mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 14:26:30 +00:00
Mistral is a popular research lab making open source models. This updates the forward pass of llama architecture models to support both llama models and mistral models by accounting for additional metadata present in mistral models, and finding the correct dimensions for the output projection.
941 lines
42 KiB
C++
Vendored
941 lines
42 KiB
C++
Vendored
#include "llama-quant.h"
|
|
|
|
#include "llama-impl.h"
|
|
#include "llama-model.h"
|
|
#include "llama-model-loader.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstring>
|
|
#include <cinttypes>
|
|
#include <fstream>
|
|
#include <mutex>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
|
|
static void zeros(std::ofstream & file, size_t n) {
|
|
char zero = 0;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
file.write(&zero, 1);
|
|
}
|
|
}
|
|
|
|
struct quantize_state_impl {
|
|
const llama_model & model;
|
|
const llama_model_quantize_params * params;
|
|
|
|
int n_attention_wv = 0;
|
|
int n_ffn_down = 0;
|
|
int n_ffn_gate = 0;
|
|
int n_ffn_up = 0;
|
|
int i_attention_wv = 0;
|
|
int i_ffn_down = 0;
|
|
int i_ffn_gate = 0;
|
|
int i_ffn_up = 0;
|
|
|
|
int n_k_quantized = 0;
|
|
int n_fallback = 0;
|
|
|
|
bool has_imatrix = false;
|
|
|
|
// used to figure out if a model shares tok_embd with the output weight
|
|
bool has_output = false;
|
|
|
|
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
|
|
: model(model)
|
|
, params(params)
|
|
{}
|
|
};
|
|
|
|
static void llama_tensor_dequantize_impl(
|
|
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
|
const size_t nelements, const int nthread
|
|
) {
|
|
if (output.size() < nelements) {
|
|
output.resize(nelements);
|
|
}
|
|
float * f32_output = (float *) output.data();
|
|
|
|
const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type);
|
|
if (ggml_is_quantized(tensor->type)) {
|
|
if (qtype->to_float == NULL) {
|
|
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
|
|
}
|
|
} else if (tensor->type != GGML_TYPE_F16 &&
|
|
tensor->type != GGML_TYPE_BF16) {
|
|
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
|
|
}
|
|
|
|
if (nthread < 2) {
|
|
if (tensor->type == GGML_TYPE_F16) {
|
|
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
|
|
} else if (tensor->type == GGML_TYPE_BF16) {
|
|
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
|
|
} else if (ggml_is_quantized(tensor->type)) {
|
|
qtype->to_float(tensor->data, f32_output, nelements);
|
|
} else {
|
|
GGML_ABORT("fatal error"); // unreachable
|
|
}
|
|
return;
|
|
}
|
|
|
|
size_t block_size;
|
|
if (tensor->type == GGML_TYPE_F16 ||
|
|
tensor->type == GGML_TYPE_BF16) {
|
|
block_size = 1;
|
|
} else {
|
|
block_size = (size_t)ggml_blck_size(tensor->type);
|
|
}
|
|
|
|
size_t block_size_bytes = ggml_type_size(tensor->type);
|
|
|
|
GGML_ASSERT(nelements % block_size == 0);
|
|
size_t nblocks = nelements / block_size;
|
|
size_t blocks_per_thread = nblocks / nthread;
|
|
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
|
|
|
|
size_t in_buff_offs = 0;
|
|
size_t out_buff_offs = 0;
|
|
|
|
for (int tnum = 0; tnum < nthread; tnum++) {
|
|
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
|
|
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
|
|
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
|
|
|
|
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
|
|
if (typ == GGML_TYPE_F16) {
|
|
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
|
|
} else if (typ == GGML_TYPE_BF16) {
|
|
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
|
|
} else {
|
|
qtype->to_float(inbuf, outbuf, nels);
|
|
}
|
|
};
|
|
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
|
|
in_buff_offs += thr_block_bytes;
|
|
out_buff_offs += thr_elems;
|
|
}
|
|
for (auto & w : workers) { w.join(); }
|
|
workers.clear();
|
|
}
|
|
|
|
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
|
const std::string name = ggml_get_name(tensor);
|
|
|
|
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
|
const llm_arch arch = qs.model.arch;
|
|
const auto tn = LLM_TN(arch);
|
|
|
|
auto use_more_bits = [](int i_layer, int n_layers) -> bool {
|
|
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
|
};
|
|
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
|
|
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
|
|
if (n_expert > 1) {
|
|
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly
|
|
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
|
|
// for getting the current layer as I initially thought, and we need to resort to parsing the
|
|
// tensor name.
|
|
if (sscanf(name, "blk.%d.", &i_layer) != 1) {
|
|
throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
|
|
}
|
|
if (i_layer < 0 || i_layer >= n_layer) {
|
|
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
|
|
}
|
|
}
|
|
return std::make_pair(i_layer, n_layer);
|
|
};
|
|
|
|
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
|
// with the quantization of the output tensor
|
|
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
|
|
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
|
new_type = qs.params->output_tensor_type;
|
|
} else {
|
|
const int64_t nx = tensor->ne[0];
|
|
const int64_t qk_k = ggml_blck_size(new_type);
|
|
|
|
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) {
|
|
new_type = GGML_TYPE_Q8_0;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
else if (new_type != GGML_TYPE_Q8_0) {
|
|
new_type = GGML_TYPE_Q6_K;
|
|
}
|
|
}
|
|
} else if (name == "token_embd.weight") {
|
|
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
|
|
new_type = qs.params->token_embedding_type;
|
|
} else {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
|
new_type = GGML_TYPE_Q2_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
|
|
new_type = GGML_TYPE_IQ3_S;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
|
new_type = GGML_TYPE_IQ3_S;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
}
|
|
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
|
if (name.find("attn_v.weight") != std::string::npos) {
|
|
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
|
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
|
++qs.i_attention_wv;
|
|
}
|
|
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (name.find("ffn_down") != std::string::npos) {
|
|
if (qs.i_ffn_down < qs.n_ffn_down/8) {
|
|
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
|
|
}
|
|
++qs.i_ffn_down;
|
|
}
|
|
else if (name.find("attn_output.weight") != std::string::npos) {
|
|
if (qs.model.hparams.n_expert == 8) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
} else {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
|
|
}
|
|
}
|
|
} else if (name.find("attn_v.weight") != std::string::npos) {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
|
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
|
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
|
}
|
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
|
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
|
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
|
if (qs.model.type == LLM_TYPE_70B) {
|
|
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
|
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
|
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
|
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
if (qs.model.hparams.n_expert == 8) {
|
|
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
|
// TODO: explore better strategies
|
|
new_type = GGML_TYPE_Q8_0;
|
|
}
|
|
++qs.i_attention_wv;
|
|
} else if (name.find("attn_k.weight") != std::string::npos) {
|
|
if (qs.model.hparams.n_expert == 8) {
|
|
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
|
// TODO: explore better strategies
|
|
new_type = GGML_TYPE_Q8_0;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
|
new_type = GGML_TYPE_IQ3_XXS;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
|
new_type = GGML_TYPE_IQ2_S;
|
|
}
|
|
} else if (name.find("attn_q.weight") != std::string::npos) {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
|
new_type = GGML_TYPE_IQ3_XXS;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
|
new_type = GGML_TYPE_IQ2_S;
|
|
}
|
|
} else if (name.find("ffn_down") != std::string::npos) {
|
|
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
|
|
int i_layer = info.first, n_layer = info.second;
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
|
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
|
|
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
|
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
|
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
|
: GGML_TYPE_Q3_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
|
|
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
|
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
|
if (arch == LLM_ARCH_FALCON) {
|
|
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
|
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
|
} else {
|
|
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
|
}
|
|
}
|
|
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
|
&& qs.has_imatrix && i_layer < n_layer/8) {
|
|
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
|
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
|
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
|
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
|
}
|
|
++qs.i_ffn_down;
|
|
} else if (name.find("attn_output.weight") != std::string::npos) {
|
|
if (arch != LLM_ARCH_FALCON) {
|
|
if (qs.model.hparams.n_expert == 8) {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
|
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
|
|
new_type = GGML_TYPE_Q5_K;
|
|
}
|
|
} else {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
} else {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
}
|
|
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
|
new_type = GGML_TYPE_Q4_K;
|
|
}
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
|
}
|
|
else if (name.find("ffn_gate") != std::string::npos) {
|
|
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
|
|
int i_layer = info.first, n_layer = info.second;
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
|
new_type = GGML_TYPE_IQ3_XXS;
|
|
}
|
|
++qs.i_ffn_gate;
|
|
}
|
|
else if (name.find("ffn_up") != std::string::npos) {
|
|
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
|
int i_layer = info.first, n_layer = info.second;
|
|
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
|
new_type = GGML_TYPE_IQ3_XXS;
|
|
}
|
|
++qs.i_ffn_up;
|
|
}
|
|
|
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
|
//}
|
|
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S
|
|
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
|
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
|
//}
|
|
// This can be used to reduce the size of the Q5_K_S model.
|
|
// The associated PPL increase is fully in line with the size reduction
|
|
//else {
|
|
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
|
|
//}
|
|
bool convert_incompatible_tensor = false;
|
|
{
|
|
const int64_t nx = tensor->ne[0];
|
|
const int64_t ny = tensor->ne[1];
|
|
const int64_t qk_k = ggml_blck_size(new_type);
|
|
|
|
if (nx % qk_k != 0) {
|
|
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type));
|
|
convert_incompatible_tensor = true;
|
|
} else {
|
|
++qs.n_k_quantized;
|
|
}
|
|
}
|
|
|
|
if (convert_incompatible_tensor) {
|
|
switch (new_type) {
|
|
case GGML_TYPE_TQ1_0:
|
|
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead
|
|
case GGML_TYPE_IQ2_XXS:
|
|
case GGML_TYPE_IQ2_XS:
|
|
case GGML_TYPE_IQ2_S:
|
|
case GGML_TYPE_IQ3_XXS:
|
|
case GGML_TYPE_IQ3_S:
|
|
case GGML_TYPE_IQ1_S:
|
|
case GGML_TYPE_IQ1_M:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
|
|
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
|
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
|
|
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
|
|
default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
|
|
}
|
|
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) {
|
|
new_type = GGML_TYPE_F16;
|
|
}
|
|
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
|
|
++qs.n_fallback;
|
|
}
|
|
|
|
return new_type;
|
|
}
|
|
|
|
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
|
if (nthread < 2) {
|
|
// single-thread
|
|
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
|
if (!ggml_validate_row_data(new_type, new_data, new_size)) {
|
|
throw std::runtime_error("quantized data validation failed");
|
|
}
|
|
return new_size;
|
|
}
|
|
|
|
std::mutex mutex;
|
|
int64_t counter = 0;
|
|
size_t new_size = 0;
|
|
bool valid = true;
|
|
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
|
|
nrows, n_per_row, imatrix]() {
|
|
const int64_t nrows_per_chunk = chunk_size / n_per_row;
|
|
size_t local_size = 0;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int64_t first_row = counter; counter += nrows_per_chunk;
|
|
if (first_row >= nrows) {
|
|
if (local_size > 0) {
|
|
new_size += local_size;
|
|
}
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
|
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
|
|
local_size += this_size;
|
|
|
|
// validate the quantized data
|
|
const size_t row_size = ggml_row_size(new_type, n_per_row);
|
|
void * this_data = (char *) new_data + first_row * row_size;
|
|
if (!ggml_validate_row_data(new_type, this_data, this_size)) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
valid = false;
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
for (int it = 0; it < nthread - 1; ++it) {
|
|
workers.emplace_back(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) { w.join(); }
|
|
workers.clear();
|
|
if (!valid) {
|
|
throw std::runtime_error("quantized data validation failed");
|
|
}
|
|
return new_size;
|
|
}
|
|
|
|
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
|
ggml_type default_type;
|
|
llama_ftype ftype = params->ftype;
|
|
|
|
switch (params->ftype) {
|
|
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
|
|
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
|
|
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
|
|
|
|
// K-quants
|
|
case LLAMA_FTYPE_MOSTLY_Q2_K_S:
|
|
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
|
|
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
|
|
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
|
|
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
|
|
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
|
|
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
|
|
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
|
|
|
|
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
|
}
|
|
|
|
int nthread = params->nthread;
|
|
|
|
if (nthread <= 0) {
|
|
nthread = std::thread::hardware_concurrency();
|
|
}
|
|
|
|
// mmap consistently increases speed Linux, and also increases speed on Windows with
|
|
// hot cache. It may cause a slowdown on macOS, possibly related to free memory.
|
|
#if defined(__linux__) || defined(_WIN32)
|
|
constexpr bool use_mmap = true;
|
|
#else
|
|
constexpr bool use_mmap = false;
|
|
#endif
|
|
|
|
llama_model_kv_override * kv_overrides = nullptr;
|
|
if (params->kv_overrides) {
|
|
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
|
|
kv_overrides = v->data();
|
|
}
|
|
|
|
std::vector<std::string> splits = {};
|
|
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
|
|
ml.init_mappings(false); // no prefetching
|
|
|
|
llama_model model(llama_model_default_params());
|
|
|
|
model.load_arch (ml);
|
|
model.load_hparams(ml);
|
|
model.load_stats (ml);
|
|
|
|
struct quantize_state_impl qs(model, params);
|
|
|
|
if (params->only_copy) {
|
|
ftype = ml.ftype;
|
|
}
|
|
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
|
|
if (params->imatrix) {
|
|
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
|
|
if (imatrix_data) {
|
|
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
|
|
qs.has_imatrix = true;
|
|
// check imatrix for nans or infs
|
|
for (const auto & kv : *imatrix_data) {
|
|
for (float f : kv.second) {
|
|
if (!std::isfinite(f)) {
|
|
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
|
gguf_context_ptr ctx_out { gguf_init_empty() };
|
|
|
|
// copy the KV pairs from the input file
|
|
gguf_set_kv (ctx_out.get(), ml.meta.get());
|
|
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
|
|
gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV
|
|
|
|
// Remove split metadata
|
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
|
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
|
|
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
|
|
|
|
if (params->kv_overrides) {
|
|
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
|
|
for (const auto & o : overrides) {
|
|
if (o.key[0] == 0) break;
|
|
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
|
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
|
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
|
gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64);
|
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
|
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
|
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
|
gguf_set_val_str(ctx_out.get(), o.key, o.val_str);
|
|
} else {
|
|
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
|
|
}
|
|
}
|
|
}
|
|
|
|
// make a list of weights
|
|
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
|
|
tensors.reserve(ml.weights_map.size());
|
|
for (const auto & it : ml.weights_map) {
|
|
tensors.push_back(&it.second);
|
|
}
|
|
|
|
// keep_split requires that the weights are sorted by split index
|
|
if (params->keep_split) {
|
|
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) {
|
|
if (a->idx == b->idx) {
|
|
return a->offs < b->offs;
|
|
}
|
|
return a->idx < b->idx;
|
|
});
|
|
}
|
|
|
|
for (const auto * it : tensors) {
|
|
const struct ggml_tensor * tensor = it->tensor;
|
|
|
|
const std::string name = ggml_get_name(tensor);
|
|
|
|
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
|
if (name.find("attn_v.weight") != std::string::npos ||
|
|
name.find("attn_qkv.weight") != std::string::npos ||
|
|
name.find("attn_kv_b.weight")!= std::string::npos) {
|
|
++qs.n_attention_wv;
|
|
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
|
|
qs.has_output = true;
|
|
}
|
|
}
|
|
|
|
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
|
|
|
|
// sanity checks for models that have attention layers
|
|
if (qs.n_attention_wv != 0)
|
|
{
|
|
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin();
|
|
// attention layers have a non-zero number of kv heads
|
|
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0);
|
|
if (llama_model_has_encoder(&model)) {
|
|
n_attn_layer *= 3;
|
|
}
|
|
if (qs.n_attention_wv != n_attn_layer) {
|
|
LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
|
}
|
|
}
|
|
|
|
size_t total_size_org = 0;
|
|
size_t total_size_new = 0;
|
|
|
|
std::vector<std::thread> workers;
|
|
workers.reserve(nthread);
|
|
|
|
int idx = 0;
|
|
|
|
std::vector<no_init<uint8_t>> read_data;
|
|
std::vector<no_init<uint8_t>> work;
|
|
std::vector<no_init<float>> f32_conv_buf;
|
|
|
|
uint16_t n_split = 1;
|
|
|
|
// Assume split index is continuous
|
|
if (params->keep_split) {
|
|
for (const auto * it : tensors) {
|
|
n_split = std::max(uint16_t(it->idx + 1), n_split);
|
|
}
|
|
}
|
|
std::vector<gguf_context_ptr> ctx_outs(n_split);
|
|
ctx_outs[0] = std::move(ctx_out);
|
|
|
|
// populate the original tensors so we get an initial meta data
|
|
for (const auto * it : tensors) {
|
|
uint16_t i_split = params->keep_split ? it->idx : 0;
|
|
struct ggml_tensor * tensor = it->tensor;
|
|
if (!ctx_outs[i_split]) {
|
|
ctx_outs[i_split].reset(gguf_init_empty());
|
|
}
|
|
gguf_add_tensor(ctx_outs[i_split].get(), tensor);
|
|
}
|
|
|
|
// Set split info if needed
|
|
if (n_split > 1) {
|
|
for (size_t i = 0; i < ctx_outs.size(); ++i) {
|
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
|
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
|
|
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
|
|
}
|
|
}
|
|
|
|
int cur_split = -1;
|
|
std::ofstream fout;
|
|
auto close_ofstream = [&]() {
|
|
// Write metadata and close file handler
|
|
if (fout.is_open()) {
|
|
fout.seekp(0);
|
|
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get()));
|
|
gguf_get_meta_data(ctx_outs[cur_split].get(), data.data());
|
|
fout.write((const char *) data.data(), data.size());
|
|
fout.close();
|
|
}
|
|
};
|
|
auto new_ofstream = [&](int index) {
|
|
cur_split = index;
|
|
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
|
|
std::string fname = fname_out;
|
|
if (params->keep_split) {
|
|
std::vector<char> split_path(llama_path_max(), 0);
|
|
llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split);
|
|
fname = std::string(split_path.data());
|
|
}
|
|
|
|
fout = std::ofstream(fname, std::ios::binary);
|
|
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
|
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get());
|
|
// placeholder for the meta data
|
|
::zeros(fout, meta_size);
|
|
};
|
|
|
|
const auto tn = LLM_TN(model.arch);
|
|
new_ofstream(0);
|
|
for (const auto * it : tensors) {
|
|
const auto & weight = *it;
|
|
struct ggml_tensor * tensor = weight.tensor;
|
|
if (weight.idx != cur_split && params->keep_split) {
|
|
close_ofstream();
|
|
new_ofstream(weight.idx);
|
|
}
|
|
|
|
const std::string name = ggml_get_name(tensor);
|
|
|
|
if (!ml.use_mmap) {
|
|
if (read_data.size() < ggml_nbytes(tensor)) {
|
|
read_data.resize(ggml_nbytes(tensor));
|
|
}
|
|
tensor->data = read_data.data();
|
|
}
|
|
ml.load_data_for(tensor);
|
|
|
|
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
|
|
++idx, ml.n_tensors,
|
|
ggml_get_name(tensor),
|
|
llama_format_tensor_shape(tensor).c_str(),
|
|
ggml_type_name(tensor->type));
|
|
|
|
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
|
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
|
|
|
|
// don't quantize vision stuff
|
|
quantize &= name.find("v.") == std::string::npos;
|
|
quantize &= name.find("mm.") == std::string::npos;
|
|
|
|
// quantize only 2D and 3D tensors (experts)
|
|
quantize &= (ggml_n_dims(tensor) >= 2);
|
|
|
|
// do not quantize norm tensors
|
|
quantize &= name.find("_norm.weight") == std::string::npos;
|
|
|
|
quantize &= params->quantize_output_tensor || name != "output.weight";
|
|
quantize &= !params->only_copy;
|
|
|
|
// do not quantize expert gating tensors
|
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
|
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
|
|
|
// do not quantize positional embeddings and token types (BERT)
|
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
|
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
|
|
|
|
// do not quantize Mamba's small yet 2D weights
|
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
|
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
|
|
|
|
// do not quantize RWKV's time_mix_first tensors
|
|
quantize &= name.find("time_mix_first.weight") == std::string::npos;
|
|
quantize &= name.find("time_mix_w1.weight") == std::string::npos;
|
|
quantize &= name.find("time_mix_w2.weight") == std::string::npos;
|
|
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos;
|
|
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos;
|
|
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos;
|
|
|
|
// do not quantize relative position bias (T5)
|
|
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
|
|
|
enum ggml_type new_type;
|
|
void * new_data;
|
|
size_t new_size;
|
|
|
|
if (quantize) {
|
|
new_type = default_type;
|
|
|
|
// get more optimal quantization type based on the tensor shape, layer, etc.
|
|
if (!params->pure && ggml_is_quantized(default_type)) {
|
|
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
|
}
|
|
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
|
|
new_type = params->token_embedding_type;
|
|
}
|
|
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
|
|
new_type = params->output_tensor_type;
|
|
}
|
|
|
|
// If we've decided to quantize to the same type the tensor is already
|
|
// in then there's nothing to do.
|
|
quantize = tensor->type != new_type;
|
|
}
|
|
|
|
if (!quantize) {
|
|
new_type = tensor->type;
|
|
new_data = tensor->data;
|
|
new_size = ggml_nbytes(tensor);
|
|
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
|
|
} else {
|
|
const int64_t nelements = ggml_nelements(tensor);
|
|
|
|
const float * imatrix = nullptr;
|
|
if (imatrix_data) {
|
|
auto it = imatrix_data->find(tensor->name);
|
|
if (it == imatrix_data->end()) {
|
|
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
|
} else {
|
|
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
|
|
imatrix = it->second.data();
|
|
} else {
|
|
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
|
|
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
|
|
|
|
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
|
|
// this is a significant error and it may be good idea to abort the process if this happens,
|
|
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix
|
|
// tok_embd should be ignored in this case, since it always causes this warning
|
|
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
|
|
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
|
|
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if ((new_type == GGML_TYPE_IQ2_XXS ||
|
|
new_type == GGML_TYPE_IQ2_XS ||
|
|
new_type == GGML_TYPE_IQ2_S ||
|
|
new_type == GGML_TYPE_IQ1_S ||
|
|
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
|
|
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
|
|
LLAMA_LOG_ERROR("\n\n============================================================\n");
|
|
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
|
|
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
|
|
LLAMA_LOG_ERROR("============================================================\n\n");
|
|
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
|
|
}
|
|
|
|
float * f32_data;
|
|
|
|
if (tensor->type == GGML_TYPE_F32) {
|
|
f32_data = (float *) tensor->data;
|
|
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
|
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
|
} else {
|
|
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
|
|
f32_data = (float *) f32_conv_buf.data();
|
|
}
|
|
|
|
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
|
|
fflush(stdout);
|
|
|
|
if (work.size() < (size_t)nelements * 4) {
|
|
work.resize(nelements * 4); // upper bound on size
|
|
}
|
|
new_data = work.data();
|
|
|
|
const int64_t n_per_row = tensor->ne[0];
|
|
const int64_t nrows = tensor->ne[1];
|
|
|
|
static const int64_t min_chunk_size = 32 * 512;
|
|
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row));
|
|
|
|
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
|
|
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
|
|
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
|
|
|
|
// quantize each expert separately since they have different importance matrices
|
|
new_size = 0;
|
|
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
|
|
const float * f32_data_03 = f32_data + i03 * nelements_matrix;
|
|
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
|
|
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
|
|
|
|
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
|
}
|
|
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
|
}
|
|
total_size_org += ggml_nbytes(tensor);
|
|
total_size_new += new_size;
|
|
|
|
// update the gguf meta data as we go
|
|
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
|
|
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
|
|
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
|
|
|
|
// write tensor data + padding
|
|
fout.write((const char *) new_data, new_size);
|
|
zeros(fout, GGML_PAD(new_size, align) - new_size);
|
|
}
|
|
close_ofstream();
|
|
|
|
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
|
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
|
|
|
if (qs.n_fallback > 0) {
|
|
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
|
|
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
|
}
|
|
}
|
|
|
|
//
|
|
// interface implementation
|
|
//
|
|
|
|
struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|
struct llama_model_quantize_params result = {
|
|
/*.nthread =*/ 0,
|
|
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
|
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
|
|
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
|
|
/*.allow_requantize =*/ false,
|
|
/*.quantize_output_tensor =*/ true,
|
|
/*.only_copy =*/ false,
|
|
/*.pure =*/ false,
|
|
/*.keep_split =*/ false,
|
|
/*.imatrix =*/ nullptr,
|
|
/*.kv_overrides =*/ nullptr,
|
|
};
|
|
|
|
return result;
|
|
}
|
|
|
|
uint32_t llama_model_quantize(
|
|
const char * fname_inp,
|
|
const char * fname_out,
|
|
const llama_model_quantize_params * params) {
|
|
try {
|
|
llama_model_quantize_impl(fname_inp, fname_out, params);
|
|
} catch (const std::exception & err) {
|
|
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|