than this size will be extracted
|
|
||||||
limit int64
|
|
||||||
}
|
|
||||||
|
|
||||||
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
|
|
||||||
return &ZipReader{r, p, limit}
|
|
||||||
}
|
|
||||||
|
|
||||||
func (z *ZipReader) Open(name string) (fs.File, error) {
|
|
||||||
r, err := z.r.Open(name)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
defer r.Close()
|
|
||||||
|
|
||||||
if fi, err := r.Stat(); err != nil {
|
|
||||||
return nil, err
|
|
||||||
} else if fi.Size() < z.limit {
|
|
||||||
return r, nil
|
|
||||||
}
|
|
||||||
|
|
||||||
if !filepath.IsLocal(name) {
|
|
||||||
return nil, zip.ErrInsecurePath
|
|
||||||
}
|
|
||||||
|
|
||||||
n := filepath.Join(z.p, name)
|
|
||||||
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
|
|
||||||
w, err := os.Create(n)
|
|
||||||
if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
defer w.Close()
|
|
||||||
|
|
||||||
if _, err := io.Copy(w, r); err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
} else if err != nil {
|
|
||||||
return nil, err
|
|
||||||
}
|
|
||||||
|
|
||||||
return os.Open(n)
|
|
||||||
}
|
|
||||||
@@ -11,14 +11,15 @@ type Tensor interface {
|
|||||||
Name() string
|
Name() string
|
||||||
Shape() []uint64
|
Shape() []uint64
|
||||||
Kind() uint32
|
Kind() uint32
|
||||||
SetRepacker(repacker)
|
SetRepacker(Repacker)
|
||||||
WriteTo(io.Writer) (int64, error)
|
WriteTo(io.Writer) (int64, error)
|
||||||
|
Clone() Tensor
|
||||||
}
|
}
|
||||||
|
|
||||||
type tensorBase struct {
|
type tensorBase struct {
|
||||||
name string
|
name string
|
||||||
shape []uint64
|
shape []uint64
|
||||||
repacker
|
repacker Repacker
|
||||||
}
|
}
|
||||||
|
|
||||||
func (t tensorBase) Name() string {
|
func (t tensorBase) Name() string {
|
||||||
@@ -36,7 +37,11 @@ const (
|
|||||||
|
|
||||||
func (t tensorBase) Kind() uint32 {
|
func (t tensorBase) Kind() uint32 {
|
||||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||||
t.name == "token_types.weight" {
|
t.name == "token_types.weight" ||
|
||||||
|
t.name == "v.positional_embedding_vlm" ||
|
||||||
|
t.name == "v.tile_position_embd.weight" ||
|
||||||
|
t.name == "v.pre_tile_position_embd.weight" ||
|
||||||
|
t.name == "v.post_tile_position_embd.weight" {
|
||||||
// these tensors are always F32
|
// these tensors are always F32
|
||||||
return 0
|
return 0
|
||||||
}
|
}
|
||||||
@@ -51,21 +56,18 @@ func (t tensorBase) Kind() uint32 {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func (t *tensorBase) SetRepacker(fn repacker) {
|
func (t *tensorBase) SetRepacker(fn Repacker) {
|
||||||
t.repacker = fn
|
t.repacker = fn
|
||||||
}
|
}
|
||||||
|
|
||||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
type Repacker func(string, []float32, []uint64) ([]float32, error)
|
||||||
|
|
||||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||||
patterns := []struct {
|
patterns := []struct {
|
||||||
Pattern string
|
Pattern string
|
||||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||||
}{
|
}{
|
||||||
{"model-*-of-*.safetensors", parseSafetensors},
|
{"*.safetensors", parseSafetensors},
|
||||||
{"model.safetensors", parseSafetensors},
|
|
||||||
{"adapters.safetensors", parseSafetensors},
|
|
||||||
{"adapter_model.safetensors", parseSafetensors},
|
|
||||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||||
{"pytorch_model.bin", parseTorch},
|
{"pytorch_model.bin", parseTorch},
|
||||||
{"consolidated.*.pth", parseTorch},
|
{"consolidated.*.pth", parseTorch},
|
||||||
|
|||||||
@@ -94,6 +94,21 @@ type safetensor struct {
|
|||||||
*tensorBase
|
*tensorBase
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (st safetensor) Clone() Tensor {
|
||||||
|
return &safetensor{
|
||||||
|
fs: st.fs,
|
||||||
|
path: st.path,
|
||||||
|
dtype: st.dtype,
|
||||||
|
offset: st.offset,
|
||||||
|
size: st.size,
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: st.name,
|
||||||
|
repacker: st.repacker,
|
||||||
|
shape: slices.Clone(st.shape),
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||||
f, err := st.fs.Open(st.path)
|
f, err := st.fs.Open(st.path)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
|
|||||||
@@ -43,6 +43,17 @@ type torch struct {
|
|||||||
*tensorBase
|
*tensorBase
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (t torch) Clone() Tensor {
|
||||||
|
return torch{
|
||||||
|
storage: t.storage,
|
||||||
|
tensorBase: &tensorBase{
|
||||||
|
name: t.name,
|
||||||
|
shape: t.shape,
|
||||||
|
repacker: t.repacker,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||||
return 0, nil
|
return 0, nil
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -331,7 +331,7 @@ type TrainerSpec struct {
|
|||||||
// Reserved special meta tokens.
|
// Reserved special meta tokens.
|
||||||
// * -1 is not used.
|
// * -1 is not used.
|
||||||
// * unk_id must not be -1.
|
// * unk_id must not be -1.
|
||||||
// Id must starts with 0 and be contigous.
|
// Id must start with 0 and be contiguous.
|
||||||
UnkId *int32 `protobuf:"varint,40,opt,name=unk_id,json=unkId,def=0" json:"unk_id,omitempty"` // <unk>
|
UnkId *int32 `protobuf:"varint,40,opt,name=unk_id,json=unkId,def=0" json:"unk_id,omitempty"` // <unk>
|
||||||
BosId *int32 `protobuf:"varint,41,opt,name=bos_id,json=bosId,def=1" json:"bos_id,omitempty"` // <s>
|
BosId *int32 `protobuf:"varint,41,opt,name=bos_id,json=bosId,def=1" json:"bos_id,omitempty"` // <s>
|
||||||
EosId *int32 `protobuf:"varint,42,opt,name=eos_id,json=eosId,def=2" json:"eos_id,omitempty"` // </s>
|
EosId *int32 `protobuf:"varint,42,opt,name=eos_id,json=eosId,def=2" json:"eos_id,omitempty"` // </s>
|
||||||
@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
|||||||
|
|
||||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||||
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
var file_sentencepiece_model_proto_goTypes = []any{
|
||||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||||
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return
|
return
|
||||||
}
|
}
|
||||||
if !protoimpl.UnsafeEnabled {
|
if !protoimpl.UnsafeEnabled {
|
||||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*TrainerSpec); i {
|
switch v := v.(*TrainerSpec); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*NormalizerSpec); i {
|
switch v := v.(*NormalizerSpec); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*SelfTestData); i {
|
switch v := v.(*SelfTestData); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*ModelProto); i {
|
switch v := v.(*ModelProto); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*SelfTestData_Sample); i {
|
switch v := v.(*SelfTestData_Sample); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
|||||||
return nil
|
return nil
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
||||||
switch v := v.(*ModelProto_SentencePiece); i {
|
switch v := v.(*ModelProto_SentencePiece); i {
|
||||||
case 0:
|
case 0:
|
||||||
return &v.state
|
return &v.state
|
||||||
|
|||||||
@@ -213,7 +213,7 @@ message TrainerSpec {
|
|||||||
// Reserved special meta tokens.
|
// Reserved special meta tokens.
|
||||||
// * -1 is not used.
|
// * -1 is not used.
|
||||||
// * unk_id must not be -1.
|
// * unk_id must not be -1.
|
||||||
// Id must starts with 0 and be contigous.
|
// Id must start with 0 and be contiguous.
|
||||||
optional int32 unk_id = 40 [default = 0]; // <unk>
|
optional int32 unk_id = 40 [default = 0]; // <unk>
|
||||||
optional int32 bos_id = 41 [default = 1]; // <s>
|
optional int32 bos_id = 41 [default = 1]; // <s>
|
||||||
optional int32 eos_id = 42 [default = 2]; // </s>
|
optional int32 eos_id = 42 [default = 2]; // </s>
|
||||||
|
|||||||
76
convert/tensor.go
Normal file
76
convert/tensor.go
Normal file
@@ -0,0 +1,76 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"cmp"
|
||||||
|
"iter"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
"github.com/pdevine/tensor/native"
|
||||||
|
|
||||||
|
"github.com/ollama/ollama/fs/ggml"
|
||||||
|
)
|
||||||
|
|
||||||
|
type split struct {
|
||||||
|
*strings.Replacer
|
||||||
|
dim int
|
||||||
|
|
||||||
|
// fn is an optional function to apply to the tensor after slicing
|
||||||
|
fn func(tensor.Tensor) (tensor.Tensor, error)
|
||||||
|
}
|
||||||
|
|
||||||
|
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||||
|
// is split evenly based on the number of replacers provided unless a specific count is given.
|
||||||
|
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
|
||||||
|
return func(yield func(*ggml.Tensor) bool) {
|
||||||
|
var offset int
|
||||||
|
for _, split := range splits {
|
||||||
|
t := t.Clone()
|
||||||
|
shape := slices.Clone(t.Shape())
|
||||||
|
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
|
||||||
|
|
||||||
|
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||||
|
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
|
||||||
|
offset += int(shape[dim])
|
||||||
|
|
||||||
|
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||||
|
dims := make([]int, len(shape))
|
||||||
|
for i := range shape {
|
||||||
|
dims[i] = int(shape[i])
|
||||||
|
}
|
||||||
|
|
||||||
|
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||||
|
tt, err := tt.Slice(slice...)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
tt = tensor.Materialize(tt)
|
||||||
|
|
||||||
|
if split.fn != nil {
|
||||||
|
tt, err = split.fn(tt)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// flatten tensor so it can be written as a vector
|
||||||
|
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return native.VectorF32(tt.(*tensor.Dense))
|
||||||
|
})
|
||||||
|
|
||||||
|
if !yield(&ggml.Tensor{
|
||||||
|
Name: split.Replace(t.Name()),
|
||||||
|
Kind: t.Kind(),
|
||||||
|
Shape: shape,
|
||||||
|
WriterTo: t,
|
||||||
|
}) {
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
304
convert/tensor_test.go
Normal file
304
convert/tensor_test.go
Normal file
@@ -0,0 +1,304 @@
|
|||||||
|
package convert
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"encoding/binary"
|
||||||
|
"io"
|
||||||
|
"iter"
|
||||||
|
"slices"
|
||||||
|
"strings"
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/pdevine/tensor"
|
||||||
|
)
|
||||||
|
|
||||||
|
type fakeTensor struct {
|
||||||
|
name string
|
||||||
|
shape []uint64
|
||||||
|
data []float32
|
||||||
|
|
||||||
|
repacker Repacker
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f fakeTensor) Name() string {
|
||||||
|
return f.name
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f fakeTensor) Shape() []uint64 {
|
||||||
|
return f.shape
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f fakeTensor) Kind() uint32 {
|
||||||
|
return 0
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f *fakeTensor) SetRepacker(fn Repacker) {
|
||||||
|
f.repacker = fn
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f fakeTensor) Clone() Tensor {
|
||||||
|
return &fakeTensor{
|
||||||
|
name: f.name,
|
||||||
|
shape: slices.Clone(f.shape),
|
||||||
|
data: slices.Clone(f.data),
|
||||||
|
repacker: f.repacker,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
|
||||||
|
data := f.data
|
||||||
|
if f.repacker != nil {
|
||||||
|
data, err = f.repacker(f.name, data, f.shape)
|
||||||
|
if err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
|
||||||
|
return 0, err
|
||||||
|
}
|
||||||
|
|
||||||
|
return int64(len(data) * 4), nil
|
||||||
|
}
|
||||||
|
|
||||||
|
func mul(shape []uint64) int {
|
||||||
|
n := 1
|
||||||
|
for _, dim := range shape {
|
||||||
|
n *= int(dim)
|
||||||
|
}
|
||||||
|
return n
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestSplitDim(t *testing.T) {
|
||||||
|
r := fakeTensor{
|
||||||
|
name: "a.b",
|
||||||
|
shape: []uint64{3, 4},
|
||||||
|
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
|
||||||
|
}
|
||||||
|
|
||||||
|
t.Run("no split", func(t *testing.T) {
|
||||||
|
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
|
||||||
|
if tt.Name != "x.b" {
|
||||||
|
t.Fatalf("expected name 'x', got '%s'", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{3, 4}) {
|
||||||
|
t.Fatalf("expected shape [3, 4], got %v", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}) {
|
||||||
|
t.Fatalf("expected data [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], got %v", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("even split", func(t *testing.T) {
|
||||||
|
next, stop := iter.Pull(splitDim(&r, 1,
|
||||||
|
split{Replacer: strings.NewReplacer("a", "x")},
|
||||||
|
split{Replacer: strings.NewReplacer("b", "y")},
|
||||||
|
))
|
||||||
|
defer stop()
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "x.b" {
|
||||||
|
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||||
|
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||||
|
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "a.y" {
|
||||||
|
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||||
|
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{2, 3, 6, 7, 10, 11}) {
|
||||||
|
t.Fatal("expected data [2, 3, 6, 7, 10, 11], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("uneven split", func(t *testing.T) {
|
||||||
|
next, stop := iter.Pull(splitDim(&r, 0,
|
||||||
|
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||||
|
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||||
|
))
|
||||||
|
defer stop()
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "x.b" {
|
||||||
|
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{2, 4}) {
|
||||||
|
t.Fatal("expected shape [2, 4], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}) {
|
||||||
|
t.Fatal("expected data [0, 1, 2, 3, 4, 5, 6, 7], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "a.y" {
|
||||||
|
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{1, 4}) {
|
||||||
|
t.Fatal("expected shape [1, 4], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{8, 9, 10, 11}) {
|
||||||
|
t.Fatal("expected data [8, 9, 10, 11], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
t.Run("split with transpose", func(t *testing.T) {
|
||||||
|
next, stop := iter.Pull(splitDim(&r, 1,
|
||||||
|
split{Replacer: strings.NewReplacer("a", "x")},
|
||||||
|
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
|
||||||
|
return tensor.Transpose(tt, 1, 0)
|
||||||
|
}},
|
||||||
|
))
|
||||||
|
defer stop()
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "x.b" {
|
||||||
|
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||||
|
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{0, 1, 4, 5, 8, 9}) {
|
||||||
|
t.Fatal("expected data [0, 1, 4, 5, 8, 9], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
tt, ok := next()
|
||||||
|
if !ok {
|
||||||
|
t.Fatal("expected at least one split")
|
||||||
|
}
|
||||||
|
|
||||||
|
if tt.Name != "a.y" {
|
||||||
|
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(tt.Shape, []uint64{3, 2}) {
|
||||||
|
t.Fatal("expected shape [3, 2], got", tt.Shape)
|
||||||
|
}
|
||||||
|
|
||||||
|
var b bytes.Buffer
|
||||||
|
if _, err := tt.WriteTo(&b); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
f32s := make([]float32, mul(tt.Shape))
|
||||||
|
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||||
|
t.Fatal(err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if !slices.Equal(f32s, []float32{2, 6, 10, 3, 7, 11}) {
|
||||||
|
t.Fatal("expected data [2, 6, 10, 3, 7, 11], got", f32s)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
314
convert/testdata/Qwen2.5-0.5B-Instruct.json
vendored
Normal file
@@ -0,0 +1,314 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "qwen2",
|
||||||
|
"general.file_type": "1",
|
||||||
|
"general.parameter_count": "494032768",
|
||||||
|
"general.quantization_version": "2",
|
||||||
|
"output_norm.weight": "93a01a6db3419e85320a244bbf8ae81c43033b1d10c342bea3797ff2ce348390",
|
||||||
|
"qwen2.attention.head_count": "14",
|
||||||
|
"qwen2.attention.head_count_kv": "2",
|
||||||
|
"qwen2.attention.layer_norm_rms_epsilon": "1e-06",
|
||||||
|
"qwen2.block_count": "24",
|
||||||
|
"qwen2.context_length": "32768",
|
||||||
|
"qwen2.embedding_length": "896",
|
||||||
|
"qwen2.feed_forward_length": "4864",
|
||||||
|
"qwen2.rope.freq_base": "1e+06",
|
||||||
|
"token_embd.weight": "d74257dc547b48be5ae7b93f1c9af072c0c42dbbb85503078e25c59cd09e68d0",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.add_padding_token": "false",
|
||||||
|
"tokenizer.ggml.eos_token_id": "151645",
|
||||||
|
"tokenizer.ggml.merges": "6b1b1c58f1223d74f9095929d3e6416cdd74784440221a5507b87b8197f2bfd2",
|
||||||
|
"tokenizer.ggml.model": "gpt2",
|
||||||
|
"tokenizer.ggml.padding_token_id": "151643",
|
||||||
|
"tokenizer.ggml.pre": "qwen2",
|
||||||
|
"tokenizer.ggml.scores": "94e247e531e8b0fa3d248f3de09c9beae0c87da8106208a8edfaac0b8ec4b53d",
|
||||||
|
"tokenizer.ggml.token_type": "b178dbc9d1b2e08f84d02918e00fc2de2619a250e6c188c91a6605f701860055",
|
||||||
|
"tokenizer.ggml.tokens": "1d93f6679b23a1152b725f7f473792d54d53c1040c5250d3e46b42f81e0a1a34",
|
||||||
|
"blk.0.attn_k.bias": "5ce6617845f66c34515978d23d52e729c298d8bffa28c356a0428bef17142cf1",
|
||||||
|
"blk.0.attn_k.weight": "a960832a9e0e83e4d95402e5d1a01cc74300fcca0c381237162126330e1a7af8",
|
||||||
|
"blk.0.attn_norm.weight": "32c7d51cd0958f1f1771174192db341f9770516d7595a2f0fd18a4d78bd5aba3",
|
||||||
|
"blk.0.attn_output.weight": "c67e6e7e868354a11bf9121c70ee56c140b20eec611a8955e7dfe54a21d40a98",
|
||||||
|
"blk.0.attn_q.bias": "3e9e994eb1f03bccfc82f8bb3c324c920d42d547e07de5be83be12c428645063",
|
||||||
|
"blk.0.attn_q.weight": "dc12132f789b97cfa1e3f5775ceb835247fa67aa47400fd09c8f9f3769208583",
|
||||||
|
"blk.0.attn_v.bias": "a3fd0757b31fdc78af5ec320332d239c1a79d34e8804df06c5454e86955e8cc9",
|
||||||
|
"blk.0.attn_v.weight": "f43094a2134c7ee2dcc52aac3c8b7d9d64fb0295a8adb94cabfd49213f017b84",
|
||||||
|
"blk.0.ffn_down.weight": "18c2aec92db14f21976838a8c35d5575f80d0e4b1e05ccc0d8388d5877e80147",
|
||||||
|
"blk.0.ffn_gate.weight": "a3a1c4ef38f8f750eabadfe3d83bbb0f77941eec1cc1a388e51852e99c8691f6",
|
||||||
|
"blk.0.ffn_norm.weight": "b59b779c42d44b5c4cec41e39b4eb61e0491a07c1b3e946ccb5b8d5c657eda3f",
|
||||||
|
"blk.0.ffn_up.weight": "db64f09987ea59449e90abae5a2ffcc20efd9203f0eebec77a6aacb5809d6cff",
|
||||||
|
"blk.1.attn_k.bias": "a5c8c5671703ec0aa0143ff70a20ffdd67b5d5790ca1dfa5bba4e87e4071ed9f",
|
||||||
|
"blk.1.attn_k.weight": "835c7c7cc95b3cb2e55bd9cac585aa0760a033896621d3e06421f3378c540f7d",
|
||||||
|
"blk.1.attn_norm.weight": "f4c36fb6c14fce721fab0de78cc118d6f66e3a3d3ea0017bb14aade24c3c5434",
|
||||||
|
"blk.1.attn_output.weight": "cc1e80310c97cef068e48e40b7096f32fa2138519d6209c6a1a9994985999016",
|
||||||
|
"blk.1.attn_q.bias": "bc332780e66b0aac80ec5e63ac32344919a840db2fcc8f87bcef16a43a54138e",
|
||||||
|
"blk.1.attn_q.weight": "d766f06c925cce38d4b31b2165b3448e1fb49a7d561985f95d9cd2fcba52367a",
|
||||||
|
"blk.1.attn_v.bias": "9f486626fb6ed9ac84970a71e9b9818dd2758501fd3f61bb1c08540dcc7a8631",
|
||||||
|
"blk.1.attn_v.weight": "e873d1e5bd4f4d6abfd47c0f55119c2c111105838753ee273a03c5ccea25ce5c",
|
||||||
|
"blk.1.ffn_down.weight": "b3ce82b093f187344de04284b1783a452de1b72640914609b8f830dc81580521",
|
||||||
|
"blk.1.ffn_gate.weight": "5cd44ad237edaca525a28a3ac13975d1b565f576d6a8003237a341ae0d156f2e",
|
||||||
|
"blk.1.ffn_norm.weight": "4ac774ee8afaee119610c46aa1ff89fc6c9084a29d226075bc4aa4d2f15f746c",
|
||||||
|
"blk.1.ffn_up.weight": "042d81ab5f1983d85c81213232f3bfc05a9302d9dfaa98d931ebba326b6058b8",
|
||||||
|
"blk.10.attn_k.bias": "767ecfeacd60a2c2221ac4d76c357190849dd9cdf64ced418d9d0c7949101401",
|
||||||
|
"blk.10.attn_k.weight": "a9f3df343227537636be8202303453086375091944e498bad11e0b91e45e8c71",
|
||||||
|
"blk.10.attn_norm.weight": "01acd0e7b3e363f873dbfde6f0995ffcce83f5aaa10ff91c31dbf775035f6d5a",
|
||||||
|
"blk.10.attn_output.weight": "a531fe660769604ab869f01b203eb115e025cad4c0baeacdd1bcca99cf6d0264",
|
||||||
|
"blk.10.attn_q.bias": "356a02c9163dd660c1340fbe1e049b335ac6178891e00996131bba9ab4cb3e59",
|
||||||
|
"blk.10.attn_q.weight": "81be0cfb227339d83f954cd8dcf35828441211c6e1d184060e3eb76085041e2f",
|
||||||
|
"blk.10.attn_v.bias": "ed0450653284b62f8bf2c2db19c0ff7a6cf3cda1324d0a044c5e3db7bb692bd3",
|
||||||
|
"blk.10.attn_v.weight": "c1247ff7092babd2ed979883095b9aa022b2996cab1c77fb9e6176ddc1498d16",
|
||||||
|
"blk.10.ffn_down.weight": "fda7544965dc9af874f1062c22151c6cefc8ba08cbe15dc67aa89979e77b2de4",
|
||||||
|
"blk.10.ffn_gate.weight": "9f2632b1dee7304d10c70bd38d85bb1f148a628a8468f894f57975b8a2f1d945",
|
||||||
|
"blk.10.ffn_norm.weight": "94f8cbd6b17a4d5aabd93fa32930a687db3b11f086142f1cd71c535c11adcad4",
|
||||||
|
"blk.10.ffn_up.weight": "8dc2f8db0474939a277a3d89db34c3bcc3381cfea57bd05a8426a164634d9112",
|
||||||
|
"blk.11.attn_k.bias": "3b8e5a662b19411e3f6530714b766aad2ee41eebc8161bec9db0bc82d383a6e0",
|
||||||
|
"blk.11.attn_k.weight": "2c29f1ed1ce53ce9604e9ea3663c2c373157e909a0d6064a8920005f6d15dad9",
|
||||||
|
"blk.11.attn_norm.weight": "48f68a99c3da4ab4c9e492677b606d1b8e0e3de1fdbf6a977523f97b8c21ec31",
|
||||||
|
"blk.11.attn_output.weight": "5859f3838a94898b020c23040941ed88f4fcb132db400d0849f30a01f62c0f1c",
|
||||||
|
"blk.11.attn_q.bias": "c5ad89a5628f2bd81252ef44ef6bbcbff15c33ad16fba66435509b959c2af6d3",
|
||||||
|
"blk.11.attn_q.weight": "d102104e5d61c1e3219564f1d0149fd593db6c6daa9f3872460c84403323cfef",
|
||||||
|
"blk.11.attn_v.bias": "8653f7d48c5f75a5b55630819f99ecf01c932f12d33fd1a3ee634613e70edde8",
|
||||||
|
"blk.11.attn_v.weight": "e0a7c7d89b9f2d0d781ce85330022229126e130a8600a09d4a5f920f0bbd50b2",
|
||||||
|
"blk.11.ffn_down.weight": "4a22b3361eba8bbe1d9a6fda1812618e894c49f13bcacb505defa9badb6b96a6",
|
||||||
|
"blk.11.ffn_gate.weight": "484698b206760d3fd8df68b252a3c5bae65c8bf6392fb53a5261b021b6f39144",
|
||||||
|
"blk.11.ffn_norm.weight": "da69e96338cbe30882cf5a9544004387f5bbc0bcb6038e61ba2baabbd2623bac",
|
||||||
|
"blk.11.ffn_up.weight": "26ec74f1f504d1281715680dfbcc321db4e9900c53932fa40955daceb891b9aa",
|
||||||
|
"blk.12.attn_k.bias": "f94b49ec3e498f14f6bc3ebefe1f82018935bbe594df03253bfffae36bc20751",
|
||||||
|
"blk.12.attn_k.weight": "ae6323d0bbcfcea01f598d308993d1a7530317e78c1f64923e36d4b1649e9e73",
|
||||||
|
"blk.12.attn_norm.weight": "3784536a7611a839a42a29a5cc538c74ee4f9793092e5efe1b227b48f8c4d37f",
|
||||||
|
"blk.12.attn_output.weight": "46826c00b066829355db78293ab216e890f5eaaed3a70499ee68785189a6b0d9",
|
||||||
|
"blk.12.attn_q.bias": "b14db2d327ce0deec97beda7d3965a56c43e1e63dc9181840fb176b114cf643a",
|
||||||
|
"blk.12.attn_q.weight": "30f67df52ced06f76b6c85531657584276a454d6ec9bb7d0c7d2ca8f067f5551",
|
||||||
|
"blk.12.attn_v.bias": "57ab4b7e43f4fc5853bca7bfbb2702f8c2c391a49252a760abbb7b26330dc4aa",
|
||||||
|
"blk.12.attn_v.weight": "3ccd9da0cfe241cd33a63310f3ca6d81c5bc5a50d200bfea6612ac376166aca2",
|
||||||
|
"blk.12.ffn_down.weight": "a095774413198a83c549ce132d7c9684c0baef33145eaa889be370ef9c881c81",
|
||||||
|
"blk.12.ffn_gate.weight": "bb3b2bbdfb065d2a0a795909c53beec327781a4a7e974bf9f99c436cea459991",
|
||||||
|
"blk.12.ffn_norm.weight": "3b486c6cd97eb4b17967d9d6c0cc3821a1a6ad73d96b4d8fbf980101b32b8dab",
|
||||||
|
"blk.12.ffn_up.weight": "d020b82dd39a5d5a9d3881397bf53a567790a07f395284e6eb0f5fe0fef53de3",
|
||||||
|
"blk.13.attn_k.bias": "69381f8254586eba3623eceb18697fe79f9b4d8f2c30136acb10d5926e3ba1d0",
|
||||||
|
"blk.13.attn_k.weight": "c4d7a31495d71269f81b586203a50abea3a9e2985667faf258c9306ec6030f1d",
|
||||||
|
"blk.13.attn_norm.weight": "907da11075d16eda668dabe548af3cfd794df26b8ab53939af1344d91bec6fba",
|
||||||
|
"blk.13.attn_output.weight": "ca01cf6d2b8ece2fb3b0f56f1eb76194471ac27b54fe264f99c909f5eb7fef4a",
|
||||||
|
"blk.13.attn_q.bias": "2f5ecebafe03b1d485b93c41cff756ca57fb65b02e9d8336f14a3d26ab5d159a",
|
||||||
|
"blk.13.attn_q.weight": "f557f8acad7f0fa62da06b5da134182fe04a5bed8bdb269e316f970c9cc440fb",
|
||||||
|
"blk.13.attn_v.bias": "a492a88ae131e95714b092545a8752eaea7c7d2f9cb77852628ca8296c415525",
|
||||||
|
"blk.13.attn_v.weight": "d1220b1fe9f1cc0a5a88ee239d65fec900f5eaf6c448b6c2cbe74c81e15ed333",
|
||||||
|
"blk.13.ffn_down.weight": "53184e33440b49848a896304eb16a983efbc6b8bee0b93de8c8de716e1585fcb",
|
||||||
|
"blk.13.ffn_gate.weight": "684bf8896f148c851506c62717e45c426921b93c10d536ecdeb0fb28259a106d",
|
||||||
|
"blk.13.ffn_norm.weight": "6cb4e547ad8665eb7c174855c08afe1e5490fece66122522c1e9e8132d9064eb",
|
||||||
|
"blk.13.ffn_up.weight": "c64107897e38c06727075aba4ea7940b2cdd0e278b5c555dffb2790ef553bb57",
|
||||||
|
"blk.14.attn_k.bias": "2814ca9b160b16ae39557c9b629482fbe3a7592d372c1e1bf1ac59a2d578fde1",
|
||||||
|
"blk.14.attn_k.weight": "3377177396463afba667742972920ebb45dfdc37e9950e1f0e1d60a2f936b27d",
|
||||||
|
"blk.14.attn_norm.weight": "5cae870477d51dd35a6d22aaeacfce4dff218ffba693820ede6a4e11f02afd6d",
|
||||||
|
"blk.14.attn_output.weight": "3cfe9ccf3d48ae9e95b93a132a1c6240189a277d764f58590fb36fdbb714cad0",
|
||||||
|
"blk.14.attn_q.bias": "6a75acc2f090b2e67bfc26f7fca080ae8bd7c7aa090ec252e694be66b8b8f038",
|
||||||
|
"blk.14.attn_q.weight": "5ef45c86d7dda1df585aa1b827b89823adf679a6bb9c164bd0f97b2aa6eb96f1",
|
||||||
|
"blk.14.attn_v.bias": "5534480443e10ed72c31a917f3d104b0f49df5e6dbfa58d0eb5e7318120e3aee",
|
||||||
|
"blk.14.attn_v.weight": "58f45cf3240c4623626ec415c7d5441eaa8d2fb184f101aba973f222989422d1",
|
||||||
|
"blk.14.ffn_down.weight": "2dc82a0f20c05b77512458738130d8d05ce150cc078680ae7ee6dd7ed68d955d",
|
||||||
|
"blk.14.ffn_gate.weight": "d4a6c6f0fcccddfd1fcaa074846622f4a74cb22b9a654ab497abdc1d0dde9450",
|
||||||
|
"blk.14.ffn_norm.weight": "777e444932a0212ff3feac98442444e17bd8a98cb758ea3356697d0846d12c56",
|
||||||
|
"blk.14.ffn_up.weight": "6b75f6bd00195198447b69a417ed9d98f8ca28b3cb8be82f4bad908be0777d57",
|
||||||
|
"blk.15.attn_k.bias": "2d07211a58e6c2f23aa3a6dc03c80a7d135dfb28726b60b0e0fdd0f35ea5c37b",
|
||||||
|
"blk.15.attn_k.weight": "e77f3c0075a1810e70df956cc51fd08612f576cc09b6de8708dcae5daedb0739",
|
||||||
|
"blk.15.attn_norm.weight": "379a10d90609a5d5ba67d633803eda1424fc61ba5cca8d3bffe70c8b18b58ebf",
|
||||||
|
"blk.15.attn_output.weight": "402751c12ee9dbc9db5e3bf66a7b23ebe7d36c0500e0be67be4c8b1c4357fa62",
|
||||||
|
"blk.15.attn_q.bias": "acb37fc409ee725ceedf7a3a41b40106086abc47b76780728f781942c5120208",
|
||||||
|
"blk.15.attn_q.weight": "89cd3047a09b46ed2bb57c69dd687f67a1f0235149b30376fa31b525898e4a55",
|
||||||
|
"blk.15.attn_v.bias": "f081a37289cbe811978feb4da3ef543bdeb7355414d476f44e09b498da10cb2c",
|
||||||
|
"blk.15.attn_v.weight": "8404f242a11e6d512c9ead9b2f083cda031e9b269f8a0a83f57ee4c56934764e",
|
||||||
|
"blk.15.ffn_down.weight": "93438f43ee8cc4f1a7fd3840a6afdd5f02123e76db4f0d9474430c0100d148fc",
|
||||||
|
"blk.15.ffn_gate.weight": "ff935a2698843e87fad9dbf7125f53e460190ec71ee128b650b3fc027fe37bfc",
|
||||||
|
"blk.15.ffn_norm.weight": "4be80f199841cba831982e988451e1833c3c938a4d6ca1169319087bf0bd723e",
|
||||||
|
"blk.15.ffn_up.weight": "ee9ba63c66d71053e33551ddd519878bb30b88eeb03cfe047119c5c4000fb0a6",
|
||||||
|
"blk.16.attn_k.bias": "3f5fbabed4510c620b99d9d542739295fa6a262a7157f3a00a4889253f8341b8",
|
||||||
|
"blk.16.attn_k.weight": "8ca6eb139b281c257324cddea97a8e9aa7c048b53075cf00153123b967c27ee5",
|
||||||
|
"blk.16.attn_norm.weight": "290157f005e5aa7dddf4bd60100e7ee7b0baa7f11ec5c2cea5e0ead2aad3a4c6",
|
||||||
|
"blk.16.attn_output.weight": "b1f4d80a7447f08f1c331712527f750d00147f35c042442ade96fd029dadc5a1",
|
||||||
|
"blk.16.attn_q.bias": "e3e4e442ad4416791b468cad8de0d0d2d68c7e7df8d06002f4d49b4da9cb25e4",
|
||||||
|
"blk.16.attn_q.weight": "cc7392fa5bb1107d3816e7e7363de252d37efd4165d065e258806291ce0a147b",
|
||||||
|
"blk.16.attn_v.bias": "a7629830f2f6293e018916849614636d40b1bcd11245f75dbc34d38abae8f324",
|
||||||
|
"blk.16.attn_v.weight": "b6c7856c7d594437630929c8cf3b31d476e817875daf1095334ec08e40c5e355",
|
||||||
|
"blk.16.ffn_down.weight": "f9c0a777a00170990a4982d5a06717511bf9b0dd08aeaab64d9040d59bcbebba",
|
||||||
|
"blk.16.ffn_gate.weight": "ed88f11bc3176c9f22004e3559ccb9830a278b75edd05e11971d51c014bd5cd2",
|
||||||
|
"blk.16.ffn_norm.weight": "ab24abdcc4957895e434c6bb3a5237a71ff5044efb9f76c1a9e76e280c128410",
|
||||||
|
"blk.16.ffn_up.weight": "99f594dc8db37f554efa606e71d215fbc3907aa464a54038d6e40e9229a547ff",
|
||||||
|
"blk.17.attn_k.bias": "f236625676f9b2faa6781c7184d12d84c089c130d2a9350a6cf70210990f6bf1",
|
||||||
|
"blk.17.attn_k.weight": "c2a4f20cd3e98538308a13afe9cc5880bdd90d543449c6072dedd694b511ee1a",
|
||||||
|
"blk.17.attn_norm.weight": "5a9da4ee168311f487a79fc9d065a035432c6cafa8adb963a84954cf32f57a2a",
|
||||||
|
"blk.17.attn_output.weight": "d5df7031e354186ce65dc09d6f8a92eb721c0319816f8596b0c8a5d148ed0a2a",
|
||||||
|
"blk.17.attn_q.bias": "3212d5eeaa7ed7fac93cc99e16544de93c01bb681ae9391256ed4a8671fc6b00",
|
||||||
|
"blk.17.attn_q.weight": "d18cd9aa7ee10c551cb705549fa1ae974aea233f86471c9a19022dc29b63d0d5",
|
||||||
|
"blk.17.attn_v.bias": "a74ad11a1f8357742f80e2a0c0b3a2578fc8bbaf14c8223000767e07a5d79703",
|
||||||
|
"blk.17.attn_v.weight": "da18ac0e90884436a1cb0ad6a067f97a37f321b03c70b8b03bf481339fef5c80",
|
||||||
|
"blk.17.ffn_down.weight": "81a8a5d7a194fb53d976558e0347efbe9fdb1effffde9634c70162e1a20eff51",
|
||||||
|
"blk.17.ffn_gate.weight": "72870d83ab62f2dcd45f593924e291a45e4ae1b87f804b5b88aa34cfd76dd15e",
|
||||||
|
"blk.17.ffn_norm.weight": "cae39ac69b9bdaeefab7533796fdf11dbb7a4bdbdeed601e20f209503aafe008",
|
||||||
|
"blk.17.ffn_up.weight": "e7cb40b0842468507cec0e502bbed8a86428b51d439e3466bc12f44b2754e28f",
|
||||||
|
"blk.18.attn_k.bias": "8bfc02b94f9587aa125e2d8bbc2b15f0a5eb8f378d8b3e64a8150ae0a8ca3df2",
|
||||||
|
"blk.18.attn_k.weight": "434bc3b3332ea48afee890aa689eb458a75c50bc783492b0cbf64d42db40e8ad",
|
||||||
|
"blk.18.attn_norm.weight": "d6ffc09396c42a70d1f0e97d81113eee704d3bfc9eeae2bed022075a5dd08075",
|
||||||
|
"blk.18.attn_output.weight": "133f001f81f3b082468a7de67cb2e7a76508fce34bcc4dee7f0858e06eee082c",
|
||||||
|
"blk.18.attn_q.bias": "758d0e28bf5e660b3090aafb70e2a3191b4f3bb218d65e9139a086ceacaf599f",
|
||||||
|
"blk.18.attn_q.weight": "12d7b86fc1b09b9fa7f8b7ed43d8a410892cec8672d0c752f8346f6193343696",
|
||||||
|
"blk.18.attn_v.bias": "9efd15bab0519462431d6c6e8a5b7dd4e151dc449468097ee0ddca369c0ecc2e",
|
||||||
|
"blk.18.attn_v.weight": "f631231a79d4a2e9730fb2e386d8c18621eb3fb7900fbfdff5e6d52cc42db122",
|
||||||
|
"blk.18.ffn_down.weight": "874a2dddf456f3ab56b958b0860d71c8c680a6f89322c9bf6b2f32a113592300",
|
||||||
|
"blk.18.ffn_gate.weight": "4549ef8976c345a511df4a7133bdaf6fe387335f52dfd8a4605a8ae3f728c403",
|
||||||
|
"blk.18.ffn_norm.weight": "80c258a2536a860e19bfcbd9f29afa13214fbb4c34bde0d4da51287d354e9a59",
|
||||||
|
"blk.18.ffn_up.weight": "8b03308a581457a3c038b7a086f3cdf14941d7ad4107c4bd6d9d6b062fd00d73",
|
||||||
|
"blk.19.attn_k.bias": "e77f7b0c8e3e0a9b0d61918cd88371047752a1b02b1576936f4ec807d4d870ee",
|
||||||
|
"blk.19.attn_k.weight": "a2a318e93355230c0d0f95c441b080bf9c4914507255f363fb67a5e771d4d1e6",
|
||||||
|
"blk.19.attn_norm.weight": "9a4bdeb3970be21ac74a94c2c81eb36986533db81b78db6edec48d9802910d59",
|
||||||
|
"blk.19.attn_output.weight": "2369b103dd3947e2cef02b2669b405af5957fb3a7f9d0ff40646078c4b4317ad",
|
||||||
|
"blk.19.attn_q.bias": "e20bf427bef69059ae84a5d9f98f7d688489627f198fb6153def018ff9fd2e34",
|
||||||
|
"blk.19.attn_q.weight": "45a3bb3bdfd2f29dd76e5f78ddae73678b9a2a85dfaf609e460240ef5b7be2ad",
|
||||||
|
"blk.19.attn_v.bias": "a441f58a3e02ed86ee1819eefc9bd4e8b70d11b864a929d58a2c2ac0aeb8203d",
|
||||||
|
"blk.19.attn_v.weight": "30b0b04480c510450a7abb2ce9fa05c65b150a3cc4dc76f8916bf8d013f1b6be",
|
||||||
|
"blk.19.ffn_down.weight": "eebb9ab8fdb6a6efcfff8cf383adac9ec2d64aeeff703d16ed60d3621f86c395",
|
||||||
|
"blk.19.ffn_gate.weight": "3fef1493029298378886586478410b3d2e4e879f6aa83c07e210a7ce6481817f",
|
||||||
|
"blk.19.ffn_norm.weight": "e1be99ea1e8fb9678f7b8ba200f3f37e03878f3574d65d57bcd3a9fd796e2112",
|
||||||
|
"blk.19.ffn_up.weight": "f07cf25e09394fb69fe3ef324bdc0df9a4cecf3dc53070b8acc39e6d1689bf82",
|
||||||
|
"blk.2.attn_k.bias": "b29baa8221f125eff6b8ac1a950fa1d7cfc1bce7bdc636bf3df7d4065ab6466c",
|
||||||
|
"blk.2.attn_k.weight": "4bd0c179bced8bc37a09f5748c394e0cf50273942fb38a866e5cf50b6c96c437",
|
||||||
|
"blk.2.attn_norm.weight": "07b3edc6a6325c3428aa12f29bcae0be0de363ce61a6af487bc5c93fb8c468d9",
|
||||||
|
"blk.2.attn_output.weight": "056b5b31dbc81087c81b9d41c25960aa66c7190004c842ba343979644d7f4d88",
|
||||||
|
"blk.2.attn_q.bias": "479b6212401e097767c9d52b12a1adb8961c0fce9fcaaab81f202a9d85744376",
|
||||||
|
"blk.2.attn_q.weight": "f89196076f446a6dd8a9eee017f303504f9c03094c326449cee5a7fc0a97fade",
|
||||||
|
"blk.2.attn_v.bias": "ef9b1b986dbd9d7291027a88b67dc31434435b20e76e4f1e9d6273ebd31224f0",
|
||||||
|
"blk.2.attn_v.weight": "9322f4f00e85f8c0936845c51ca64b202a93df104f36886986a8452a8e4967a5",
|
||||||
|
"blk.2.ffn_down.weight": "7beac0d2440dc49af33ededb85a6cc3ba23ab33ad3ffa5760714b2ef84d94f6e",
|
||||||
|
"blk.2.ffn_gate.weight": "818a93864a5890c1f4dc66429004fad07645a50142350e9bff9a68fe24608a52",
|
||||||
|
"blk.2.ffn_norm.weight": "152c924d5514942ad274aafb8cc91b35c1db3627c3d973d92f60ff75f3daf9ba",
|
||||||
|
"blk.2.ffn_up.weight": "9c9579e600f209546db6015c9acfeda4f51b6d3cca6e8db4d20a04285fe61a37",
|
||||||
|
"blk.20.attn_k.bias": "fd22bfeffb63d818ce2ff1ea2ace0db5d940f7a9489b6bfc1ec4a5398848d7fe",
|
||||||
|
"blk.20.attn_k.weight": "f74439bc74c2f9252130c9c28384fd7352368b58bb7ce3f2444cf0288dfff861",
|
||||||
|
"blk.20.attn_norm.weight": "5c15d2613df87be6495fb7546b7dcedd2801d12fa5ecc02c877df889330e8f37",
|
||||||
|
"blk.20.attn_output.weight": "6731a39286a67f6859832f96695732e579e14e0c36956eccd1edce3db11595b8",
|
||||||
|
"blk.20.attn_q.bias": "04466e5a3f454a19b9b433fc2585396feac780027ece7ccb4e4bb3e406fc14d8",
|
||||||
|
"blk.20.attn_q.weight": "ead4c71daaeb17bf20d014a34c88b97f238456488e815ae0f281a5daf6fc99b8",
|
||||||
|
"blk.20.attn_v.bias": "adcc848e043025de9bd55ccb14dd8fb6343e8b5185ed07e12964be41d0faf99f",
|
||||||
|
"blk.20.attn_v.weight": "81bfc23f83526386a4761c2c16b6a93cd0bbf9d846c1a51b82c71f1474a465f1",
|
||||||
|
"blk.20.ffn_down.weight": "9bf660af3bafad919d03173c89a65fc9c89440a76c42c9e55e4d171076f3c17f",
|
||||||
|
"blk.20.ffn_gate.weight": "c04b4f3ccce44917ee228b998e2c19dd702aef10a43413afb152e808b5ac5c42",
|
||||||
|
"blk.20.ffn_norm.weight": "3d5b555d7746a71220143c6b8fff5ce4eb63283d9d9c772f1233d848f69f4ff4",
|
||||||
|
"blk.20.ffn_up.weight": "d7a196505c39e5469dfc7c6958bdbb54e93629ac1a047a6663ed96b318753094",
|
||||||
|
"blk.21.attn_k.bias": "4db1f48e5c6a3bc5720a5da813bbef08283e6269e12d83f8a9c54e52715d8011",
|
||||||
|
"blk.21.attn_k.weight": "c687b2f0e132a5e220a2a059b61aa2a537f37d8a674d7709f87880637b263b31",
|
||||||
|
"blk.21.attn_norm.weight": "ec23b0ff847a4b45585ab8e04f10fc20bb1637c5f1fbcdc4d73f336bcb5d1bd0",
|
||||||
|
"blk.21.attn_output.weight": "01255390576316c1731ef201e32c6e934eba356c28438cd06d9027ac6a3ff84f",
|
||||||
|
"blk.21.attn_q.bias": "3098f37205a15418e1681e407c82b7ce7c6fda6c6826b0590a13e1b68a38a1ea",
|
||||||
|
"blk.21.attn_q.weight": "30ea62cbb702a5359229dc96819df17ee535e2e9988d044b005c73ea536e1005",
|
||||||
|
"blk.21.attn_v.bias": "7bbedb2c22a04737f21993115701d4a06b985b7ca3b64681f53cd1be8d7ea39e",
|
||||||
|
"blk.21.attn_v.weight": "e11905e63579e36fbee978062af7599339ae29633765a4835628d79a795ec8df",
|
||||||
|
"blk.21.ffn_down.weight": "84def2ffd8aca766f9ce12ed9ac76919ab81eb34bdeae44fa4224417c38af527",
|
||||||
|
"blk.21.ffn_gate.weight": "4e99f05377b4a0b8d875045530a5c59dee6a46ac8a45597f6579f6fdfa800787",
|
||||||
|
"blk.21.ffn_norm.weight": "af48f13d03fba38ff8794a5f5005e666e501f971ca2e30bbded2777a8096f37d",
|
||||||
|
"blk.21.ffn_up.weight": "a29541c39a6acbc364be86994632a5bf55d701027cb7f23320f8c6d55ee42c91",
|
||||||
|
"blk.22.attn_k.bias": "c97f84db6c75422df6ef5768676d4e9abefaa3b8337aa2730ff260f8fc350480",
|
||||||
|
"blk.22.attn_k.weight": "af9a0c56f68779513e95be11611b7be6175ddae27d48bee9dd72fdbf05f6cbfa",
|
||||||
|
"blk.22.attn_norm.weight": "1c7518eb5bcff4a202c6f4a2827f14abd76f9bcc64ce75fe9db60b69437a5c9c",
|
||||||
|
"blk.22.attn_output.weight": "1abcf1f3caa2f59dd018646b93f9cf8fd30d49e98a473e6a8704419a751be46f",
|
||||||
|
"blk.22.attn_q.bias": "7221e01cb692faf2f7f8c2eb6e2fac38a1b751a9c9fdb6a21a0a936eb0bf4b96",
|
||||||
|
"blk.22.attn_q.weight": "faaf8fb7b6c19f343d47f3ea6b57151fb46c787e0b3bd2c292fd327d3d4d8e35",
|
||||||
|
"blk.22.attn_v.bias": "3ec05942e82d735de99dfd0d8228d8425e63e2fc584da98b3326bdef89ecb2e5",
|
||||||
|
"blk.22.attn_v.weight": "42e7b0ad06db76227837da9d4e74b2db97f3df4050ecb3a87cb9b55e08dfcb42",
|
||||||
|
"blk.22.ffn_down.weight": "87ef98ad2d0e824b0fa5ad8aa18787162922e527c9b1b721a99bc07d3bf97c82",
|
||||||
|
"blk.22.ffn_gate.weight": "562d6e5a1654b03aaa0e33864d23c10297fd4bcaa72d30fac69fb771ee1df9d6",
|
||||||
|
"blk.22.ffn_norm.weight": "f8a405dee467749d59427ce05cdd4b9c11bb18934a89258ea461f013b7d251f5",
|
||||||
|
"blk.22.ffn_up.weight": "90e1f4ae4062649d4d838399eb353e8bb8d56a49982b6a7f64aa3945377f7187",
|
||||||
|
"blk.23.attn_k.bias": "9ad22178a85f3be7e25f5aff462f31627466364f2f5e92f265cc91db0da9a8a8",
|
||||||
|
"blk.23.attn_k.weight": "d813beffb10f03278f5b58eea0f9d73cdcb7b5b4045ae025c379592e854f7dfd",
|
||||||
|
"blk.23.attn_norm.weight": "f583c9836044bdb056d6f8911088ac28add68e500043ae1f97b5d9158fe3d769",
|
||||||
|
"blk.23.attn_output.weight": "02789911ac3b97f6b761e958b7dd6dc7da61a46a1be92bd0b346039ca7ecd2b2",
|
||||||
|
"blk.23.attn_q.bias": "38c4970fb9b4f7e4a139258a45639d848653814b4bc89ea9849709b13f16414b",
|
||||||
|
"blk.23.attn_q.weight": "eb694be9a5ab5858b8dab064ee4cce247dc757424e65282989bd4d015b8580ce",
|
||||||
|
"blk.23.attn_v.bias": "0a25f6533aa7e7a152a4b198cf6c411c2408a34afa4f161bb4d5ffba2f74e33f",
|
||||||
|
"blk.23.attn_v.weight": "187e1bac6b70f74e6364de226565aa8275ee2854d09cbe5895451a689596049e",
|
||||||
|
"blk.23.ffn_down.weight": "88880dd9ba7ee80ade972927f810b5d2c30a69520c615190b27f9daabc0a8c5a",
|
||||||
|
"blk.23.ffn_gate.weight": "5abec63197935ab3eb8e6de0a5307396ec46cdb1cc5de25d87c845f3c4a3e887",
|
||||||
|
"blk.23.ffn_norm.weight": "60e1f5e6310c3a531c554a6bb7cd883aed58db1e51853f739436ea461c1843d7",
|
||||||
|
"blk.23.ffn_up.weight": "3d7f502771743f4a634188dfcd8b8a384fb07467ca8528366aee59ddb25b7bce",
|
||||||
|
"blk.3.attn_k.bias": "0b6b442ebbac29c8c4b67e8e3876d0382dd2dc52efdf4ab0ebbc6f71b6252393",
|
||||||
|
"blk.3.attn_k.weight": "480f40584fbda692c26f2cee45f5923780b236f8b4e8ec7bbee0237777a0918d",
|
||||||
|
"blk.3.attn_norm.weight": "39872be2af31bc9cd6b583ebba6fb759f621d586d66e5a2fc0b85991615a8923",
|
||||||
|
"blk.3.attn_output.weight": "924b2c80d8513bf637f8ebb3756a340d9cf2243de723fd08d7f5dccd46b3f8b6",
|
||||||
|
"blk.3.attn_q.bias": "863c9d848156847a3fe9bbc44415a4395245b5d13e95673c014fdb71e494ab0a",
|
||||||
|
"blk.3.attn_q.weight": "bff73ee5de92fba8f6c089bbb19ce57e17ab3c9c29295712804bb752711b882e",
|
||||||
|
"blk.3.attn_v.bias": "e1b6fea126e86189112fcdfee79ffc66a087461527bc9c2dc52dc80f3b7de95e",
|
||||||
|
"blk.3.attn_v.weight": "7812b7f5133636f06cdbb4dcc48ef7803206538641b6c960777b37f60a8e6752",
|
||||||
|
"blk.3.ffn_down.weight": "00b393d6a7e3ad9b5224211ccdbc54a96aae151f24ed631764ac224972a6bc82",
|
||||||
|
"blk.3.ffn_gate.weight": "cfd63fa3a038af05dc53c6eeb3c192f1602f26ff24cb840bcf1510fcb37b5513",
|
||||||
|
"blk.3.ffn_norm.weight": "7389fc240a282949580ea2f5b0d7973ac79f32f76dc0155b537bb6b751f8e27a",
|
||||||
|
"blk.3.ffn_up.weight": "2a945f47090df9cb16f92f1f06c520f156f8e232182eaaed09f257b8947a2a62",
|
||||||
|
"blk.4.attn_k.bias": "62533c31f0de498187593f238c6597503fef2a92e920cd540a96bc5311b3b2a0",
|
||||||
|
"blk.4.attn_k.weight": "93e829868bffd980a8e589b9c4566cd81e6ce4296a5f357a2ae93febe1284156",
|
||||||
|
"blk.4.attn_norm.weight": "9e0aaa4bbdd1389890f8abec20533f3ab16d61b872b1a8dbd623023921c660a9",
|
||||||
|
"blk.4.attn_output.weight": "74467d6f44357d67f452ac49da861468b38e98057017bd38bc9a449f9d3538e6",
|
||||||
|
"blk.4.attn_q.bias": "8e6d9026fd69b314c1773c5946be2e11daf806ef22a5d91d744344fd30c58c59",
|
||||||
|
"blk.4.attn_q.weight": "e5bfbafd94a4d530f3769f5edbba8cc08d9b5bee8f66ebf4cb54e69bc0b7f63b",
|
||||||
|
"blk.4.attn_v.bias": "20c570f92022d9905eb85c0e41d1fdb30db22007a9628b51f512f8268d6c34a2",
|
||||||
|
"blk.4.attn_v.weight": "9638d459d61da03c9dd34dad985e03c43b4f8a5bc9701a82153478329b0517e0",
|
||||||
|
"blk.4.ffn_down.weight": "9d91b06e89d52f4365dece7eaeec50f81e52cb2407b333248a81e6e2f84c05b8",
|
||||||
|
"blk.4.ffn_gate.weight": "bf6350a79c6a6ee9146edfd788b88d4a4c2b54db1aa0adcc1464dbba8a84b646",
|
||||||
|
"blk.4.ffn_norm.weight": "11a70a6b9f7ce336292f4e3a2c6c92d366d4ee4306ad4fdb1870fde107e9cc31",
|
||||||
|
"blk.4.ffn_up.weight": "64f23f493d02b147a72a59605e6b7dd1c4c74f6813a38a2a60818bd66f697347",
|
||||||
|
"blk.5.attn_k.bias": "f6c2c279c0ed686f298ad1e5514b5cd882199341f896abbb2c2129d4c64ce9c5",
|
||||||
|
"blk.5.attn_k.weight": "0e682f75870abf9efaca10dac5f04c580f42820ecf4e234d43af967019acb86f",
|
||||||
|
"blk.5.attn_norm.weight": "01efae7653705e741932fcd79dff3be643d7e97f4b5719b887835dffe44b3a82",
|
||||||
|
"blk.5.attn_output.weight": "69e841d00d196acc489cd70bc5ffbbb63530ac5fabb169d40c4fb3a32ebb8ed8",
|
||||||
|
"blk.5.attn_q.bias": "f3304d76ccd44fed887565857c8e513b1211d89a5d3e81782de507ab3f6fc045",
|
||||||
|
"blk.5.attn_q.weight": "98612a6b7920a247853ada95c240807d4ca8e43604279e7a2fc9bb265ae40469",
|
||||||
|
"blk.5.attn_v.bias": "39940a9b353ceed3edfd4a39b985c9520490aa1b9f11749c94fdf6d879d1a259",
|
||||||
|
"blk.5.attn_v.weight": "839f84b828cf83aecf479a0dc7bc86cce05145ef77dcf29916dc3e0680f5b665",
|
||||||
|
"blk.5.ffn_down.weight": "1f48cbb0960f15e06ab8a3754ade792995a655856389ddbca629c07e89d1b114",
|
||||||
|
"blk.5.ffn_gate.weight": "33d8219fce3189e1aab376039896eebd4ad36ebd26a8278cd19b26e4357e4f81",
|
||||||
|
"blk.5.ffn_norm.weight": "0f4a0f83d37127fa4483f2905cb4f38ef6ddc71584b6cb05632c62a9af313dda",
|
||||||
|
"blk.5.ffn_up.weight": "22a64a11e5f0a1ff45ca327bf9e1efa258f085ff6a96edc398b7474f725b4514",
|
||||||
|
"blk.6.attn_k.bias": "baa91df99d4df2d25e8d590bca4e334b97f2d9aa3df8e748fedc8a6188499111",
|
||||||
|
"blk.6.attn_k.weight": "121f3b9f4b9491996499392e2688a929cafe102a67920b4cb2a039349c43d8eb",
|
||||||
|
"blk.6.attn_norm.weight": "b4cf987e923d71f2f84c58d20ea8af7576b225bf61952145b489fdd395e3d411",
|
||||||
|
"blk.6.attn_output.weight": "a112642150a138d54b2a4038042fd33619035a35694771e966f3575856c635d6",
|
||||||
|
"blk.6.attn_q.bias": "a97ea10469cdfa3fdddf8bad6de683ef99f6170eb8d29d15dcf6bf4bce37c5a3",
|
||||||
|
"blk.6.attn_q.weight": "d80c787019317a87361de6bbc7df6701357216bdd9b404522cede34a719a5500",
|
||||||
|
"blk.6.attn_v.bias": "d846269db9cd77ae28da26ba0914cace1b6754bd5301af9c44607085dfcbd2d7",
|
||||||
|
"blk.6.attn_v.weight": "06567c433e8a391647633291b50828a076ad7c2436106bb9278c60a3f8fccb3b",
|
||||||
|
"blk.6.ffn_down.weight": "f15f66f56b3c474eac8c6315c5fff07c3e29c6e483d7efd4d303c7f43814be91",
|
||||||
|
"blk.6.ffn_gate.weight": "47768f89c6da8eefb29adb766ff4eb38c9dfd79320bbc1386248319fcbcf567f",
|
||||||
|
"blk.6.ffn_norm.weight": "7f8195e6b148212967145fc9d86ce36b699cff0de026042245c2d344f1ef8510",
|
||||||
|
"blk.6.ffn_up.weight": "53d7707ae4347aadb445289f9f87a008b72df5cb855b00080a605442fdd8edf3",
|
||||||
|
"blk.7.attn_k.bias": "63e274df3217dde25b8369a383e480fe4f6b403a74385f15ac0b5db71dce2744",
|
||||||
|
"blk.7.attn_k.weight": "f6fce88602f5945eee09767acbcad387d132614e6da39ae359f2bbf380d94b1f",
|
||||||
|
"blk.7.attn_norm.weight": "bbf5dc7336c0f9a511afef6bf5efeffd78f1b83940850c3eb7eb20c621b75656",
|
||||||
|
"blk.7.attn_output.weight": "d9fb907a138396a859cecbfcb377927308dc93c24c7fb52dba5eb59265feadec",
|
||||||
|
"blk.7.attn_q.bias": "f02ba1318346af77e309f40aee716e2de7ee8cab67e67b17636db9bf40894fb0",
|
||||||
|
"blk.7.attn_q.weight": "54a691e824be287a61c35c172edc01922ed792d2addeee029afc17ba6c7e11b9",
|
||||||
|
"blk.7.attn_v.bias": "3a4f182f51e84ce862d558fb2751b91802b65d74596bb14d624808513a8a83ec",
|
||||||
|
"blk.7.attn_v.weight": "a142fe6e106d3ab484e2dc6f9c72b8fc0a385279dde08deb1ad1fd05ac25deb1",
|
||||||
|
"blk.7.ffn_down.weight": "8daf7e8c430d183a4d6ab3eb575fafa4b5e31689f68b290c8b370411ad9d0f12",
|
||||||
|
"blk.7.ffn_gate.weight": "a2a786b45eb660994254b48e2aaf22f3e9821cfb383dee0ba04cc4350a2f8e72",
|
||||||
|
"blk.7.ffn_norm.weight": "73828bbc8c9610cc139fcf03e96272648cdc291263251fe3a67367408deb69e1",
|
||||||
|
"blk.7.ffn_up.weight": "e85dd0f63fed449ce16893c5795ea6a050a2d7a66d9534410a227e22c905dafa",
|
||||||
|
"blk.8.attn_k.bias": "91a752a6e2c364e5ee6a015770fe289aece4911ae6c6bbfe74ac52f465465f93",
|
||||||
|
"blk.8.attn_k.weight": "99c069e92c43a2efb74e23188256b3cabbbe06399878e681ce203a05d5da378a",
|
||||||
|
"blk.8.attn_norm.weight": "c76d36d3cc06aa2a9edb1abf9f602bb7ed61ac9d61f8ef7ed736a1e619abe717",
|
||||||
|
"blk.8.attn_output.weight": "ee5ff156a2625e1f203f65e69b514f9df04bd9a5e82b28e3876e16cf1c6f65c5",
|
||||||
|
"blk.8.attn_q.bias": "8fbd868a93b330c8b0418b488c5301f42a7eb0c58445a4e515d56777f1d96ed5",
|
||||||
|
"blk.8.attn_q.weight": "9f20ef86e80098ba52a3a31ebcc315bea3a614dac9cba7ac1db02f156db9b577",
|
||||||
|
"blk.8.attn_v.bias": "c4813571d5d618742183a7890c0b89cd7f18e210c758f63aad564659bc38a26d",
|
||||||
|
"blk.8.attn_v.weight": "ea88e1a4cf8bd56e9a88ada427d2b0cd352234827640757ee2a9ed594fb67a53",
|
||||||
|
"blk.8.ffn_down.weight": "b0d1a7495811580b189aaa3e20ea871d6d01ed7b6c23e59825078ef786944ff2",
|
||||||
|
"blk.8.ffn_gate.weight": "0a17c0caa0b06721c49b59b2a63a5dcbf744dd1cffa55962b404ba910c658a62",
|
||||||
|
"blk.8.ffn_norm.weight": "f15f109d4a8e9d1ff7c71fa5bc6373df7ee80c5f7d1de3fa0d4849d747e36bcb",
|
||||||
|
"blk.8.ffn_up.weight": "bbf4c5c4c5c8a0f9ae8b88e3cc8b86f81b98148722d5a350995af176c0b774f2",
|
||||||
|
"blk.9.attn_k.bias": "a7f60d962686b8ca60f69643e0e0fa8614688be738fb0b1c6bd54de35c2beb5e",
|
||||||
|
"blk.9.attn_k.weight": "dd80ce4adb00e338fc04b307e4c18a27071f4ba4397184a24d765e6e4a268ef4",
|
||||||
|
"blk.9.attn_norm.weight": "721e6487547e2b3986ab4b4e2500ceade59d908bccf4436e1e8031f246deb2bd",
|
||||||
|
"blk.9.attn_output.weight": "5a800af39107b363861e5f5173483cdcd644d8ac3b0c8a443b9c759d71285db8",
|
||||||
|
"blk.9.attn_q.bias": "0a19b4925ea8ca8067acc909b058adc327de3874cfc94cc9eb4a106d3f370123",
|
||||||
|
"blk.9.attn_q.weight": "93e84906684c0c7ede79967236d9fc8344da84a9f1daa04e8295c2c9b6b26a24",
|
||||||
|
"blk.9.attn_v.bias": "615421f812f821e230ecde4e6da35d868823248355ce7e4e51e2d650ead565f9",
|
||||||
|
"blk.9.attn_v.weight": "7f4913e289aefd9ceecbdaf9767b1e95303f5d59dd67ecb2cc15768477f4d08e",
|
||||||
|
"blk.9.ffn_down.weight": "95d1b3933221e87dc4af70dd566daec9498bf358070b8d26f1fc70766a84a152",
|
||||||
|
"blk.9.ffn_gate.weight": "530f2d04f6a1fbffaaa5f2fbc3a328ebed7b330e3af14b4fc7d8a51b13ad8d42",
|
||||||
|
"blk.9.ffn_norm.weight": "28077de416217ea1df94b96017bef4cc562ab62e51b1a03a671c70abc29ce52a",
|
||||||
|
"blk.9.ffn_up.weight": "b87b6190778aaee4695938e24ac6c90dbbee6dce7c5c2ab5bc26ba4564581822"
|
||||||
|
}
|
||||||
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
344
convert/testdata/c4ai-command-r-v01.json
vendored
Normal file
@@ -0,0 +1,344 @@
|
|||||||
|
{
|
||||||
|
"general.architecture": "command-r",
|
||||||
|
"general.name": "command-r",
|
||||||
|
"command-r.attention.head_count": "64",
|
||||||
|
"command-r.attention.head_count_kv": "64",
|
||||||
|
"command-r.attention.layer_norm_epsilon": "1e-05",
|
||||||
|
"command-r.block_count": "40",
|
||||||
|
"command-r.context_length": "131072",
|
||||||
|
"command-r.embedding_length": "8192",
|
||||||
|
"command-r.feed_forward_length": "22528",
|
||||||
|
"command-r.logit_scale": "0.0625",
|
||||||
|
"command-r.rope.freq_base": "8e+06",
|
||||||
|
"command-r.rope.scaling.type": "none",
|
||||||
|
"tokenizer.ggml.add_bos_token": "true",
|
||||||
|
"tokenizer.ggml.add_eos_token": "false",
|
||||||
|
"tokenizer.ggml.bos_token_id": "5",
|
||||||
|
"tokenizer.ggml.eos_token_id": "255001",
|
||||||
|
"tokenizer.ggml.merges": "902a060cac8884a5793d2a857dd2e53a259de46c8d08c4deb243c239671e1350",
|
||||||
|
"tokenizer.ggml.model": "gpt2",
|
||||||
|
"tokenizer.ggml.padding_token_id": "0",
|
||||||
|
"tokenizer.ggml.token_type": "b7a352ccd1c99d4413bcf452c2db707b0526d0e1216616b865560fab80296462",
|
||||||
|
"tokenizer.ggml.tokens": "815ac90ff23565081522d7258f46648c8a0619eb847a9c7c31b238a9b984e4ae",
|
||||||
|
"blk.0.attn_k.weight": "6fcfdb466f9ceb1229404ce4ec4e480751b8d00da12707a11783dad7256cb864",
|
||||||
|
"blk.0.attn_norm.weight": "6063317f731371864049c7704a70772f1eb632194201ebdc2ed0f8e483507c72",
|
||||||
|
"blk.0.attn_output.weight": "920f49716a1e2fc73b6794ec777947f1c122701e63ed302422ac89e90f06e9da",
|
||||||
|
"blk.0.attn_q.weight": "ddbcd7cde197e632564ac58e4f25d9e3a8ca52917329eeb6081eb41a797932ab",
|
||||||
|
"blk.0.attn_v.weight": "318fc02a189d87420f0cbf57f47f11e00c21ec1ed472ce0a2a895b44f7fa0fca",
|
||||||
|
"blk.0.ffn_down.weight": "aa71975b6eb1f4c77b03d2ac4a194cf8d95718efac741bb12f0f3ff79a27f9bc",
|
||||||
|
"blk.0.ffn_gate.weight": "42967702fa0bc738b88dc50007ace26dbe74a5a9e0978124dd093f818241a9e1",
|
||||||
|
"blk.0.ffn_up.weight": "5282c8788b086bd30f46525e7995a17464882a72703fd27165491afdd8bfd4af",
|
||||||
|
"blk.1.attn_k.weight": "cd248882e64fd2c3402c44790ebe12440133dc671b6893fdad0564c461973adc",
|
||||||
|
"blk.1.attn_norm.weight": "ba84e1c8fd30af6ec94208db4078befac8c921aad3acb887812887f3282ea2be",
|
||||||
|
"blk.1.attn_output.weight": "2efa3ef7c5666ccceb05e339b83ad680cc0d2c3ec78203f5da5959f23a80e14f",
|
||||||
|
"blk.1.attn_q.weight": "5106f2e255358a1303c22e8b5f0ec044852bb30a866c52cabefd30017a7a6b7d",
|
||||||
|
"blk.1.attn_v.weight": "a211a634a1a5df1d5f973645438be0461dd922210f9747c6b04e386c7f1ebe95",
|
||||||
|
"blk.1.ffn_down.weight": "37093afe48d32c578ec956c9ed85242cd000d6aa979e60526aafa10c822dbb10",
|
||||||
|
"blk.1.ffn_gate.weight": "469860819e9159caefb1aad0bc66db790f3393f05fd87b08e52256a7ed256543",
|
||||||
|
"blk.1.ffn_up.weight": "736742c97d35d1a011f9cafd3c0ce947ad559bb2fba6da73c816f6bfd0fa9aeb",
|
||||||
|
"blk.2.attn_k.weight": "92c219d92804d832ab404bd6dc7339c90877bb7cf405dd030c121f8b27757739",
|
||||||
|
"blk.2.attn_norm.weight": "61e4466069474b76b6d1e702566420eb669faf3556b00ff7b824784aca13a2d6",
|
||||||
|
"blk.2.attn_output.weight": "d2fb38a2b2171fd91caf037faa585a62225819aa232d86fd4f7f9d2c3c8a45e9",
|
||||||
|
"blk.2.attn_q.weight": "f6faf5cc6844e3daa4f9f68d90f5458c64879de68a7728860e38374e30c3429d",
|
||||||
|
"blk.2.attn_v.weight": "f340ef8f7341d987a6f37c0e9afe0aef5be67be00c0ce5f57612daf73319cce1",
|
||||||
|
"blk.2.ffn_down.weight": "c7be61a701d779860b621b143fb6365b607bf99ec7c0f153b07908ac8120885a",
|
||||||
|
"blk.2.ffn_gate.weight": "b64f0878187bd3392abfa4c3e8ad2f8b4c133903e54246747ff8f3b4639ad83e",
|
||||||
|
"blk.2.ffn_up.weight": "50b11c712652e90ee7428dbb45cffebb80662ac982bc72bd9eafff361b5eb5a8",
|
||||||
|
"blk.3.attn_k.weight": "2b7bcbe9ee5c9c630c8c8d7483887e78b73581016f4cbb6933db2a147a25f431",
|
||||||
|
"blk.3.attn_norm.weight": "0181dac7f4eee7252980323e8032cf339bef2046ce0a16c0fd72af7c98a8a37b",
|
||||||
|
"blk.3.attn_output.weight": "aef8843b636ce231da9e7c9acbee197883cc15df0e2887709324c6a50f16da7b",
|
||||||
|
"blk.3.attn_q.weight": "55404130fa10e81322d33eb378aa0de31a92990ce7730f1338c0ace0406bb1b1",
|
||||||
|
"blk.3.attn_v.weight": "76f7fb8040d82b957d689ce34fea2302a6640ad5bbaa0052ad2b7ebce270c33d",
|
||||||
|
"blk.3.ffn_down.weight": "648628933eff3b357c3729c33c5b1ae51c28e59b9c19acd1601a2ff7c5d5d9a5",
|
||||||
|
"blk.3.ffn_gate.weight": "6a588885d16e98d5f50ebed05af089154f680085ca9c97691e5b489088630a4a",
|
||||||
|
"blk.3.ffn_up.weight": "e12455a1d702f4986e1a663493e3d5102b367af74d45557522002a35d63ecac2",
|
||||||
|
"blk.4.attn_k.weight": "40d943380a8a85e4eab147934bf6e16f23cc8ab753f6636526382c074d182288",
|
||||||
|
"blk.4.attn_norm.weight": "4ab2c098983d4599fe540eef624c4df954adb7473faebda7471ef0ba4134814c",
|
||||||
|
"blk.4.attn_output.weight": "d14b91e40f58bf4a3c8c2eca0b12bb541de406574af39027d56f6c588a147082",
|
||||||
|
"blk.4.attn_q.weight": "e1224960a3562107488589f883fa32414bae41712fa8dbd47c5f3e3a7801452f",
|
||||||
|
"blk.4.attn_v.weight": "063f297bc4aa6e709fc32c4c32e35af7d07d80e83cb939b76adbba858006c03d",
|
||||||
|
"blk.4.ffn_down.weight": "f88a18020c5e1caaa29596895eb348e76ee5bfad27ed57651a86cd8cd1f9b5aa",
|
||||||
|
"blk.4.ffn_gate.weight": "48e7e1eed3fb52e92e61d3557dd0ec002418327090e034ce4322fd68542266f8",
|
||||||
|
"blk.4.ffn_up.weight": "1ca8a7aa17355b6ce0d9ad5539fdad3899fa47fd359c285fbfb31f19f47bf073",
|
||||||
|
"blk.5.attn_k.weight": "2bdf15f8e73d068d972380f25d207004cf0bf3b5bfa46946803ba6fba07d9175",
|
||||||
|
"blk.5.attn_norm.weight": "60448d7cde6e1b6467aa31bdea012e39cdb08c88081cee7d102dca4f93f766ef",
|
||||||
|
"blk.5.attn_output.weight": "f9f687d7c457537f9fca8a4087a59f1c3bebfaf5537b94e42c831a13224f7799",
|
||||||
|
"blk.5.attn_q.weight": "987db7a2ad68657a92625e1980effbb1f79697c2183f2b9f3b3a0570c51b0ab9",
|
||||||
|
"blk.5.attn_v.weight": "cf696891148f3e4783ad1d20f93462ae091eb8651c656bba9b662253b6263e02",
|
||||||
|
"blk.5.ffn_down.weight": "c0662b0bd0929136005fb9d691fdd9b2c33867d9ce9622339a6a456b720b059a",
|
||||||
|
"blk.5.ffn_gate.weight": "200bbdfab615d7a3a84719b6ced7751e3ce52757ef212d96f87798bc1de5e987",
|
||||||
|
"blk.5.ffn_up.weight": "df5d23e7e035fb1b9d163da7ddfdfe38da6a37e86e96534dc02ad20f011b55b3",
|
||||||
|
"blk.6.attn_k.weight": "c0dae2d272a7c5a2fa004bbb8475dbab362fc1f6d008e73d5a4434a9382ac6ba",
|
||||||
|
"blk.6.attn_norm.weight": "51c57ac8b55e04354d5dca6bb9c0cf4177639d3b038e80209e33036209688f64",
|
||||||
|
"blk.6.attn_output.weight": "229d97892c62f85bcdf431675250e01c976ad69ffa450b01fb543bf88f14a2fb",
|
||||||
|
"blk.6.attn_q.weight": "c20e49621821bd46ed156e6823864a5bda4f317750e71ab8dc54e44eb48cf7c2",
|
||||||
|
"blk.6.attn_v.weight": "53ceb1a2ee43fce3c7b5b33c58a9fc5ee7f44dc1c6f29bc9dbefc37582102dc9",
|
||||||
|
"blk.6.ffn_down.weight": "7923c943b7629d560a032d1efa210d1d75c6692140f1be94464ee7ed24f44ed0",
|
||||||
|
"blk.6.ffn_gate.weight": "57593d350361af753a6a39f53b066282634c0fb44f396f6f2966a574b01d8f8c",
|
||||||
|
"blk.6.ffn_up.weight": "327b6a7a387098b8899d3ded04a4d4e7c658ca61b80d4e7b17594be232721602",
|
||||||
|
"blk.7.attn_k.weight": "9ca48b87a10116fd8868e62b76f211d4bb91f166096be9061439ee2e1c3a5c20",
|
||||||
|
"blk.7.attn_norm.weight": "cd56cfcc4e2ad6b96e23ea7b0d32b4caf236107d99a0b22c56760b62e63c8cfd",
|
||||||
|
"blk.7.attn_output.weight": "7352b509a03cae2491ffc060e577d189341a0f861233f18c96f9d275dc4234bf",
|
||||||
|
"blk.7.attn_q.weight": "2b3791c8c008c33ddbe12bedba8191322ceea2dcce5cf0eb7a93d40ad254e672",
|
||||||
|
"blk.7.attn_v.weight": "3ae721d52466487a3d48150581e57f6d64ea1e83ab929f23b28c3d777422eeb6",
|
||||||
|
"blk.7.ffn_down.weight": "3b6fa8ececdb3c34af3a5363863d6f94289c1c95bf47fce3a3ddcf184c5f0848",
|
||||||
|
"blk.7.ffn_gate.weight": "dbd7df6c5ae5eb4adb859f0d36453813a4e289a359a1ba8f72d67fcbf21c3e22",
|
||||||
|
"blk.7.ffn_up.weight": "de68380a334b4c5cfd4c318b0e9854aec59bd79aa0f0c30af3f56414f83482b0",
|
||||||
|
"blk.8.attn_k.weight": "7303c4e4480abc72a7ee271811311199245fb5c2ea27a2bd3b8cad3a53a03c27",
|
||||||
|
"blk.8.attn_norm.weight": "2e3d1921898d1b943ce1a1b6818546c8b471d6d542da24f51a8b514b8c3dd4ef",
|
||||||
|
"blk.8.attn_output.weight": "30421520887b66bf97a18dbcdc283bc8d0b60590b612fd638a319a6eae923227",
|
||||||
|
"blk.8.attn_q.weight": "73e064d5433c9b500068a1c31744dbd53f4ade298fb450a0e8c97f62cf1f8a8d",
|
||||||
|
"blk.8.attn_v.weight": "27e21f8b9a9a8533e8178ca34a72aa1d786393d57302b7806dcdf3e51de511a8",
|
||||||
|
"blk.8.ffn_down.weight": "bf694bd8e00047982108000e7b3dee7b225db8b19abc595e5697b6bbefd92e7c",
|
||||||
|
"blk.8.ffn_gate.weight": "d55fdbf8606d9141b774b0500c58944fd1253b9e69d1f765eaa9a680b9f2ca40",
|
||||||
|
"blk.8.ffn_up.weight": "1ae3f580655e7c8e8dd6c34fa4ac574fdfc5e3f1a8536da0c5442d3a2976f0e7",
|
||||||
|
"blk.9.attn_k.weight": "b18080626012d8aabcf78542d6c7bf31c712bf55a70172fbfe173fcf34481036",
|
||||||
|
"blk.9.attn_norm.weight": "2e3620620dc09998c6d3063a7d5de5433fbbae8c11e5b00d13f145d39140e162",
|
||||||
|
"blk.9.attn_output.weight": "69c3c0e27ef1c0fc933eeb7b612b70909f18cde238873c0d576a2ba9714ef174",
|
||||||
|
"blk.9.attn_q.weight": "68330e5aa28a28873c9a6e67f032186ef651df2df5844e0f27094ba349fbe4ab",
|
||||||
|
"blk.9.attn_v.weight": "3df8d45a102be082d0793a51cb82aa62a43cd0e9d047ba4115ca0f2414b39325",
|
||||||
|
"blk.9.ffn_down.weight": "1d6cc162b73745b135b4f040a0aac3c06d5135a3dc5b2421e7ee2af48662fd7f",
|
||||||
|
"blk.9.ffn_gate.weight": "034a9d40fb1e32b534b45f4bccd65cbe43c4a6a3f5d01132bd245ca0005de5fc",
|
||||||
|
"blk.9.ffn_up.weight": "c838c38d0e1a0ac0da17eb2a66023ed31929f07d8fcfe1cc546df26096c91f0c",
|
||||||
|
"blk.10.attn_k.weight": "a78507cb72f744b86ceaa032596e74e5571c822d0226d334881169addb32cbd5",
|
||||||
|
"blk.10.attn_norm.weight": "35f48d0b28ee0e6b4cad4e983925737562d64824be5b168b3e26df3d6b260cf1",
|
||||||
|
"blk.10.attn_output.weight": "53712db06796de39b131323e7abf9a58551b6d52da6db66a471580386d396252",
|
||||||
|
"blk.10.attn_q.weight": "efe08429ba196026b81cd1c471e1c7418afd9e966659feb3936b674aa0803b58",
|
||||||
|
"blk.10.attn_v.weight": "7ec6055e134f89da0cbe79ec9f13ef2e442ac584b1f03c3e13e7d0cdad0078bd",
|
||||||
|
"blk.10.ffn_down.weight": "37e66af4bcd1f3079e841e892255b8255070655901864ea3a8c602a7f681a640",
|
||||||
|
"blk.10.ffn_gate.weight": "1825282bc34830d371c6edcc3c1e73e6ecc1e10f4aea0122dbb7acc1d6f7b1bc",
|
||||||
|
"blk.10.ffn_up.weight": "819b3b276a4d4c14a35ed6682d5ef18a5e8ed468e5ce3f12e8c75ec18ac20ec4",
|
||||||
|
"blk.11.attn_k.weight": "5327e6a2af82dfff0619a14971f5864a15553c36fead84e1af42c7630f2729c6",
|
||||||
|
"blk.11.attn_norm.weight": "fec363b3c4a43036d2c635fb8aa9e122dd87ee79811839f2f6cd955be3373e7b",
|
||||||
|
"blk.11.attn_output.weight": "ccf7b38f18ee8798b8a6a35018e2df3eb3e007de62876befb68025dd66c79763",
|
||||||
|
"blk.11.attn_q.weight": "da8c4a1c824ffe174e39f126cd72f7ef83c56aff1259d452a1212de80f98f5e9",
|
||||||
|
"blk.11.attn_v.weight": "d17ae6bb77f03982b55d341eb67acb5969e9ad3da5994b96eafc09793dcfe3a0",
|
||||||
|
"blk.11.ffn_down.weight": "a6bac521e2791345f22c57205fa1c2f2f687794dfd24d0e98d50ae0d0eb6088a",
|
||||||
|
"blk.11.ffn_gate.weight": "5ed902c488cb51ba5635f3df08258c5f84f31a679a00211ea5f9d8b824ef6d9d",
|
||||||
|
"blk.11.ffn_up.weight": "ee9f1437eb890d2cf9df2574afa1cecf20aafdd847cd75b152d7eb74419afd34",
|
||||||
|
"blk.12.attn_k.weight": "5a069c06e1019b0f889088e67458f7a11ec77fa190ada6069e46211f62219947",
|
||||||
|
"blk.12.attn_norm.weight": "194d7e5fcc8c49aea62daf1940532419cf3c505afdce6be377286b677db5db8f",
|
||||||
|
"blk.12.attn_output.weight": "6534995fd4d6fecb55e317add4b1723aba4d825e1e9471d0b08813dfdc247176",
|
||||||
|
"blk.12.attn_q.weight": "4ab51ca519b5995581fa34f846276feca3b907ef2b51f192f6cc0b3263c3f5a2",
|
||||||
|
"blk.12.attn_v.weight": "5652ca3fa81ef9a1ac1543d71fc6813f8517f8ec54b25c701f6f98061614830f",
|
||||||
|
"blk.12.ffn_down.weight": "4b2c263f54c88516b8eb273bb8d9615b01c5c8b484dc70358adb91b50b300edd",
|
||||||
|
"blk.12.ffn_gate.weight": "8f50c3c3e3e8568991d6c1b0e74b500cf4f208e7700bbb8e87c3f6a6d359b6b5",
|
||||||
|
"blk.12.ffn_up.weight": "1c1a581fec1fbe959e1427fa513f400100b5e1ee9d83932630be9905fb49c231",
|
||||||
|
"blk.13.attn_k.weight": "efd7a38c46f08d8376d82974f33c644e3a02220e142d63b1704718699a8a884c",
|
||||||
|
"blk.13.attn_norm.weight": "d28fa4f1bd75abbd063b0e622e08f579c89cd0c0c5ce63c1952ec9f944f8ee13",
|
||||||
|
"blk.13.attn_output.weight": "71e0068a639288718bdb70a6cfdefd50bc8b3ec3993347a65129e70001ca5827",
|
||||||
|
"blk.13.attn_q.weight": "b97077adc92cff07a2e07d80ee38f214ad8713571c69cd5c70ebd43dc501ac87",
|
||||||
|
"blk.13.attn_v.weight": "79b3e2749ab4b459c81e96e322b215f1e8af645eb346e176c326bd00cf6ed2fd",
|
||||||
|
"blk.13.ffn_down.weight": "9f8687d11effa1db7cfecf7bec5631734bcf2962aad74a9f519144491e08ec85",
|
||||||
|
"blk.13.ffn_gate.weight": "7d14dfa0543852e7777fe8fff29ca533744cbcf1ebcf10067e5adfc4eb345e65",
|
||||||
|
"blk.13.ffn_up.weight": "852b9527b97fdab211ff3f832a660ee1d93ccb56906144c50f01319a6e8ee615",
|
||||||
|
"blk.14.attn_k.weight": "79e926b20f36f66d58226cb358881f2f68ae7b468787d33cafae5110287a14a0",
|
||||||
|
"blk.14.attn_norm.weight": "97d481b63deb0df6142c2c6cd23043720c62eb609e390f47a7113751c79974ec",
|
||||||
|
"blk.14.attn_output.weight": "aa6e94d7176d5c79fbb89b96e5f13ce75702ce3dd23ee52986446da436a6c3d6",
|
||||||
|
"blk.14.attn_q.weight": "214becb6d1bb460da9fb8ace0f99b9a5afa9edf7aa7acc19606c7401b11d6305",
|
||||||
|
"blk.14.attn_v.weight": "488b0e6d7f1a7a2ed0972aaa6d10ef9c775ee5373460324efcf5b3e3da9311df",
|
||||||
|
"blk.14.ffn_down.weight": "29c7ad16cf9542e30996a1a01ab95b844533b28051f04cc7949c371afb796471",
|
||||||
|
"blk.14.ffn_gate.weight": "b7ef208f2b054803665b377f5a5980c122c026841809cf855c6ba06d1c3a885a",
|
||||||
|
"blk.14.ffn_up.weight": "76a5cc28100748d79c4398ce7b9176aab4d661548b6293a82f99144812e5b70e",
|
||||||
|
"blk.15.attn_k.weight": "a6b8f9e98ab878fa7ebc5d080978ebf2d050acc2ab2fa8ea9188eb10e27702c8",
|
||||||
|
"blk.15.attn_norm.weight": "a26d07a9752d6dccb68e3a8a2a49fd0752cdd0a415e05547819bc37d9ba63d5e",
|
||||||
|
"blk.15.attn_output.weight": "c63616c69048ccbee801e05be4f56d21fda21aa0cc470f41d57c31b4d9283a4d",
|
||||||
|
"blk.15.attn_q.weight": "fd595a67bf96c6ba16eb148a9d02fa52fa3c1d33ed10be28a08f851409fd6e64",
|
||||||
|
"blk.15.attn_v.weight": "1c5c9d33fa07c05d5f4ed0032c6c4aa83d863f0d31c94a66109d239dcd03cea3",
|
||||||
|
"blk.15.ffn_down.weight": "585ea62ab8aff7d7d212ea5c1a03226fda6b68370c890b776834af70c948dcbc",
|
||||||
|
"blk.15.ffn_gate.weight": "a13c63f86f879b03a573d5dd2a25cfd1f4dc73e8132e6454ecc23e538b4cdf6f",
|
||||||
|
"blk.15.ffn_up.weight": "f7112450f57c12fcd511f049e0dc0b541625a107a7901c3261ed9e984299f65c",
|
||||||
|
"blk.16.attn_k.weight": "2d2c8b11dd71fba6d1c106aa1673c113a5448653cca7eab897c8739212ed5003",
|
||||||
|
"blk.16.attn_norm.weight": "95c2ec7be9469690e18a9a1779684acb3e9da44b13e263a0da840305646fbf8a",
|
||||||
|
"blk.16.attn_output.weight": "31a65046e677f54dae654ded4e733479fcc0f7283d83076b7dc7cbcae8528230",
|
||||||
|
"blk.16.attn_q.weight": "bfc6292b9c6d49b7118d08060242a138182eb182d136ba5dfaf469437c16081d",
|
||||||
|
"blk.16.attn_v.weight": "68f81d037340217d87c7853ff4d6edfbc46d9e827ee6d5bff7c3f6238e3a95ad",
|
||||||
|
"blk.16.ffn_down.weight": "bbd6629691950cef4d5113e1c6670e91b216a9b872cb92cee02dfda4d6c4f7b8",
|
||||||
|
"blk.16.ffn_gate.weight": "63cb56f282b7401ed6c76e5bb6fdf1bf68a64f9af0c82c014209b55bcb5191d0",
|
||||||
|
"blk.16.ffn_up.weight": "b54f39a2541063cbfb6f713aa81c3b69a04100e999aa2ebbeec195dc382eceec",
|
||||||
|
"blk.17.attn_k.weight": "3d9ba49799cc56664ec30a002bcad61eb651294212a68c3ddb573eb042aef5a4",
|
||||||
|
"blk.17.attn_norm.weight": "42ee0db4b9d63257bca0012a30b12737ead1caafeb5ed3d93c8f48ffec4b46de",
|
||||||
|
"blk.17.attn_output.weight": "a38fd100f05c9041c592bc739e287de0b10d08ef2bda41a879225bdca9002f71",
|
||||||
|
"blk.17.attn_q.weight": "8a3bee285b0180a9eb35662e449ee4cbe16d992bdd48fb3a94bc4a347728cfa2",
|
||||||
|
"blk.17.attn_v.weight": "d7f8f1b8b863494ed4392a1656775912e9b264ad36016547b12e832a1d6757d6",
|
||||||
|
"blk.17.ffn_down.weight": "bb7ee58f61da8630972e25b621996fbe8ec06f4dc9ab1e268ab5b120c526ca28",
|
||||||
|
"blk.17.ffn_gate.weight": "6b652dbf167fee09a45ebfd78d500ff6548fb2756dbe5343ffec3f7e6207179f",
|
||||||
|
"blk.17.ffn_up.weight": "3b67f727e55e742715de978fab80457781e7a3762bc48f79d13b45dcb8de664c",
|
||||||
|
"blk.18.attn_k.weight": "ff7fe57c57b90c6fcc0aefc39ec24593c3a7d1ea1c23770480075a015450e0f5",
|
||||||
|
"blk.18.attn_norm.weight": "1d40faca082d2633ef0ccf19e121870dd6c7c3e2154607c7f3543fa96e99cb2d",
|
||||||
|
"blk.18.attn_output.weight": "9adfecaaa397a92db4687efd5fcabfa0daef9e6b0493763b7ff5ebc185c43a6c",
|
||||||
|
"blk.18.attn_q.weight": "ad1803eb9b291948639277afe981e666b07167eb3fcae903ba5b73bf86d8f50b",
|
||||||
|
"blk.18.attn_v.weight": "308cf23399adccf27401a4ab60d74dac6fb9d4cd4b9c5940d9145118d1881b34",
|
||||||
|
"blk.18.ffn_down.weight": "7de4ac9a561fb580619b745687dfd7ca8a69ef70471dee978741b80e9ff7bead",
|
||||||
|
"blk.18.ffn_gate.weight": "0c66970f696b33bd5ee8f1f2fbcb41fd78fa5ccabdc927e11a4d5a4089f19c69",
|
||||||
|
"blk.18.ffn_up.weight": "66a42e988e8a1f468fabf976c48e9e4bb045eaac6916ef16555ac101cd674abc",
|
||||||
|
"blk.19.attn_k.weight": "a928ab50390bacbcebe2e4b66922498134ce22d7b93beaa87d6cf4ab52eb7174",
|
||||||
|
"blk.19.attn_norm.weight": "b4a02c55b46c2a96aec9c64a254087cf48e6c1d4b6f31782c77a46fc4daebad1",
|
||||||
|
"blk.19.attn_output.weight": "b768319c641dff1eac5d1f8ceb960c9899c795bf2b24c1d6bf70aa24fda45f77",
|
||||||
|
"blk.19.attn_q.weight": "79ef3f57d187d3954a26362096e1b6c222d76f537dff73e034d6e9999935b8bc",
|
||||||
|
"blk.19.attn_v.weight": "ce13d6b13e24fcb2d5bc6a2662e5bd295b31b12db10a6d0307f86cf29b8d5001",
|
||||||
|
"blk.19.ffn_down.weight": "cf90d7e2137482cfd50934a8223ad774621d08554969da80a9712df5e6227eb0",
|
||||||
|
"blk.19.ffn_gate.weight": "71ce30150f003b6eeb3bf7464e05b6ae615f135110d8e47f0a47fd973e537c0f",
|
||||||
|
"blk.19.ffn_up.weight": "7f92aca0cc29866633feec701ec01a85a8ee2fd4e2b9630173a6cffb1d9d50ee",
|
||||||
|
"blk.20.attn_k.weight": "a2df23159d6fb74ef28e14b61028fe8b00a693a2fc9234a980be74f20b958682",
|
||||||
|
"blk.20.attn_norm.weight": "c6cd5f1b096fc5efa4eb59ca1c8c4bd28730f3dcedd59a63601663eccc6724ed",
|
||||||
|
"blk.20.attn_output.weight": "896a8a166d0f006d4b09867ae4345426303cbc3fb13a18d3d4e1bde00f16dbdf",
|
||||||
|
"blk.20.attn_q.weight": "01eb79588fe61baea0da43e99f4dc5939590e1bafd01e12dadb8326f102bfea2",
|
||||||
|
"blk.20.attn_v.weight": "bd39630fdd5a7c859ac1addaf53e63faf524c3f32f5f4896d86b6e746b1d5c06",
|
||||||
|
"blk.20.ffn_down.weight": "0304a5d39957a0e3f031c4bcc4549a135d396c8d97c8d276fd1c823ce86560c2",
|
||||||
|
"blk.20.ffn_gate.weight": "117b79d595b1dca0c8b37586beaecc4d84411507276212dc286cde7fc36c9bef",
|
||||||
|
"blk.20.ffn_up.weight": "6e799346db145c125f01783539749d3828fcc451cd4f10c5352f047a47e28714",
|
||||||
|
"blk.21.attn_k.weight": "1c37e4c0664147e775bb006b226b9553e3421140cd96288ea755f81731ab80ba",
|
||||||
|
"blk.21.attn_norm.weight": "00ae783a29000ccda5e4bdbff03df0752fb82805dc3f9b987500ebd80714476e",
|
||||||
|
"blk.21.attn_output.weight": "7588b84f9fb19f15095b5265c60b4a4e7ae74bcc47d4607dfa5d0bfab6f136cb",
|
||||||
|
"blk.21.attn_q.weight": "a65f1c0dd06d45bb97532d3e932689c1eecfe7359089b39174a96a149335cbc1",
|
||||||
|
"blk.21.attn_v.weight": "4220b77e7d5e8709b4eef33a679b5dad11f297085ef44c9977f9e54ef08f7a2d",
|
||||||
|
"blk.21.ffn_down.weight": "b8c082a0530d4b5328e67db0df84c5498f2af956de23c639fa0198ffea853950",
|
||||||
|
"blk.21.ffn_gate.weight": "cd1b656ee72d00e9835ef667c19ef89a88de261eb8eb7c0e936e0f9ddf83ef9f",
|
||||||
|
"blk.21.ffn_up.weight": "dc445f73e36ec7a3bd86884186b728f8e0187f32848c3b8b69d4d41f8571bf31",
|
||||||
|
"blk.22.attn_k.weight": "e37cf0b893ec8b9ee8c78dd139b8d9c45cb997a3bc0c3d93a70ca1c3f6af8859",
|
||||||
|
"blk.22.attn_norm.weight": "248a27838d3c46cc03a5c312facc84e2e0e2c990ef8401e93da25918497f88d1",
|
||||||
|
"blk.22.attn_output.weight": "fc191a18f6d18332c66761f7ab28008bfe295dd1f5c8741a2488442f9e00d0f5",
|
||||||
|
"blk.22.attn_q.weight": "4b193a2ab8bc2b085db18f2bf3eeba26e02b537b2cdd738160c8f14b165d0f5a",
|
||||||
|
"blk.22.attn_v.weight": "7a60ce5ccac7e045e55ba1e1e85bd2a0f93f8c781daee96c5223665e22f0c666",
|
||||||
|
"blk.22.ffn_down.weight": "e0a34fb4244e2c7168f3dbaa1904c15d339ec39999cdf27128bbaf619ee0a237",
|
||||||
|
"blk.22.ffn_gate.weight": "8bac872d4b8549c8812f927efa309f1792b524f33601095fff61b826de5a5615",
|
||||||
|
"blk.22.ffn_up.weight": "b67fa2b94dd901b6ec64c0853ce8ca2d86fe9cb1cc6d2f15fbbbe0e691c0c648",
|
||||||
|
"blk.23.attn_k.weight": "2c32e66ad01942b819ac09a197c71579fe66f02226a264fdd72ad1e02c67a27e",
|
||||||
|
"blk.23.attn_norm.weight": "825fdc94deb439cb93c713eeb077c1052b90ed658d6d464fc4ad3d611e911d48",
|
||||||
|
"blk.23.attn_output.weight": "95ca6707a95b8750b0c7c5d379d368f0f2e7ebef631954e7d4d8ec0f41f13a3a",
|
||||||
|
"blk.23.attn_q.weight": "6eccc84faca5fac015d1b26e2854501edcfd292a302228fe14cf99f5eb59a34b",
|
||||||
|
"blk.23.attn_v.weight": "b343ac3d226040f1033ee049668aa1d89b1774bc18431965682e5dbdce78ccdc",
|
||||||
|
"blk.23.ffn_down.weight": "9fc599befea8d3b1e342d564a110074f66d2542df406c4b90b6bdc5828fbb2b2",
|
||||||
|
"blk.23.ffn_gate.weight": "488556c1b0c9f0b20b0c99b4bac2e0f4046b81edb601d7b91e7e5b3bab47d667",
|
||||||
|
"blk.23.ffn_up.weight": "1088e291d7008dd9c7c2dd6830af686a8a84b724d123a016209bd5156d6898f1",
|
||||||
|
"blk.24.attn_k.weight": "a923fbe35e61e009a53927d7828818e0592bb737d6a1106c4b0b5a1efc367e07",
|
||||||
|
"blk.24.attn_norm.weight": "9b51aaaa939cefafdd9b13a7e5b74ac7fa2d603427e55a16a909d6f3f353750a",
|
||||||
|
"blk.24.attn_output.weight": "1beb2baba56f8409466434b037771248c2f620ec5f53e15f44c271d5a2d9ecf4",
|
||||||
|
"blk.24.attn_q.weight": "4b0194fe5bfae0c6bf6131dcf8cb6e2b994f6ea10b27cb03574f0f4f8cc0c950",
|
||||||
|
"blk.24.attn_v.weight": "6ac34b1ab0f66226d85bca1194a7c212cd93d384ecbc8b8395de48aec0970a61",
|
||||||
|
"blk.24.ffn_down.weight": "5508f74cb732a662c2936b32ac5e90742d172b9f961a747b0e5cba0e5906a89d",
|
||||||
|
"blk.24.ffn_gate.weight": "095e39b8584403835f9bb1ac33e0e81f54175575e4800273d281b845bff381e7",
|
||||||
|
"blk.24.ffn_up.weight": "2d43ec21637dda12973de367b0113ee9840b0d815bf6fce042f7c3f270b0b530",
|
||||||
|
"blk.25.attn_k.weight": "9e2aee029f3d2c7f67dfc7926e72c8228fb978382c8e5a4701bbf82c93801419",
|
||||||
|
"blk.25.attn_norm.weight": "220cd7164fb4cdbe22d26058e4153b26c27c7b5ce2bec8e95bf2c0ea08d23103",
|
||||||
|
"blk.25.attn_output.weight": "a17f4a5dc6aa51f03dbd75602d98e9491767c205cdc2c3a5f8667fc54bbf7c64",
|
||||||
|
"blk.25.attn_q.weight": "f60827496835c440c794bf57ce9780704d10a59d8229886bf75ebb18900ba4ef",
|
||||||
|
"blk.25.attn_v.weight": "9cac217e9e9f4f4c85f14ee51165a77c580165bd4a34b202389169bbe61a1ced",
|
||||||
|
"blk.25.ffn_down.weight": "a0f36949b663e80849581dfb71e7babcc73580793bbcb0c80ab26d5a6e000359",
|
||||||
|
"blk.25.ffn_gate.weight": "df4d1be4d50d6afe5ad3ef0d0e0fac76a33e85c963dea769641d612dd53e7d13",
|
||||||
|
"blk.25.ffn_up.weight": "992da76be762632e25ebc5ef4d03728eece1b43f7c4e31827df19ca724aea694",
|
||||||
|
"blk.26.attn_k.weight": "34199ff856ac32a500c754539d070258574192a34ecba87a182897cb59fdff52",
|
||||||
|
"blk.26.attn_norm.weight": "a8e9dfb2dae5d22b5c0aec5f3675991c0e3c3e6a44153db2579136b73f456e00",
|
||||||
|
"blk.26.attn_output.weight": "1c4f257ffb0d7db0f11cfb275e38b4af736917b43ad82de1badce3f1d227da4d",
|
||||||
|
"blk.26.attn_q.weight": "33d55786274c2e718cf61e8fbecf3dfa5ee0c208f0b716d42b061f55459acb3c",
|
||||||
|
"blk.26.attn_v.weight": "684b636939cd4ffcfec5a6238a0790ffa43d853c95783af9b9e8275e74071a7a",
|
||||||
|
"blk.26.ffn_down.weight": "89d0bf066db154e6d312b5433aed1714f6a28b40f4c52e3e1530ee07703303c8",
|
||||||
|
"blk.26.ffn_gate.weight": "393d649bebe5e2940e1b043649f6c860b4b8b9f380f30e9da1744a830f358156",
|
||||||
|
"blk.26.ffn_up.weight": "179edc85ababd9d8440cc6093eecd1004290aa1cb96434b26ecf7585b6cca17b",
|
||||||
|
"blk.27.attn_k.weight": "334841445a7f1e14731b08f56eb0b1f0938c63823d28bc6d078c4c5f05b36f19",
|
||||||
|
"blk.27.attn_norm.weight": "57344471bbda2e9deffdfdb2dd05a07aa47f8761e24de53525588639145bf551",
|
||||||
|
"blk.27.attn_output.weight": "506126af9ee54b535d49f97e36f630e74834f480329f098d6d62e96246d8d65a",
|
||||||
|
"blk.27.attn_q.weight": "dd984df1acb4783849e25ba7ae378bfd385cd9efc540fb798cd5bdd873f0118f",
|
||||||
|
"blk.27.attn_v.weight": "b4b3fe9a4455d34c297ff20a2f537b647cef424741d840a747b265f23d320ac0",
|
||||||
|
"blk.27.ffn_down.weight": "621fdb185ba0d35ba5476dae73d2c81ec1482a0e878d5bfd5c3b29fe837af013",
|
||||||
|
"blk.27.ffn_gate.weight": "e4fbab45f2ec506fa374103251a0bdb7baa6f576080bdd796f3e9db92098e08f",
|
||||||
|
"blk.27.ffn_up.weight": "a0c57e463e988002bbd6a6c6792baa21a65e6f89ae303a2c301951b0ae6e4bbe",
|
||||||
|
"blk.28.attn_k.weight": "bac36cbd52ec5056841663865e1291ddab4b47ef9a2544dd285d4503bfb0e4a0",
|
||||||
|
"blk.28.attn_norm.weight": "5774a9df2bbb2e86d1f70179c7b92d81e1f401160148b3328fb64db6646a5425",
|
||||||
|
"blk.28.attn_output.weight": "e8712622d1569557000c75f26c3f55fad267fd300463c2c2cfe3afbfa1c8f908",
|
||||||
|
"blk.28.attn_q.weight": "11677751fddee52cc739699c02836f7be54d96038be4240be5d4f53d00161608",
|
||||||
|
"blk.28.attn_v.weight": "e5ee459b8958d65e1445997b9aa1e90e2f5d17761ebcf5357313119a45322507",
|
||||||
|
"blk.28.ffn_down.weight": "3934518f9f85292da8475fe38a8edcbfc4e24ac56c351b472d6351f98750871e",
|
||||||
|
"blk.28.ffn_gate.weight": "6ba735d57e98d0847e487f25ffaa25256deaa8abec76f428cb70bd9774279d83",
|
||||||
|
"blk.28.ffn_up.weight": "977fae6e1e5353114fc645dd98429464749758765cbc6e6457593d596e57850c",
|
||||||
|
"blk.29.attn_k.weight": "8122a457307d580ad6f1e0acea09a2f593d97f595ba0d6737f5fea16d2433642",
|
||||||
|
"blk.29.attn_norm.weight": "d626f721e05aa1202439b01027031d4caf1adace61ed37870a277cb6297c77cc",
|
||||||
|
"blk.29.attn_output.weight": "7fb7122ab1b6b1e6615ca746897da27bc52c92cb70d3147183cdde61795b72b3",
|
||||||
|
"blk.29.attn_q.weight": "be43e94ff6b6e391024dc824101efa0ddf4005d5b002ac26cb03765c0c73c2fa",
|
||||||
|
"blk.29.attn_v.weight": "af93c85ebff908f74f9935b81bde0516ca487c84139868a1ce079c3ae20036b1",
|
||||||
|
"blk.29.ffn_down.weight": "39dae12340ed3120bd19c495fe0872b559613641e41fde69d02d8631900b84c0",
|
||||||
|
"blk.29.ffn_gate.weight": "36fd482439840ef197c9f3b8905d86acfcea49bcf018544106ca465d4bf8d5c7",
|
||||||
|
"blk.29.ffn_up.weight": "5243fbdfdc1e2a1dd84b6210a9869d18a014db9088897e345240cdc99990bd5d",
|
||||||
|
"blk.30.attn_k.weight": "948f263616bd3788b2b968baafd69b9c5bd1b77578665f096c4b7e247b4cea42",
|
||||||
|
"blk.30.attn_norm.weight": "e168df981e744874ff303faf2eb470e5f6868c2040ba5f383f6c5148669975e7",
|
||||||
|
"blk.30.attn_output.weight": "4cf0ccca04b792573b756655a24fc89cfb1f272da8305633f0bc66ef14990b93",
|
||||||
|
"blk.30.attn_q.weight": "21e07d6cba6c50d65350289258209717174a13c42be57e8141d69712cbaf32c1",
|
||||||
|
"blk.30.attn_v.weight": "65a8ca29c7237b3182ccf03e2fc94e84f9a53d0e160fb679ab401c853170dd9c",
|
||||||
|
"blk.30.ffn_down.weight": "8b00500a6d00d84058f6658ee1d6f06fb4fcae2f90d4341792259362923b3c13",
|
||||||
|
"blk.30.ffn_gate.weight": "5bc0e19ab7a31b50ac2118ad1b36e31055271a322cd8ff661d47c3ac0210703c",
|
||||||
|
"blk.30.ffn_up.weight": "f37a0561955725bd59ee2d064fa9f4e00a12a1b620b624db3bc3add5330bc321",
|
||||||
|
"blk.31.attn_k.weight": "9a5663edda227f5d87533897146764f8e8a7481b9e71fae197c39204f8463221",
|
||||||
|
"blk.31.attn_norm.weight": "060a4f438a1ee5e220b5b5278ad2f5c085a428bf38c515766781815597c87529",
|
||||||
|
"blk.31.attn_output.weight": "6ada5d3cad9dea4780ffbb43302bb6ccc2f24eddd0fc4f5f84c9ce0fc0c6e5dd",
|
||||||
|
"blk.31.attn_q.weight": "bb5d08c08603907981ad388d5d8b70fcc9b98034ba264b8474c8890cc0297af0",
|
||||||
|
"blk.31.attn_v.weight": "e01b4252ea9c6a889c32b21144b441a347464d04536ef4f6572425be55759796",
|
||||||
|
"blk.31.ffn_down.weight": "8ba4d679c36e93ba65ba03180385ef35ea86b3b7cdf2fded9df59369f1c09630",
|
||||||
|
"blk.31.ffn_gate.weight": "e5b41dc93645f8b5e8eebae3ada3ea43a18f97ce2654228655170b07b463ccb0",
|
||||||
|
"blk.31.ffn_up.weight": "25b88cdddc8b547af294ed107d3d1312e90b983cae87936fa6062ecd8ea02539",
|
||||||
|
"blk.32.attn_k.weight": "4bcf86dc0858c8ca2fbdf6aa76674d43eb698f78979fdc1a38f556a7af1facc4",
|
||||||
|
"blk.32.attn_norm.weight": "cdcc12f3b8b9773c6722736bfb748a2729230b21478cbcc4104859d3148df815",
|
||||||
|
"blk.32.attn_output.weight": "d43f1196822995ed89a9365c97054753a8b30ce20b6e273c8edcc42673a1e141",
|
||||||
|
"blk.32.attn_q.weight": "ebf2972bb3865cbc5be4840113a322089752038344beab2a0122c7cb4fb399b6",
|
||||||
|
"blk.32.attn_v.weight": "714db81704ff34fa137512903c1013acee7877467473e46600728b9240582eb7",
|
||||||
|
"blk.32.ffn_down.weight": "2cde3da1258bb170a79d5d3cdfe10c86a71eb34b77da46b74c5ed71e7f4fe274",
|
||||||
|
"blk.32.ffn_gate.weight": "c7e1ed792532613ff9d4e5834b6536e2e0f47df2303bc0fdaa90aac0c1f4e8db",
|
||||||
|
"blk.32.ffn_up.weight": "d8d6f13fe66a716e28f79101a29817f0c0d6f99969a6f017d51bafd1a16c600c",
|
||||||
|
"blk.33.attn_k.weight": "a0a28f6cbca88da00cab2ca37094d9b0503bf9defdae77b91895b911c408cbb6",
|
||||||
|
"blk.33.attn_norm.weight": "0251200c24cc8445607ace6dc8c5aa0566567997262b7cca53a11ac23cc564b2",
|
||||||
|
"blk.33.attn_output.weight": "b2423205bdf6a1096d43c44d8d12f1a84fcd4e1bb70fcf6dc8542b8b8a71a13c",
|
||||||
|
"blk.33.attn_q.weight": "00b425c3ef71065ce5e0234e702bf38143b4952da78a85f52ab2c2e3073d97ab",
|
||||||
|
"blk.33.attn_v.weight": "035edd2335df816c42c765a5e66b9d9b9e15a822a8dc1863508145499c942c14",
|
||||||
|
"blk.33.ffn_down.weight": "4894a923a3db75bae4496ba3ce5f28796ad31fe33996a066271fb8654964310e",
|
||||||
|
"blk.33.ffn_gate.weight": "8f6c819b8bbfbe3357fae89e1ac5a3d58be85b3b04be3bacf7b62775869046ff",
|
||||||
|
"blk.33.ffn_up.weight": "257c3544b5b544fd5d839665bf5caf107a329b59dbc3751efcaa24ae63c56179",
|
||||||
|
"blk.34.attn_k.weight": "b6cd8bba892e38dac4a2ebc3ba1bce49e71b967fc436fde30c6d76f54a18935f",
|
||||||
|
"blk.34.attn_norm.weight": "2b3c8e60a064cba9955752bbbbdd92c71ba5c2f1bd721097bdbe88b5abc68787",
|
||||||
|
"blk.34.attn_output.weight": "8cc272551c9aaca9db5a660c6927bab94a0243d74a30b2bc165f06bd577714ea",
|
||||||
|
"blk.34.attn_q.weight": "74b561eb4792484e6a94b58fe2583848c3ae28ff2f1bf3d02939a0cfdfa49990",
|
||||||
|
"blk.34.attn_v.weight": "dba19e24ff05154dc5a1f55c023729303a583d13d68732ce22ea74d4410dc8f0",
|
||||||
|
"blk.34.ffn_down.weight": "76eca5dfeb274c35774e0bf9f22ee420ed9085c8e99aa2cd5a236e4918b44c61",
|
||||||
|
"blk.34.ffn_gate.weight": "9af0862d5fcbc24732846488e653db8242a467765c0cdbc00332b3a40256b4a6",
|
||||||
|
"blk.34.ffn_up.weight": "2a03126bf73587eaba99ece2066103d12e47bcd4ce30ff6c17b2f383b81d40df",
|
||||||
|
"blk.35.attn_k.weight": "52513fc0cd4e997a842729af7d21dd09399bce0a339558374738be266d0fa2f0",
|
||||||
|
"blk.35.attn_norm.weight": "e5281fa911964263ccf1630b14762edbd41d0b9472d6ec695fc600fed4892c35",
|
||||||
|
"blk.35.attn_output.weight": "b391d6705d5dc6f48326b5fd16573f679edf64109d86fb729a498819676590ca",
|
||||||
|
"blk.35.attn_q.weight": "d16446921966db9b0e0539626ad22a2511ace780e59379d6a4162d8c5441440b",
|
||||||
|
"blk.35.attn_v.weight": "9d8cdf23ffdb0c5c74106843390b94b24c9f33ef0eb9998d39f78c73390101ea",
|
||||||
|
"blk.35.ffn_down.weight": "938eb6301f7bbf162d7dd965682a5ed11d0a4a530c6fedd7e5469ce80012fc17",
|
||||||
|
"blk.35.ffn_gate.weight": "5ad84f5a0c8edcfea1ecf1a3e3d21d85ceda0c4ad9e3c6ca68885eeff8ed3c2f",
|
||||||
|
"blk.35.ffn_up.weight": "1c4330d9dc71bf4c98812c34356c51f520f47610a534152aa6d29284b758090d",
|
||||||
|
"blk.36.attn_k.weight": "ef720655e5ca2465f13db2dfc4732fb4ef2c9d53acde52f514fd4f301e974081",
|
||||||
|
"blk.36.attn_norm.weight": "88f4b9310b3c8c2644e3029160cd35678c79dfa59280430e03f5c29a6fe84a58",
|
||||||
|
"blk.36.attn_output.weight": "aec6f915fffd7bb72cd783273e871b4f09605950089d45e72059d1316b6c4b01",
|
||||||
|
"blk.36.attn_q.weight": "72f9408a2405d42f8db6ce5fcf1d26a3660b6f225fc60e77d0277109cfcb82ed",
|
||||||
|
"blk.36.attn_v.weight": "0f3b3d851dc44b3893ef53f6cca5b4acc9658bacfe1cc2d13c3d704ddd409b67",
|
||||||
|
"blk.36.ffn_down.weight": "470aec48ce8c5129a6654d9fd26fcae72776f9fc1429a8bb05818072a876475d",
|
||||||
|
"blk.36.ffn_gate.weight": "7f5f296d09cf55679767b5d15de3eff489c456782119f25204be4b1647f18dcf",
|
||||||
|
"blk.36.ffn_up.weight": "b7ef74a1f7ffb4982711d93f1787be3a70edc3d2358d5203c41d8900508037d4",
|
||||||
|
"blk.37.attn_k.weight": "c4ffa5412e4ff2dcfe1aed991c1f54169fd171a4c7638e4b9f21a1ca64c5e1d6",
|
||||||
|
"blk.37.attn_norm.weight": "4eb6c888d841cccfacf5b963f8611120f6ff24b84af0b5714fd9ab36dcda422f",
|
||||||
|
"blk.37.attn_output.weight": "db2a7bbf9682f9f6eea672dae8e150738f1bf74dbc80edc7022017a3f040c8ac",
|
||||||
|
"blk.37.attn_q.weight": "e38c0462aff139afcbab289189823527e453abc9e541154adde5e7af88cacf0b",
|
||||||
|
"blk.37.attn_v.weight": "952eb2492ed452a72f96bcc12d4b2affad9dfdf46ee39ce4a5d7b57a5dc301e5",
|
||||||
|
"blk.37.ffn_down.weight": "25f23a8fbc44febf6dc4848fd7fe03a580e2822bd3b3b5a51f4990826bfe3e4e",
|
||||||
|
"blk.37.ffn_gate.weight": "707da5eb40118b035305d3262444382351f170a20a537386a70e90c5a83a7817",
|
||||||
|
"blk.37.ffn_up.weight": "d2d2ba5cfc4ef47338dd7384219e22bf030a5a2209e0354d88f5bbaaafd20e87",
|
||||||
|
"blk.38.attn_k.weight": "abc4bb189dedf7ce661e79028427623a4f91ac091c2cd60e31b58bc62b1cda71",
|
||||||
|
"blk.38.attn_norm.weight": "9f4803a7d03fd40fcb83d85f84eb1d5682ea4e5bb084f210c02850675d804c3d",
|
||||||
|
"blk.38.attn_output.weight": "77cb66007f1a41df7135d0e7f900ceb499c2f667dfc3f1a6ac01a3203bbd3ccf",
|
||||||
|
"blk.38.attn_q.weight": "d94a8b26cd375bf2bcaa76597e314aa8268ee50a479d00931e5e0e021feadb5d",
|
||||||
|
"blk.38.attn_v.weight": "660c907888bc5016dc69b7d35fe6f55c7ded697c93be0e2d332a2f17aff88758",
|
||||||
|
"blk.38.ffn_down.weight": "6f06173bae5b00ffaf88ef383619a8b9c6a8d0d5c6494695d17f6c1de1a68a13",
|
||||||
|
"blk.38.ffn_gate.weight": "89f99be149d03f116527bfcabe073c50001c874de40fb6e817f6619027f3cd05",
|
||||||
|
"blk.38.ffn_up.weight": "8d57557c8d5e2d2688b73f01dddf1ce8d5194990cda6358153320aea88aac7f8",
|
||||||
|
"blk.39.attn_k.weight": "21be09c988b46c8393e6c2ec9230f3b5136eb7607dd1953ba92d0811c2f0dd75",
|
||||||
|
"blk.39.attn_norm.weight": "ba7c1912dd1c4e2d16917201f62396fd0600e4a451137eaddff255548c209abd",
|
||||||
|
"blk.39.attn_output.weight": "acfaf4abb3fd27fd899b5563c3877f176b597d8f6cdb2f2fd3f3a0bd4da15ed6",
|
||||||
|
"blk.39.attn_q.weight": "e8adbc140d4c8f0db2a27ca584c5531d5b1e080555fe627e34d80d0814a92bed",
|
||||||
|
"blk.39.attn_v.weight": "92f96b0e1f724e73a0f90a76c145654418844c04a6d4b14c05eb5af8a62bf8dc",
|
||||||
|
"blk.39.ffn_down.weight": "4d9ee7c65fc16fe95d10c47b79ac6a525741947600a64b5fcea5d300a82c50de",
|
||||||
|
"blk.39.ffn_gate.weight": "7e18507989f39b32191133d2657c2ee3b74f42f070579204d727eb72215793d1",
|
||||||
|
"blk.39.ffn_up.weight": "22cda752269c9757ba918abede1df95bb0f83a5c772dea13c8deea3d5f2723d9",
|
||||||
|
"output_norm.weight": "2858cf0e39d32caf52b7861378ace076000241e147f10b9eb21d8a5cd149e3cb"
|
||||||
|
}
|
||||||
@@ -100,6 +100,8 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
|||||||
t.Pre = "deepseek-llm"
|
t.Pre = "deepseek-llm"
|
||||||
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
case "21cde974d587f0d54dc8d56b183cc1e6239600172035c68fbd6d4b9f8da0576e":
|
||||||
t.Pre = "deepseek-coder"
|
t.Pre = "deepseek-coder"
|
||||||
|
case "1ff7f41064896984db5d1bb6ff64fa4bc29007d08c1b439e505b7392777a319e":
|
||||||
|
t.Pre = "qwen2"
|
||||||
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
case "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855":
|
||||||
// noop, empty pretokenizer
|
// noop, empty pretokenizer
|
||||||
default:
|
default:
|
||||||
@@ -108,6 +110,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
|||||||
}
|
}
|
||||||
|
|
||||||
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||||
|
// noop
|
||||||
} else if err != nil {
|
} else if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
} else {
|
} else {
|
||||||
@@ -169,6 +172,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||||
|
} else if err != nil {
|
||||||
|
return nil, err
|
||||||
|
} else {
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
var p map[string]json.RawMessage
|
||||||
|
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, st := range specialTokenTypes {
|
||||||
|
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
|
||||||
|
var ids []int32
|
||||||
|
if err := json.Unmarshal(bts, &ids); err != nil {
|
||||||
|
// value is not a list so the existing ID is used
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
|
||||||
|
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
|
||||||
|
return sv.Type == st
|
||||||
|
}); i >= 0 {
|
||||||
|
t.SpecialVocabulary[i].IDs = ids
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return t, nil
|
return t, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -278,6 +309,9 @@ type SpecialVocabulary struct {
|
|||||||
ID int
|
ID int
|
||||||
Content string
|
Content string
|
||||||
AddToken bool
|
AddToken bool
|
||||||
|
|
||||||
|
// IDs is populated by generation_config.json
|
||||||
|
IDs []int32
|
||||||
}
|
}
|
||||||
|
|
||||||
func (sv SpecialVocabulary) Key() string {
|
func (sv SpecialVocabulary) Key() string {
|
||||||
|
|||||||
@@ -6,7 +6,9 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"io/fs"
|
"io/fs"
|
||||||
|
"log/slog"
|
||||||
"os"
|
"os"
|
||||||
|
"reflect"
|
||||||
"slices"
|
"slices"
|
||||||
|
|
||||||
"google.golang.org/protobuf/proto"
|
"google.golang.org/protobuf/proto"
|
||||||
@@ -15,6 +17,8 @@ import (
|
|||||||
)
|
)
|
||||||
|
|
||||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||||
|
slog.Debug("using spm vocabulary")
|
||||||
|
|
||||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
v.Types = append(v.Types, int32(t))
|
v.Types = append(v.Types, int32(t))
|
||||||
default:
|
default:
|
||||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||||
if slices.Contains(ast, piece.GetPiece()) {
|
|
||||||
|
// temporary fix to handle gemma3 broken configs
|
||||||
|
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for _, t := range ast {
|
||||||
|
if t.Content == piece.GetPiece() {
|
||||||
|
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||||
|
break
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
v.Types = append(v.Types, tt)
|
v.Types = append(v.Types, tt)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
return cmp.Compare(i.id, j.id)
|
return cmp.Compare(i.id, j.id)
|
||||||
})
|
})
|
||||||
|
|
||||||
n := len(v.Tokens)
|
for _, t := range ts {
|
||||||
for i, t := range ts {
|
if t.id < len(v.Tokens) {
|
||||||
if t.id != i+n {
|
if v.Tokens[t.id] == t.content {
|
||||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||||
|
continue
|
||||||
|
}
|
||||||
|
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||||
|
}
|
||||||
|
if t.id != len(v.Tokens) {
|
||||||
|
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||||
}
|
}
|
||||||
|
|
||||||
v.Tokens = append(v.Tokens, t.content)
|
v.Tokens = append(v.Tokens, t.content)
|
||||||
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
|||||||
return &v, nil
|
return &v, nil
|
||||||
}
|
}
|
||||||
|
|
||||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
type specialToken struct {
|
||||||
|
Content string `json:"content"`
|
||||||
|
Lstrip bool `json:"lstrip"`
|
||||||
|
Normalized bool `json:"normalized"`
|
||||||
|
Rstrip bool `json:"rstrip"`
|
||||||
|
SingleWord bool `json:"single_word"`
|
||||||
|
}
|
||||||
|
|
||||||
|
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||||
f, err := fsys.Open("special_tokens_map.json")
|
f, err := fsys.Open("special_tokens_map.json")
|
||||||
if errors.Is(err, os.ErrNotExist) {
|
if errors.Is(err, os.ErrNotExist) {
|
||||||
return nil, nil
|
return nil, nil
|
||||||
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
|||||||
defer f.Close()
|
defer f.Close()
|
||||||
|
|
||||||
var m struct {
|
var m struct {
|
||||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||||
}
|
}
|
||||||
|
|
||||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
return m.AdditionalSpecialTokens, nil
|
var ast []specialToken
|
||||||
|
|
||||||
|
switch st := m.AdditionalSpecialTokens.(type) {
|
||||||
|
case []string:
|
||||||
|
for _, s := range st {
|
||||||
|
ast = append(ast, specialToken{Content: s})
|
||||||
|
}
|
||||||
|
case []any:
|
||||||
|
for _, s := range st {
|
||||||
|
// marshal and unmarshal the object to get the special token
|
||||||
|
tMap := s.(map[string]any)
|
||||||
|
data, err := json.Marshal(tMap)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
var token specialToken
|
||||||
|
err = json.Unmarshal(data, &token)
|
||||||
|
if err != nil {
|
||||||
|
return nil, err
|
||||||
|
}
|
||||||
|
|
||||||
|
ast = append(ast, token)
|
||||||
|
}
|
||||||
|
|
||||||
|
default:
|
||||||
|
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||||
|
}
|
||||||
|
|
||||||
|
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||||
|
|
||||||
|
return ast, nil
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
|
|||||||
Pre: "default",
|
Pre: "default",
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
name: "generation config eos token ids",
|
||||||
|
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||||
|
"tokenizer.json": strings.NewReader(`{
|
||||||
|
"added_tokens": [
|
||||||
|
{
|
||||||
|
"id": 0,
|
||||||
|
"content": "<bos>",
|
||||||
|
"special": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": 1,
|
||||||
|
"content": "<eos>",
|
||||||
|
"special": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": 2,
|
||||||
|
"content": "<eot>",
|
||||||
|
"special": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"id": 3,
|
||||||
|
"content": "<eom>",
|
||||||
|
"special": true
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"model": {
|
||||||
|
"vocab": {
|
||||||
|
"<bos>": 0,
|
||||||
|
"<eos>": 1,
|
||||||
|
"<eot>": 2,
|
||||||
|
"<eom>": 3
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}`),
|
||||||
|
"tokenizer_config.json": strings.NewReader(`{
|
||||||
|
"add_bos_token": true,
|
||||||
|
"add_eos_token": false,
|
||||||
|
"bos_token": "<bos>",
|
||||||
|
"eos_token": "<eos>"
|
||||||
|
}`),
|
||||||
|
"generation_config.json": strings.NewReader(`{
|
||||||
|
"bos_token_id": 0,
|
||||||
|
"eos_token_id": [1, 2, 3]
|
||||||
|
}`),
|
||||||
|
}),
|
||||||
|
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
|
||||||
|
want: &Tokenizer{
|
||||||
|
Vocabulary: &Vocabulary{
|
||||||
|
Model: "gpt2",
|
||||||
|
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
|
||||||
|
Scores: []float32{0, 1, 2, 3},
|
||||||
|
Types: []int32{3, 3, 3, 3},
|
||||||
|
},
|
||||||
|
SpecialVocabulary: []*SpecialVocabulary{
|
||||||
|
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
|
||||||
|
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
|
||||||
|
},
|
||||||
|
Pre: "default",
|
||||||
|
},
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
for _, tt := range cases {
|
for _, tt := range cases {
|
||||||
|
|||||||
@@ -9,8 +9,6 @@ import (
|
|||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"github.com/ollama/ollama/envconfig"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
||||||
@@ -41,13 +39,10 @@ func commonAMDValidateLibDir() (string, error) {
|
|||||||
// Favor our bundled version
|
// Favor our bundled version
|
||||||
|
|
||||||
// Installer payload location if we're running the installed binary
|
// Installer payload location if we're running the installed binary
|
||||||
exe, err := os.Executable()
|
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||||
if err == nil {
|
if rocmLibUsable(rocmTargetDir) {
|
||||||
rocmTargetDir := filepath.Join(filepath.Dir(exe), envconfig.LibRelativeToExe(), "lib", "ollama")
|
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||||
if rocmLibUsable(rocmTargetDir) {
|
return rocmTargetDir, nil
|
||||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
|
||||||
return rocmTargetDir, nil
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Prefer explicit HIP env var
|
// Prefer explicit HIP env var
|
||||||
|
|||||||
@@ -77,7 +77,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
|
|
||||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||||
var supported []string
|
var supported []string
|
||||||
libDir := ""
|
var libDir string
|
||||||
|
|
||||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||||
@@ -300,17 +300,20 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
})
|
})
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
|
//minVer, err := strconv.Atoi(RocmComputeMajorMin)
|
||||||
|
//if err != nil {
|
||||||
|
// slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
|
||||||
|
//}
|
||||||
|
// if int(major) < minVer {
|
||||||
|
// reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||||
|
// slog.Warn(reason, "gpu", gpuID)
|
||||||
|
// unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||||
|
// GpuInfo: gpuInfo.GpuInfo,
|
||||||
|
// Reason: reason,
|
||||||
|
// })
|
||||||
|
|
||||||
if int(major) < RocmComputeMin {
|
// continue
|
||||||
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
//}
|
||||||
slog.Warn(reason, "gpu", gpuID)
|
|
||||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
|
||||||
GpuInfo: gpuInfo.GpuInfo,
|
|
||||||
Reason: reason,
|
|
||||||
})
|
|
||||||
|
|
||||||
continue
|
|
||||||
}
|
|
||||||
|
|
||||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ import (
|
|||||||
"errors"
|
"errors"
|
||||||
"fmt"
|
"fmt"
|
||||||
"log/slog"
|
"log/slog"
|
||||||
"os"
|
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"slices"
|
"slices"
|
||||||
"strconv"
|
"strconv"
|
||||||
@@ -50,6 +49,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
|||||||
slog.Info(err.Error())
|
slog.Info(err.Error())
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
|
||||||
libDir, err := AMDValidateLibDir()
|
libDir, err := AMDValidateLibDir()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||||
@@ -162,9 +162,7 @@ func AMDValidateLibDir() (string, error) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Installer payload (if we're running from some other location)
|
// Installer payload (if we're running from some other location)
|
||||||
localAppData := os.Getenv("LOCALAPPDATA")
|
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||||
appDir := filepath.Join(localAppData, "Programs", "Ollama")
|
|
||||||
rocmTargetDir := filepath.Join(appDir, envconfig.LibRelativeToExe(), "lib", "ollama")
|
|
||||||
if rocmLibUsable(rocmTargetDir) {
|
if rocmLibUsable(rocmTargetDir) {
|
||||||
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
||||||
return rocmTargetDir, nil
|
return rocmTargetDir, nil
|
||||||
@@ -182,7 +180,7 @@ func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
|||||||
hl, err := NewHipLib()
|
hl, err := NewHipLib()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Debug(err.Error())
|
slog.Debug(err.Error())
|
||||||
return nil
|
return err
|
||||||
}
|
}
|
||||||
defer hl.Release()
|
defer hl.Release()
|
||||||
|
|
||||||
|
|||||||
@@ -5,27 +5,14 @@ import (
|
|||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
"strings"
|
"strings"
|
||||||
|
|
||||||
"golang.org/x/sys/cpu"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
func GetCPUCapability() CPUCapability {
|
|
||||||
if cpu.X86.HasAVX2 {
|
|
||||||
return CPUCapabilityAVX2
|
|
||||||
}
|
|
||||||
if cpu.X86.HasAVX {
|
|
||||||
return CPUCapabilityAVX
|
|
||||||
}
|
|
||||||
// else LCD
|
|
||||||
return CPUCapabilityNone
|
|
||||||
}
|
|
||||||
|
|
||||||
func IsNUMA() bool {
|
func IsNUMA() bool {
|
||||||
if runtime.GOOS != "linux" {
|
if runtime.GOOS != "linux" {
|
||||||
// numa support in llama.cpp is linux only
|
// numa support in llama.cpp is linux only
|
||||||
return false
|
return false
|
||||||
}
|
}
|
||||||
ids := map[string]interface{}{}
|
ids := map[string]any{}
|
||||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||||
for _, packageId := range packageIds {
|
for _, packageId := range packageIds {
|
||||||
id, err := os.ReadFile(packageId)
|
id, err := os.ReadFile(packageId)
|
||||||
|
|||||||
@@ -57,7 +57,8 @@ func cudaVariant(gpuInfo CudaGPUInfo) string {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
||||||
|
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||||
return "v11"
|
return "v11"
|
||||||
}
|
}
|
||||||
return "v12"
|
return "v12"
|
||||||
|
|||||||
124
discover/gpu.go
124
discover/gpu.go
@@ -16,6 +16,7 @@ import (
|
|||||||
"os"
|
"os"
|
||||||
"path/filepath"
|
"path/filepath"
|
||||||
"runtime"
|
"runtime"
|
||||||
|
"strconv"
|
||||||
"strings"
|
"strings"
|
||||||
"sync"
|
"sync"
|
||||||
"unsafe"
|
"unsafe"
|
||||||
@@ -45,7 +46,6 @@ const (
|
|||||||
var (
|
var (
|
||||||
gpuMutex sync.Mutex
|
gpuMutex sync.Mutex
|
||||||
bootstrapped bool
|
bootstrapped bool
|
||||||
cpuCapability CPUCapability
|
|
||||||
cpus []CPUInfo
|
cpus []CPUInfo
|
||||||
cudaGPUs []CudaGPUInfo
|
cudaGPUs []CudaGPUInfo
|
||||||
nvcudaLibPath string
|
nvcudaLibPath string
|
||||||
@@ -64,9 +64,13 @@ var (
|
|||||||
)
|
)
|
||||||
|
|
||||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||||
var CudaComputeMin = [2]C.int{5, 0}
|
// (string values used to allow ldflags overrides at build time)
|
||||||
|
var (
|
||||||
var RocmComputeMin = 9
|
CudaComputeMajorMin = "5"
|
||||||
|
CudaComputeMinorMin = "0"
|
||||||
|
)
|
||||||
|
//change valute from 9 to 8 would release the gfx version limits ,refer to https://github.com/likelovewant/ollama-for-amd/issues/51
|
||||||
|
var RocmComputeMajorMin = "8"
|
||||||
|
|
||||||
// TODO find a better way to detect iGPU instead of minimum memory
|
// TODO find a better way to detect iGPU instead of minimum memory
|
||||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||||
@@ -96,15 +100,7 @@ func initCudaHandles() *cudaHandles {
|
|||||||
|
|
||||||
// Aligned with driver, we can't carry as payloads
|
// Aligned with driver, we can't carry as payloads
|
||||||
nvcudaMgmtPatterns := NvcudaGlobs
|
nvcudaMgmtPatterns := NvcudaGlobs
|
||||||
|
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
|
||||||
if runtime.GOOS == "windows" {
|
|
||||||
localAppData := os.Getenv("LOCALAPPDATA")
|
|
||||||
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
|
|
||||||
}
|
|
||||||
libDir := LibraryDir()
|
|
||||||
if libDir != "" {
|
|
||||||
cudartMgmtPatterns = []string{filepath.Join(libDir, CudartMgmtName)}
|
|
||||||
}
|
|
||||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
||||||
|
|
||||||
if len(NvmlGlobs) > 0 {
|
if len(NvmlGlobs) > 0 {
|
||||||
@@ -219,16 +215,23 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
|
|
||||||
if !bootstrapped {
|
if !bootstrapped {
|
||||||
slog.Info("looking for compatible GPUs")
|
slog.Info("looking for compatible GPUs")
|
||||||
|
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
|
||||||
|
if err != nil {
|
||||||
|
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
|
||||||
|
}
|
||||||
|
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
|
||||||
|
if err != nil {
|
||||||
|
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
|
||||||
|
}
|
||||||
bootstrapErrors = []error{}
|
bootstrapErrors = []error{}
|
||||||
needRefresh = false
|
needRefresh = false
|
||||||
cpuCapability = GetCPUCapability()
|
|
||||||
var memInfo C.mem_info_t
|
var memInfo C.mem_info_t
|
||||||
|
|
||||||
mem, err := GetCPUMem()
|
mem, err := GetCPUMem()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("error looking up system memory", "error", err)
|
slog.Warn("error looking up system memory", "error", err)
|
||||||
}
|
}
|
||||||
depPath := LibraryDir()
|
|
||||||
details, err := GetCPUDetails()
|
details, err := GetCPUDetails()
|
||||||
if err != nil {
|
if err != nil {
|
||||||
slog.Warn("failed to lookup CPU details", "error", err)
|
slog.Warn("failed to lookup CPU details", "error", err)
|
||||||
@@ -236,26 +239,14 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
cpus = []CPUInfo{
|
cpus = []CPUInfo{
|
||||||
{
|
{
|
||||||
GpuInfo: GpuInfo{
|
GpuInfo: GpuInfo{
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
Variant: cpuCapability.String(),
|
ID: "0",
|
||||||
ID: "0",
|
|
||||||
DependencyPath: []string{depPath},
|
|
||||||
},
|
},
|
||||||
CPUs: details,
|
CPUs: details,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
// Fallback to CPU mode if we're lacking required vector extensions on x86
|
|
||||||
if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
|
|
||||||
err := fmt.Errorf("CPU does not have minimum vector extensions, GPU inference disabled. Required:%s Detected:%s", GPURunnerCPUCapability, cpuCapability)
|
|
||||||
slog.Warn(err.Error())
|
|
||||||
bootstrapErrors = append(bootstrapErrors, err)
|
|
||||||
bootstrapped = true
|
|
||||||
// No need to do any GPU discovery, since we can't run on them
|
|
||||||
return GpuInfoList{cpus[0].GpuInfo}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Load ALL libraries
|
// Load ALL libraries
|
||||||
cHandles = initCudaHandles()
|
cHandles = initCudaHandles()
|
||||||
|
|
||||||
@@ -292,19 +283,19 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
gpuInfo.DriverMajor = driverMajor
|
gpuInfo.DriverMajor = driverMajor
|
||||||
gpuInfo.DriverMinor = driverMinor
|
gpuInfo.DriverMinor = driverMinor
|
||||||
variant := cudaVariant(gpuInfo)
|
variant := cudaVariant(gpuInfo)
|
||||||
if depPath != "" {
|
|
||||||
gpuInfo.DependencyPath = []string{depPath}
|
// Start with our bundled libraries
|
||||||
// Check for variant specific directory
|
if variant != "" {
|
||||||
if variant != "" {
|
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
|
||||||
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
|
if _, err := os.Stat(variantPath); err == nil {
|
||||||
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
|
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
||||||
}
|
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||||
gpuInfo.Variant = variant
|
gpuInfo.Variant = variant
|
||||||
|
|
||||||
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
|
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
|
||||||
unsupportedGPUs = append(unsupportedGPUs,
|
unsupportedGPUs = append(unsupportedGPUs,
|
||||||
UnsupportedGPUInfo{
|
UnsupportedGPUInfo{
|
||||||
GpuInfo: gpuInfo.GpuInfo,
|
GpuInfo: gpuInfo.GpuInfo,
|
||||||
@@ -370,7 +361,7 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||||
gpuInfo.DependencyPath = []string{depPath}
|
gpuInfo.DependencyPath = []string{LibOllamaPath}
|
||||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -385,6 +376,8 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
||||||
slog.Info("no compatible GPUs were discovered")
|
slog.Info("no compatible GPUs were discovered")
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
|
||||||
}
|
}
|
||||||
|
|
||||||
// For detected GPUs, load library if not loaded
|
// For detected GPUs, load library if not loaded
|
||||||
@@ -504,34 +497,33 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
|
|
||||||
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||||
var ldPaths []string
|
|
||||||
gpuLibPaths := []string{}
|
gpuLibPaths := []string{}
|
||||||
slog.Debug("Searching for GPU library", "name", baseLibName)
|
slog.Debug("Searching for GPU library", "name", baseLibName)
|
||||||
|
|
||||||
// Start with our bundled libraries
|
// search our bundled libraries first
|
||||||
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
|
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
|
||||||
|
|
||||||
|
var ldPaths []string
|
||||||
switch runtime.GOOS {
|
switch runtime.GOOS {
|
||||||
case "windows":
|
case "windows":
|
||||||
ldPaths = strings.Split(os.Getenv("PATH"), ";")
|
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
|
||||||
case "linux":
|
case "linux":
|
||||||
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
|
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
|
||||||
default:
|
|
||||||
return gpuLibPaths
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
|
// then search the system's LD_LIBRARY_PATH
|
||||||
for _, ldPath := range ldPaths {
|
for _, p := range ldPaths {
|
||||||
d, err := filepath.Abs(ldPath)
|
p, err := filepath.Abs(p)
|
||||||
if err != nil {
|
if err != nil {
|
||||||
continue
|
continue
|
||||||
}
|
}
|
||||||
patterns = append(patterns, filepath.Join(d, baseLibName))
|
patterns = append(patterns, filepath.Join(p, baseLibName))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// finally, search the default patterns provided by the caller
|
||||||
patterns = append(patterns, defaultPatterns...)
|
patterns = append(patterns, defaultPatterns...)
|
||||||
slog.Debug("gpu library search", "globs", patterns)
|
slog.Debug("gpu library search", "globs", patterns)
|
||||||
for _, pattern := range patterns {
|
for _, pattern := range patterns {
|
||||||
|
|
||||||
// Nvidia PhysX known to return bogus results
|
// Nvidia PhysX known to return bogus results
|
||||||
if strings.Contains(pattern, "PhysX") {
|
if strings.Contains(pattern, "PhysX") {
|
||||||
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
||||||
@@ -678,7 +670,7 @@ func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, e
|
|||||||
}
|
}
|
||||||
|
|
||||||
func getVerboseState() C.uint16_t {
|
func getVerboseState() C.uint16_t {
|
||||||
if envconfig.Debug() {
|
if envconfig.LogLevel() < slog.LevelInfo {
|
||||||
return C.uint16_t(1)
|
return C.uint16_t(1)
|
||||||
}
|
}
|
||||||
return C.uint16_t(0)
|
return C.uint16_t(0)
|
||||||
@@ -705,34 +697,6 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
func LibraryDir() string {
|
|
||||||
// On Windows/linux we bundle the dependencies at the same level as the executable
|
|
||||||
appExe, err := os.Executable()
|
|
||||||
if err != nil {
|
|
||||||
slog.Warn("failed to lookup executable path", "error", err)
|
|
||||||
}
|
|
||||||
cwd, err := os.Getwd()
|
|
||||||
if err != nil {
|
|
||||||
slog.Warn("failed to lookup working directory", "error", err)
|
|
||||||
}
|
|
||||||
// Scan for any of our dependeices, and pick first match
|
|
||||||
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), envconfig.LibRelativeToExe()), cwd} {
|
|
||||||
libDep := filepath.Join("lib", "ollama")
|
|
||||||
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
|
|
||||||
return filepath.Join(root, libDep)
|
|
||||||
}
|
|
||||||
// Developer mode, local build
|
|
||||||
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
|
|
||||||
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
|
|
||||||
}
|
|
||||||
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
|
|
||||||
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
slog.Warn("unable to locate gpu dependency libraries")
|
|
||||||
return ""
|
|
||||||
}
|
|
||||||
|
|
||||||
func GetSystemInfo() SystemInfo {
|
func GetSystemInfo() SystemInfo {
|
||||||
gpus := GetGPUInfo()
|
gpus := GetGPUInfo()
|
||||||
gpuMutex.Lock()
|
gpuMutex.Lock()
|
||||||
|
|||||||
@@ -27,7 +27,6 @@ func GetGPUInfo() GpuInfoList {
|
|||||||
return []GpuInfo{
|
return []GpuInfo{
|
||||||
{
|
{
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
Variant: GetCPUCapability().String(),
|
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
@@ -50,7 +49,6 @@ func GetCPUInfo() GpuInfoList {
|
|||||||
return []GpuInfo{
|
return []GpuInfo{
|
||||||
{
|
{
|
||||||
Library: "cpu",
|
Library: "cpu",
|
||||||
Variant: GetCPUCapability().String(),
|
|
||||||
memInfo: mem,
|
memInfo: mem,
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -27,12 +27,14 @@
|
|||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#ifndef LOG
|
||||||
#define LOG(verbose, ...) \
|
#define LOG(verbose, ...) \
|
||||||
do { \
|
do { \
|
||||||
if (verbose) { \
|
if (verbose) { \
|
||||||
fprintf(stderr, __VA_ARGS__); \
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
} \
|
} \
|
||||||
} while (0)
|
} while (0)
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
#include <inttypes.h>
|
||||||
#include "gpu_info_cudart.h"
|
#include "gpu_info_cudart.h"
|
||||||
|
|
||||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||||
@@ -58,7 +59,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
|||||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||||
UNLOAD_LIBRARY(resp->ch.handle);
|
UNLOAD_LIBRARY(resp->ch.handle);
|
||||||
resp->ch.handle = NULL;
|
resp->ch.handle = NULL;
|
||||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
|
||||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@@ -168,9 +169,9 @@ void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
|||||||
resp->free = memInfo.free;
|
resp->free = memInfo.free;
|
||||||
resp->used = memInfo.used;
|
resp->used = memInfo.used;
|
||||||
|
|
||||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
|
||||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
|
||||||
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
|
||||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||||
|
|
||||||
#include <string.h>
|
#include <string.h>
|
||||||
|
#include <inttypes.h>
|
||||||
#include "gpu_info_nvcuda.h"
|
#include "gpu_info_nvcuda.h"
|
||||||
|
|
||||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||||
@@ -193,8 +194,8 @@ void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
|||||||
resp->total = memInfo.total;
|
resp->total = memInfo.total;
|
||||||
resp->free = memInfo.free;
|
resp->free = memInfo.free;
|
||||||
|
|
||||||
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||||
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -111,6 +111,7 @@ func GetCPUDetails() ([]CPU, error) {
|
|||||||
if err != nil {
|
if err != nil {
|
||||||
return nil, err
|
return nil, err
|
||||||
}
|
}
|
||||||
|
defer file.Close()
|
||||||
return linuxCPUDetails(file)
|
return linuxCPUDetails(file)
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -168,13 +169,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
|||||||
for id, s := range socketByID {
|
for id, s := range socketByID {
|
||||||
s.CoreCount = len(coreBySocket[id])
|
s.CoreCount = len(coreBySocket[id])
|
||||||
s.ThreadCount = 0
|
s.ThreadCount = 0
|
||||||
for _, tc := range threadsByCoreBySocket[id] {
|
|
||||||
s.ThreadCount += tc
|
|
||||||
}
|
|
||||||
|
|
||||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||||
efficiencyCoreCount := 0
|
efficiencyCoreCount := 0
|
||||||
for _, threads := range threadsByCoreBySocket[id] {
|
for _, threads := range threadsByCoreBySocket[id] {
|
||||||
|
s.ThreadCount += threads
|
||||||
if threads == 1 {
|
if threads == 1 {
|
||||||
efficiencyCoreCount++
|
efficiencyCoreCount++
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -209,7 +209,7 @@ func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Sumarize the results
|
// Summarize the results
|
||||||
for i, pkg := range packages {
|
for i, pkg := range packages {
|
||||||
slog.Info("", "package", i, "cores", pkg.coreCount, "efficiency", pkg.efficiencyCoreCount, "threads", pkg.threadCount)
|
slog.Info("", "package", i, "cores", pkg.coreCount, "efficiency", pkg.efficiencyCoreCount, "threads", pkg.threadCount)
|
||||||
}
|
}
|
||||||
|
|||||||
56
discover/path.go
Normal file
56
discover/path.go
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
package discover
|
||||||
|
|
||||||
|
import (
|
||||||
|
"os"
|
||||||
|
"path/filepath"
|
||||||
|
"runtime"
|
||||||
|
)
|
||||||
|
|
||||||
|
// LibPath is a path to lookup dynamic libraries
|
||||||
|
// in development it's usually 'build/lib/ollama'
|
||||||
|
// in distribution builds it's 'lib/ollama' on Windows
|
||||||
|
// '../lib/ollama' on Linux and the executable's directory on macOS
|
||||||
|
// note: distribution builds, additional GPU-specific libraries are
|
||||||
|
// found in subdirectories of the returned path, such as
|
||||||
|
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
|
||||||
|
var LibOllamaPath string = func() string {
|
||||||
|
exe, err := os.Executable()
|
||||||
|
if err != nil {
|
||||||
|
return ""
|
||||||
|
}
|
||||||
|
|
||||||
|
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||||
|
exe = eval
|
||||||
|
}
|
||||||
|
|
||||||
|
var libPath string
|
||||||
|
switch runtime.GOOS {
|
||||||
|
case "windows":
|
||||||
|
libPath = filepath.Join(filepath.Dir(exe), "lib", "ollama")
|
||||||
|
case "linux":
|
||||||
|
libPath = filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
|
||||||
|
case "darwin":
|
||||||
|
libPath = filepath.Dir(exe)
|
||||||
|
}
|
||||||
|
|
||||||
|
cwd, err := os.Getwd()
|
||||||
|
if err != nil {
|
||||||
|
return ""
|
||||||
|
}
|
||||||
|
|
||||||
|
paths := []string{
|
||||||
|
libPath,
|
||||||
|
|
||||||
|
// build paths for development
|
||||||
|
filepath.Join(filepath.Dir(exe), "build", "lib", "ollama"),
|
||||||
|
filepath.Join(cwd, "build", "lib", "ollama"),
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, p := range paths {
|
||||||
|
if _, err := os.Stat(p); err == nil {
|
||||||
|
return p
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return filepath.Dir(exe)
|
||||||
|
}()
|
||||||
@@ -47,6 +47,13 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
|||||||
// TODO other performance capability info to help in scheduling decisions
|
// TODO other performance capability info to help in scheduling decisions
|
||||||
}
|
}
|
||||||
|
|
||||||
|
func (gpu GpuInfo) RunnerName() string {
|
||||||
|
if gpu.Variant != "" {
|
||||||
|
return gpu.Library + "_" + gpu.Variant
|
||||||
|
}
|
||||||
|
return gpu.Library
|
||||||
|
}
|
||||||
|
|
||||||
type CPUInfo struct {
|
type CPUInfo struct {
|
||||||
GpuInfo
|
GpuInfo
|
||||||
CPUs []CPU
|
CPUs []CPU
|
||||||
@@ -99,7 +106,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
|||||||
for _, info := range l {
|
for _, info := range l {
|
||||||
found := false
|
found := false
|
||||||
requested := info.Library
|
requested := info.Library
|
||||||
if info.Variant != CPUCapabilityNone.String() {
|
if info.Variant != "" {
|
||||||
requested += "_" + info.Variant
|
requested += "_" + info.Variant
|
||||||
}
|
}
|
||||||
for i, lib := range libs {
|
for i, lib := range libs {
|
||||||
@@ -140,29 +147,6 @@ func (a ByFreeMemory) Len() int { return len(a) }
|
|||||||
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||||
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
||||||
|
|
||||||
type CPUCapability uint32
|
|
||||||
|
|
||||||
// Override at build time when building base GPU runners
|
|
||||||
var GPURunnerCPUCapability = CPUCapabilityAVX
|
|
||||||
|
|
||||||
const (
|
|
||||||
CPUCapabilityNone CPUCapability = iota
|
|
||||||
CPUCapabilityAVX
|
|
||||||
CPUCapabilityAVX2
|
|
||||||
// TODO AVX512
|
|
||||||
)
|
|
||||||
|
|
||||||
func (c CPUCapability) String() string {
|
|
||||||
switch c {
|
|
||||||
case CPUCapabilityAVX:
|
|
||||||
return "avx"
|
|
||||||
case CPUCapabilityAVX2:
|
|
||||||
return "avx2"
|
|
||||||
default:
|
|
||||||
return "no vector extensions"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
type SystemInfo struct {
|
type SystemInfo struct {
|
||||||
System CPUInfo `json:"system"`
|
System CPUInfo `json:"system"`
|
||||||
GPUs []GpuInfo `json:"gpus"`
|
GPUs []GpuInfo `json:"gpus"`
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
### Getting Started
|
### Getting Started
|
||||||
* [Quickstart](../README.md#quickstart)
|
* [Quickstart](../README.md#quickstart)
|
||||||
* [Examples](../examples)
|
* [Examples](./examples.md)
|
||||||
* [Importing models](./import.md)
|
* [Importing models](./import.md)
|
||||||
* [Linux Documentation](./linux.md)
|
* [Linux Documentation](./linux.md)
|
||||||
* [Windows Documentation](./windows.md)
|
* [Windows Documentation](./windows.md)
|
||||||
|
|||||||
269
docs/api.md
269
docs/api.md
@@ -13,12 +13,13 @@
|
|||||||
- [Push a Model](#push-a-model)
|
- [Push a Model](#push-a-model)
|
||||||
- [Generate Embeddings](#generate-embeddings)
|
- [Generate Embeddings](#generate-embeddings)
|
||||||
- [List Running Models](#list-running-models)
|
- [List Running Models](#list-running-models)
|
||||||
|
- [Version](#version)
|
||||||
|
|
||||||
## Conventions
|
## Conventions
|
||||||
|
|
||||||
### Model names
|
### Model names
|
||||||
|
|
||||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||||
|
|
||||||
### Durations
|
### Durations
|
||||||
|
|
||||||
@@ -30,7 +31,7 @@ Certain endpoints stream responses as JSON objects. Streaming can be disabled by
|
|||||||
|
|
||||||
## Generate a completion
|
## Generate a completion
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/generate
|
POST /api/generate
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -42,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
|||||||
- `prompt`: the prompt to generate a response for
|
- `prompt`: the prompt to generate a response for
|
||||||
- `suffix`: the text after the model response
|
- `suffix`: the text after the model response
|
||||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||||
|
- `think`: (for thinking models) should the model think before responding?
|
||||||
|
|
||||||
Advanced parameters (optional):
|
Advanced parameters (optional):
|
||||||
|
|
||||||
@@ -172,7 +174,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
##### Response
|
##### Response
|
||||||
|
|
||||||
```json
|
```json5
|
||||||
{
|
{
|
||||||
"model": "codellama:code",
|
"model": "codellama:code",
|
||||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||||
@@ -305,7 +307,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
|
|
||||||
#### Response
|
#### Response
|
||||||
|
|
||||||
```
|
```json
|
||||||
{
|
{
|
||||||
"model": "llava",
|
"model": "llava",
|
||||||
"created_at": "2023-11-03T15:36:02.583064Z",
|
"created_at": "2023-11-03T15:36:02.583064Z",
|
||||||
@@ -387,16 +389,12 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
"top_k": 20,
|
"top_k": 20,
|
||||||
"top_p": 0.9,
|
"top_p": 0.9,
|
||||||
"min_p": 0.0,
|
"min_p": 0.0,
|
||||||
"tfs_z": 0.5,
|
|
||||||
"typical_p": 0.7,
|
"typical_p": 0.7,
|
||||||
"repeat_last_n": 33,
|
"repeat_last_n": 33,
|
||||||
"temperature": 0.8,
|
"temperature": 0.8,
|
||||||
"repeat_penalty": 1.2,
|
"repeat_penalty": 1.2,
|
||||||
"presence_penalty": 1.5,
|
"presence_penalty": 1.5,
|
||||||
"frequency_penalty": 1.0,
|
"frequency_penalty": 1.0,
|
||||||
"mirostat": 1,
|
|
||||||
"mirostat_tau": 0.8,
|
|
||||||
"mirostat_eta": 0.6,
|
|
||||||
"penalize_newline": true,
|
"penalize_newline": true,
|
||||||
"stop": ["\n", "user:"],
|
"stop": ["\n", "user:"],
|
||||||
"numa": false,
|
"numa": false,
|
||||||
@@ -404,10 +402,7 @@ curl http://localhost:11434/api/generate -d '{
|
|||||||
"num_batch": 2,
|
"num_batch": 2,
|
||||||
"num_gpu": 1,
|
"num_gpu": 1,
|
||||||
"main_gpu": 0,
|
"main_gpu": 0,
|
||||||
"low_vram": false,
|
|
||||||
"vocab_only": false,
|
|
||||||
"use_mmap": true,
|
"use_mmap": true,
|
||||||
"use_mlock": false,
|
|
||||||
"num_thread": 8
|
"num_thread": 8
|
||||||
}
|
}
|
||||||
}'
|
}'
|
||||||
@@ -485,7 +480,7 @@ A single JSON object is returned:
|
|||||||
|
|
||||||
## Generate a chat completion
|
## Generate a chat completion
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/chat
|
POST /api/chat
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -495,14 +490,16 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
|||||||
|
|
||||||
- `model`: (required) the [model name](#model-names)
|
- `model`: (required) the [model name](#model-names)
|
||||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||||
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
|
- `tools`: list of tools in JSON for the model to use if supported
|
||||||
|
- `think`: (for thinking models) should the model think before responding?
|
||||||
|
|
||||||
The `message` object has the following fields:
|
The `message` object has the following fields:
|
||||||
|
|
||||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||||
- `content`: the content of the message
|
- `content`: the content of the message
|
||||||
|
- `thinking`: (for thinking models) the model's thinking process
|
||||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||||
- `tool_calls` (optional): a list of tools the model wants to use
|
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
||||||
|
|
||||||
Advanced parameters (optional):
|
Advanced parameters (optional):
|
||||||
|
|
||||||
@@ -558,6 +555,10 @@ Final response:
|
|||||||
{
|
{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": ""
|
||||||
|
},
|
||||||
"done": true,
|
"done": true,
|
||||||
"total_duration": 4883583458,
|
"total_duration": 4883583458,
|
||||||
"load_duration": 1334875,
|
"load_duration": 1334875,
|
||||||
@@ -795,7 +796,7 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [
|
"messages": [
|
||||||
@@ -870,7 +871,7 @@ If the messages array is empty, the model will be loaded into memory.
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": []
|
"messages": []
|
||||||
@@ -878,6 +879,7 @@ curl http://localhost:11434/api/chat -d '{
|
|||||||
```
|
```
|
||||||
|
|
||||||
##### Response
|
##### Response
|
||||||
|
|
||||||
```json
|
```json
|
||||||
{
|
{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
@@ -897,7 +899,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
|
|||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{
|
curl http://localhost:11434/api/chat -d '{
|
||||||
"model": "llama3.2",
|
"model": "llama3.2",
|
||||||
"messages": [],
|
"messages": [],
|
||||||
@@ -924,51 +926,52 @@ A single JSON object is returned:
|
|||||||
|
|
||||||
## Create a Model
|
## Create a Model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/create
|
POST /api/create
|
||||||
```
|
```
|
||||||
|
|
||||||
Create a model from a [`Modelfile`](./modelfile.md). It is recommended to set `modelfile` to the content of the Modelfile rather than just set `path`. This is a requirement for remote create. Remote model creation must also create any file blobs, fields such as `FROM` and `ADAPTER`, explicitly with the server using [Create a Blob](#create-a-blob) and the value to the path indicated in the response.
|
Create a model from:
|
||||||
|
* another model;
|
||||||
|
* a safetensors directory; or
|
||||||
|
* a GGUF file.
|
||||||
|
|
||||||
|
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
|
||||||
|
|
||||||
### Parameters
|
### Parameters
|
||||||
|
|
||||||
- `model`: name of the model to create
|
- `model`: name of the model to create
|
||||||
- `modelfile` (optional): contents of the Modelfile
|
- `from`: (optional) name of an existing model to create the new model from
|
||||||
|
- `files`: (optional) a dictionary of file names to SHA256 digests of blobs to create the model from
|
||||||
|
- `adapters`: (optional) a dictionary of file names to SHA256 digests of blobs for LORA adapters
|
||||||
|
- `template`: (optional) the prompt template for the model
|
||||||
|
- `license`: (optional) a string or list of strings containing the license or licenses for the model
|
||||||
|
- `system`: (optional) a string containing the system prompt for the model
|
||||||
|
- `parameters`: (optional) a dictionary of parameters for the model (see [Modelfile](./modelfile.md#valid-parameters-and-values) for a list of parameters)
|
||||||
|
- `messages`: (optional) a list of message objects used to create a conversation
|
||||||
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
- `stream`: (optional) if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||||
- `path` (optional): path to the Modelfile
|
|
||||||
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
- `quantize` (optional): quantize a non-quantized (e.g. float16) model
|
||||||
|
|
||||||
#### Quantization types
|
#### Quantization types
|
||||||
|
|
||||||
| Type | Recommended |
|
| Type | Recommended |
|
||||||
| --- | :-: |
|
| --- | :-: |
|
||||||
| q2_K | |
|
|
||||||
| q3_K_L | |
|
|
||||||
| q3_K_M | |
|
|
||||||
| q3_K_S | |
|
|
||||||
| q4_0 | |
|
|
||||||
| q4_1 | |
|
|
||||||
| q4_K_M | * |
|
| q4_K_M | * |
|
||||||
| q4_K_S | |
|
| q4_K_S | |
|
||||||
| q5_0 | |
|
|
||||||
| q5_1 | |
|
|
||||||
| q5_K_M | |
|
|
||||||
| q5_K_S | |
|
|
||||||
| q6_K | |
|
|
||||||
| q8_0 | * |
|
| q8_0 | * |
|
||||||
|
|
||||||
### Examples
|
### Examples
|
||||||
|
|
||||||
#### Create a new model
|
#### Create a new model
|
||||||
|
|
||||||
Create a new model from a `Modelfile`.
|
Create a new model from an existing model.
|
||||||
|
|
||||||
##### Request
|
##### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/create -d '{
|
curl http://localhost:11434/api/create -d '{
|
||||||
"model": "mario",
|
"model": "mario",
|
||||||
"modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
|
"from": "llama3.2",
|
||||||
|
"system": "You are Mario from Super Mario Bros."
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -998,8 +1001,8 @@ Quantize a non-quantized model.
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/create -d '{
|
curl http://localhost:11434/api/create -d '{
|
||||||
"model": "llama3.1:quantized",
|
"model": "llama3.2:quantized",
|
||||||
"modelfile": "FROM llama3.1:8b-instruct-fp16",
|
"from": "llama3.2:3b-instruct-fp16",
|
||||||
"quantize": "q4_K_M"
|
"quantize": "q4_K_M"
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
@@ -1008,69 +1011,131 @@ curl http://localhost:11434/api/create -d '{
|
|||||||
|
|
||||||
A stream of JSON objects is returned:
|
A stream of JSON objects is returned:
|
||||||
|
|
||||||
```
|
```json
|
||||||
{"status":"quantizing F16 model to Q4_K_M"}
|
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
|
||||||
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
|
||||||
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
{"status":"verifying conversion"}
|
||||||
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
|
||||||
|
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
|
||||||
|
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
|
||||||
|
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
|
||||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||||
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
{"status":"writing manifest"}
|
||||||
|
{"status":"success"}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Create a model from GGUF
|
||||||
|
|
||||||
|
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
|
||||||
|
|
||||||
|
|
||||||
|
##### Request
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl http://localhost:11434/api/create -d '{
|
||||||
|
"model": "my-gguf-model",
|
||||||
|
"files": {
|
||||||
|
"test.gguf": "sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"
|
||||||
|
}
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Response
|
||||||
|
|
||||||
|
A stream of JSON objects is returned:
|
||||||
|
|
||||||
|
```json
|
||||||
|
{"status":"parsing GGUF"}
|
||||||
|
{"status":"using existing layer sha256:432f310a77f4650a88d0fd59ecdd7cebed8d684bafea53cbff0473542964f0c3"}
|
||||||
{"status":"writing manifest"}
|
{"status":"writing manifest"}
|
||||||
{"status":"success"}
|
{"status":"success"}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
### Check if a Blob Exists
|
#### Create a model from a Safetensors directory
|
||||||
|
|
||||||
|
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
|
||||||
|
|
||||||
|
##### Request
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl http://localhost:11434/api/create -d '{
|
||||||
|
"model": "fred",
|
||||||
|
"files": {
|
||||||
|
"config.json": "sha256:dd3443e529fb2290423a0c65c2d633e67b419d273f170259e27297219828e389",
|
||||||
|
"generation_config.json": "sha256:88effbb63300dbbc7390143fbbdd9d9fa50587b37e8bfd16c8c90d4970a74a36",
|
||||||
|
"special_tokens_map.json": "sha256:b7455f0e8f00539108837bfa586c4fbf424e31f8717819a6798be74bef813d05",
|
||||||
|
"tokenizer.json": "sha256:bbc1904d35169c542dffbe1f7589a5994ec7426d9e5b609d07bab876f32e97ab",
|
||||||
|
"tokenizer_config.json": "sha256:24e8a6dc2547164b7002e3125f10b415105644fcf02bf9ad8b674c87b1eaaed6",
|
||||||
|
"model.safetensors": "sha256:1ff795ff6a07e6a68085d206fb84417da2f083f68391c2843cd2b8ac6df8538f"
|
||||||
|
}
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
##### Response
|
||||||
|
|
||||||
|
A stream of JSON objects is returned:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
{"status":"converting model"}
|
||||||
|
{"status":"creating new layer sha256:05ca5b813af4a53d2c2922933936e398958855c44ee534858fcfd830940618b6"}
|
||||||
|
{"status":"using autodetected template llama3-instruct"}
|
||||||
|
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||||
|
{"status":"writing manifest"}
|
||||||
|
{"status":"success"}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Check if a Blob Exists
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
HEAD /api/blobs/:digest
|
HEAD /api/blobs/:digest
|
||||||
```
|
```
|
||||||
|
|
||||||
Ensures that the file blob used for a FROM or ADAPTER field exists on the server. This is checking your Ollama server and not ollama.com.
|
Ensures that the file blob (Binary Large Object) used with create a model exists on the server. This checks your Ollama server and not ollama.com.
|
||||||
|
|
||||||
#### Query Parameters
|
### Query Parameters
|
||||||
|
|
||||||
- `digest`: the SHA256 digest of the blob
|
- `digest`: the SHA256 digest of the blob
|
||||||
|
|
||||||
#### Examples
|
### Examples
|
||||||
|
|
||||||
##### Request
|
#### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
curl -I http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||||
```
|
```
|
||||||
|
|
||||||
##### Response
|
#### Response
|
||||||
|
|
||||||
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
Return 200 OK if the blob exists, 404 Not Found if it does not.
|
||||||
|
|
||||||
### Create a Blob
|
## Push a Blob
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/blobs/:digest
|
POST /api/blobs/:digest
|
||||||
```
|
```
|
||||||
|
|
||||||
Create a blob from a file on the server. Returns the server file path.
|
Push a file to the Ollama server to create a "blob" (Binary Large Object).
|
||||||
|
|
||||||
#### Query Parameters
|
### Query Parameters
|
||||||
|
|
||||||
- `digest`: the expected SHA256 digest of the file
|
- `digest`: the expected SHA256 digest of the file
|
||||||
|
|
||||||
#### Examples
|
### Examples
|
||||||
|
|
||||||
##### Request
|
#### Request
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -T model.bin -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
curl -T model.gguf -X POST http://localhost:11434/api/blobs/sha256:29fdb92e57cf0827ded04ae6461b5931d01fa595843f55d36f5b275a52087dd2
|
||||||
```
|
```
|
||||||
|
|
||||||
##### Response
|
#### Response
|
||||||
|
|
||||||
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
Return 201 Created if the blob was successfully created, 400 Bad Request if the digest used is not expected.
|
||||||
|
|
||||||
## List Local Models
|
## List Local Models
|
||||||
|
|
||||||
```shell
|
```
|
||||||
GET /api/tags
|
GET /api/tags
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1092,29 +1157,37 @@ A single JSON object will be returned.
|
|||||||
{
|
{
|
||||||
"models": [
|
"models": [
|
||||||
{
|
{
|
||||||
"name": "codellama:13b",
|
"name": "deepseek-r1:latest",
|
||||||
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
"model": "deepseek-r1:latest",
|
||||||
"size": 7365960935,
|
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
|
||||||
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
"size": 4683075271,
|
||||||
|
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
|
||||||
"details": {
|
"details": {
|
||||||
|
"parent_model": "",
|
||||||
"format": "gguf",
|
"format": "gguf",
|
||||||
"family": "llama",
|
"family": "qwen2",
|
||||||
"families": null,
|
"families": [
|
||||||
"parameter_size": "13B",
|
"qwen2"
|
||||||
"quantization_level": "Q4_0"
|
],
|
||||||
|
"parameter_size": "7.6B",
|
||||||
|
"quantization_level": "Q4_K_M"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"name": "llama3:latest",
|
"name": "llama3.2:latest",
|
||||||
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
"model": "llama3.2:latest",
|
||||||
"size": 3825819519,
|
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
|
||||||
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
"size": 2019393189,
|
||||||
|
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
|
||||||
"details": {
|
"details": {
|
||||||
|
"parent_model": "",
|
||||||
"format": "gguf",
|
"format": "gguf",
|
||||||
"family": "llama",
|
"family": "llama",
|
||||||
"families": null,
|
"families": [
|
||||||
"parameter_size": "7B",
|
"llama"
|
||||||
"quantization_level": "Q4_0"
|
],
|
||||||
|
"parameter_size": "3.2B",
|
||||||
|
"quantization_level": "Q4_K_M"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
@@ -1123,7 +1196,7 @@ A single JSON object will be returned.
|
|||||||
|
|
||||||
## Show Model Information
|
## Show Model Information
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/show
|
POST /api/show
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1140,13 +1213,13 @@ Show information about a model including details, modelfile, template, parameter
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/show -d '{
|
curl http://localhost:11434/api/show -d '{
|
||||||
"model": "llama3.2"
|
"model": "llava"
|
||||||
}'
|
}'
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Response
|
#### Response
|
||||||
|
|
||||||
```json
|
```json5
|
||||||
{
|
{
|
||||||
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
||||||
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
||||||
@@ -1183,13 +1256,17 @@ curl http://localhost:11434/api/show -d '{
|
|||||||
"tokenizer.ggml.pre": "llama-bpe",
|
"tokenizer.ggml.pre": "llama-bpe",
|
||||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||||
}
|
},
|
||||||
|
"capabilities": [
|
||||||
|
"completion",
|
||||||
|
"vision"
|
||||||
|
],
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
## Copy a Model
|
## Copy a Model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/copy
|
POST /api/copy
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1212,7 +1289,7 @@ Returns a 200 OK if successful, or a 404 Not Found if the source model doesn't e
|
|||||||
|
|
||||||
## Delete a Model
|
## Delete a Model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
DELETE /api/delete
|
DELETE /api/delete
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1238,7 +1315,7 @@ Returns a 200 OK if successful, 404 Not Found if the model to be deleted doesn't
|
|||||||
|
|
||||||
## Pull a Model
|
## Pull a Model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/pull
|
POST /api/pull
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1310,7 +1387,7 @@ if `stream` is set to false, then the response is a single JSON object:
|
|||||||
|
|
||||||
## Push a Model
|
## Push a Model
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/push
|
POST /api/push
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1375,7 +1452,7 @@ If `stream` is set to `false`, then the response is a single JSON object:
|
|||||||
|
|
||||||
## Generate Embeddings
|
## Generate Embeddings
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/embed
|
POST /api/embed
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1443,7 +1520,7 @@ curl http://localhost:11434/api/embed -d '{
|
|||||||
```
|
```
|
||||||
|
|
||||||
## List Running Models
|
## List Running Models
|
||||||
```shell
|
```
|
||||||
GET /api/ps
|
GET /api/ps
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1490,7 +1567,7 @@ A single JSON object will be returned.
|
|||||||
|
|
||||||
> Note: this endpoint has been superseded by `/api/embed`
|
> Note: this endpoint has been superseded by `/api/embed`
|
||||||
|
|
||||||
```shell
|
```
|
||||||
POST /api/embeddings
|
POST /api/embeddings
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -1527,3 +1604,29 @@ curl http://localhost:11434/api/embeddings -d '{
|
|||||||
]
|
]
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Version
|
||||||
|
|
||||||
|
```
|
||||||
|
GET /api/version
|
||||||
|
```
|
||||||
|
|
||||||
|
Retrieve the Ollama version
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
|
||||||
|
#### Request
|
||||||
|
|
||||||
|
```shell
|
||||||
|
curl http://localhost:11434/api/version
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Response
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"version": "0.5.1"
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,175 +1,159 @@
|
|||||||
# Development
|
# Development
|
||||||
|
|
||||||
Install required tools:
|
Install prerequisites:
|
||||||
|
|
||||||
- go version 1.22 or higher
|
- [Go](https://go.dev/doc/install)
|
||||||
- gcc version 11.4.0 or higher
|
- C/C++ Compiler e.g. Clang on macOS, [TDM-GCC](https://github.com/jmeubank/tdm-gcc/releases/latest) (Windows amd64) or [llvm-mingw](https://github.com/mstorsjo/llvm-mingw) (Windows arm64), GCC/Clang on Linux.
|
||||||
|
|
||||||
|
Then build and run Ollama from the root directory of the repository:
|
||||||
|
|
||||||
### MacOS
|
```shell
|
||||||
|
go run . serve
|
||||||
[Download Go](https://go.dev/dl/)
|
|
||||||
|
|
||||||
Optionally enable debugging and more verbose logging:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
# At build time
|
|
||||||
export CGO_CFLAGS="-g"
|
|
||||||
|
|
||||||
# At runtime
|
|
||||||
export OLLAMA_DEBUG=1
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Get the required libraries and build the native LLM code: (Adjust the job count based on your number of processors for a faster build)
|
## macOS (Apple Silicon)
|
||||||
|
|
||||||
```bash
|
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
|
||||||
make -j 5
|
|
||||||
|
## macOS (Intel)
|
||||||
|
|
||||||
|
Install prerequisites:
|
||||||
|
|
||||||
|
- [CMake](https://cmake.org/download/) or `brew install cmake`
|
||||||
|
|
||||||
|
Then, configure and build the project:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cmake -B build
|
||||||
|
cmake --build build
|
||||||
```
|
```
|
||||||
|
|
||||||
Then build ollama:
|
Lastly, run Ollama:
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
go build .
|
go run . serve
|
||||||
```
|
```
|
||||||
|
|
||||||
Now you can run `ollama`:
|
## Windows
|
||||||
|
|
||||||
```bash
|
Install prerequisites:
|
||||||
./ollama
|
|
||||||
|
- [CMake](https://cmake.org/download/)
|
||||||
|
- [Visual Studio 2022](https://visualstudio.microsoft.com/downloads/) including the Native Desktop Workload
|
||||||
|
- (Optional) AMD GPU support
|
||||||
|
- [ROCm](https://rocm.docs.amd.com/en/latest/)
|
||||||
|
- [Ninja](https://github.com/ninja-build/ninja/releases)
|
||||||
|
- (Optional) NVIDIA GPU support
|
||||||
|
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network)
|
||||||
|
|
||||||
|
Then, configure and build the project:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cmake -B build
|
||||||
|
cmake --build build --config Release
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Xcode 15 warnings
|
> [!IMPORTANT]
|
||||||
|
> Building for ROCm requires additional flags:
|
||||||
|
> ```
|
||||||
|
> cmake -B build -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++
|
||||||
|
> cmake --build build --config Release
|
||||||
|
> ```
|
||||||
|
|
||||||
If you are using Xcode newer than version 14, you may see a warning during `go build` about `ld: warning: ignoring duplicate libraries: '-lobjc'` due to Golang issue https://github.com/golang/go/issues/67799 which can be safely ignored. You can suppress the warning with `export CGO_LDFLAGS="-Wl,-no_warn_duplicate_libraries"`
|
|
||||||
|
|
||||||
### Linux
|
Lastly, run Ollama:
|
||||||
|
|
||||||
#### Linux CUDA (NVIDIA)
|
```shell
|
||||||
|
go run . serve
|
||||||
_Your operating system distribution may already have packages for NVIDIA CUDA. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
|
||||||
|
|
||||||
Install `make`, `gcc` and `golang` as well as [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads)
|
|
||||||
development and runtime packages.
|
|
||||||
|
|
||||||
Typically the build scripts will auto-detect CUDA, however, if your Linux distro
|
|
||||||
or installation approach uses unusual paths, you can specify the location by
|
|
||||||
specifying an environment variable `CUDA_LIB_DIR` to the location of the shared
|
|
||||||
libraries, and `CUDACXX` to the location of the nvcc compiler. You can customize
|
|
||||||
a set of target CUDA architectures by setting `CMAKE_CUDA_ARCHITECTURES` (e.g. "50;60;70")
|
|
||||||
|
|
||||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
|
||||||
|
|
||||||
```
|
|
||||||
make -j 5
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Then build the binary:
|
## Windows (ARM)
|
||||||
|
|
||||||
```
|
Windows ARM does not support additional acceleration libraries at this time. Do not use cmake, simply `go run` or `go build`.
|
||||||
go build .
|
|
||||||
|
## Linux
|
||||||
|
|
||||||
|
Install prerequisites:
|
||||||
|
|
||||||
|
- [CMake](https://cmake.org/download/) or `sudo apt install cmake` or `sudo dnf install cmake`
|
||||||
|
- (Optional) AMD GPU support
|
||||||
|
- [ROCm](https://rocm.docs.amd.com/projects/install-on-linux/en/latest/install/quick-start.html)
|
||||||
|
- (Optional) NVIDIA GPU support
|
||||||
|
- [CUDA SDK](https://developer.nvidia.com/cuda-downloads)
|
||||||
|
|
||||||
|
> [!IMPORTANT]
|
||||||
|
> Ensure prerequisites are in `PATH` before running CMake.
|
||||||
|
|
||||||
|
|
||||||
|
Then, configure and build the project:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
cmake -B build
|
||||||
|
cmake --build build
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Linux ROCm (AMD)
|
Lastly, run Ollama:
|
||||||
|
|
||||||
_Your operating system distribution may already have packages for AMD ROCm and CLBlast. Distro packages are often preferable, but instructions are distro-specific. Please consult distro-specific docs for dependencies if available!_
|
```shell
|
||||||
|
go run . serve
|
||||||
Install [CLBlast](https://github.com/CNugteren/CLBlast/blob/master/doc/installation.md) and [ROCm](https://rocm.docs.amd.com/en/latest/) development packages first, as well as `make`, `gcc`, and `golang`.
|
|
||||||
|
|
||||||
Typically the build scripts will auto-detect ROCm, however, if your Linux distro
|
|
||||||
or installation approach uses unusual paths, you can specify the location by
|
|
||||||
specifying an environment variable `ROCM_PATH` to the location of the ROCm
|
|
||||||
install (typically `/opt/rocm`), and `CLBlast_DIR` to the location of the
|
|
||||||
CLBlast install (typically `/usr/lib/cmake/CLBlast`). You can also customize
|
|
||||||
the AMD GPU targets by setting AMDGPU_TARGETS (e.g. `AMDGPU_TARGETS="gfx1101;gfx1102"`)
|
|
||||||
|
|
||||||
Then generate dependencies: (Adjust the job count based on your number of processors for a faster build)
|
|
||||||
|
|
||||||
```
|
|
||||||
make -j 5
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Then build the binary:
|
## Docker
|
||||||
|
|
||||||
```
|
```shell
|
||||||
go build .
|
docker build .
|
||||||
```
|
```
|
||||||
|
|
||||||
ROCm requires elevated privileges to access the GPU at runtime. On most distros you can add your user account to the `render` group, or run as root.
|
### ROCm
|
||||||
|
|
||||||
#### Advanced CPU Settings
|
```shell
|
||||||
|
docker build --build-arg FLAVOR=rocm .
|
||||||
By default, running `make` will compile a few different variations
|
|
||||||
of the LLM library based on common CPU families and vector math capabilities,
|
|
||||||
including a lowest-common-denominator which should run on almost any 64 bit CPU
|
|
||||||
somewhat slowly. At runtime, Ollama will auto-detect the optimal variation to
|
|
||||||
load.
|
|
||||||
|
|
||||||
Custom CPU settings are not currently supported in the new Go server build but will be added back after we complete the transition.
|
|
||||||
|
|
||||||
#### Containerized Linux Build
|
|
||||||
|
|
||||||
If you have Docker available, you can build linux binaries with `./scripts/build_linux.sh` which has the CUDA and ROCm dependencies included. The resulting binary is placed in `./dist`
|
|
||||||
|
|
||||||
### Windows
|
|
||||||
|
|
||||||
The following tools are required as a minimal development environment to build CPU inference support.
|
|
||||||
|
|
||||||
- Go version 1.22 or higher
|
|
||||||
- https://go.dev/dl/
|
|
||||||
- Git
|
|
||||||
- https://git-scm.com/download/win
|
|
||||||
- clang with gcc compat and Make. There are multiple options on how to go about installing these tools on Windows. We have verified the following, but others may work as well:
|
|
||||||
- [MSYS2](https://www.msys2.org/)
|
|
||||||
- After installing, from an MSYS2 terminal, run `pacman -S mingw-w64-clang-x86_64-gcc-compat mingw-w64-clang-x86_64-clang make` to install the required tools
|
|
||||||
- Assuming you used the default install prefix for msys2 above, add `C:\msys64\clang64\bin` and `c:\msys64\usr\bin` to your environment variable `PATH` where you will perform the build steps below (e.g. system-wide, account-level, powershell, cmd, etc.)
|
|
||||||
|
|
||||||
> [!NOTE]
|
|
||||||
> Due to bugs in the GCC C++ library for unicode support, Ollama should be built with clang on windows.
|
|
||||||
|
|
||||||
Then, build the `ollama` binary:
|
|
||||||
|
|
||||||
```powershell
|
|
||||||
$env:CGO_ENABLED="1"
|
|
||||||
make -j 8
|
|
||||||
go build .
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### GPU Support
|
## Running tests
|
||||||
|
|
||||||
The GPU tools require the Microsoft native build tools. To build either CUDA or ROCm, you must first install MSVC via Visual Studio:
|
To run tests, use `go test`:
|
||||||
|
|
||||||
- Make sure to select `Desktop development with C++` as a Workload during the Visual Studio install
|
```shell
|
||||||
- You must complete the Visual Studio install and run it once **BEFORE** installing CUDA or ROCm for the tools to properly register
|
go test ./...
|
||||||
- Add the location of the **64 bit (x64)** compiler (`cl.exe`) to your `PATH`
|
|
||||||
- Note: the default Developer Shell may configure the 32 bit (x86) compiler which will lead to build failures. Ollama requires a 64 bit toolchain.
|
|
||||||
|
|
||||||
#### Windows CUDA (NVIDIA)
|
|
||||||
|
|
||||||
In addition to the common Windows development tools and MSVC described above:
|
|
||||||
|
|
||||||
- [NVIDIA CUDA](https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html)
|
|
||||||
|
|
||||||
#### Windows ROCm (AMD Radeon)
|
|
||||||
|
|
||||||
In addition to the common Windows development tools and MSVC described above:
|
|
||||||
|
|
||||||
- [AMD HIP](https://www.amd.com/en/developer/resources/rocm-hub/hip-sdk.html)
|
|
||||||
|
|
||||||
#### Windows arm64
|
|
||||||
|
|
||||||
The default `Developer PowerShell for VS 2022` may default to x86 which is not what you want. To ensure you get an arm64 development environment, start a plain PowerShell terminal and run:
|
|
||||||
|
|
||||||
```powershell
|
|
||||||
import-module 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community\\Common7\\Tools\\Microsoft.VisualStudio.DevShell.dll'
|
|
||||||
Enter-VsDevShell -Arch arm64 -vsinstallpath 'C:\\Program Files\\Microsoft Visual Studio\\2022\\Community' -skipautomaticlocation
|
|
||||||
```
|
```
|
||||||
|
|
||||||
You can confirm with `write-host $env:VSCMD_ARG_TGT_ARCH`
|
> NOTE: In rare cirumstances, you may need to change a package using the new
|
||||||
|
> "synctest" package in go1.24.
|
||||||
|
>
|
||||||
|
> If you do not have the "synctest" package enabled, you will not see build or
|
||||||
|
> test failures resulting from your change(s), if any, locally, but CI will
|
||||||
|
> break.
|
||||||
|
>
|
||||||
|
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||||
|
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||||
|
> failures before pushing.
|
||||||
|
>
|
||||||
|
> To enable the "synctest" package for testing, run the following command:
|
||||||
|
>
|
||||||
|
> ```shell
|
||||||
|
> GOEXPERIMENT=synctest go test ./...
|
||||||
|
> ```
|
||||||
|
>
|
||||||
|
> If you wish to enable synctest for all go commands, you can set the
|
||||||
|
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||||
|
>
|
||||||
|
> ```shell
|
||||||
|
> go env -w GOEXPERIMENT=synctest
|
||||||
|
> ```
|
||||||
|
>
|
||||||
|
> Which will enable the "synctest" package for all go commands without needing
|
||||||
|
> to set it for all shell sessions.
|
||||||
|
>
|
||||||
|
> The synctest package is not required for production builds.
|
||||||
|
|
||||||
Follow the instructions at https://www.msys2.org/wiki/arm64/ to set up an arm64 msys2 environment. Ollama requires gcc and mingw32-make to compile, which is not currently available on Windows arm64, but a gcc compatibility adapter is available via `mingw-w64-clang-aarch64-gcc-compat`. At a minimum you will need to install the following:
|
## Library detection
|
||||||
|
|
||||||
```
|
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||||
pacman -S mingw-w64-clang-aarch64-clang mingw-w64-clang-aarch64-gcc-compat mingw-w64-clang-aarch64-make make
|
|
||||||
```
|
|
||||||
|
|
||||||
You will need to ensure your PATH includes go, cmake, gcc and clang mingw32-make to build ollama from source. (typically `C:\msys64\clangarm64\bin\`)
|
* `./lib/ollama` (Windows)
|
||||||
|
* `../lib/ollama` (Linux)
|
||||||
|
* `.` (macOS)
|
||||||
|
* `build/lib/ollama` (for development)
|
||||||
|
|
||||||
|
If the libraries are not found, Ollama will not run with any acceleration libraries.
|
||||||
|
|||||||
@@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
### CPU only
|
### CPU only
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -11,42 +11,46 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
|
|||||||
|
|
||||||
#### Install with Apt
|
#### Install with Apt
|
||||||
1. Configure the repository
|
1. Configure the repository
|
||||||
```bash
|
|
||||||
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
```shell
|
||||||
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
||||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
||||||
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
||||||
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
||||||
sudo apt-get update
|
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
||||||
```
|
sudo apt-get update
|
||||||
|
```
|
||||||
|
|
||||||
2. Install the NVIDIA Container Toolkit packages
|
2. Install the NVIDIA Container Toolkit packages
|
||||||
```bash
|
|
||||||
sudo apt-get install -y nvidia-container-toolkit
|
```shell
|
||||||
```
|
sudo apt-get install -y nvidia-container-toolkit
|
||||||
|
```
|
||||||
|
|
||||||
#### Install with Yum or Dnf
|
#### Install with Yum or Dnf
|
||||||
1. Configure the repository
|
1. Configure the repository
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
||||||
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Install the NVIDIA Container Toolkit packages
|
2. Install the NVIDIA Container Toolkit packages
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
sudo yum install -y nvidia-container-toolkit
|
sudo yum install -y nvidia-container-toolkit
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Configure Docker to use Nvidia driver
|
#### Configure Docker to use Nvidia driver
|
||||||
```
|
|
||||||
|
```shell
|
||||||
sudo nvidia-ctk runtime configure --runtime=docker
|
sudo nvidia-ctk runtime configure --runtime=docker
|
||||||
sudo systemctl restart docker
|
sudo systemctl restart docker
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Start the container
|
#### Start the container
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -57,7 +61,7 @@ docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ol
|
|||||||
|
|
||||||
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -65,7 +69,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
|
|||||||
|
|
||||||
Now you can run a model:
|
Now you can run a model:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
docker exec -it ollama ollama run llama3.2
|
docker exec -it ollama ollama run llama3.2
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
@@ -12,3 +12,9 @@ Ollama JavaScript examples at [ollama-js/examples](https://github.com/ollama/oll
|
|||||||
|
|
||||||
## OpenAI compatibility examples
|
## OpenAI compatibility examples
|
||||||
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
|
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
|
||||||
|
|
||||||
|
|
||||||
|
## Community examples
|
||||||
|
|
||||||
|
- [LangChain Ollama Python](https://python.langchain.com/docs/integrations/chat/ollama/)
|
||||||
|
- [LangChain Ollama JS](https://js.langchain.com/docs/integrations/chat/ollama/)
|
||||||
37
docs/faq.md
37
docs/faq.md
@@ -20,11 +20,17 @@ Please refer to the [GPU docs](./gpu.md).
|
|||||||
|
|
||||||
## How can I specify the context window size?
|
## How can I specify the context window size?
|
||||||
|
|
||||||
By default, Ollama uses a context window size of 2048 tokens.
|
By default, Ollama uses a context window size of 4096 tokens.
|
||||||
|
|
||||||
|
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||||
|
```
|
||||||
|
|
||||||
To change this when using `ollama run`, use `/set parameter`:
|
To change this when using `ollama run`, use `/set parameter`:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
/set parameter num_ctx 4096
|
/set parameter num_ctx 4096
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -46,10 +52,15 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
|
|||||||
|
|
||||||
```shell
|
```shell
|
||||||
ollama ps
|
ollama ps
|
||||||
NAME ID SIZE PROCESSOR UNTIL
|
|
||||||
llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
> **Output**:
|
||||||
|
>
|
||||||
|
> ```
|
||||||
|
> NAME ID SIZE PROCESSOR UNTIL
|
||||||
|
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||||
|
> ```
|
||||||
|
|
||||||
The `Processor` column will show which memory the model was loaded in to:
|
The `Processor` column will show which memory the model was loaded in to:
|
||||||
* `100% GPU` means the model was loaded entirely into the GPU
|
* `100% GPU` means the model was loaded entirely into the GPU
|
||||||
* `100% CPU` means the model was loaded entirely in system memory
|
* `100% CPU` means the model was loaded entirely in system memory
|
||||||
@@ -66,7 +77,7 @@ If Ollama is run as a macOS application, environment variables should be set usi
|
|||||||
1. For each environment variable, call `launchctl setenv`.
|
1. For each environment variable, call `launchctl setenv`.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
launchctl setenv OLLAMA_HOST "0.0.0.0"
|
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
|
||||||
```
|
```
|
||||||
|
|
||||||
2. Restart Ollama application.
|
2. Restart Ollama application.
|
||||||
@@ -81,14 +92,14 @@ If Ollama is run as a systemd service, environment variables should be set using
|
|||||||
|
|
||||||
```ini
|
```ini
|
||||||
[Service]
|
[Service]
|
||||||
Environment="OLLAMA_HOST=0.0.0.0"
|
Environment="OLLAMA_HOST=0.0.0.0:11434"
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Save and exit.
|
3. Save and exit.
|
||||||
|
|
||||||
4. Reload `systemd` and restart Ollama:
|
4. Reload `systemd` and restart Ollama:
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
systemctl daemon-reload
|
systemctl daemon-reload
|
||||||
systemctl restart ollama
|
systemctl restart ollama
|
||||||
```
|
```
|
||||||
@@ -182,6 +193,13 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
|
|||||||
|
|
||||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
||||||
|
|
||||||
|
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
|
||||||
|
|
||||||
|
```
|
||||||
|
# Allow all Chrome, Firefox, and Safari extensions
|
||||||
|
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
|
||||||
|
```
|
||||||
|
|
||||||
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
||||||
|
|
||||||
## Where are models stored?
|
## Where are models stored?
|
||||||
@@ -221,16 +239,19 @@ properties.
|
|||||||
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
|
If you are using the API you can preload a model by sending the Ollama server an empty request. This works with both the `/api/generate` and `/api/chat` API endpoints.
|
||||||
|
|
||||||
To preload the mistral model using the generate endpoint, use:
|
To preload the mistral model using the generate endpoint, use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
|
curl http://localhost:11434/api/generate -d '{"model": "mistral"}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To use the chat completions endpoint, use:
|
To use the chat completions endpoint, use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To preload a model using the CLI, use the command:
|
To preload a model using the CLI, use the command:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
ollama run llama3.2 ""
|
ollama run llama3.2 ""
|
||||||
```
|
```
|
||||||
@@ -250,11 +271,13 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
|
|||||||
* '0' which will unload the model immediately after generating a response
|
* '0' which will unload the model immediately after generating a response
|
||||||
|
|
||||||
For example, to preload a model and leave it in memory use:
|
For example, to preload a model and leave it in memory use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
|
||||||
```
|
```
|
||||||
|
|
||||||
To unload the model and free up memory use:
|
To unload the model and free up memory use:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -7,7 +7,7 @@ Check your compute compatibility to see if your card is supported:
|
|||||||
|
|
||||||
| Compute Capability | Family | Cards |
|
| Compute Capability | Family | Cards |
|
||||||
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
||||||
| 9.0 | NVIDIA | `H100` |
|
| 9.0 | NVIDIA | `H200` `H100` |
|
||||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||||
@@ -28,6 +28,7 @@ Check your compute compatibility to see if your card is supported:
|
|||||||
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
|
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
|
||||||
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
|
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
|
||||||
|
|
||||||
|
For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
|
||||||
|
|
||||||
### GPU Selection
|
### GPU Selection
|
||||||
|
|
||||||
@@ -37,7 +38,7 @@ Numeric IDs may be used, however ordering may vary, so UUIDs are more reliable.
|
|||||||
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
|
You can discover the UUID of your GPUs by running `nvidia-smi -L` If you want to
|
||||||
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
|
ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
|
||||||
|
|
||||||
### Laptop Suspend Resume
|
### Linux Suspend Resume
|
||||||
|
|
||||||
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
|
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
|
||||||
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
|
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
|
||||||
|
|||||||
@@ -20,13 +20,13 @@ Make sure that you use the same base model in the `FROM` command as you used to
|
|||||||
|
|
||||||
Now run `ollama create` from the directory where the `Modelfile` was created:
|
Now run `ollama create` from the directory where the `Modelfile` was created:
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
ollama create my-model
|
ollama create my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
Lastly, test the model:
|
Lastly, test the model:
|
||||||
|
|
||||||
```bash
|
```shell
|
||||||
ollama run my-model
|
ollama run my-model
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -132,22 +132,12 @@ success
|
|||||||
|
|
||||||
### Supported Quantizations
|
### Supported Quantizations
|
||||||
|
|
||||||
- `q4_0`
|
|
||||||
- `q4_1`
|
|
||||||
- `q5_0`
|
|
||||||
- `q5_1`
|
|
||||||
- `q8_0`
|
- `q8_0`
|
||||||
|
|
||||||
#### K-means Quantizations
|
#### K-means Quantizations
|
||||||
|
|
||||||
- `q3_K_S`
|
|
||||||
- `q3_K_M`
|
|
||||||
- `q3_K_L`
|
|
||||||
- `q4_K_S`
|
- `q4_K_S`
|
||||||
- `q4_K_M`
|
- `q4_K_M`
|
||||||
- `q5_K_S`
|
|
||||||
- `q5_K_M`
|
|
||||||
- `q6_K`
|
|
||||||
|
|
||||||
|
|
||||||
## Sharing your model on ollama.com
|
## Sharing your model on ollama.com
|
||||||
|
|||||||
@@ -10,6 +10,9 @@ curl -fsSL https://ollama.com/install.sh | sh
|
|||||||
|
|
||||||
## Manual install
|
## Manual install
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
|
||||||
|
|
||||||
Download and extract the package:
|
Download and extract the package:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
@@ -72,7 +75,7 @@ RestartSec=3
|
|||||||
Environment="PATH=$PATH"
|
Environment="PATH=$PATH"
|
||||||
|
|
||||||
[Install]
|
[Install]
|
||||||
WantedBy=default.target
|
WantedBy=multi-user.target
|
||||||
```
|
```
|
||||||
|
|
||||||
Then start the service:
|
Then start the service:
|
||||||
@@ -109,14 +112,14 @@ sudo systemctl status ollama
|
|||||||
> While AMD has contributed the `amdgpu` driver upstream to the official linux
|
> While AMD has contributed the `amdgpu` driver upstream to the official linux
|
||||||
> kernel source, the version is older and may not support all ROCm features. We
|
> kernel source, the version is older and may not support all ROCm features. We
|
||||||
> recommend you install the latest driver from
|
> recommend you install the latest driver from
|
||||||
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
|
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
|
||||||
> GPU.
|
> of your Radeon GPU.
|
||||||
|
|
||||||
## Customizing
|
## Customizing
|
||||||
|
|
||||||
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
|
To customize the installation of Ollama, you can edit the systemd service file or the environment variables by running:
|
||||||
|
|
||||||
```
|
```shell
|
||||||
sudo systemctl edit ollama
|
sudo systemctl edit ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
@@ -149,7 +152,7 @@ Use `OLLAMA_VERSION` environment variable with the install script to install a s
|
|||||||
For example:
|
For example:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.3.9 sh
|
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||||
```
|
```
|
||||||
|
|
||||||
## Viewing logs
|
## Viewing logs
|
||||||
@@ -183,3 +186,9 @@ sudo rm -r /usr/share/ollama
|
|||||||
sudo userdel ollama
|
sudo userdel ollama
|
||||||
sudo groupdel ollama
|
sudo groupdel ollama
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Remove installed libraries:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
sudo rm -rf /usr/local/lib/ollama
|
||||||
|
```
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user