mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
780 lines
20 KiB
Go
780 lines
20 KiB
Go
package ggml
|
|
|
|
import (
|
|
"cmp"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"log/slog"
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/ollama/ollama/fs/util/bufioutil"
|
|
)
|
|
|
|
type GGML struct {
|
|
container
|
|
model
|
|
Length int64
|
|
}
|
|
|
|
type model interface {
|
|
KV() KV
|
|
Tensors() Tensors
|
|
}
|
|
|
|
type KV map[string]any
|
|
|
|
func (kv KV) Architecture() string {
|
|
return kv.String("general.architecture", "unknown")
|
|
}
|
|
|
|
func (kv KV) Kind() string {
|
|
return kv.String("general.type", "unknown")
|
|
}
|
|
|
|
func (kv KV) ParameterCount() uint64 {
|
|
val, _ := keyValue(kv, "general.parameter_count", uint64(0))
|
|
return val
|
|
}
|
|
|
|
func (kv KV) FileType() FileType {
|
|
if t := kv.Uint("general.file_type"); t > 0 {
|
|
return FileType(t)
|
|
}
|
|
|
|
return FileTypeUnknown
|
|
}
|
|
|
|
func (kv KV) BlockCount() uint64 {
|
|
return uint64(kv.Uint("block_count"))
|
|
}
|
|
|
|
func (kv KV) EmbeddingLength() uint64 {
|
|
return uint64(kv.Uint("embedding_length"))
|
|
}
|
|
|
|
func (kv KV) HeadCountMax() uint64 {
|
|
// TODO(drifkin): using the max value can cause an overestimation. In the
|
|
// future if array values become more popular, we can adapt the more invasive
|
|
// <https://github.com/ollama/ollama/pull/10225>
|
|
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
|
|
}
|
|
|
|
func (kv KV) HeadCountMin() uint64 {
|
|
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
|
|
}
|
|
|
|
func (kv KV) HeadCountKVMax() uint64 {
|
|
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
|
|
}
|
|
|
|
func (kv KV) HeadCountKVMin() uint64 {
|
|
return uint64(kv.UintOrMinArrayValue("attention.head_count_kv", 1))
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCountMax() uint64 {
|
|
if heads := kv.HeadCountMin(); heads > 0 {
|
|
return kv.EmbeddingLength() / heads
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCountK() uint64 {
|
|
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCountMax())))
|
|
}
|
|
|
|
func (kv KV) EmbeddingHeadCountV() uint64 {
|
|
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCountMax())))
|
|
}
|
|
|
|
func (kv KV) ContextLength() uint64 {
|
|
return uint64(kv.Uint("context_length"))
|
|
}
|
|
|
|
func (kv KV) ChatTemplate() string {
|
|
return kv.String("tokenizer.chat_template")
|
|
}
|
|
|
|
func (kv KV) String(key string, defaultValue ...string) string {
|
|
val, _ := keyValue(kv, key, append(defaultValue, "")...)
|
|
return val
|
|
}
|
|
|
|
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
|
|
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
|
|
return val
|
|
}
|
|
|
|
func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
|
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
|
|
return val
|
|
}
|
|
|
|
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
|
val, _ := keyValue(kv, key, append(defaultValue, false)...)
|
|
return val
|
|
}
|
|
|
|
func (kv KV) UintOrMaxArrayValue(key string, defaultValue uint32) uint32 {
|
|
_, max := kv.UintOrArrayValue(key, defaultValue)
|
|
return max
|
|
}
|
|
|
|
func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
|
|
min, _ := kv.UintOrArrayValue(key, defaultValue)
|
|
return min
|
|
}
|
|
|
|
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
|
|
if u32, ok := keyValue(kv, key, uint32(0)); ok {
|
|
return u32, u32
|
|
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
|
|
min := slices.Min(u32s.values)
|
|
max := slices.Max(u32s.values)
|
|
return min, max
|
|
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
|
|
min := slices.Min(i32s.values)
|
|
max := slices.Max(i32s.values)
|
|
if min < 0 || max < 0 {
|
|
slog.Warn("array values are unexpectedly negative", "key", key, "min", min, "max", max)
|
|
}
|
|
return uint32(min), uint32(max)
|
|
}
|
|
|
|
return defaultValue, defaultValue
|
|
}
|
|
|
|
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
|
val, _ := keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]})
|
|
return val.values
|
|
}
|
|
|
|
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
|
|
val, _ := keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]})
|
|
return val.values
|
|
}
|
|
|
|
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
|
val, _ := keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]})
|
|
return val.values
|
|
}
|
|
|
|
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
|
val, _ := keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]})
|
|
return val.values
|
|
}
|
|
|
|
func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
|
|
val, _ := keyValue(kv, key, &array[bool]{values: append(defaultValue, []bool(nil))[0]})
|
|
return val.values
|
|
}
|
|
|
|
func (kv KV) OllamaEngineRequired() bool {
|
|
return slices.Contains([]string{
|
|
"gemma3",
|
|
"gemma3n",
|
|
"mistral3",
|
|
"llama4",
|
|
"mllama",
|
|
"qwen25vl",
|
|
"gptoss", "gpt-oss",
|
|
}, kv.Architecture())
|
|
}
|
|
|
|
type valueTypes interface {
|
|
uint8 | int8 | uint16 | int16 |
|
|
uint32 | int32 | uint64 | int64 |
|
|
string | float32 | float64 | bool
|
|
}
|
|
|
|
type arrayValueTypes interface {
|
|
*array[uint8] | *array[int8] | *array[uint16] | *array[int16] |
|
|
*array[uint32] | *array[int32] | *array[uint64] | *array[int64] |
|
|
*array[string] | *array[float32] | *array[float64] | *array[bool]
|
|
}
|
|
|
|
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
|
|
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
|
key = kv.Architecture() + "." + key
|
|
}
|
|
|
|
if val, ok := kv[key].(T); ok {
|
|
return val, true
|
|
}
|
|
|
|
slog.Debug("key with type not found", "key", key, "default", defaultValue[0])
|
|
return defaultValue[0], false
|
|
}
|
|
|
|
type Tensors struct {
|
|
items []*Tensor
|
|
Offset uint64
|
|
}
|
|
|
|
func (s Tensors) Items(prefix ...string) []*Tensor {
|
|
if len(prefix) == 0 {
|
|
return s.items
|
|
}
|
|
|
|
var items []*Tensor
|
|
for _, t := range s.items {
|
|
if strings.HasPrefix(t.Name, prefix[0]) {
|
|
items = append(items, t)
|
|
}
|
|
}
|
|
|
|
return items
|
|
}
|
|
|
|
func (ts Tensors) GroupLayers() map[string]Layer {
|
|
layers := make(map[string]Layer)
|
|
for _, t := range ts.items {
|
|
parts := strings.Split(t.Name, ".")
|
|
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
|
|
if len(parts) > index+2 {
|
|
// blk and mm should have a number after them, join it
|
|
parts = append(
|
|
[]string{strings.Join(parts[:index+2], ".")},
|
|
parts[index+2:]...)
|
|
}
|
|
}
|
|
|
|
if _, ok := layers[parts[0]]; !ok {
|
|
layers[parts[0]] = make(Layer)
|
|
}
|
|
|
|
layers[parts[0]][strings.Join(parts[1:], ".")] = t
|
|
}
|
|
|
|
return layers
|
|
}
|
|
|
|
type Layer map[string]*Tensor
|
|
|
|
func (l Layer) Size() (size uint64) {
|
|
for _, t := range l {
|
|
size += t.Size()
|
|
}
|
|
|
|
return size
|
|
}
|
|
|
|
type Tensor struct {
|
|
Name string `json:"name"`
|
|
Kind uint32 `json:"kind"`
|
|
Offset uint64 `json:"-"`
|
|
|
|
// Shape is the number of elements in each dimension
|
|
Shape []uint64 `json:"shape"`
|
|
|
|
io.WriterTo `json:"-"`
|
|
}
|
|
|
|
func (t Tensor) block() (n int) {
|
|
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
|
|
return -1
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (t Tensor) blockSize() uint64 {
|
|
return TensorType(t.Kind).BlockSize()
|
|
}
|
|
|
|
func (t TensorType) BlockSize() uint64 {
|
|
switch t {
|
|
case
|
|
0, // F32
|
|
1, // F16
|
|
24, // I8
|
|
25, // I16
|
|
26, // I32
|
|
27, // I64
|
|
28, // F64
|
|
30: // BF16
|
|
return 1
|
|
case
|
|
2, // Q4_0
|
|
3, // Q4_1
|
|
4, // MXFP4
|
|
6, // Q5_0
|
|
7, // Q5_1
|
|
8, // Q8_0
|
|
9, // Q8_1
|
|
20: // IQ4_NL
|
|
return 32
|
|
default:
|
|
return 256
|
|
}
|
|
}
|
|
|
|
func (t Tensor) typeSize() uint64 {
|
|
return TensorType(t.Kind).TypeSize()
|
|
}
|
|
|
|
func (t TensorType) TypeSize() uint64 {
|
|
blockSize := t.BlockSize()
|
|
|
|
switch t {
|
|
case TensorTypeF32:
|
|
return 4
|
|
case TensorTypeF16:
|
|
return 2
|
|
case TensorTypeQ4_0:
|
|
return 2 + blockSize/2
|
|
case TensorTypeQ4_1:
|
|
return 2 + 2 + blockSize/2
|
|
case TensorTypeMXFP4, 39:
|
|
return 1 + blockSize/2
|
|
case TensorTypeQ5_0:
|
|
return 2 + 4 + blockSize/2
|
|
case TensorTypeQ5_1:
|
|
return 2 + 2 + 4 + blockSize/2
|
|
case TensorTypeQ8_0:
|
|
return 2 + blockSize
|
|
case TensorTypeQ8_1:
|
|
return 2 + 2 + blockSize
|
|
case TensorTypeQ2_K:
|
|
return blockSize/16 + blockSize/4 + 2 + 2
|
|
case TensorTypeQ3_K:
|
|
return blockSize/8 + blockSize/4 + 12 + 2
|
|
case TensorTypeQ4_K:
|
|
return 2 + 2 + 12 + blockSize/2
|
|
case TensorTypeQ5_K:
|
|
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
|
case TensorTypeQ6_K:
|
|
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
|
case TensorTypeQ8_K:
|
|
return 4 + blockSize + 2*blockSize/16
|
|
case tensorTypeIQ2_XXS:
|
|
return 2 + 2*blockSize/8
|
|
case tensorTypeIQ2_XS:
|
|
return 2 + 2*blockSize/8 + blockSize/32
|
|
case tensorTypeIQ3_XXS:
|
|
return 2 + blockSize/4 + blockSize/8
|
|
case tensorTypeIQ1_S:
|
|
return 2 + blockSize/8 + blockSize/16
|
|
case tensorTypeIQ4_NL:
|
|
return 2 + blockSize/2
|
|
case tensorTypeIQ3_S:
|
|
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
|
case tensorTypeIQ2_S:
|
|
return 2 + blockSize/4 + blockSize/16
|
|
case tensorTypeIQ4_XS:
|
|
return 2 + 2 + blockSize/2 + blockSize/64
|
|
case TensorTypeI8:
|
|
return 1
|
|
case TensorTypeI16:
|
|
return 2
|
|
case TensorTypeI32:
|
|
return 4
|
|
case TensorTypeI64:
|
|
return 8
|
|
case TensorTypeF64:
|
|
return 8
|
|
case tensorTypeIQ1_M:
|
|
return blockSize/8 + blockSize/16 + blockSize/32
|
|
case TensorTypeBF16:
|
|
return 2
|
|
default:
|
|
return 0
|
|
}
|
|
}
|
|
|
|
func (t Tensor) Elements() uint64 {
|
|
var count uint64 = 1
|
|
for _, n := range t.Shape {
|
|
count *= n
|
|
}
|
|
return count
|
|
}
|
|
|
|
func (t Tensor) Size() uint64 {
|
|
return t.Elements() * t.typeSize() / t.blockSize()
|
|
}
|
|
|
|
func (t Tensor) Type() string {
|
|
return TensorType(t.Kind).String()
|
|
}
|
|
|
|
type container interface {
|
|
Name() string
|
|
Decode(io.ReadSeeker) (model, error)
|
|
}
|
|
|
|
const (
|
|
// Magic constant for `ggml` files (unversioned).
|
|
FILE_MAGIC_GGML = 0x67676d6c
|
|
// Magic constant for `ggml` files (versioned, ggmf).
|
|
FILE_MAGIC_GGMF = 0x67676d66
|
|
// Magic constant for `ggml` files (versioned, ggjt).
|
|
FILE_MAGIC_GGJT = 0x67676a74
|
|
// Magic constant for `ggla` files (LoRA adapter).
|
|
FILE_MAGIC_GGLA = 0x67676C61
|
|
// Magic constant for `gguf` files (versioned, gguf)
|
|
FILE_MAGIC_GGUF_LE = 0x46554747
|
|
FILE_MAGIC_GGUF_BE = 0x47475546
|
|
)
|
|
|
|
var ErrUnsupportedFormat = errors.New("unsupported model format")
|
|
|
|
func DetectContentType(b []byte) string {
|
|
switch binary.LittleEndian.Uint32(b[:4]) {
|
|
case FILE_MAGIC_GGML:
|
|
return "ggml"
|
|
case FILE_MAGIC_GGMF:
|
|
return "ggmf"
|
|
case FILE_MAGIC_GGJT:
|
|
return "ggjt"
|
|
case FILE_MAGIC_GGLA:
|
|
return "ggla"
|
|
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
|
|
return "gguf"
|
|
default:
|
|
return ""
|
|
}
|
|
}
|
|
|
|
// Decode decodes a GGML model from the given reader.
|
|
//
|
|
// It collects array values for arrays with a size less than or equal to
|
|
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
|
|
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
|
|
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
|
|
|
var magic uint32
|
|
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var c container
|
|
switch magic {
|
|
case FILE_MAGIC_GGUF_LE:
|
|
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
|
|
case FILE_MAGIC_GGUF_BE:
|
|
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
|
default:
|
|
return nil, errors.New("invalid file magic")
|
|
}
|
|
|
|
model, err := c.Decode(rs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
offset, err := rs.Seek(0, io.SeekCurrent)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// final model type
|
|
return &GGML{
|
|
container: c,
|
|
model: model,
|
|
Length: offset,
|
|
}, nil
|
|
}
|
|
|
|
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string) (kv []uint64, partialOffload, fullOffload uint64) {
|
|
embedding := f.KV().EmbeddingLength()
|
|
heads := f.KV().HeadCountMax()
|
|
headsKV := f.KV().HeadCountKVMax()
|
|
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
|
|
|
|
embeddingHeads := f.KV().EmbeddingHeadCountMax()
|
|
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
|
|
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
|
|
|
|
layers := f.Tensors().GroupLayers()
|
|
|
|
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
|
var kvTotal uint64
|
|
kv = make([]uint64, f.KV().BlockCount())
|
|
for i := range kv {
|
|
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
|
kvTotal += kv[i]
|
|
}
|
|
|
|
switch f.KV().Architecture() {
|
|
case "llama", "llama4":
|
|
fullOffload = max(
|
|
4*batch*(1+4*embedding+context*(1+heads)),
|
|
4*batch*(embedding+vocab),
|
|
)
|
|
|
|
partialOffload = 4 * batch * embedding
|
|
partialOffload += max(
|
|
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
)
|
|
|
|
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
|
// mixtral 8x22b
|
|
ff := uint64(f.KV().Uint("feed_forward_length"))
|
|
partialOffload = max(
|
|
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
|
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
|
)
|
|
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
|
|
// mixtral 8x7b
|
|
ffnGateWeight1 := ffnGateWeight.Shape[1]
|
|
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
|
|
partialOffload = max(
|
|
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
|
|
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
|
|
)
|
|
}
|
|
case "mllama":
|
|
var visionTokens, tiles uint64 = 1601, 4
|
|
|
|
crossAttentionLayers := f.KV().Ints("attention.cross_attention_layers")
|
|
for i := range kv {
|
|
if slices.Contains(crossAttentionLayers, int32(i)) {
|
|
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
|
|
4 * // sizeof(float32)
|
|
visionTokens *
|
|
tiles
|
|
}
|
|
}
|
|
|
|
fullOffload = max(
|
|
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
|
|
// vocab graph
|
|
4*batch*(embedding+vocab),
|
|
)
|
|
|
|
var ropeFreqsCount uint64
|
|
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
|
|
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
|
ropeFreqsCount = ropeFreqsWeights.Elements()
|
|
}
|
|
}
|
|
|
|
partialOffload = max(
|
|
4*(batch*
|
|
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
|
|
ropeFreqsCount+
|
|
embeddingHeadsK*context*headsKV),
|
|
// vocab graph
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
)
|
|
case "gemma", "gemma2", "gemma3", "gemma3n":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
|
|
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
|
|
4*embeddingHeadsK*context*8+
|
|
embedding*embeddingHeadsK*heads*9/16,
|
|
)
|
|
|
|
if f.KV().Architecture() == "gemma3n" {
|
|
fullOffload *= 4
|
|
partialOffload *= 4
|
|
}
|
|
|
|
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
|
|
// engine. Gemma3 always uses the Ollama engine.
|
|
if f.KV().Architecture() == "gemma3" {
|
|
const gemma3GlobalCacheCount = 6
|
|
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
|
|
for i := range kv {
|
|
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
|
|
// layers are the smaller local (sliding) layers.
|
|
if (i+1)%gemma3GlobalCacheCount != 0 {
|
|
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
|
}
|
|
}
|
|
}
|
|
case "command-r":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(2+4*embedding+context*(1+heads)),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
|
|
)
|
|
case "qwen2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+2*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
|
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
|
|
)
|
|
case "phi2":
|
|
fullOffload = max(
|
|
4*batch*(embedding+vocab),
|
|
4*batch*(1+4*embedding+context+context*heads),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(2+3*embedding+context+context*heads),
|
|
)
|
|
case "stablelm":
|
|
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
|
|
partialOffload = max(
|
|
4*batch*(vocab+2*embedding),
|
|
fullOffload,
|
|
)
|
|
case "deepseek2":
|
|
fullOffload = max(
|
|
4*batch*(3*embedding+vocab),
|
|
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
|
|
)
|
|
|
|
partialOffload = max(
|
|
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
|
|
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
|
|
)
|
|
case "chatglm":
|
|
fullOffload = 4 * batch * (embedding + vocab)
|
|
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
|
|
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
|
|
fullOffload = max(
|
|
fullOffload,
|
|
4*batch*(2+
|
|
2*embedding+
|
|
context+
|
|
context*heads+
|
|
embeddingHeadsK*heads+
|
|
qkvBias.Shape[0]),
|
|
)
|
|
|
|
partialOffload = max(
|
|
partialOffload,
|
|
4*batch*(1+
|
|
2*embedding+
|
|
embeddingHeadsK*heads+
|
|
context+
|
|
context*heads)+
|
|
4*embeddingHeadsK*context+
|
|
4*context*embeddingHeadsK+
|
|
4*qkvBias.Shape[0],
|
|
)
|
|
}
|
|
case "gptoss", "gpt-oss":
|
|
kv = make([]uint64, f.KV().BlockCount())
|
|
for i := range kv {
|
|
kv[i] = uint64(float64((embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
|
if i%2 == 0 {
|
|
kv[i] *= (uint64(numParallel)*4096 + batch)
|
|
} else {
|
|
kv[i] *= context
|
|
}
|
|
}
|
|
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
|
if llm.KV().Uint("vision.block_count") == 0 {
|
|
return
|
|
}
|
|
|
|
for name, layer := range llm.Tensors().GroupLayers() {
|
|
if name == "v" || strings.HasPrefix(name, "v.") {
|
|
for _, tensor := range layer {
|
|
weights += tensor.Size()
|
|
}
|
|
}
|
|
}
|
|
|
|
imageSize := uint64(llm.KV().Uint("vision.image_size"))
|
|
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
|
|
if patchSize == 0 {
|
|
slog.Warn("unknown patch size for vision model")
|
|
return
|
|
}
|
|
|
|
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
|
|
|
|
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
|
|
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
|
numPatches++
|
|
}
|
|
|
|
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
|
|
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
|
|
|
|
switch llm.KV().Architecture() {
|
|
case "mllama":
|
|
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
|
|
|
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
|
|
|
|
graphSize = 4 * (8 +
|
|
imageSize*imageSize*numChannels*maxNumTiles +
|
|
embeddingLength*numPatches*maxNumTiles +
|
|
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
|
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
|
case "gemma3", "mistral3":
|
|
graphSize = 4 * (imageSize*imageSize*numChannels +
|
|
embeddingLength*patchSize +
|
|
numPatches*numPatches*headCount)
|
|
case "qwen25vl":
|
|
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
|
|
|
numPatches := maxPixels / (patchSize * patchSize)
|
|
|
|
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
|
// Normalized pixels
|
|
maxPixels*numChannels +
|
|
// Patches storage (numPatches * channels * patchSize^2)
|
|
numPatches*numChannels*patchSize*patchSize +
|
|
// Self-attention calculations
|
|
numPatches*numPatches*headCount +
|
|
// Additional buffer for processing
|
|
embeddingLength*numPatches)
|
|
case "llama4":
|
|
// vision graph is computed independently in the same schedule
|
|
// and is negligible compared to the worst case text graph
|
|
}
|
|
|
|
return weights, graphSize
|
|
}
|
|
|
|
// SupportsKVCacheType checks if the requested cache type is supported
|
|
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
|
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
|
}
|
|
|
|
// SupportsFlashAttention checks if the model supports flash attention
|
|
func (f GGML) SupportsFlashAttention() bool {
|
|
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
|
|
if isEmbedding {
|
|
return false
|
|
}
|
|
|
|
// Check head counts match and are non-zero
|
|
headCountK := f.KV().EmbeddingHeadCountK()
|
|
headCountV := f.KV().EmbeddingHeadCountV()
|
|
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
|
|
}
|
|
|
|
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
|
|
func kvCacheBytesPerElement(cacheType string) float64 {
|
|
switch cacheType {
|
|
case "q8_0":
|
|
return 1 // 1/2 of fp16
|
|
case "q4_0":
|
|
return 0.5 // 1/4 of fp16
|
|
default:
|
|
return 2 // f16 (default)
|
|
}
|
|
}
|