package convert import ( "cmp" "fmt" "strings" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/ollama/ollama/fs/ggml" ) type mistral3CausalModel struct { ModelParameters NumHiddenLayers uint32 `json:"num_hidden_layers"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` HiddenSize uint32 `json:"hidden_size"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RopeTheta float32 `json:"rope_theta"` RMSNormEPS float32 `json:"rms_norm_eps"` HeadDim uint32 `json:"head_dim"` SlidingWindow *uint32 `json:"sliding_window"` HiddenAct string `json:"hidden_act"` VocabSize uint32 `json:"vocab_size"` RopeParameters struct { BetaFast float32 `json:"beta_fast"` BetaSlow float32 `json:"beta_slow"` Factor float32 `json:"factor"` Llama4ScalingBeta *float32 `json:"llama_4_scaling_beta"` OrigMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"` RopeType string `json:"rope_type"` RopeTheta float32 `json:"rope_theta"` Mscale *float32 `json:"mscale"` MscaleAllDim *float32 `json:"mscale_all_dim"` } `json:"rope_parameters"` } func (p *mistral3CausalModel) KV(t *Tokenizer) ggml.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "mistral3" kv["mistral3.vocab_size"] = p.VocabSize // Text configuration kv["mistral3.block_count"] = p.NumHiddenLayers kv["mistral3.context_length"] = p.MaxPositionEmbeddings kv["mistral3.embedding_length"] = p.HiddenSize kv["mistral3.feed_forward_length"] = p.IntermediateSize kv["mistral3.attention.head_count"] = p.NumAttentionHeads kv["mistral3.attention.head_count_kv"] = p.NumKeyValueHeads kv["mistral3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS kv["mistral3.attention.key_length"] = p.HeadDim kv["mistral3.attention.value_length"] = p.HeadDim kv["mistral3.rope.dimension_count"] = cmp.Or(p.HeadDim, p.HiddenSize/p.NumAttentionHeads) kv["mistral3.rope.freq_base"] = cmp.Or(p.RopeTheta, p.RopeParameters.RopeTheta) kv["mistral3.rope.scaling.factor"] = p.RopeParameters.Factor kv["mistral3.rope.scaling.type"] = p.RopeParameters.RopeType kv["mistral3.rope.scaling.beta_fast"] = p.RopeParameters.BetaFast kv["mistral3.rope.scaling.beta_slow"] = p.RopeParameters.BetaSlow if p.RopeParameters.Mscale != nil { kv["mistral3.rope.scaling.mscale"] = *p.RopeParameters.Mscale } if p.RopeParameters.MscaleAllDim != nil { kv["mistral3.rope.scaling.mscale_all_dim"] = *p.RopeParameters.MscaleAllDim } if p.RopeParameters.OrigMaxPositionEmbeddings > 0 { kv["mistral3.rope.scaling.original_context_length"] = p.RopeParameters.OrigMaxPositionEmbeddings kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta } if p.RopeParameters.Llama4ScalingBeta != nil { kv["mistral3.rope.scaling_beta"] = *p.RopeParameters.Llama4ScalingBeta } return kv } func (p *mistral3CausalModel) Tensors(ts []Tensor) []*ggml.Tensor { var out []*ggml.Tensor for _, t := range ts { if !strings.HasPrefix(t.Name(), "v.") { if strings.HasSuffix(t.Name(), ".attn_q.weight") || strings.HasSuffix(t.Name(), ".attn_k.weight") { t.SetRepacker(p.repack) } } out = append(out, &ggml.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *mistral3CausalModel) Replacements() []string { return []string{ "model.norm", "output_norm", "model.", "", "layers", "blk", "transformer.layers", "blk", "vision_tower", "v", "ln_pre", "encoder_norm", "input_layernorm", "attn_norm", "post_attention_layernorm", "ffn_norm", "embed_tokens", "token_embd", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.down_proj", "ffn_down", "mlp.gate_proj", "ffn_gate", "mlp.up_proj", "ffn_up", "attention.q_proj", "attn_q", "attention.k_proj", "attn_k", "attention.v_proj", "attn_v", "attention.o_proj", "attn_output", "attention_norm", "attn_norm", "feed_forward.gate_proj", "ffn_gate", "feed_forward.down_proj", "ffn_down", "feed_forward.up_proj", "ffn_up", "multi_modal_projector", "mm", "ffn_norm", "ffn_norm", "lm_head", "output", } } func (p *mistral3CausalModel) repack(name string, data []float32, shape []uint64) ([]float32, error) { var dims []int for _, dim := range shape { dims = append(dims, int(dim)) } var heads uint32 if strings.HasSuffix(name, ".attn_q.weight") { heads = p.NumAttentionHeads } else if strings.HasSuffix(name, ".attn_k.weight") { heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) } else { return nil, fmt.Errorf("unknown tensor for repack: %s", name) } n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { return nil, err } if err := n.T(0, 2, 1, 3); err != nil { return nil, err } if err := n.Reshape(dims...); err != nil { return nil, err } if err := n.Transpose(); err != nil { return nil, err } ts, err := native.SelectF32(n, 1) if err != nil { return nil, err } var f32s []float32 for _, t := range ts { f32s = append(f32s, t...) } return f32s, nil }