package nomicbert import ( "cmp" "math" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/fast" "github.com/ollama/ollama/ml/nn/pooling" "github.com/ollama/ollama/ml/nn/rope" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Model struct { model.Base model.TextProcessor TokenEmbedding *nn.Embedding `gguf:"token_embd"` TypeEmbedding *nn.Embedding `gguf:"token_types"` TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"` Layers []EncoderLayer `gguf:"blk"` Options } type Options struct { hiddenSize int numHeads int headDim int eps float32 poolingType pooling.Type normalize bool ropeFreqBase float32 } // Single Encoder Layer type EncoderLayer struct { *Attention AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"` *MLP MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"` } type Attention struct { QKV *nn.Linear `gguf:"attn_qkv"` Output *nn.Linear `gguf:"attn_output"` } type MLP struct { Gate *nn.Linear `gguf:"ffn_gate"` Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs) typeEmbed := m.TypeEmbedding.Weight.Slice(ctx, 1, 0, 1, 1) hiddenStates = hiddenStates.Add(ctx, typeEmbed) hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps) positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions)) for _, layer := range m.Layers { hiddenStates = layer.Forward(ctx, hiddenStates, positions, &m.Options) } hiddenStates = m.poolingType.Forward(ctx, hiddenStates) if m.normalize { hiddenStates = hiddenStates.L2Norm(ctx, 1e-12) } return hiddenStates, nil } func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor { residual := hiddenStates hiddenStates = e.Attention.Forward(ctx, hiddenStates, positions, opts) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps) residual = hiddenStates hiddenStates = e.MLP.Forward(ctx, hiddenStates) hiddenStates = hiddenStates.Add(ctx, residual) hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps) return hiddenStates } func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, positions ml.Tensor, opts *Options) ml.Tensor { batchSize := hiddenStates.Dim(1) qkv := a.QKV.Forward(ctx, hiddenStates) qkv = qkv.Reshape(ctx, opts.headDim, opts.numHeads*3, batchSize) chunks := qkv.Chunk(ctx, 1, opts.numHeads) query, key, value := chunks[0], chunks[1], chunks[2] query = fast.RoPE(ctx, query, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX()) key = fast.RoPE(ctx, key, positions, opts.headDim, opts.ropeFreqBase, 1.0, rope.WithTypeNeoX()) attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(opts.headDim)), nil) attention = attention.Reshape(ctx, opts.hiddenSize, batchSize) return a.Output.Forward(ctx, attention) } func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor { hidden := m.Gate.Forward(ctx, hiddenStates).SILU(ctx, m.Up.Forward(ctx, hiddenStates)) return m.Down.Forward(ctx, hidden) } func New(c fs.Config) (model.Model, error) { hiddenSize := int(c.Uint("embedding_length")) numHeads := int(c.Uint("attention.head_count")) headDim := hiddenSize / numHeads processor := model.NewWordPiece( &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Ints("tokenizer.ggml.token_type"), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), BOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.cls_token_id"), c.Uint("tokenizer.ggml.bos_token_id"), )), }, AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true), EOS: []int32{ int32(cmp.Or( c.Uint("tokenizer.ggml.separator_token_id"), c.Uint("tokenizer.ggml.eos_token_id"), )), }, }, false, ) return &Model{ TextProcessor: processor, Layers: make([]EncoderLayer, c.Uint("block_count")), Options: Options{ hiddenSize: hiddenSize, numHeads: numHeads, headDim: headDim, eps: c.Float("attention.layer_norm_epsilon"), poolingType: pooling.Type(c.Uint("pooling_type")), normalize: c.Bool("normalize_embeddings", false), ropeFreqBase: c.Float("rope.freq_base", 1000.0), }, }, nil } func init() { model.Register("nomic-bert", New) model.Register("nomic-bert_embed", New) }