mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-24 07:28:27 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
492 lines
16 KiB
C++
Vendored
492 lines
16 KiB
C++
Vendored
#pragma once
|
|
|
|
#include "llama.h"
|
|
#include "llama-arch.h"
|
|
#include "llama-graph.h"
|
|
#include "llama-hparams.h"
|
|
#include "llama-memory.h"
|
|
#include "llama-vocab.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
struct llama_cparams;
|
|
struct llama_ubatch;
|
|
struct llama_model_loader;
|
|
|
|
// available models
|
|
enum llm_type {
|
|
LLM_TYPE_UNKNOWN,
|
|
LLM_TYPE_14M,
|
|
LLM_TYPE_17M,
|
|
LLM_TYPE_22M,
|
|
LLM_TYPE_33M,
|
|
LLM_TYPE_60M,
|
|
LLM_TYPE_70M,
|
|
LLM_TYPE_80M,
|
|
LLM_TYPE_109M,
|
|
LLM_TYPE_137M,
|
|
LLM_TYPE_160M,
|
|
LLM_TYPE_190M,
|
|
LLM_TYPE_220M,
|
|
LLM_TYPE_250M,
|
|
LLM_TYPE_256M,
|
|
LLM_TYPE_270M,
|
|
LLM_TYPE_335M,
|
|
LLM_TYPE_350M,
|
|
LLM_TYPE_410M,
|
|
LLM_TYPE_450M,
|
|
LLM_TYPE_475M,
|
|
LLM_TYPE_700M,
|
|
LLM_TYPE_770M,
|
|
LLM_TYPE_780M,
|
|
LLM_TYPE_0_3B,
|
|
LLM_TYPE_0_5B,
|
|
LLM_TYPE_0_6B,
|
|
LLM_TYPE_1B,
|
|
LLM_TYPE_1_2B,
|
|
LLM_TYPE_1_3B,
|
|
LLM_TYPE_1_4B,
|
|
LLM_TYPE_1_5B,
|
|
LLM_TYPE_1_6B,
|
|
LLM_TYPE_1_7B,
|
|
LLM_TYPE_1_8B,
|
|
LLM_TYPE_2B,
|
|
LLM_TYPE_2_8B,
|
|
LLM_TYPE_2_9B,
|
|
LLM_TYPE_3B,
|
|
LLM_TYPE_4B,
|
|
LLM_TYPE_6B,
|
|
LLM_TYPE_6_9B,
|
|
LLM_TYPE_7B,
|
|
LLM_TYPE_8B,
|
|
LLM_TYPE_9B,
|
|
LLM_TYPE_11B,
|
|
LLM_TYPE_12B,
|
|
LLM_TYPE_13B,
|
|
LLM_TYPE_14B,
|
|
LLM_TYPE_15B,
|
|
LLM_TYPE_16B,
|
|
LLM_TYPE_20B,
|
|
LLM_TYPE_22B,
|
|
LLM_TYPE_27B,
|
|
LLM_TYPE_30B,
|
|
LLM_TYPE_32B,
|
|
LLM_TYPE_34B,
|
|
LLM_TYPE_35B,
|
|
LLM_TYPE_40B,
|
|
LLM_TYPE_65B,
|
|
LLM_TYPE_70B,
|
|
LLM_TYPE_142B,
|
|
LLM_TYPE_236B,
|
|
LLM_TYPE_290B,
|
|
LLM_TYPE_314B,
|
|
LLM_TYPE_405B,
|
|
LLM_TYPE_671B,
|
|
LLM_TYPE_SMALL,
|
|
LLM_TYPE_MEDIUM,
|
|
LLM_TYPE_LARGE,
|
|
LLM_TYPE_XL,
|
|
LLM_TYPE_A1_7B,
|
|
LLM_TYPE_A2_7B,
|
|
LLM_TYPE_8x7B,
|
|
LLM_TYPE_8x22B,
|
|
LLM_TYPE_16x12B,
|
|
LLM_TYPE_16x3_8B,
|
|
LLM_TYPE_10B_128x3_66B,
|
|
LLM_TYPE_57B_A14B,
|
|
LLM_TYPE_17B_16E, // llama4 Scout
|
|
LLM_TYPE_17B_128E, // llama4 Maverick
|
|
LLM_TYPE_A13B,
|
|
LLM_TYPE_21B_A3B, // Ernie MoE small
|
|
LLM_TYPE_30B_A3B,
|
|
LLM_TYPE_106B_A12B, // GLM-4.5-Air
|
|
LLM_TYPE_235B_A22B,
|
|
LLM_TYPE_300B_A47B, // Ernie MoE big
|
|
LLM_TYPE_355B_A32B, // GLM-4.5
|
|
LLM_TYPE_E2B,
|
|
LLM_TYPE_E4B,
|
|
};
|
|
|
|
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
|
|
|
|
struct llama_layer_posnet {
|
|
// resnet
|
|
struct ggml_tensor * norm1 = nullptr;
|
|
struct ggml_tensor * norm1_b = nullptr;
|
|
|
|
struct ggml_tensor * conv1 = nullptr;
|
|
struct ggml_tensor * conv1_b = nullptr;
|
|
|
|
struct ggml_tensor * norm2 = nullptr;
|
|
struct ggml_tensor * norm2_b = nullptr;
|
|
|
|
struct ggml_tensor * conv2 = nullptr;
|
|
struct ggml_tensor * conv2_b = nullptr;
|
|
|
|
// attention
|
|
struct ggml_tensor * attn_norm = nullptr;
|
|
struct ggml_tensor * attn_norm_b = nullptr;
|
|
|
|
struct ggml_tensor * attn_q = nullptr;
|
|
struct ggml_tensor * attn_q_b = nullptr;
|
|
|
|
struct ggml_tensor * attn_k = nullptr;
|
|
struct ggml_tensor * attn_k_b = nullptr;
|
|
|
|
struct ggml_tensor * attn_v = nullptr;
|
|
struct ggml_tensor * attn_v_b = nullptr;
|
|
|
|
struct ggml_tensor * attn_o = nullptr;
|
|
struct ggml_tensor * attn_o_b = nullptr;
|
|
|
|
// normalize
|
|
struct ggml_tensor * norm = nullptr;
|
|
struct ggml_tensor * norm_b = nullptr;
|
|
};
|
|
|
|
struct llama_layer_convnext {
|
|
struct ggml_tensor * dw = nullptr;
|
|
struct ggml_tensor * dw_b = nullptr;
|
|
|
|
struct ggml_tensor * norm = nullptr;
|
|
struct ggml_tensor * norm_b = nullptr;
|
|
|
|
struct ggml_tensor * pw1 = nullptr;
|
|
struct ggml_tensor * pw1_b = nullptr;
|
|
|
|
struct ggml_tensor * pw2 = nullptr;
|
|
struct ggml_tensor * pw2_b = nullptr;
|
|
|
|
struct ggml_tensor * gamma = nullptr;
|
|
};
|
|
|
|
struct llama_layer_shortconv {
|
|
struct ggml_tensor * in_proj = nullptr;
|
|
struct ggml_tensor * conv = nullptr;
|
|
struct ggml_tensor * out_proj = nullptr;
|
|
};
|
|
|
|
struct llama_layer_nextn {
|
|
struct ggml_tensor * eh_proj = nullptr;
|
|
struct ggml_tensor * embed_tokens = nullptr;
|
|
struct ggml_tensor * enorm = nullptr;
|
|
struct ggml_tensor * hnorm = nullptr;
|
|
struct ggml_tensor * shared_head_head = nullptr;
|
|
struct ggml_tensor * shared_head_norm = nullptr;
|
|
};
|
|
|
|
struct llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attn_norm = nullptr;
|
|
struct ggml_tensor * attn_norm_b = nullptr;
|
|
struct ggml_tensor * attn_norm_2 = nullptr;
|
|
struct ggml_tensor * attn_norm_2_b = nullptr;
|
|
struct ggml_tensor * attn_q_norm = nullptr;
|
|
struct ggml_tensor * attn_q_norm_b = nullptr;
|
|
struct ggml_tensor * attn_k_norm = nullptr;
|
|
struct ggml_tensor * attn_k_norm_b = nullptr;
|
|
struct ggml_tensor * attn_out_norm = nullptr;
|
|
struct ggml_tensor * attn_out_norm_b = nullptr;
|
|
struct ggml_tensor * attn_q_a_norm = nullptr;
|
|
struct ggml_tensor * attn_kv_a_norm = nullptr;
|
|
struct ggml_tensor * attn_sub_norm = nullptr;
|
|
struct ggml_tensor * attn_post_norm = nullptr;
|
|
struct ggml_tensor * ffn_sub_norm = nullptr;
|
|
struct ggml_tensor * attn_norm_cross = nullptr;
|
|
struct ggml_tensor * attn_norm_enc = nullptr;
|
|
struct ggml_tensor * ssm_norm = nullptr;
|
|
struct ggml_tensor * ssm_dt_norm = nullptr;
|
|
struct ggml_tensor * ssm_b_norm = nullptr;
|
|
struct ggml_tensor * ssm_c_norm = nullptr;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq = nullptr;
|
|
struct ggml_tensor * wk = nullptr;
|
|
struct ggml_tensor * wv = nullptr;
|
|
struct ggml_tensor * wo = nullptr;
|
|
struct ggml_tensor * wqkv = nullptr;
|
|
struct ggml_tensor * wq_a = nullptr;
|
|
struct ggml_tensor * wq_b = nullptr;
|
|
struct ggml_tensor * wkv_a_mqa = nullptr;
|
|
struct ggml_tensor * wkv_b = nullptr;
|
|
struct ggml_tensor * wk_b = nullptr;
|
|
struct ggml_tensor * wv_b = nullptr;
|
|
struct ggml_tensor * wq_cross = nullptr;
|
|
struct ggml_tensor * wk_cross = nullptr;
|
|
struct ggml_tensor * wv_cross = nullptr;
|
|
struct ggml_tensor * wo_cross = nullptr;
|
|
struct ggml_tensor * wq_enc = nullptr;
|
|
struct ggml_tensor * wk_enc = nullptr;
|
|
struct ggml_tensor * wv_enc = nullptr;
|
|
struct ggml_tensor * wo_enc = nullptr;
|
|
|
|
// attention bias
|
|
struct ggml_tensor * bq = nullptr;
|
|
struct ggml_tensor * bk = nullptr;
|
|
struct ggml_tensor * bv = nullptr;
|
|
struct ggml_tensor * bo = nullptr;
|
|
struct ggml_tensor * bqkv = nullptr;
|
|
|
|
// relative position bias
|
|
struct ggml_tensor * attn_rel_b = nullptr;
|
|
struct ggml_tensor * attn_rel_b_enc = nullptr;
|
|
struct ggml_tensor * attn_rel_b_cross = nullptr;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm = nullptr;
|
|
struct ggml_tensor * ffn_norm_b = nullptr;
|
|
struct ggml_tensor * ffn_post_norm = nullptr;
|
|
struct ggml_tensor * layer_out_norm = nullptr;
|
|
struct ggml_tensor * layer_out_norm_b = nullptr;
|
|
struct ggml_tensor * ffn_norm_exps = nullptr;
|
|
struct ggml_tensor * ffn_norm_enc = nullptr;
|
|
|
|
// ff
|
|
struct ggml_tensor * ffn_gate = nullptr; // w1
|
|
struct ggml_tensor * ffn_down = nullptr; // w2
|
|
struct ggml_tensor * ffn_up = nullptr; // w3
|
|
struct ggml_tensor * ffn_gate_enc = nullptr;
|
|
struct ggml_tensor * ffn_down_enc = nullptr;
|
|
struct ggml_tensor * ffn_up_enc = nullptr;
|
|
|
|
// ff MoE
|
|
struct ggml_tensor * ffn_gate_inp = nullptr;
|
|
struct ggml_tensor * ffn_gate_exps = nullptr;
|
|
struct ggml_tensor * ffn_down_exps = nullptr;
|
|
struct ggml_tensor * ffn_up_exps = nullptr;
|
|
struct ggml_tensor * ffn_gate_inp_b = nullptr;
|
|
struct ggml_tensor * ffn_gate_exps_b = nullptr;
|
|
struct ggml_tensor * ffn_down_exps_b = nullptr;
|
|
struct ggml_tensor * ffn_up_exps_b = nullptr;
|
|
|
|
// ff shared expert (shexp)
|
|
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
|
|
struct ggml_tensor * ffn_gate_shexp = nullptr;
|
|
struct ggml_tensor * ffn_down_shexp = nullptr;
|
|
struct ggml_tensor * ffn_up_shexp = nullptr;
|
|
|
|
// ff bias
|
|
struct ggml_tensor * ffn_gate_b = nullptr;
|
|
struct ggml_tensor * ffn_down_b = nullptr; // b2
|
|
struct ggml_tensor * ffn_up_b = nullptr; // b3
|
|
struct ggml_tensor * ffn_act = nullptr;
|
|
struct ggml_tensor * ffn_exp_probs_b = nullptr;
|
|
|
|
// mamba proj
|
|
struct ggml_tensor * ssm_in = nullptr;
|
|
struct ggml_tensor * ssm_x = nullptr;
|
|
struct ggml_tensor * ssm_dt = nullptr;
|
|
struct ggml_tensor * ssm_out = nullptr;
|
|
|
|
// mamba
|
|
struct ggml_tensor * ssm_conv1d = nullptr;
|
|
struct ggml_tensor * ssm_a = nullptr;
|
|
struct ggml_tensor * ssm_d = nullptr;
|
|
|
|
// mamba bias
|
|
struct ggml_tensor * ssm_conv1d_b = nullptr;
|
|
struct ggml_tensor * ssm_dt_b = nullptr;
|
|
|
|
// rwkv
|
|
struct ggml_tensor * time_mix_w1 = nullptr;
|
|
struct ggml_tensor * time_mix_w2 = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_x = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_w = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_k = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_v = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_r = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_g = nullptr;
|
|
struct ggml_tensor * time_mix_lerp_fused = nullptr;
|
|
|
|
struct ggml_tensor * time_mix_first = nullptr;
|
|
struct ggml_tensor * time_mix_decay = nullptr;
|
|
struct ggml_tensor * time_mix_decay_w1 = nullptr;
|
|
struct ggml_tensor * time_mix_decay_w2 = nullptr;
|
|
struct ggml_tensor * time_mix_key = nullptr;
|
|
struct ggml_tensor * time_mix_key_b = nullptr;
|
|
struct ggml_tensor * time_mix_value = nullptr;
|
|
struct ggml_tensor * time_mix_value_b = nullptr;
|
|
struct ggml_tensor * time_mix_receptance = nullptr;
|
|
struct ggml_tensor * time_mix_receptance_b = nullptr;
|
|
struct ggml_tensor * time_mix_gate = nullptr;
|
|
|
|
// rwkv7
|
|
struct ggml_tensor * time_mix_w0 = nullptr;
|
|
struct ggml_tensor * time_mix_a0 = nullptr;
|
|
struct ggml_tensor * time_mix_a1 = nullptr;
|
|
struct ggml_tensor * time_mix_a2 = nullptr;
|
|
struct ggml_tensor * time_mix_v0 = nullptr;
|
|
struct ggml_tensor * time_mix_v1 = nullptr;
|
|
struct ggml_tensor * time_mix_v2 = nullptr;
|
|
struct ggml_tensor * time_mix_g1 = nullptr;
|
|
struct ggml_tensor * time_mix_g2 = nullptr;
|
|
struct ggml_tensor * time_mix_k_k = nullptr;
|
|
struct ggml_tensor * time_mix_k_a = nullptr;
|
|
struct ggml_tensor * time_mix_r_k = nullptr;
|
|
|
|
struct ggml_tensor * time_mix_ln = nullptr;
|
|
struct ggml_tensor * time_mix_ln_b = nullptr;
|
|
struct ggml_tensor * time_mix_output = nullptr;
|
|
|
|
struct ggml_tensor * channel_mix_lerp_k = nullptr;
|
|
struct ggml_tensor * channel_mix_lerp_r = nullptr;
|
|
|
|
struct ggml_tensor * channel_mix_key = nullptr;
|
|
struct ggml_tensor * channel_mix_receptance = nullptr;
|
|
struct ggml_tensor * channel_mix_value = nullptr;
|
|
|
|
// long rope factors
|
|
struct ggml_tensor * rope_long = nullptr;
|
|
struct ggml_tensor * rope_short = nullptr;
|
|
struct ggml_tensor * rope_freqs = nullptr;
|
|
|
|
// bitnet scale
|
|
struct ggml_tensor * wq_scale = nullptr;
|
|
struct ggml_tensor * wk_scale = nullptr;
|
|
struct ggml_tensor * wv_scale = nullptr;
|
|
struct ggml_tensor * wo_scale = nullptr;
|
|
struct ggml_tensor * ffn_gate_scale = nullptr;
|
|
struct ggml_tensor * ffn_up_scale = nullptr;
|
|
struct ggml_tensor * ffn_down_scale = nullptr;
|
|
|
|
// altup & laurel
|
|
struct ggml_tensor * per_layer_inp_gate = nullptr;
|
|
struct ggml_tensor * per_layer_proj = nullptr;
|
|
struct ggml_tensor * per_layer_post_norm = nullptr;
|
|
struct ggml_tensor * altup_correct_coef = nullptr;
|
|
struct ggml_tensor * altup_correct_scale = nullptr;
|
|
struct ggml_tensor * altup_predict_coef = nullptr;
|
|
struct ggml_tensor * altup_router = nullptr;
|
|
struct ggml_tensor * altup_router_norm = nullptr;
|
|
struct ggml_tensor * laurel_l = nullptr;
|
|
struct ggml_tensor * laurel_r = nullptr;
|
|
struct ggml_tensor * laurel_post_norm = nullptr;
|
|
|
|
// openai-moe
|
|
struct ggml_tensor * attn_sinks = nullptr;
|
|
|
|
struct ggml_tensor * bskcn_tv = nullptr;
|
|
|
|
struct llama_layer_posnet posnet;
|
|
|
|
struct llama_layer_convnext convnext;
|
|
|
|
struct llama_layer_shortconv shortconv;
|
|
|
|
struct llama_layer_nextn nextn;
|
|
};
|
|
|
|
struct llama_model {
|
|
llm_type type = LLM_TYPE_UNKNOWN;
|
|
llm_arch arch = LLM_ARCH_UNKNOWN;
|
|
|
|
std::string name = "n/a";
|
|
|
|
llama_hparams hparams = {};
|
|
llama_vocab vocab;
|
|
|
|
// for classifier models
|
|
std::vector<std::string> classifier_labels;
|
|
|
|
struct ggml_tensor * tok_embd = nullptr;
|
|
struct ggml_tensor * type_embd = nullptr;
|
|
struct ggml_tensor * pos_embd = nullptr;
|
|
struct ggml_tensor * tok_norm = nullptr;
|
|
struct ggml_tensor * tok_norm_b = nullptr;
|
|
|
|
struct ggml_tensor * output_norm = nullptr;
|
|
struct ggml_tensor * output_norm_b = nullptr;
|
|
struct ggml_tensor * output = nullptr;
|
|
struct ggml_tensor * output_b = nullptr;
|
|
struct ggml_tensor * output_norm_enc = nullptr;
|
|
|
|
// classifier
|
|
struct ggml_tensor * cls = nullptr;
|
|
struct ggml_tensor * cls_b = nullptr;
|
|
struct ggml_tensor * cls_out = nullptr;
|
|
struct ggml_tensor * cls_out_b = nullptr;
|
|
|
|
struct ggml_tensor * conv1d = nullptr;
|
|
struct ggml_tensor * conv1d_b = nullptr;
|
|
|
|
// gemma3n altup
|
|
struct ggml_tensor * tok_embd_per_layer = nullptr;
|
|
struct ggml_tensor * altup_proj = nullptr;
|
|
struct ggml_tensor * altup_unembd_proj = nullptr;
|
|
struct ggml_tensor * per_layer_model_proj = nullptr;
|
|
struct ggml_tensor * per_layer_proj_norm = nullptr;
|
|
|
|
std::vector<llama_layer> layers;
|
|
|
|
llama_model_params params;
|
|
|
|
// gguf metadata
|
|
std::unordered_map<std::string, std::string> gguf_kv;
|
|
|
|
// list of devices used in this model
|
|
std::vector<ggml_backend_dev_t> devices;
|
|
|
|
// for quantize-stats only
|
|
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
|
|
|
int64_t t_load_us = 0;
|
|
int64_t t_start_us = 0;
|
|
|
|
explicit llama_model(const struct llama_model_params & params);
|
|
~llama_model();
|
|
|
|
void load_stats (llama_model_loader & ml);
|
|
void load_arch (llama_model_loader & ml);
|
|
void load_hparams(llama_model_loader & ml);
|
|
void load_vocab (llama_model_loader & ml);
|
|
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
|
|
|
|
std::string arch_name() const;
|
|
std::string type_name() const;
|
|
|
|
std::string desc() const;
|
|
|
|
size_t size() const;
|
|
size_t n_tensors() const;
|
|
size_t n_devices() const;
|
|
|
|
// total number of parameters in the model
|
|
uint64_t n_elements() const;
|
|
|
|
void print_info() const;
|
|
|
|
ggml_backend_dev_t dev_layer(int il) const;
|
|
ggml_backend_dev_t dev_output() const;
|
|
|
|
ggml_backend_buffer_type_t select_buft(int il) const;
|
|
|
|
bool has_tensor_overrides() const;
|
|
|
|
const struct ggml_tensor * get_tensor(const char * name) const;
|
|
|
|
float get_rope_freq_base (const llama_cparams & cparams, int il) const;
|
|
float get_rope_freq_scale(const llama_cparams & cparams, int il) const;
|
|
|
|
ggml_tensor * get_rope_factors(const llama_cparams & cparams, int il) const;
|
|
|
|
// note: can mutate `cparams`
|
|
// TODO: move this to new llm_arch_model_i interface
|
|
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
|
|
|
|
// TODO: move this to new llm_arch_model_i interface
|
|
ggml_cgraph * build_graph(const llm_graph_params & params) const;
|
|
|
|
private:
|
|
struct impl;
|
|
std::unique_ptr<impl> pimpl;
|
|
};
|
|
|
|
const char * llm_type_name(llm_type type);
|
|
|
|
// For internal test use
|
|
// TODO: remove
|
|
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model);
|