package qwen25vl import ( "math" "slices" "github.com/ollama/ollama/fs" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/ml/nn/rope" ) func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int) ml.Tensor { // Initialize a 2D mask with -Inf s := make([][]float32, seqLength) for i := range s { s[i] = slices.Repeat([]float32{float32(math.Inf(-1))}, seqLength) } // Fill in the mask with zeros for tokens that CAN attend to each other for i := 1; i < len(bounds); i++ { start, end := bounds[i-1], bounds[i] // Enable attention within this sequence block for row := start; row < end; row++ { for col := start; col < end; col++ { s[row][col] = 0.0 } } } return ctx.Input().FromFloats(slices.Concat(s...), seqLength, seqLength) } type VisionSelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_out"` } func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor { query := sa.Query.Forward(ctx, hiddenStates) key := sa.Key.Forward(ctx, hiddenStates) value := sa.Value.Forward(ctx, hiddenStates) query = query.Reshape(ctx, opts.headDim, opts.numHeads, query.Dim(1)) key = key.Reshape(ctx, opts.headDim, opts.numHeads, key.Dim(1)) value = value.Reshape(ctx, opts.headDim, opts.numHeads, value.Dim(1)) query = opts.applyRotaryPositionEmbeddings(ctx, query, positions) key = opts.applyRotaryPositionEmbeddings(ctx, key, positions) // Scale factor for scaled dot-product attention scale := 1.0 / math.Sqrt(float64(opts.headDim)) // Scaled dot-product attention query = query.Permute(ctx, 0, 2, 1, 3) key = key.Permute(ctx, 0, 2, 1, 3) value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) kq := key.MulmatFullPrec(ctx, query) kq = kq.Scale(ctx, scale) if mask != nil { kq = kq.Add(ctx, mask) } kq = kq.Softmax(ctx) kqv := value.Mulmat(ctx, kq) attention := kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2)) return sa.Output.Forward(ctx, attention) } // VisionMLP implements the multi-layer perceptron type VisionMLP struct { Gate *nn.Linear `gguf:"ffn_gate"` Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` } func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor { hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates)) return mlp.Down.Forward(ctx, hiddenStates) } type VisionEncoderLayer struct { Norm1 *nn.RMSNorm `gguf:"ln1"` SelfAttention *VisionSelfAttention Norm2 *nn.RMSNorm `gguf:"ln2"` MLP *VisionMLP } func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, positions, mask ml.Tensor, opts *VisionModelOptions) ml.Tensor { residual := hiddenStates hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps) hiddenStates = e.SelfAttention.Forward(ctx, hiddenStates, positions, mask, opts) hiddenStates = hiddenStates.Add(ctx, residual) residual = hiddenStates hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps) hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts) return hiddenStates.Add(ctx, residual) } // VisionModelOptions contains configuration options type VisionModelOptions struct { hiddenSize int numHeads int headDim int patchSize int numChannels int eps float32 ropeTheta float32 spatialMergeSize int windowSize int fullAttnBlocks []int32 temporalPatchSize int } func (o VisionModelOptions) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor { return nn.RoPE(ctx, states, positions, o.headDim/2, o.ropeTheta, 1, rope.WithVision([]int{ o.headDim / 4, o.headDim / 4, o.headDim / 4, o.headDim / 4, }), ) } type PatchEmbedding struct { PatchConv0 *nn.Conv2D `gguf:"patch_embd_0"` PatchConv1 *nn.Conv2D `gguf:"patch_embd_1"` } func (pe *PatchEmbedding) Forward(ctx ml.Context, pixelValues ml.Tensor, opts *VisionModelOptions) ml.Tensor { numPatches := pixelValues.Shape()[1] // Reshape the input tensor to match the expected dimensions pixelValues = pixelValues.Reshape(ctx, opts.patchSize*opts.patchSize, opts.temporalPatchSize, opts.numChannels, numPatches) // Permute the tensor to bring the temporal dimension to the front pixelValues = pixelValues.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx) // Split the tensor into parts for the temporal convolutions in0 := pixelValues.View(ctx, 0, 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx) in0 = in0.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches) in1 := pixelValues.View(ctx, pixelValues.Stride(0), 1, pixelValues.Stride(1), pixelValues.Dim(1), pixelValues.Stride(2), pixelValues.Dim(2), pixelValues.Stride(3), pixelValues.Dim(3)).Contiguous(ctx) in1 = in1.Reshape(ctx, opts.patchSize, opts.patchSize, opts.numChannels, numPatches) s0, s1 := opts.patchSize, opts.patchSize // Use full stride p0, p1 := 0, 0 // padding d0, d1 := 1, 1 // dilation out0 := pe.PatchConv0.Forward(ctx, in0, s0, s1, p0, p1, d0, d1) out1 := pe.PatchConv1.Forward(ctx, in1, s0, s1, p0, p1, d0, d1) // Add the outputs from the two temporal convolutions out := out0.Add(ctx, out1) // Reshape the output tensor to match the expected dimensions return out.Reshape(ctx, opts.hiddenSize, numPatches) } // VisionPatchMerger implements patch merging for the Qwen vision model type VisionPatchMerger struct { LNQ *nn.RMSNorm `gguf:"ln_q"` MLP0 *nn.Linear `gguf:"mlp.0"` MLP2 *nn.Linear `gguf:"mlp.2"` } // Forward computes patch merging for the vision model func (pm *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, opts *VisionModelOptions) ml.Tensor { normalized := pm.LNQ.Forward(ctx, visionOutputs, opts.eps) hiddenSize := visionOutputs.Dim(0) * (opts.spatialMergeSize * opts.spatialMergeSize) // Reshape the normalized output to view the hidden size dimension reshaped := normalized.Reshape(ctx, hiddenSize, normalized.Dim(1)/(opts.spatialMergeSize*opts.spatialMergeSize)) hidden := pm.MLP0.Forward(ctx, reshaped) activated := hidden.GELU(ctx) output := pm.MLP2.Forward(ctx, activated) return output } // VisionModel implements the Qwen vision model type VisionModel struct { PatchEmbedding *PatchEmbedding Layers []VisionEncoderLayer `gguf:"blk"` PatchMerger *VisionPatchMerger `gguf:"merger"` *VisionModelOptions } // Forward computes the vision model for an input tensor func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) ml.Tensor { // Extract patch embeddings hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.VisionModelOptions) index, bounds := m.windowIndex(grid) spatialMergeUnit := m.spatialMergeSize * m.spatialMergeSize windowIndex := ctx.Input().FromInts(index, len(index)) hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*spatialMergeUnit, hiddenStates.Dim(1)/spatialMergeUnit) hiddenStates = hiddenStates.Rows(ctx, windowIndex.Argsort(ctx)) hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)/spatialMergeUnit, hiddenStates.Dim(1)*spatialMergeUnit) positions := ctx.Input().FromInts(func() []int32 { s := [][]int32{ make([]int32, grid.Height*grid.Width), make([]int32, grid.Height*grid.Width), make([]int32, grid.Height*grid.Width), make([]int32, grid.Height*grid.Width), } var cur int for y := 0; y < grid.Height; y += m.spatialMergeSize { for x := 0; x < grid.Width; x += m.spatialMergeSize { for dy := range 2 { for dx := range 2 { i := int(index[cur/spatialMergeUnit]) * spatialMergeUnit i += cur % spatialMergeUnit s[0][i] = int32(y + dy) s[1][i] = int32(x + dx) s[2][i] = int32(y + dy) s[3][i] = int32(x + dx) cur++ } } } } return slices.Concat(s...) }(), grid.Height*grid.Width*4) mask := blockDiagonalMask(ctx, hiddenStates.Dim(1), bounds) // Apply encoder layers for i, layer := range m.Layers { if slices.Contains(m.fullAttnBlocks, int32(i)) { hiddenStates = layer.Forward(ctx, hiddenStates, positions, nil, m.VisionModelOptions) } else { hiddenStates = layer.Forward( ctx, hiddenStates, positions, mask, m.VisionModelOptions, ) } } hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, m.VisionModelOptions) return hiddenStates.Rows(ctx, windowIndex) } // windowIndex divides the grid into windows and returns: // 1. A slice of grid point indices organized by windows // 2. A slice of boundaries that mark where each window's data begins and ends // in the flattened representation, scaled by spatialMergeSize squared // // The boundaries slice always starts with 0 and contains cumulative ending // positions for each window, allowing downstream processing to identify // window boundaries in the tensor data. func (m *VisionModel) windowIndex(grid *Grid) (index []int32, bounds []int) { height := grid.Height / m.spatialMergeSize width := grid.Width / m.spatialMergeSize window := m.windowSize / m.patchSize / m.spatialMergeSize index = make([]int32, height*width) bounds = make([]int, 0, ((height+window-1)/window)*((width+window-1)/window)+1) bounds = append(bounds, 0) var cur int32 for y := 0; y < height; y += window { for x := 0; x < width; x += window { h1 := min(window, height-y) w1 := min(window, width-x) for dy := range h1 { for dx := range w1 { win := (y+dy)*width + (x + dx) index[win] = cur cur++ } } bounds = append(bounds, int(cur)*window) } } return index, bounds } // newVisionModel creates a new instance of the Qwen vision model func newVisionModel(c fs.Config) *VisionModel { patchSize := int(c.Uint("vision.patch_size", 14)) hiddenSize := int(c.Uint("vision.embedding_length", 1280)) numHeads := int(c.Uint("vision.attention.head_count", 16)) numChannels := int(c.Uint("vision.num_channels", 3)) eps := c.Float("vision.attention.layer_norm_epsilon", 1e-6) ropeTheta := c.Float("vision.rope.freq_base", 10000.0) spatialMergeSize := int(c.Uint("vision.spatial_merge_size", 2)) windowSize := int(c.Uint("vision.window_size", 112)) fullAttnBlocks := c.Ints("qwen25vl.vision.fullatt_block_indexes", []int32{7, 15, 23, 31}) temporalPatchSize := int(c.Uint("vision.temporal_patch_size", 2)) model := &VisionModel{ Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)), VisionModelOptions: &VisionModelOptions{ hiddenSize: hiddenSize, numHeads: numHeads, headDim: hiddenSize / numHeads, patchSize: patchSize, numChannels: numChannels, eps: eps, ropeTheta: ropeTheta, spatialMergeSize: spatialMergeSize, windowSize: windowSize, temporalPatchSize: temporalPatchSize, fullAttnBlocks: fullAttnBlocks, }, } return model }