Files
ollama-for-amd/kvcache/causal_test.go
Jesse Gross 53985b3c4d kvcache: Use SetRows to store cache data
We currently copy data into the KV cache in contiguous buffers using
ggml_cpy(). ggml_set_rows() was introduced to allow scatter operation
so that contiguous buffers are no longer required. The direct primary
benefit of this is that we no longer need to perform defragmentation.

However, GGML recently removed an optimization for ggml_cpy() and
we picked it up in 544b673 "ggml update to b6840 (#12791)". This
caused a roughly 40% drop in token generation performance on CUDA
due to CUDA graphs no longer being used. By switching to
ggml_set_rows(), the original optimization is no longer necessary
and CUDA performance is restored.

Fixes #13112
2025-11-18 20:42:28 -08:00

853 lines
21 KiB
Go

package kvcache
import (
"math"
"slices"
"testing"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/input"
)
type testCase struct {
name string
in []float32
inShape []int
seqs []int
pos []int32
expected []float32
expectedShape []int
expectedMask []float32
}
func TestStore(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
inShape: []int{2, 3, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234},
expectedShape: []int{2, 3, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
{
name: "SecondBatch",
in: []float32{115, 215, 125, 225, 135, 235},
inShape: []int{2, 3, 1},
seqs: []int{0},
pos: []int32{4},
expected: []float32{111, 211, 121, 221, 131, 231, 112, 212, 122, 222, 132, 232, 113, 213, 123, 223, 133, 233, 114, 214, 124, 224, 134, 234, 115, 215, 125, 225, 135, 235},
expectedShape: []int{2, 3, 5},
expectedMask: []float32{0, 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func TestSWA(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, 0, 0, x,
x, x, 0, 0,
},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 6, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, 0,
0, 0, x, x,
},
},
}
testCache(t, backend, cache, tests)
}
func TestSWASeparateBatches(t *testing.T) {
backend := &testBackend{}
cache := NewSWACache(1, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 2, 16, 2)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "First seq 0",
in: []float32{1, 2},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{0, 1},
expected: []float32{1, 2},
expectedShape: []int{1, 1, 2},
expectedMask: []float32{
0, x,
0, 0,
},
},
{
name: "Second seq 0",
in: []float32{3, 4},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{2, 3},
expected: []float32{2, 3, 4},
expectedShape: []int{1, 1, 3},
expectedMask: []float32{
0, 0, x,
x, 0, 0,
},
},
{
name: "First seq 1",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{0, 1},
expected: []float32{5, 6},
expectedShape: []int{1, 1, 2},
expectedMask: []float32{
0, x,
0, 0,
},
},
{
name: "Second seq 1",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{2, 3},
expected: []float32{6, 3, 4, 7, 8},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{
0, x, x, 0, x,
x, x, x, 0, 0,
},
},
{
name: "Third seq 0",
in: []float32{9, 10},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{9, 10, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, 0,
0, 0, x, x,
},
},
}
testCache(t, backend, cache, tests)
}
func TestSWAMem(t *testing.T) {
backend := &testBackend{}
cache := NewSWAMemCache(1, 3, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, 0, 0, x,
x, x, 0, 0,
},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{4, 5},
expected: []float32{5, 2, 3, 4, 6},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{
0, x, x, 0, x,
0, x, x, x, 0,
},
},
}
testCache(t, backend, cache, tests)
}
func TestChunkedAttention(t *testing.T) {
cache := NewChunkedAttentionCache(2, nil)
defer cache.Close()
var b testBackend
cache.Init(&b, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
testCache(
t, &b, cache,
[]testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, x, 0, x,
x, x, 0, 0,
},
},
{
name: "SecondBatch",
in: []float32{5, 6, 7},
inShape: []int{1, 1, 3},
seqs: []int{0, 0, 0},
pos: []int32{4, 5, 6},
expected: []float32{1, 2, 3, 4, 5, 6, 7},
expectedShape: []int{1, 1, 7},
expectedMask: []float32{
x, x, x, x, 0, x, x,
x, x, x, x, 0, 0, x,
x, x, x, x, x, x, 0,
},
},
{
name: "ThirdBatch",
in: []float32{8, 9},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{7, 8},
expected: []float32{1, 2, 3, 4, 5, 6, 7, 8, 9},
expectedShape: []int{1, 1, 9},
expectedMask: []float32{
x, x, x, x, x, x, 0, 0, x,
x, x, x, x, x, x, x, x, 0,
},
},
},
)
}
func TestSequences(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
{
name: "SecondBatch",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{2, 2},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), 0},
},
}
testCache(t, backend, cache, tests)
}
func TestRemove(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return key.Add(ctx, shift), nil
})
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
x := float32(math.Inf(-1))
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 1, 1},
pos: []int32{0, 1, 0, 1},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{
0, x, x, x,
0, 0, x, x,
x, x, 0, x,
x, x, 0, 0,
},
},
}
testCache(t, backend, cache, tests)
err := cache.Remove(0, 1, math.MaxInt32)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveEnd",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{0, 1},
pos: []int32{1, 2},
expected: []float32{1, 5, 3, 4, 6},
expectedShape: []int{1, 1, 5},
expectedMask: []float32{
0, 0, x, x, x,
x, x, 0, 0, 0,
},
},
}
testCache(t, backend, cache, tests)
err = cache.Remove(0, 0, 1)
if err != nil {
panic(err)
}
tests = []testCase{
{
name: "RemoveMiddle",
in: []float32{7, 8},
inShape: []int{1, 1, 2},
seqs: []int{0, 0},
pos: []int32{1, 2},
expected: []float32{7, 4, 3, 4, 6, 8},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{
0, 0, x, x, x, x,
0, 0, x, x, x, 0,
},
},
}
testCache(t, backend, cache, tests)
}
func TestCopy(t *testing.T) {
backend := &testBackend{}
cache := NewCausalCache(func(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key, nil })
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
tests := []testCase{
{
name: "FirstBatch",
in: []float32{1, 2, 3, 4},
inShape: []int{1, 1, 4},
seqs: []int{0, 0, 0, 0},
pos: []int32{0, 1, 2, 3},
expected: []float32{1, 2, 3, 4},
expectedShape: []int{1, 1, 4},
expectedMask: []float32{0, float32(math.Inf(-1)), float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0, 0, float32(math.Inf(-1)), 0, 0, 0, 0},
},
}
testCache(t, backend, cache, tests)
cache.CopyPrefix(0, 1, 2)
tests = []testCase{
{
name: "Copy",
in: []float32{5, 6},
inShape: []int{1, 1, 2},
seqs: []int{1, 1},
pos: []int32{3, 4},
expected: []float32{1, 2, 3, 4, 5, 6},
expectedShape: []int{1, 1, 6},
expectedMask: []float32{0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, float32(math.Inf(-1)), 0, 0, float32(math.Inf(-1)), float32(math.Inf(-1)), 0, 0},
},
}
testCache(t, backend, cache, tests)
}
func testCache(t *testing.T, backend ml.Backend, cache Cache, tests []testCase) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{Positions: test.pos, Sequences: test.seqs}, false)
if err != nil {
panic(err)
}
cache.SetLayer(0)
tensor := context.FromFloats(test.in, test.inShape...)
cache.Put(context, tensor, tensor)
out, _, mask := cache.Get(context)
context.Forward(out, mask).Compute(out, mask)
if !slices.Equal(out.Floats(), test.expected) {
t.Errorf("TestCache: have %v; want %v", out.Floats(), test.expected)
}
if !slices.Equal(out.Shape(), test.expectedShape) {
t.Errorf("TestCache: has shape %v; want %v", out.Shape(), test.expectedShape)
}
if !slices.Equal(mask.Floats(), test.expectedMask) {
t.Errorf("TestCache: have mask: have %v want %v", mask.Floats(), test.expectedMask)
}
})
}
}
func TestCanResume(t *testing.T) {
backend := &testBackend{}
windowSize := int32(4)
cache := NewSWACache(windowSize, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3, 4},
Sequences: []int{0, 0, 0, 0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor := context.FromFloats([]float32{1, 2, 3, 4, 5}, 1, 1, 5)
cache.Put(context, tensor, tensor)
// with window size 4, nothing has slid out of the window yet
if !cache.CanResume(0, 0) {
t.Errorf("CanResume(0, 0) = false, want true (within window)")
}
if !cache.CanResume(0, 1) {
t.Errorf("CanResume(0, 1) = false, want true (within window)")
}
if !cache.CanResume(0, 2) {
t.Errorf("CanResume(0, 2) = false, want true (within window)")
}
if !cache.CanResume(0, 3) {
t.Errorf("CanResume(0, 3) = false, want true (latest position)")
}
if !cache.CanResume(0, 4) {
t.Errorf("CanResume(0, 4) = false, want true (latest position)")
}
// shift window by adding position 5
err = cache.StartForward(context, input.Batch{
Positions: []int32{5},
Sequences: []int{0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor = context.FromFloats([]float32{6}, 1, 1, 1)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
if cache.CanResume(0, 0) {
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
}
if cache.CanResume(0, 1) {
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
}
if cache.CanResume(0, 2) {
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
}
if cache.CanResume(0, 3) {
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
}
if cache.CanResume(0, 4) {
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
}
if !cache.CanResume(0, 5) {
t.Errorf("after shift: CanResume(0, 5) = false, want true (latest position)")
}
}
func TestCanResumeSWAMem(t *testing.T) {
backend := &testBackend{}
windowSize := int32(4)
memSize := int32(5)
cache := NewSWAMemCache(windowSize, memSize, nil)
defer cache.Close()
cache.Init(backend, ml.DTypeF16, 1, 16, 16)
context := backend.NewContext()
defer context.Close()
err := cache.StartForward(context, input.Batch{
Positions: []int32{0, 1, 2, 3, 4, 5, 6},
Sequences: []int{0, 0, 0, 0, 0, 0, 0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor := context.FromFloats([]float32{1, 2, 3, 4, 5, 6, 7}, 1, 1, 7)
cache.Put(context, tensor, tensor)
// shift window by adding position 7
err = cache.StartForward(context, input.Batch{
Positions: []int32{7},
Sequences: []int{0},
}, false)
if err != nil {
t.Fatalf("StartForward failed: %v", err)
}
cache.SetLayer(0)
tensor = context.FromFloats([]float32{8}, 1, 1, 1)
cache.Put(context, tensor, tensor)
// only the latest position has overlapping windows
if cache.CanResume(0, 0) {
t.Errorf("after shift: CanResume(0, 0) = true, want false (outside window)")
}
if cache.CanResume(0, 1) {
t.Errorf("after shift: CanResume(0, 1) = true, want false (outside window)")
}
if cache.CanResume(0, 2) {
t.Errorf("after shift: CanResume(0, 2) = true, want false (outside window)")
}
if cache.CanResume(0, 3) {
t.Errorf("after shift: CanResume(0, 3) = true, want false (outside window)")
}
if cache.CanResume(0, 4) {
t.Errorf("after shift: CanResume(0, 4) = true, want false (outside window)")
}
if cache.CanResume(0, 5) {
t.Errorf("after shift: CanResume(0, 5) = true, want false (outside window)")
}
if !cache.CanResume(0, 6) {
t.Errorf("after shift: CanResume(0, 6) = false, want true (inside window)")
}
if !cache.CanResume(0, 7) {
t.Errorf("after shift: CanResume(0, 7) = false, want true (latest position)")
}
}
type testBackend struct {
ml.Backend
}
func (b *testBackend) NewContext() ml.Context {
return &testContext{}
}
func (b *testBackend) NewContextSize(int) ml.Context {
return &testContext{}
}
type testContext struct {
ml.Context
}
func (c *testContext) Empty(dtype ml.DType, shape ...int) ml.Tensor {
total := 0
if len(shape) > 0 {
total = 1
for _, s := range shape {
total *= s
}
}
return &testTensor{dtype: dtype, elementSize: 4, data: make([]float32, total), shape: shape}
}
func (c *testContext) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
return c.Empty(dtype, shape...)
}
func (c *testContext) FromFloats(s []float32, shape ...int) ml.Tensor {
t := c.Empty(ml.DTypeF32, shape...).(*testTensor)
copy(t.data, s)
return t
}
func (c *testContext) FromInts(s []int32, shape ...int) ml.Tensor {
f := make([]float32, len(s))
for i := range f {
f[i] = float32(s[i])
}
out := c.FromFloats(f, shape...)
out.(*testTensor).dtype = ml.DTypeI32
return out
}
func (c *testContext) Arange(start, stop, step float32, dtype ml.DType) ml.Tensor {
s := make([]float32, 0, int((stop-start)/step))
for i := start; i < stop; i += step {
s = append(s, i)
}
out := c.FromFloats(s, len(s))
out.(*testTensor).dtype = dtype
return out
}
func (c *testContext) Input() ml.Context { return c }
func (c *testContext) Layer(int) ml.Context { return c }
func (c *testContext) Forward(...ml.Tensor) ml.Context { return c }
func (c *testContext) Compute(...ml.Tensor) {}
func (c *testContext) Reserve() {}
func (c *testContext) MaxGraphNodes() int {
return 10
}
func (c *testContext) Close() {}
type testTensor struct {
ml.Tensor
dtype ml.DType
elementSize int
data []float32
shape []int
}
func (t *testTensor) Dim(n int) int {
return t.shape[n]
}
func (t *testTensor) Stride(n int) int {
stride := t.elementSize
for i := range n {
stride *= t.shape[i]
}
return stride
}
func (t *testTensor) Shape() []int {
return t.shape
}
func (t *testTensor) DType() ml.DType {
return t.dtype
}
func (t *testTensor) Floats() []float32 {
out := make([]float32, len(t.data))
copy(out, t.data)
return out
}
func (t *testTensor) Neg(ctx ml.Context) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = -t.data[i]
}
return out
}
func (t *testTensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
out := ctx.Empty(t.DType(), t.Shape()...).(*testTensor)
for i := range out.data {
out.data[i] = t.data[i] + t2.(*testTensor).data[i]
}
return out
}
func (t *testTensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
return &testTensor{
dtype: t.dtype,
elementSize: t.elementSize,
data: t.data,
shape: shape,
}
}
func (t *testTensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
offset /= t.elementSize
var s []int
switch len(shape) {
case 1:
s = []int{shape[0]}
case 3:
s = []int{shape[0], shape[2]}
case 5:
s = []int{shape[0], shape[2], shape[4]}
default:
panic("unsupported number of dimensions")
}
context := &testContext{}
view := context.Empty(t.dtype, s...).(*testTensor)
view.data = t.data[offset : offset+len(view.data)]
return view
}
func (t *testTensor) SetRows(ctx ml.Context, src ml.Tensor, idxs ml.Tensor) ml.Tensor {
dst := t
srcTensor := src.(*testTensor)
idxTensor := idxs.(*testTensor)
shapeTo4D := func(shape []int) [4]int {
out := [4]int{1, 1, 1, 1}
for i := 0; i < len(shape) && i < 4; i++ {
out[i] = shape[i]
}
return out
}
computeStrides := func(shape [4]int) [4]int {
out := [4]int{1, 1, 1, 1}
for i := 1; i < 4; i++ {
out[i] = out[i-1] * shape[i-1]
}
return out
}
dstShape4D := shapeTo4D(dst.shape)
srcShape4D := shapeTo4D(srcTensor.shape)
idxShape4D := shapeTo4D(idxTensor.shape)
if dstShape4D[0] != srcShape4D[0] || dstShape4D[2] != srcShape4D[2] || dstShape4D[3] != srcShape4D[3] {
panic("SetRows requires matching tensor shapes")
}
if srcShape4D[1] != idxShape4D[0] {
panic("SetRows rows/index mismatch")
}
if srcShape4D[2]%idxShape4D[1] != 0 || srcShape4D[3]%idxShape4D[2] != 0 {
panic("SetRows cannot broadcast indices")
}
if idxShape4D[3] != 1 {
panic("SetRows expects 1D or 2D index tensors")
}
dstStride := computeStrides(dstShape4D)
srcStride := computeStrides(srcShape4D)
idxStride := computeStrides(idxShape4D)
numColumns := srcShape4D[0]
numRows := srcShape4D[1]
for dim3Index := range dstShape4D[3] {
for dim2Index := range dstShape4D[2] {
idxDim2 := 0
idxDim3 := 0
if idxShape4D[1] > 0 {
idxDim2 = dim2Index % idxShape4D[1]
}
if idxShape4D[2] > 0 {
idxDim3 = dim3Index % idxShape4D[2]
}
idxBase := idxDim3*idxStride[2] + idxDim2*idxStride[1]
srcBase := dim3Index*srcStride[3] + dim2Index*srcStride[2]
dstBase := dim3Index*dstStride[3] + dim2Index*dstStride[2]
for row := range numRows {
idx := int(idxTensor.data[idxBase+row*idxStride[0]])
if idx < 0 || idx >= dstShape4D[1] {
panic("SetRows index out of range")
}
srcOffset := srcBase + row*srcStride[1]
dstOffset := dstBase + idx*dstStride[1]
copy(dst.data[dstOffset:dstOffset+numColumns], srcTensor.data[srcOffset:srcOffset+numColumns])
}
}
}
return dst
}
func (t *testTensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
copy(t2.(*testTensor).data, t.data)
return nil
}