mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-24 15:38:27 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
254 lines
8.2 KiB
C++
Vendored
254 lines
8.2 KiB
C++
Vendored
#include "llama-memory-hybrid.h"
|
|
|
|
#include "llama-impl.h"
|
|
#include "llama-model.h"
|
|
#include "llama-context.h"
|
|
|
|
//
|
|
// llama_memory_hybrid
|
|
//
|
|
|
|
llama_memory_hybrid::llama_memory_hybrid(
|
|
const llama_model & model,
|
|
/* attn */
|
|
ggml_type type_k,
|
|
ggml_type type_v,
|
|
bool v_trans,
|
|
uint32_t kv_size,
|
|
uint32_t n_pad,
|
|
uint32_t n_swa,
|
|
llama_swa_type swa_type,
|
|
/* recurrent */
|
|
ggml_type type_r,
|
|
ggml_type type_s,
|
|
uint32_t rs_size,
|
|
/* common */
|
|
uint32_t n_seq_max,
|
|
bool offload,
|
|
bool unified,
|
|
/* layer filters */
|
|
layer_filter_cb && filter_attn,
|
|
layer_filter_cb && filter_recr) :
|
|
hparams(model.hparams),
|
|
mem_attn(new llama_kv_cache_unified(
|
|
model,
|
|
filter_attn == nullptr ?
|
|
[&](int32_t il) { return !hparams.is_recurrent(il); }
|
|
: filter_attn,
|
|
type_k,
|
|
type_v,
|
|
v_trans,
|
|
offload,
|
|
unified,
|
|
kv_size,
|
|
n_seq_max,
|
|
n_pad,
|
|
n_swa,
|
|
swa_type
|
|
)),
|
|
mem_recr(new llama_memory_recurrent(
|
|
model,
|
|
filter_recr == nullptr ?
|
|
[&](int32_t il) { return hparams.is_recurrent(il); }
|
|
: filter_recr,
|
|
type_r,
|
|
type_s,
|
|
offload,
|
|
rs_size,
|
|
n_seq_max
|
|
)) {}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
|
do {
|
|
balloc.split_reset();
|
|
|
|
// follow the recurrent pattern for creating the ubatch splits
|
|
std::vector<llama_ubatch> ubatches;
|
|
|
|
while (true) {
|
|
llama_ubatch ubatch;
|
|
|
|
if (embd_all) {
|
|
// if all tokens are output, split by sequence
|
|
ubatch = balloc.split_seq(n_ubatch);
|
|
} else {
|
|
ubatch = balloc.split_equal(n_ubatch, false);
|
|
}
|
|
|
|
if (ubatch.n_tokens == 0) {
|
|
break;
|
|
}
|
|
|
|
ubatches.push_back(std::move(ubatch)); // NOLINT
|
|
}
|
|
|
|
if (balloc.get_n_used() < balloc.get_n_tokens()) {
|
|
// failed to find a suitable split
|
|
break;
|
|
}
|
|
|
|
// prepare the recurrent batches first
|
|
if (!mem_recr->prepare(ubatches)) {
|
|
// TODO: will the recurrent cache be in an undefined context at this point?
|
|
LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
// prepare the attention cache
|
|
auto heads_attn = mem_attn->prepare(ubatches);
|
|
if (heads_attn.empty()) {
|
|
LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
return std::make_unique<llama_memory_hybrid_context>(
|
|
this, std::move(heads_attn), std::move(ubatches));
|
|
} while(false);
|
|
|
|
return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_full() {
|
|
return std::make_unique<llama_memory_hybrid_context>(this);
|
|
}
|
|
|
|
llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
|
|
return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
|
|
}
|
|
|
|
bool llama_memory_hybrid::get_can_shift() const {
|
|
// Shifting is trivially supported for recurrent
|
|
return mem_attn->get_can_shift();
|
|
}
|
|
|
|
void llama_memory_hybrid::clear(bool data) {
|
|
mem_attn->clear(data);
|
|
mem_recr->clear(data);
|
|
}
|
|
|
|
bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
|
// Try removing from the recurrent cache first since it may fail. If it does
|
|
// fail, the cache will not have been mutated.
|
|
if (!mem_recr->seq_rm(seq_id, p0, p1)) {
|
|
return false;
|
|
}
|
|
return mem_attn->seq_rm(seq_id, p0, p1);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
|
mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
|
|
mem_attn->seq_keep(seq_id);
|
|
mem_recr->seq_keep(seq_id);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
|
mem_attn->seq_add(seq_id, p0, p1, shift);
|
|
mem_recr->seq_add(seq_id, p0, p1, shift);
|
|
}
|
|
|
|
void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
|
mem_attn->seq_div(seq_id, p0, p1, d);
|
|
mem_recr->seq_div(seq_id, p0, p1, d);
|
|
}
|
|
|
|
llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
|
|
// the min of the total cache is the max of the two caches' min values
|
|
return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
|
|
}
|
|
|
|
llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
|
|
// the max of the total cache is the min of the two caches' max values
|
|
return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
|
|
}
|
|
|
|
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
|
mem_attn->state_write(io, seq_id);
|
|
mem_recr->state_write(io, seq_id);
|
|
}
|
|
|
|
void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
|
mem_attn->state_read(io, seq_id);
|
|
mem_recr->state_read(io, seq_id);
|
|
}
|
|
|
|
llama_kv_cache_unified * llama_memory_hybrid::get_mem_attn() const {
|
|
return mem_attn.get();
|
|
}
|
|
|
|
llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
|
|
return mem_recr.get();
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
|
|
ctx_attn(mem->get_mem_attn()->init_full()),
|
|
ctx_recr(mem->get_mem_recr()->init_full()),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(
|
|
llama_memory_hybrid * mem,
|
|
llama_context * lctx,
|
|
bool optimize) :
|
|
ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
|
|
ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
llama_memory_hybrid_context::llama_memory_hybrid_context(
|
|
llama_memory_hybrid * mem,
|
|
slot_info_vec_t sinfos_attn,
|
|
std::vector<llama_ubatch> ubatches) :
|
|
ubatches(std::move(ubatches)),
|
|
// note: here we copy the ubatches. not sure if this is ideal
|
|
ctx_attn(new llama_kv_cache_unified_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
|
|
ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(), this->ubatches)),
|
|
status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
|
|
}
|
|
|
|
bool llama_memory_hybrid_context::next() {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
|
|
ctx_attn->next();
|
|
ctx_recr->next();
|
|
|
|
if (++i_next >= ubatches.size()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llama_memory_hybrid_context::apply() {
|
|
assert(!llama_memory_status_is_fail(status));
|
|
|
|
bool res = true;
|
|
|
|
res = res & ctx_attn->apply();
|
|
res = res & ctx_recr->apply();
|
|
|
|
return res;
|
|
}
|
|
|
|
llama_memory_status llama_memory_hybrid_context::get_status() const {
|
|
return status;
|
|
}
|
|
|
|
const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
|
|
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
|
return ubatches[i_next];
|
|
}
|
|
|
|
const llama_kv_cache_unified_context * llama_memory_hybrid_context::get_attn() const {
|
|
return static_cast<const llama_kv_cache_unified_context *>(ctx_attn.get());
|
|
}
|
|
|
|
const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
|
|
return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
|
|
}
|