package olmo3 import ( "fmt" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/rope" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) const ( cacheTypeSWA = 0 cacheTypeCausal = 1 ) type Options struct { hiddenSize, numHeads, numKVHeads int eps, ropeBase, ropeScale float32 originalContextLength int attnFactor float32 ropeType string ropeExtrapolation float32 slidingWindowPattern []bool } type Model struct { model.Base model.TextProcessor TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` Options } func New(c fs.Config) (model.Model, error) { vocabulary := model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Ints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false), BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))}, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false), EOS: append( []int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))}, c.Ints("tokenizer.ggml.eos_token_ids")..., ), } processor := model.NewBytePairEncoding( &vocabulary, "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", ) m := Model{ TextProcessor: processor, Layers: make([]Layer, c.Uint("block_count")), Options: Options{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base", 1e4), ropeScale: c.Float("rope.scaling.factor", 1), originalContextLength: int(c.Uint("rope.scaling.original_context_length")), attnFactor: c.Float("rope.scaling.attn_factor", 1), ropeType: c.String("rope.scaling.type"), ropeExtrapolation: c.Float("rope.scaling.extrapolation_factor", 1.0), slidingWindowPattern: c.Bools("attention.sliding_window_pattern"), }, } m.Cache = kvcache.NewWrapperCache( kvcache.NewSWACache(int32(c.Uint("attention.sliding_window")), m.Shift), kvcache.NewCausalCache(m.Shift), ) return &m, nil } type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` QNorm *nn.RMSNorm `gguf:"attn_q_norm"` KNorm *nn.RMSNorm `gguf:"attn_k_norm"` } func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor, isSWA bool) ml.Tensor { freqScale := float32(1.0) ropeOpts := []func(*rope.Options){rope.WithTypeNeoX()} if !isSWA { freqScale = 1. / o.ropeScale if o.originalContextLength > 0 { ropeOpts = append(ropeOpts, rope.WithOriginalContextLength(o.originalContextLength), rope.WithExtrapolationFactor(o.ropeExtrapolation), ) } } return nn.RoPE(ctx, states, positions, o.hiddenSize/o.numHeads, o.ropeBase, freqScale, ropeOpts...) } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor { batchSize := hiddenState.Dim(1) headDim := m.hiddenSize / m.numHeads query := sa.Query.Forward(ctx, hiddenState) query = sa.QNorm.Forward(ctx, query, m.eps) query = query.Reshape(ctx, headDim, m.numHeads, batchSize) query = m.Options.applyRotaryPositionEmbeddings(ctx, query, positions, isSWA) key := sa.Key.Forward(ctx, hiddenState) key = sa.KNorm.Forward(ctx, key, m.eps) key = key.Reshape(ctx, headDim, m.numKVHeads, batchSize) key = m.Options.applyRotaryPositionEmbeddings(ctx, key, positions, isSWA) value := sa.Value.Forward(ctx, hiddenState) value = value.Reshape(ctx, headDim, m.numKVHeads, batchSize) attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache) attention = attention.Reshape(ctx, m.hiddenSize, batchSize) return sa.Output.Forward(ctx, attention) } func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { isSWA := m.isSWALayer(layer) return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift, isSWA), nil } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, m *Model) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { SelfAttention *SelfAttention PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"` MLP *MLP PostFFWNorm *nn.RMSNorm `gguf:"post_ffw_norm"` } func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tensor, cache kvcache.Cache, m *Model, isSWA bool) ml.Tensor { residual := hiddenState hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positions, cache, m, isSWA) if outputs != nil { hiddenState = hiddenState.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, m.eps) hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState hiddenState = l.MLP.Forward(ctx, hiddenState, m) hiddenState = l.PostFFWNorm.Forward(ctx, hiddenState, m.eps) return hiddenState.Add(ctx, residual) } // OLMo3 has Sliding Window Attention (SWA) for 3 out of every 4 layers. func (m *Model) isSWALayer(layerIdx int) bool { return m.Options.slidingWindowPattern[layerIdx] } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions)) hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs) for i, layer := range m.Layers { m.Cache.SetLayer(i) cacheType := cacheTypeSWA isSWA := m.isSWALayer(i) if !isSWA { cacheType = cacheTypeCausal } wc, ok := m.Cache.(*kvcache.WrapperCache) if !ok { return nil, fmt.Errorf("expected *kvcache.WrapperCache, got %T", m.Cache) } wc.SetLayerType(cacheType) var outputs ml.Tensor if i == len(m.Layers)-1 { outputs = batch.Outputs } hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m, isSWA) } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) return m.Output.Forward(ctx, hiddenState), nil } func init() { model.Register("olmo3", New) }