Files
ollama-for-amd/llama/llama.cpp/src/llama-model-loader.h
Michael Yang 1a19df1f3a update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00

171 lines
5.8 KiB
C++
Vendored

#pragma once
#include "llama.h"
#include "llama-impl.h"
#include "llama-arch.h"
#include "llama-mmap.h"
#include "ggml-cpp.h"
#include <cstddef>
#include <map>
#include <stdexcept>
#include <unordered_map>
using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
enum llama_fver {
GGUF_FILE_VERSION_V1 = 1,
GGUF_FILE_VERSION_V2 = 2,
GGUF_FILE_VERSION_V3 = 3,
};
const char * llama_file_version_name(llama_fver version);
struct llama_model_loader {
// Holds information on a model weight
struct llama_tensor_weight {
uint16_t idx; // source file index
size_t offs; // tensor data offset in the original file
ggml_tensor * tensor;
llama_tensor_weight(const llama_file * file, uint16_t idx, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
const int tensor_idx = gguf_find_tensor(gguf_ctx, ggml_get_name(tensor));
if (tensor_idx < 0) {
throw std::runtime_error(format("tensor '%s' not found in the model", ggml_get_name(tensor)));
}
offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size()) {
throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", ggml_get_name(tensor)));
}
}
};
// custom comparator to sort weights more nicely by layer
struct weight_name_comparer {
bool operator()(const std::string & a, const std::string & b) const {
int a_layer = -1;
int b_layer = -1;
sscanf(a.c_str(), "blk.%d.", &a_layer);
sscanf(b.c_str(), "blk.%d.", &b_layer);
if (a_layer != b_layer) {
return a_layer < b_layer;
}
return a < b;
}
};
static const int TENSOR_NOT_REQUIRED = 1 << 0;
static const int TENSOR_DUPLICATED = 1 << 1;
static const int TENSOR_SKIP = 1 << 2;
int n_kv = 0;
int n_tensors = 0;
int n_created = 0;
uint64_t n_elements = 0;
size_t n_bytes = 0;
bool use_mmap = false;
bool check_tensors;
llama_files files;
llama_ftype ftype;
llama_fver fver;
llama_mmaps mappings;
std::map<std::string, llama_tensor_weight, weight_name_comparer> weights_map;
std::unordered_map<std::string, llama_model_kv_override> kv_overrides;
const llama_model_tensor_buft_override * tensor_buft_overrides;
gguf_context_ptr meta;
std::vector<ggml_context_ptr> contexts;
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
size_t size_done = 0;
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool check_tensors,
const llama_model_kv_override * param_overrides_p,
const llama_model_tensor_buft_override * param_tensor_buft_overrides_p);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(const std::string & key, T & result, bool required = true);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type
get_arr_n(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_arr(const std::string & key, std::vector<T> & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required = true);
template<typename T>
bool get_arr(enum llm_kv kid, T & result, bool required = true);
template<typename T>
bool get_key(const std::string & key, T & result, bool required = true);
template<typename T>
bool get_key(enum llm_kv kid, T & result, bool required = true);
template<typename T, size_t N_MAX>
bool get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required = true);
template<typename T>
bool get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required = true);
std::string get_arch_name() const;
enum llm_arch get_arch() const;
const llama_tensor_weight * get_weight(const char * name) const;
const llama_tensor_weight & require_weight(const char * name) const;
struct ggml_tensor * get_tensor_meta(const char * name) const;
struct ggml_tensor * require_tensor_meta(const std::string & name) const;
const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const;
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0);
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true);
void done_getting_tensors() const;
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr);
void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const;
// for backwards compatibility, does not support ggml-backend
void load_data_for(struct ggml_tensor * cur) const;
// Returns false if cancelled by progress_callback
bool load_all_data(
struct ggml_context * ctx,
llama_buf_map & bufs,
llama_mlocks * lmlocks,
llama_progress_callback progress_callback,
void * progress_callback_user_data);
std::string ftype_name() const;
void print_info() const;
};