Files
ollama-for-amd/llama/llama.cpp/src/unicode.cpp
Michael Yang 1a19df1f3a update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00

1083 lines
40 KiB
C++
Vendored

#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include "unicode.h"
#include "unicode-data.h"
#include <algorithm>
#include <cassert>
#include <codecvt>
#include <cstddef>
#include <cstdint>
#include <locale>
#include <map>
#include <regex>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
size_t unicode_len_utf8(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
result.append(unicode_cpt_to_utf8(cps[i]));
}
return result;
}
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
offset += 1;
return result;
}
if (!(utf8[offset + 0] & 0x40)) {
throw std::invalid_argument("invalid character");
}
if (!(utf8[offset + 0] & 0x20)) {
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
offset += 2;
return result;
}
if (!(utf8[offset + 0] & 0x10)) {
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
offset += 3;
return result;
}
if (!(utf8[offset + 0] & 0x08)) {
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
offset += 4;
return result;
}
throw std::invalid_argument("failed to convert utf8 to codepoint");
}
//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cpt) {
// std::vector<uint16_t> result;
// if (/* 0x0000 <= cpt && */ cpt <= 0xffff) {
// result.emplace_back(cpt);
// return result;
// }
// if (0x10000 <= cpt && cpt <= 0x10ffff) {
// result.emplace_back(0xd800 | ((cpt - 0x10000) >> 10));
// result.emplace_back(0xdc00 | ((cpt - 0x10000) & 0x03ff));
// return result;
// }
// throw std::invalid_argument("failed to convert codepoint to utf16");
//}
//static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
// std::vector<uint16_t> result;
// for (size_t i = 0; i < cps.size(); ++i) {
// auto temp = unicode_cpt_to_utf16(cps[i]);
// result.insert(result.end(), temp.begin(), temp.end());
// }
// return result;
//}
//static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
// assert(offset < utf16.size());
// if (((utf16[0] >> 10) << 10) != 0xd800) {
// auto result = utf16[offset + 0];
// offset += 1;
// return result;
// }
//
// if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
// throw std::invalid_argument("invalid character");
// }
//
// auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
// offset += 2;
// return result;
//}
//static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
// std::vector<uint32_t> result;
// size_t offset = 0;
// while (offset < utf16.size()) {
// result.push_back(unicode_cpt_from_utf16(utf16, offset));
// }
// return result;
//}
static std::vector<unicode_cpt_flags> unicode_cpt_flags_array() {
std::vector<unicode_cpt_flags> cpt_flags(MAX_CODEPOINTS, unicode_cpt_flags::UNDEFINED);
assert (unicode_ranges_flags.begin()[0].first == 0);
assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
cpt_flags[cpt] = range_ini.second;
}
}
for (auto cpt : unicode_set_whitespace) {
cpt_flags[cpt].is_whitespace = true;
}
for (auto p : unicode_map_lowercase) {
cpt_flags[p.second].is_lowercase = true;
}
for (auto p : unicode_map_uppercase) {
cpt_flags[p.second].is_uppercase = true;
}
for (auto &range : unicode_ranges_nfd) { // start, last, nfd
cpt_flags[range.nfd].is_nfd = true;
}
return cpt_flags;
}
static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(ch) == map.end()) {
map[ch] = unicode_cpt_to_utf8(256 + n);
++n;
}
}
return map;
}
static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
map[unicode_cpt_to_utf8(256 + n)] = ch;
++n;
}
}
return map;
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
#ifdef _WIN32
int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0);
if (!wlen) {
throw std::invalid_argument("failed to convert regex");
}
wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen);
if (!wlen) {
free(wbuf);
throw std::invalid_argument("failed to convert regex");
}
std::wstring ret = std::wstring(wbuf);
free(wbuf);
return ret;
#else
#if defined(__clang__)
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
return conv.from_bytes(s);
#endif
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
std::vector<std::string> bpe_encoded_words;
for (const auto & word : bpe_words) {
std::string text_utf;
auto utf_word = unicode_cpts_from_utf8(word);
for (size_t i = 0; i < utf_word.size(); ++i) {
text_utf += unicode_cpt_to_utf8(utf_word[i]);
}
std::string encoded_token;
for (char & c : text_utf) {
encoded_token += unicode_byte_to_utf8(c);
}
bpe_encoded_words.emplace_back(encoded_token);
}
return bpe_encoded_words;
}
// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
uint32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
uint32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
// regex: <space>?\p{L}+
if (flags2.is_letter) {
pos += (cpt == ' ');
while (flags2.is_letter) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?\p{N}+
if (flags2.is_number) {
pos += (cpt == ' ');
while (flags2.is_number) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' ');
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
while (_get_flags(pos+num_whitespaces).is_whitespace) {
num_whitespaces++;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
if (cpt == '\'' && pos+1 < offset_end) {
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
// regex: [^\r\n\p{L}\p{N}]?\p{L}+
if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
pos++;
while (_get_flags(pos).is_letter) {
pos++;
}
_add_token(pos);
continue;
}
}
// regex: \p{N}{1,3}
if (flags.is_number) {
size_t ini = pos;
while (_get_flags(pos).is_number) {
if (++pos - ini >= 3 ) {
_add_token(pos);
ini = pos;
}
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
pos += (cpt == ' ');
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
uint32_t cpt2 = _get_cpt(pos);
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (_get_flags(pos+num_whitespaces).is_whitespace) {
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
num_whitespaces++;
}
// regex: \s*[\r\n]+
if (last_end_r_or_n > 0) {
pos = last_end_r_or_n;
_add_token(pos);
continue;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// use std::wregex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
std::wregex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
std::wcregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::wcmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// use std::regex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::regex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
std::cregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::cmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// K2 system regex patterns (from tokenization_kimi.py):
// [\p{Han}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+
static std::vector<size_t> unicode_regex_split_custom_kimi_k2(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets;
bpe_offsets.reserve(offsets.size());
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> unicode_cpt_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags_from_cpt(cpts[pos]) : unicode_cpt_flags{};
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// Pattern 1: [\p{Han}]+ (Chinese characters)
if (unicode_cpt_is_han(cpt)) {
while (unicode_cpt_is_han(_get_cpt(pos))) {
pos++;
}
_add_token(pos);
continue;
}
// Pattern 2 & 3: Letter words excluding Han characters with optional contractions
// [^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?:'s|'t|'re|'ve|'m|'ll|'d)?
// [^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?:'s|'t|'re|'ve|'m|'ll|'d)?
// Check if current char is a letter OR if current char could be a leading char and next char is a letter
bool is_letter_pattern = (flags.is_letter && !unicode_cpt_is_han(cpt)) ||
(!(cpt == '\r' || cpt == '\n' || flags.is_letter || flags.is_number) &&
_get_flags(pos + 1).is_letter && !unicode_cpt_is_han(_get_cpt(pos + 1)));
if (is_letter_pattern) {
// Handle optional leading non-letter/non-number character
bool has_leading_char = false;
if (!(cpt == '\r' || cpt == '\n' || flags.is_letter || flags.is_number)) {
has_leading_char = true;
pos++;
}
// Match letter sequence (excluding Han characters)
bool has_letters = false;
while (_get_flags(pos).is_letter && !unicode_cpt_is_han(_get_cpt(pos))) {
has_letters = true;
pos++;
}
// Only proceed if we found letters (after potentially skipping leading char)
if (has_letters || (!has_leading_char && _get_flags(pos).is_letter && !unicode_cpt_is_han(_get_cpt(pos)))) {
if (!has_letters) pos++; // consume the first letter if we didn't already
// Continue consuming letters
while (_get_flags(pos).is_letter && !unicode_cpt_is_han(_get_cpt(pos))) {
pos++;
}
// Check for optional contractions (?:'s|'t|'re|'ve|'m|'ll|'d)
if (_get_cpt(pos) == '\'' && pos + 1 < offset_end) {
uint32_t cpt_next = unicode_tolower(_get_cpt(pos + 1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += 2;
} else if (pos + 2 < offset_end) {
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos + 2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += 3;
}
}
}
_add_token(pos);
continue;
} else if (has_leading_char) {
// We consumed a leading char but found no letters, backtrack
pos--;
}
}
// Pattern 4: \p{N}{1,3} (numbers 1-3 digits)
if (flags.is_number) {
size_t ini = pos;
while (_get_flags(pos).is_number) {
if (++pos - ini >= 3) {
_add_token(pos);
ini = pos;
}
}
_add_token(pos);
continue;
}
// Pattern 5: ?[^\s\p{L}\p{N}]+[\r\n]* (optional space + non-word chars + optional newlines)
auto flags2 = (cpt == ' ' ? _get_flags(pos + 1) : flags);
if (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' ');
while (!(flags2.is_whitespace || flags2.is_letter || flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
// Match optional [\r\n]*
uint32_t cpt2 = _get_cpt(pos);
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
_add_token(pos);
continue;
}
// Count whitespace characters
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (_get_flags(pos + num_whitespaces).is_whitespace) {
uint32_t cpt2 = _get_cpt(pos + num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
num_whitespaces++;
}
// Pattern 6: \s*[\r\n]+ (whitespace with newlines)
if (last_end_r_or_n > 0) {
pos = last_end_r_or_n;
_add_token(pos);
continue;
}
// Pattern 7: \s+(?!\S) (trailing whitespace)
if (num_whitespaces > 1 && _get_cpt(pos + num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// Pattern 8: \s+ (general whitespace)
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// No matches - consume single character
_add_token(++pos);
}
}
return bpe_offsets;
}
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets;
if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
} else if (
regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
} else if (regex_expr == "\\p{Han}+") {
// K2's first pattern - handle all K2 patterns together
bpe_offsets = unicode_regex_split_custom_kimi_k2(text, offsets);
}
return bpe_offsets;
}
//
// interface
//
std::string unicode_cpt_to_utf8(uint32_t cpt) {
std::string result;
if (/* 0x00 <= cpt && */ cpt <= 0x7f) {
result.push_back(cpt);
return result;
}
if (0x80 <= cpt && cpt <= 0x7ff) {
result.push_back(0xc0 | ((cpt >> 6) & 0x1f));
result.push_back(0x80 | (cpt & 0x3f));
return result;
}
if (0x800 <= cpt && cpt <= 0xffff) {
result.push_back(0xe0 | ((cpt >> 12) & 0x0f));
result.push_back(0x80 | ((cpt >> 6) & 0x3f));
result.push_back(0x80 | (cpt & 0x3f));
return result;
}
if (0x10000 <= cpt && cpt <= 0x10ffff) {
result.push_back(0xf0 | ((cpt >> 18) & 0x07));
result.push_back(0x80 | ((cpt >> 12) & 0x3f));
result.push_back(0x80 | ((cpt >> 6) & 0x3f));
result.push_back(0x80 | (cpt & 0x3f));
return result;
}
throw std::invalid_argument("invalid codepoint");
}
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
auto comp = [] (const uint32_t cpt, const range_nfd & range) {
return cpt < range.first;
};
std::vector<uint32_t> result(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
const uint32_t cpt = cpts[i];
auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
}
return result;
}
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
result.reserve(utf8.size());
size_t offset = 0;
while (offset < utf8.size()) {
try {
result.push_back(unicode_cpt_from_utf8(utf8, offset));
}
catch (const std::invalid_argument & /*ex*/) {
// Silently ignore invalid UTF-8 input to avoid leaking the exception beyond llama_tokenize
++offset;
result.emplace_back(0xFFFD); // replacement character
}
}
return result;
}
unicode_cpt_flags unicode_cpt_flags_from_cpt(const uint32_t cpt) {
static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
static const auto cpt_flags = unicode_cpt_flags_array();
return cpt < cpt_flags.size() ? cpt_flags[cpt] : undef;
}
unicode_cpt_flags unicode_cpt_flags_from_utf8(const std::string & utf8) {
static const unicode_cpt_flags undef(unicode_cpt_flags::UNDEFINED);
if (utf8.empty()) {
return undef; // undefined
}
size_t offset = 0;
return unicode_cpt_flags_from_cpt(unicode_cpt_from_utf8(utf8, offset));
}
std::string unicode_byte_to_utf8(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
return map.at(byte);
}
uint8_t unicode_utf8_to_byte(const std::string & utf8) {
static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
return map.at(utf8);
}
uint32_t unicode_tolower(uint32_t cpt) {
// binary search
auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cpt,
[](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
return pair.first < value;
});
if (it != unicode_map_lowercase.end() && it->first == cpt) {
return it->second;
}
return cpt; // Return the original code point if no lowercase mapping is found
}
bool unicode_cpt_is_han(uint32_t cpt) {
// Han character ranges (Chinese/CJK characters)
// CJK Unified Ideographs (most common)
if (cpt >= 0x4E00 && cpt <= 0x9FFF) return true;
// CJK Extension A
if (cpt >= 0x3400 && cpt <= 0x4DBF) return true;
// CJK Extension B
if (cpt >= 0x20000 && cpt <= 0x2A6DF) return true;
// CJK Extension C
if (cpt >= 0x2A700 && cpt <= 0x2B73F) return true;
// CJK Extension D
if (cpt >= 0x2B740 && cpt <= 0x2B81F) return true;
// CJK Extension E
if (cpt >= 0x2B820 && cpt <= 0x2CEAF) return true;
// CJK Extension F
if (cpt >= 0x2CEB0 && cpt <= 0x2EBEF) return true;
// CJK Compatibility Ideographs
if (cpt >= 0xF900 && cpt <= 0xFAFF) return true;
// CJK Compatibility Ideographs Supplement
if (cpt >= 0x2F800 && cpt <= 0x2FA1F) return true;
return false;
}
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
// unicode categories
static const std::map<std::string, int> k_ucat_enum = {
{ "\\p{N}", unicode_cpt_flags::NUMBER },
{ "\\p{L}", unicode_cpt_flags::LETTER },
{ "\\p{P}", unicode_cpt_flags::PUNCTUATION },
{ "\\p{M}", unicode_cpt_flags::ACCENT_MARK },
{ "\\p{S}", unicode_cpt_flags::SYMBOL },
};
static const std::map<int, int> k_ucat_cpt = {
{ unicode_cpt_flags::NUMBER, 0xD1 },
{ unicode_cpt_flags::LETTER, 0xD2 },
{ unicode_cpt_flags::PUNCTUATION, 0xD3 },
{ unicode_cpt_flags::ACCENT_MARK, 0xD4 },
{ unicode_cpt_flags::SYMBOL, 0xD5 },
};
static const std::map<int, std::string> k_ucat_map = {
{ unicode_cpt_flags::NUMBER, "\x30-\x39" }, // 0-9
{ unicode_cpt_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ unicode_cpt_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
{ unicode_cpt_flags::ACCENT_MARK, "" }, // no sub-128 codepoints
{ unicode_cpt_flags::SYMBOL, "\\\x24\\\x2B\x3C-\x3E\x5E\x60\\\x7C" }, // $+<=>^`|
};
// compute collapsed codepoints only if needed by at least one regex
bool need_collapse = false;
for (const auto & regex_expr : regex_exprs) {
// search for unicode categories
for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
need_collapse = true;
break;
}
}
}
const auto cpts = unicode_cpts_from_utf8(text);
// generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
// ref: https://github.com/ggml-org/llama.cpp/pull/6920#issuecomment-2081479935
std::string text_collapsed;
if (need_collapse) {
// collapse all unicode categories
text_collapsed.resize(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
// keep single-byte codepoints as is
if (cpts[i] < 128) {
text_collapsed[i] = cpts[i];
continue;
}
const auto flags = unicode_cpt_flags_from_cpt(cpts[i]);
if (flags.is_whitespace) {
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
} else {
text_collapsed[i] = (char) 0xD0; // fallback
}
}
}
std::vector<size_t> bpe_offsets = { cpts.size() };
for (const auto & regex_expr : regex_exprs) {
// first, see if we have an efficient custom regex implementation
auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
if (!tmp.empty()) {
bpe_offsets = std::move(tmp);
continue;
}
// fallback to general-purpose std::regex / std::wregex
try {
// if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
// with the corresponding collapsed representation
bool use_collapsed = false;
for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
use_collapsed = true;
break;
}
}
if (use_collapsed) {
// sanity-check that the original regex does not contain any non-ASCII characters
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
for (size_t i = 0; i < cpts_regex.size(); ++i) {
if (cpts_regex[i] >= 128) {
throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
}
}
// generate a collapsed representation of the regex
std::string regex_expr_collapsed;
// track if we are inside [], because nested [] are not allowed
bool inside = false;
for (size_t i = 0; i < regex_expr.size(); ++i) {
if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
regex_expr_collapsed += '[';
inside = true;
continue;
}
if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
regex_expr_collapsed += ']';
inside = false;
continue;
}
if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
regex_expr[i + 1] == 'p' &&
regex_expr[i + 2] == '{' &&
regex_expr[i + 4] == '}') {
const std::string pat = regex_expr.substr(i, 5);
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
if (!inside) {
regex_expr_collapsed += '[';
}
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
if (!inside) {
regex_expr_collapsed += ']';
}
i += 4;
continue;
}
}
regex_expr_collapsed += regex_expr[i];
}
//printf("text_collapsed: %s\n", text_collapsed.c_str());
//printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());
for (size_t i = 0; i < wtext.size(); ++i) {
if (wtext[i] > 0x7F && unicode_cpt_flags_from_cpt(wtext[i]).is_whitespace) {
wtext[i] = 0x0B;
}
}
//printf("text: %s\n", text.c_str());
//printf("regex_expr: %s\n", regex_expr.c_str());
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
}
} catch (std::regex_error & e) {
fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
fprintf(stderr, "Regex error: %s\n", e.what());
throw std::runtime_error("Failed to process regex");
}
}
std::vector<std::string> bpe_words;
bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
size_t start = 0;
for (size_t & offset : bpe_offsets) {
bpe_words.emplace_back();
for (size_t i = start; i < start + offset; ++i) {
bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
}
start += offset;
}
return unicode_byte_encoding_process(bpe_words);
}