package nomicbert import ( "cmp" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/pooling" "github.com/ollama/ollama/ml/nn/rope" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Model struct { model.Base model.TextProcessor TokenEmbedding *nn.Embedding `gguf:"token_embd"` TypeEmbedding *nn.Embedding `gguf:"token_types"` TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"` Layers []EncoderLayer `gguf:"blk"` Options } type Options struct { hiddenSize int numHeads int headDim int eps float32 poolingType pooling.Type normalize bool ropeFreqBase float32 // MoE specific options (used by v2 / MoE models only) numExperts int numExpertsUsed int moeEveryNLayers int } func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor { return nn.RoPE(ctx, states, positions, o.headDim, o.ropeFreqBase, 1.0, rope.WithTypeNeoX()) } type EncoderLayer struct { *Attention AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"` FeedForward FeedForward MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"` } type Attention struct { QKV *nn.Linear `gguf:"attn_qkv"` Output *nn.Linear `gguf:"attn_output"` } type FeedForward interface { Forward(ml.Context, ml.Tensor, *Options) ml.Tensor } type dense struct { Gate *nn.Linear `gguf:"ffn_gate"` Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor { hidden := mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates)) return mlp.Down.Forward(ctx, hidden) } // denseGELU implements MLP with GELU activation for v2 MoE dense layers type denseGELU struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (mlp *denseGELU) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor { return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenStates).GELU(ctx)) } // sparse implements MoE with expert routing type sparse struct { Router *nn.Linear `gguf:"ffn_gate_inp"` Up *nn.LinearBatch `gguf:"ffn_up_exps"` Down *nn.LinearBatch `gguf:"ffn_down_exps"` } func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor { hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2) hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize) routerLogits := moe.Router.Forward(ctx, hiddenStates) routingWeights := routerLogits.Softmax(ctx) selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed) routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts) hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1)) hiddenStates = moe.Up.Forward(ctx, hiddenStates, selectedExperts).GELU(ctx) experts := moe.Down.Forward(ctx, hiddenStates, selectedExperts) experts = experts.Mul(ctx, routingWeights) nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2)) for i := 1; i < opts.numExpertsUsed; i++ { nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2))) } return nextStates } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs) typeEmbed := m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1) hiddenStates = hiddenStates.Add(ctx, typeEmbed) hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps) positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions)) for _, layer := range m.Layers { hiddenStates = layer.Forward(ctx, hiddenStates, positions, &m.Options) } hiddenStates = m.poolingType.Forward(ctx, hiddenStates) if m.normalize { hiddenStates = hiddenStates.L2Norm(ctx, 1e-12) } return hiddenStates, nil } func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor { residual := hiddenStates hiddenStates = e.Attention.Forward(ctx, hiddenStates, positions, opts) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps) residual = hiddenStates hiddenStates = e.FeedForward.Forward(ctx, hiddenStates, opts) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps) return hiddenStates } func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor { batchSize := hiddenStates.Dim(1) qkv := a.QKV.Forward(ctx, hiddenStates) qkv = qkv.Reshape(ctx, opts.headDim, opts.numHeads*3, batchSize) chunks := qkv.Chunk(ctx, 1, opts.numHeads) query, key, value := chunks[0], chunks[1], chunks[2] query = opts.applyRotaryPositionEmbeddings(ctx, query, positions) key = opts.applyRotaryPositionEmbeddings(ctx, key, positions) attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil) attention = attention.Reshape(ctx, opts.hiddenSize, batchSize) return a.Output.Forward(ctx, attention) } func New(c fs.Config) (model.Model, error) { hiddenSize := int(c.Uint("embedding_length")) numHeads := int(c.Uint("attention.head_count")) headDim := hiddenSize / numHeads processor := model.NewWordPiece( &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Ints("tokenizer.ggml.token_type"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), BOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.cls_token_id"), c.Uint("tokenizer.ggml.bos_token_id"), )), }, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true), EOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.separator_token_id"), c.Uint("tokenizer.ggml.eos_token_id"), )), }, }, false, ) blockCount := int(c.Uint("block_count")) moeEveryNLayers := int(c.Uint("moe_every_n_layers", 0)) layers := make([]EncoderLayer, blockCount) for i := range layers { if moeEveryNLayers > 0 { // Layer uses MoE if (i+1) % moe_every_n_layers == 0 if (i+1)%moeEveryNLayers == 0 { layers[i].FeedForward = &sparse{} } else { layers[i].FeedForward = &denseGELU{} } } else { layers[i].FeedForward = &dense{} } } return &Model{ TextProcessor: processor, Layers: layers, Options: Options{ hiddenSize: hiddenSize, numHeads: numHeads, headDim: headDim, eps: c.Float("attention.layer_norm_epsilon"), poolingType: pooling.Type(c.Uint("pooling_type")), normalize: c.Bool("normalize_embeddings", false), ropeFreqBase: c.Float("rope.freq_base", 1000.0), numExperts: int(c.Uint("expert_count")), numExpertsUsed: int(c.Uint("expert_used_count")), moeEveryNLayers: moeEveryNLayers, }, }, nil } func init() { model.Register("nomic-bert", New) model.Register("nomic-bert_embed", New) model.Register("nomic-bert-moe", New) model.Register("nomic-bert-moe_embed", New) }