mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 06:43:57 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
311 lines
9.3 KiB
C++
Vendored
311 lines
9.3 KiB
C++
Vendored
#pragma once
|
|
|
|
#include "llama.h"
|
|
#include "llama-cparams.h"
|
|
#include "llama-graph.h"
|
|
#include "llama-adapter.h"
|
|
|
|
#include "ggml-cpp.h"
|
|
#include "ggml-opt.h"
|
|
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
struct llama_model;
|
|
class llama_batch_allocr;
|
|
|
|
class llama_io_read_i;
|
|
class llama_io_write_i;
|
|
|
|
struct llama_memory_i;
|
|
struct llama_memory_context_i;
|
|
|
|
struct llama_context {
|
|
// init scheduler and compute buffers, reserve worst-case graphs
|
|
llama_context(
|
|
const llama_model & model,
|
|
llama_context_params params);
|
|
|
|
~llama_context();
|
|
|
|
void synchronize();
|
|
|
|
const llama_model & get_model() const;
|
|
const llama_cparams & get_cparams() const;
|
|
|
|
ggml_backend_sched_t get_sched() const;
|
|
|
|
uint32_t n_ctx() const;
|
|
uint32_t n_ctx_per_seq() const;
|
|
uint32_t n_batch() const;
|
|
uint32_t n_ubatch() const;
|
|
uint32_t n_seq_max() const;
|
|
|
|
uint32_t n_threads() const;
|
|
uint32_t n_threads_batch() const;
|
|
|
|
llama_memory_t get_memory() const;
|
|
|
|
// return true of the KV cache was updated
|
|
// TODO: remove
|
|
bool kv_self_update(bool optimize);
|
|
void kv_self_defrag_sched();
|
|
|
|
enum llama_pooling_type pooling_type() const;
|
|
|
|
float * get_logits();
|
|
float * get_logits_ith(int32_t i);
|
|
|
|
float * get_embeddings();
|
|
float * get_embeddings_ith(int32_t i);
|
|
float * get_embeddings_seq(llama_seq_id seq_id);
|
|
|
|
void attach_threadpool(
|
|
ggml_threadpool_t threadpool,
|
|
ggml_threadpool_t threadpool_batch);
|
|
|
|
void detach_threadpool();
|
|
|
|
void set_n_threads(int32_t n_threads, int32_t n_threads_batch);
|
|
|
|
void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);
|
|
|
|
void set_embeddings (bool value);
|
|
void set_causal_attn(bool value);
|
|
void set_warmup(bool value);
|
|
|
|
void set_adapter_lora(
|
|
llama_adapter_lora * adapter,
|
|
float scale);
|
|
|
|
bool rm_adapter_lora(
|
|
llama_adapter_lora * adapter);
|
|
|
|
void clear_adapter_lora();
|
|
|
|
bool apply_adapter_cvec(
|
|
const float * data,
|
|
size_t len,
|
|
int32_t n_embd,
|
|
int32_t il_start,
|
|
int32_t il_end);
|
|
|
|
// process a single ubatch with a specific graph type
|
|
// if memory_context is provided, it will be applied first to the context's memory
|
|
// ret contains the status of the graph computation
|
|
// returns nullptr only if ret != GGML_STATUS_SUCCESS
|
|
llm_graph_result * process_ubatch(
|
|
const llama_ubatch & ubatch,
|
|
llm_graph_type gtype,
|
|
llama_memory_context_i * mctx,
|
|
ggml_status & ret);
|
|
|
|
int encode(const llama_batch & batch_inp);
|
|
int decode(const llama_batch & batch_inp);
|
|
|
|
//
|
|
// state save/load
|
|
//
|
|
|
|
size_t state_get_size();
|
|
size_t state_get_data( uint8_t * dst, size_t size);
|
|
size_t state_set_data(const uint8_t * src, size_t size);
|
|
|
|
size_t state_seq_get_size(llama_seq_id seq_id);
|
|
size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size);
|
|
size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size);
|
|
|
|
bool state_load_file(
|
|
const char * filepath,
|
|
llama_token * tokens_out,
|
|
size_t n_token_capacity,
|
|
size_t * n_token_count_out);
|
|
|
|
bool state_save_file(
|
|
const char * filepath,
|
|
const llama_token * tokens,
|
|
size_t n_token_count);
|
|
|
|
size_t state_seq_load_file(
|
|
llama_seq_id seq_id,
|
|
const char * filepath,
|
|
llama_token * tokens_out,
|
|
size_t n_token_capacity,
|
|
size_t * n_token_count_out);
|
|
|
|
size_t state_seq_save_file(
|
|
llama_seq_id seq_id,
|
|
const char * filepath,
|
|
const llama_token * tokens,
|
|
size_t n_token_count);
|
|
|
|
//
|
|
// perf
|
|
//
|
|
|
|
llama_perf_context_data perf_get_data() const;
|
|
void perf_reset();
|
|
|
|
//
|
|
// training
|
|
//
|
|
|
|
void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
|
|
|
|
void opt_epoch(
|
|
ggml_opt_dataset_t dataset,
|
|
ggml_opt_result_t result_train,
|
|
ggml_opt_result_t result_eval,
|
|
int64_t idata_split,
|
|
ggml_opt_epoch_callback callback_train,
|
|
ggml_opt_epoch_callback callback_eval);
|
|
|
|
void opt_epoch_iter(
|
|
ggml_opt_dataset_t dataset,
|
|
ggml_opt_result_t result,
|
|
const std::vector<llama_token> & tokens,
|
|
const std::vector<llama_token> & labels_sparse,
|
|
llama_batch & batch,
|
|
ggml_opt_epoch_callback callback,
|
|
bool train,
|
|
int64_t idata_in_loop,
|
|
int64_t ndata_in_loop,
|
|
int64_t t_loop_start);
|
|
|
|
private:
|
|
//
|
|
// output
|
|
//
|
|
|
|
// Make sure enough space is available for outputs.
|
|
// Returns max number of outputs for which space was reserved.
|
|
uint32_t output_reserve(int32_t n_outputs);
|
|
|
|
void output_reorder();
|
|
|
|
//
|
|
// graph
|
|
//
|
|
|
|
public:
|
|
uint32_t graph_max_nodes() const;
|
|
|
|
// can reuse the llm_graph_result instance of the context (for example to update a memory module)
|
|
llm_graph_result * get_gf_res_reserve() const;
|
|
|
|
// returns the result of ggml_backend_sched_graph_compute_async execution
|
|
ggml_status graph_compute(ggml_cgraph * gf, bool batched);
|
|
|
|
// reserve a graph with a dummy ubatch of the specified size
|
|
ggml_cgraph * graph_reserve(uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx);
|
|
|
|
private:
|
|
llm_graph_params graph_params(
|
|
llm_graph_result * res,
|
|
const llama_ubatch & ubatch,
|
|
const llama_memory_context_i * mctx,
|
|
llm_graph_type gtype) const;
|
|
|
|
llm_graph_cb graph_get_cb() const;
|
|
|
|
// TODO: read/write lora adapters and cvec
|
|
size_t state_write_data(llama_io_write_i & io);
|
|
size_t state_read_data (llama_io_read_i & io);
|
|
|
|
size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id);
|
|
size_t state_seq_read_data (llama_io_read_i & io, llama_seq_id seq_id);
|
|
|
|
//
|
|
// members
|
|
//
|
|
|
|
const llama_model & model;
|
|
|
|
llama_cparams cparams;
|
|
llama_adapter_cvec cvec;
|
|
llama_adapter_loras loras;
|
|
|
|
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
|
|
|
|
std::unique_ptr<llama_memory_i> memory;
|
|
|
|
// TODO: temporary, until the llama_kv_self_defrag() API is removed
|
|
bool memory_force_optimize = false;
|
|
|
|
// decode output (2-dimensional array: [n_outputs][n_vocab])
|
|
size_t logits_size = 0; // capacity (of floats) for logits
|
|
float * logits = nullptr;
|
|
|
|
// embeddings output (2-dimensional array: [n_outputs][n_embd])
|
|
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
|
size_t embd_size = 0; // capacity (of floats) for embeddings
|
|
float * embd = nullptr;
|
|
|
|
// sequence embeddings output (map of [n_embd] vectors)
|
|
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
|
|
std::map<llama_seq_id, std::vector<float>> embd_seq;
|
|
|
|
// reuse the batch_allocr to avoid unnecessary memory allocations
|
|
std::unique_ptr<llama_batch_allocr> balloc;
|
|
|
|
uint32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
|
|
|
|
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
|
|
|
|
struct swap_info {
|
|
uint32_t i0;
|
|
uint32_t i1;
|
|
};
|
|
|
|
std::vector<swap_info> output_swaps;
|
|
|
|
ggml_backend_sched_ptr sched;
|
|
|
|
ggml_backend_t backend_cpu = nullptr;
|
|
std::vector<ggml_backend_ptr> backends;
|
|
|
|
// training
|
|
ggml_opt_context_t opt_ctx = nullptr;
|
|
|
|
ggml_threadpool_t threadpool = nullptr;
|
|
ggml_threadpool_t threadpool_batch = nullptr;
|
|
|
|
ggml_abort_callback abort_callback = nullptr;
|
|
void * abort_callback_data = nullptr;
|
|
|
|
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
|
|
|
|
// buffer types used for the compute buffer of each backend
|
|
std::vector<ggml_backend_t> backend_ptrs;
|
|
std::vector<ggml_backend_buffer_type_t> backend_buft;
|
|
|
|
llm_graph_result_ptr gf_res_prev;
|
|
llm_graph_result_ptr gf_res_reserve;
|
|
|
|
// host buffer for the model output (logits and embeddings)
|
|
ggml_backend_buffer_ptr buf_output;
|
|
|
|
bool has_evaluated_once = false;
|
|
|
|
// env: LLAMA_SET_ROWS (temporary)
|
|
// ref: https://github.com/ggml-org/llama.cpp/pull/14285
|
|
bool supports_set_rows = true;
|
|
|
|
// env: LLAMA_GRAPH_REUSE_DISABLE
|
|
bool graph_reuse_disable = false;
|
|
|
|
// perf
|
|
mutable int64_t t_start_us = 0;
|
|
mutable int64_t t_load_us = 0;
|
|
mutable int64_t t_p_eval_us = 0;
|
|
mutable int64_t t_eval_us = 0;
|
|
|
|
mutable int64_t t_compute_start_us = 0;
|
|
mutable int64_t n_queued_tokens = 0;
|
|
|
|
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
|
mutable int32_t n_eval = 0; // number of eval calls
|
|
|
|
mutable int32_t n_reused = 0; // number of times the previous graph was reused
|
|
};
|