package convert import ( "cmp" "github.com/ollama/ollama/fs/ggml" ) type ropeScaling struct { Factor float32 `json:"factor"` OriginalMaxPositionEmbeds uint32 `json:"original_max_position_embeddings"` AttentionFactor float32 `json:"attention_factor"` BetaFast float32 `json:"beta_fast"` BetaSlow float32 `json:"beta_slow"` RopeType string `json:"rope_type"` ExtrapolationFactor float32 `json:"extrapolation_factor"` } type olmoModel struct { ModelParameters HiddenSize uint32 `json:"hidden_size"` NumHiddenLayers uint32 `json:"num_hidden_layers"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` RMSNormEPS float32 `json:"rms_norm_eps"` RopeTheta float32 `json:"rope_theta"` RopeScaling *ropeScaling `json:"rope_scaling"` SlidingWindow uint32 `json:"sliding_window"` LayerTypes []string `json:"layer_types"` } var _ ModelConverter = (*olmoModel)(nil) func (p *olmoModel) KV(t *Tokenizer) ggml.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "olmo3" kv["olmo3.block_count"] = p.NumHiddenLayers kv["olmo3.context_length"] = p.MaxPositionEmbeddings kv["olmo3.embedding_length"] = p.HiddenSize kv["olmo3.feed_forward_length"] = p.IntermediateSize kv["olmo3.attention.head_count"] = p.NumAttentionHeads kv["olmo3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) if p.RopeTheta > 0 { kv["olmo3.rope.freq_base"] = p.RopeTheta } if p.RopeScaling != nil { if p.RopeScaling.Factor > 0 { kv["olmo3.rope.scaling.factor"] = p.RopeScaling.Factor } if p.RopeScaling.OriginalMaxPositionEmbeds > 0 { kv["olmo3.rope.scaling.original_context_length"] = p.RopeScaling.OriginalMaxPositionEmbeds } if p.RopeScaling.AttentionFactor > 0 { kv["olmo3.rope.scaling.attn_factor"] = p.RopeScaling.AttentionFactor } if p.RopeScaling.RopeType != "" { kv["olmo3.rope.scaling.type"] = p.RopeScaling.RopeType } } if p.RMSNormEPS > 0 { kv["olmo3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS } if p.SlidingWindow > 0 { kv["olmo3.attention.sliding_window"] = p.SlidingWindow } if len(p.LayerTypes) > 0 { slidingPattern := make([]bool, len(p.LayerTypes)) for i, layerType := range p.LayerTypes { slidingPattern[i] = (layerType == "sliding_attention") } kv["olmo3.attention.sliding_window_pattern"] = slidingPattern } return kv } func (p *olmoModel) Tensors(ts []Tensor) []*ggml.Tensor { out := make([]*ggml.Tensor, 0, len(ts)) for _, t := range ts { out = append(out, &ggml.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *olmoModel) Replacements() []string { return []string{ "lm_head", "output", "model.embed_tokens", "token_embd", "model.layers", "blk", "model.norm", "output_norm", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "self_attn.q_norm", "attn_q_norm", "self_attn.k_norm", "attn_k_norm", "post_attention_layernorm", "post_attention_norm", "post_feedforward_layernorm", "post_ffw_norm", "mlp.gate_proj", "ffn_gate", "mlp.down_proj", "ffn_down", "mlp.up_proj", "ffn_up", } }