mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-25 16:08:01 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
296 lines
9.5 KiB
C++
Vendored
296 lines
9.5 KiB
C++
Vendored
#include "llama-kv-cache-unified-iswa.h"
|
|
|
|
#include "llama-impl.h"
|
|
#include "llama-batch.h"
|
|
#include "llama-model.h"
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
|
|
//
|
|
// llama_kv_cache_unified_iswa
|
|
//
|
|
|
|
llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
|
|
const llama_model & model,
|
|
ggml_type type_k,
|
|
ggml_type type_v,
|
|
bool v_trans,
|
|
bool offload,
|
|
bool swa_full,
|
|
bool unified,
|
|
uint32_t kv_size,
|
|
uint32_t n_seq_max,
|
|
uint32_t n_ubatch,
|
|
uint32_t n_pad) : hparams(model.hparams), unified(unified) {
|
|
llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); };
|
|
llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); };
|
|
|
|
const uint32_t size_base = kv_size;
|
|
|
|
uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*(unified ? n_seq_max : 1) + n_ubatch, n_pad));
|
|
|
|
// when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size
|
|
if (swa_full) {
|
|
LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n",
|
|
__func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
|
|
|
|
size_swa = size_base;
|
|
}
|
|
|
|
LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base);
|
|
|
|
kv_base = std::make_unique<llama_kv_cache_unified>(
|
|
model, std::move(filter_base), type_k, type_v,
|
|
v_trans, offload, unified, size_base, n_seq_max, n_pad,
|
|
0, LLAMA_SWA_TYPE_NONE);
|
|
|
|
LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
|
|
|
|
kv_swa = std::make_unique<llama_kv_cache_unified>(
|
|
model, std::move(filter_swa), type_k, type_v,
|
|
v_trans, offload, unified, size_swa, n_seq_max, n_pad,
|
|
hparams.n_swa, hparams.swa_type);
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::clear(bool data) {
|
|
kv_base->clear(data);
|
|
kv_swa ->clear(data);
|
|
}
|
|
|
|
bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
bool res = true;
|
|
|
|
res = res & kv_base->seq_rm(seq_id, p0, p1);
|
|
res = res & kv_swa ->seq_rm(seq_id, p0, p1);
|
|
|
|
return res;
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) {
|
|
kv_base->seq_keep(seq_id);
|
|
kv_swa ->seq_keep(seq_id);
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
kv_base->seq_add(seq_id, p0, p1, shift);
|
|
kv_swa ->seq_add(seq_id, p0, p1, shift);
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
kv_base->seq_div(seq_id, p0, p1, d);
|
|
kv_swa ->seq_div(seq_id, p0, p1, d);
|
|
}
|
|
|
|
llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const {
|
|
// the base cache is a superset of the SWA cache, so we can just check the SWA cache
|
|
return kv_swa->seq_pos_min(seq_id);
|
|
}
|
|
|
|
llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
|
|
return kv_swa->seq_pos_max(seq_id);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
|
GGML_UNUSED(embd_all);
|
|
|
|
// first try simple split
|
|
do {
|
|
if (!unified) {
|
|
// requires equal splits, so we skip the simple split
|
|
break;
|
|
}
|
|
|
|
balloc.split_reset();
|
|
|
|
std::vector<llama_ubatch> ubatches;
|
|
while (true) {
|
|
auto ubatch = balloc.split_simple(n_ubatch);
|
|
|
|
if (ubatch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
ubatches.push_back(std::move(ubatch)); // NOLINT
|
|
}
|
|
|
|
if (balloc.get_n_used() < balloc.get_n_tokens()) {
|
|
// failed to find a suitable split
|
|
break;
|
|
}
|
|
|
|
auto sinfos_base = kv_base->prepare(ubatches);
|
|
if (sinfos_base.empty()) {
|
|
break;
|
|
}
|
|
|
|
auto sinfos_swa = kv_swa->prepare(ubatches);
|
|
if (sinfos_swa.empty()) {
|
|
break;
|
|
}
|
|
|
|
assert(sinfos_base.size() == sinfos_swa.size());
|
|
|
|
return std::make_unique<llama_kv_cache_unified_iswa_context>(
|
|
this, std::move(sinfos_base), std::move(sinfos_swa), std::move(ubatches));
|
|
} while (false);
|
|
|
|
// if it fails, try equal split
|
|
do {
|
|
balloc.split_reset();
|
|
|
|
std::vector<llama_ubatch> ubatches;
|
|
while (true) {
|
|
auto ubatch = balloc.split_equal(n_ubatch, !unified);
|
|
|
|
if (ubatch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
ubatches.push_back(std::move(ubatch)); // NOLINT
|
|
}
|
|
|
|
if (balloc.get_n_used() < balloc.get_n_tokens()) {
|
|
// failed to find a suitable split
|
|
break;
|
|
}
|
|
|
|
auto sinfos_base = kv_base->prepare(ubatches);
|
|
if (sinfos_base.empty()) {
|
|
break;
|
|
}
|
|
|
|
auto sinfos_swa = kv_swa->prepare(ubatches);
|
|
if (sinfos_swa.empty()) {
|
|
break;
|
|
}
|
|
|
|
assert(sinfos_base.size() == sinfos_swa.size());
|
|
|
|
return std::make_unique<llama_kv_cache_unified_iswa_context>(
|
|
this, std::move(sinfos_base), std::move(sinfos_swa), std::move(ubatches));
|
|
} while (false);
|
|
|
|
// TODO: if we fail again, we should attempt different splitting strategies
|
|
// but to do that properly, we first have to refactor the batches to be more flexible
|
|
|
|
return std::make_unique<llama_kv_cache_unified_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_full() {
|
|
return std::make_unique<llama_kv_cache_unified_iswa_context>(this);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_update(llama_context * lctx, bool optimize) {
|
|
return std::make_unique<llama_kv_cache_unified_iswa_context>(this, lctx, optimize);
|
|
}
|
|
|
|
bool llama_kv_cache_unified_iswa::get_can_shift() const {
|
|
return kv_base->get_size() == kv_swa->get_size();
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
kv_base->state_write(io, seq_id);
|
|
kv_swa ->state_write(io, seq_id);
|
|
}
|
|
|
|
void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
kv_base->state_read(io, seq_id);
|
|
kv_swa ->state_read(io, seq_id);
|
|
}
|
|
|
|
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_base() const {
|
|
return kv_base.get();
|
|
}
|
|
|
|
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_swa() const {
|
|
return kv_swa.get();
|
|
}
|
|
|
|
//
|
|
// llama_kv_cache_unified_iswa_context
|
|
//
|
|
|
|
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(llama_memory_status status) : status(status) {}
|
|
|
|
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
|
llama_kv_cache_unified_iswa * kv) :
|
|
ctx_base(kv->get_base()->init_full()),
|
|
ctx_swa (kv->get_swa ()->init_full()),
|
|
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
|
}
|
|
|
|
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
|
llama_kv_cache_unified_iswa * kv,
|
|
llama_context * lctx,
|
|
bool optimize) :
|
|
ctx_base(kv->get_base()->init_update(lctx, optimize)),
|
|
ctx_swa (kv->get_swa ()->init_update(lctx, optimize)),
|
|
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
|
}
|
|
|
|
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
|
llama_kv_cache_unified_iswa * kv,
|
|
slot_info_vec_t sinfos_base,
|
|
slot_info_vec_t sinfos_swa,
|
|
std::vector<llama_ubatch> ubatches) :
|
|
ubatches(std::move(ubatches)),
|
|
// note: here we copy the ubatches. not sure if this is ideal
|
|
ctx_base(new llama_kv_cache_unified_context(kv->get_base(), std::move(sinfos_base), this->ubatches)),
|
|
ctx_swa (new llama_kv_cache_unified_context(kv->get_swa (), std::move(sinfos_swa), this->ubatches)),
|
|
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
|
}
|
|
|
|
llama_kv_cache_unified_iswa_context:: ~llama_kv_cache_unified_iswa_context() = default;
|
|
|
|
bool llama_kv_cache_unified_iswa_context::next() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
ctx_base->next();
|
|
ctx_swa ->next();
|
|
|
|
if (++i_next >= ubatches.size()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llama_kv_cache_unified_iswa_context::apply() {
|
|
assert(!llama_memory_status_is_fail(status));
|
|
|
|
bool res = true;
|
|
|
|
res = res & ctx_base->apply();
|
|
res = res & ctx_swa ->apply();
|
|
|
|
return res;
|
|
}
|
|
|
|
llama_memory_status llama_kv_cache_unified_iswa_context::get_status() const {
|
|
return status;
|
|
}
|
|
|
|
const llama_ubatch & llama_kv_cache_unified_iswa_context::get_ubatch() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
return ubatches[i_next];
|
|
}
|
|
|
|
const llama_kv_cache_unified_context * llama_kv_cache_unified_iswa_context::get_base() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
return static_cast<const llama_kv_cache_unified_context *>(ctx_base.get());
|
|
}
|
|
|
|
const llama_kv_cache_unified_context * llama_kv_cache_unified_iswa_context::get_swa() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
return static_cast<const llama_kv_cache_unified_context *>(ctx_swa.get());
|
|
}
|