Files
ollama-for-amd/llama/llama.cpp/src/llama-kv-cache.cpp
Gabe Goodhart 4987f13d34 Llama cpp bump (df1b612): granite docling / mamba2 optimizations / multimodal encoding fixes (#12552)
* feat: Bump llama.cpp to df1b612

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(mtmd): Correctly encode text chunks during mtmd tokenization

There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Use MtmdChunk in image_test

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix unnecessary conversion linting

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(ggml): Revert changes to ggml_hip.cpp

These changes were done largely by our code assistant and are likely wrong

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Revert changes in mem_nvml.cpp

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update sync point to 1deee0

This brings in several more optimization commits and model support for
EmbeddingGemma

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches for 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: sync for bump to 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Bad patch updates with errant `+`

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp/ggml to 7049736

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: format-patches after latest bump

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-13 15:26:18 -07:00

2018 lines
65 KiB
C++
Vendored

#include "llama-kv-cache.h"
#include "llama-impl.h"
#include "llama-io.h"
#include "llama-model.h"
#include "llama-context.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <limits>
#include <map>
#include <stdexcept>
//
// llama_kv_cache
//
llama_kv_cache::llama_kv_cache(
const llama_model & model,
ggml_type type_k,
ggml_type type_v,
bool v_trans,
bool offload,
bool unified,
uint32_t kv_size,
uint32_t n_seq_max,
uint32_t n_pad,
uint32_t n_swa,
llama_swa_type swa_type,
const layer_filter_cb & filter,
const layer_reuse_cb & reuse) :
model(model), hparams(model.hparams), v_trans(v_trans),
n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) {
GGML_ASSERT(kv_size % n_pad == 0);
const uint32_t n_layer_kv = hparams.n_layer_kv();
// create a context for each buffer type
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
ggml_init_params params = {
/*.mem_size =*/ size_t(2u*(1 + n_stream)*n_layer_kv*ggml_tensor_overhead()),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
if (!ctx) {
return nullptr;
}
ctx_map[buft] = ctx;
ctxs.emplace_back(ctx);
return ctx;
}
return it->second;
};
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
v_heads.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_heads[s] = 0;
}
v_cells.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].resize(kv_size);
}
// by default, all sequence ids are mapped to the 0th stream
seq_to_stream.resize(LLAMA_MAX_SEQ, 0);
if (n_stream > 1) {
seq_to_stream.resize(n_stream, 0);
for (uint32_t s = 0; s < n_stream; ++s) {
seq_to_stream[s] = s;
}
}
// [TAG_V_CACHE_VARIABLE]
if (v_trans && hparams.is_n_embd_v_gqa_variable()) {
LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n",
__func__, hparams.n_embd_v_gqa_max());
}
for (uint32_t il = 0; il < hparams.n_layer; il++) {
if (!hparams.has_kv(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il);
continue;
}
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: layer %3d: filtered\n", __func__, il);
continue;
}
// [TAG_V_CACHE_VARIABLE]
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max();
const char * dev_name = "CPU";
ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
if (offload) {
auto * dev = model.dev_layer(il);
buft = ggml_backend_dev_buffer_type(dev);
dev_name = ggml_backend_dev_name(dev);
}
LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name);
ggml_context * ctx = ctx_for_buft(buft);
if (!ctx) {
throw std::runtime_error("failed to create ggml context for kv cache");
}
ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream);
ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream);
ggml_format_name(k, "cache_k_l%d", il);
ggml_format_name(v, "cache_v_l%d", il);
std::vector<ggml_tensor *> k_stream;
std::vector<ggml_tensor *> v_stream;
for (uint32_t s = 0; s < n_stream; ++s) {
k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2]));
v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2]));
}
map_layer_ids[il] = layers.size();
layers.push_back({ il, k, v, k_stream, v_stream, });
}
if (reuse) {
LLAMA_LOG_DEBUG("%s: reusing layers:\n", __func__);
for (uint32_t il = 0; il < hparams.n_layer; il++) {
const int32_t il_reuse = reuse(il);
if (il_reuse < 0) {
LLAMA_LOG_DEBUG("%s: - layer %3d: no reuse\n", __func__, il);
continue;
}
if (filter && !filter(il)) {
LLAMA_LOG_DEBUG("%s: - layer %3d: filtered\n", __func__, il);
continue;
}
GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end());
map_layer_ids[il] = map_layer_ids[il_reuse];
LLAMA_LOG_DEBUG("%s: - layer %3d: reuse layer %d, is_swa = %d\n", __func__, il, il_reuse, hparams.is_swa(il));
}
}
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto it : ctx_map) {
auto * buft = it.first;
auto * ctx = it.second;
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");
}
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
ggml_backend_buffer_clear(buf, 0);
bufs.emplace_back(buf);
}
{
const size_t memory_size_k = size_k_bytes();
const size_t memory_size_v = size_v_bytes();
LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream,
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
}
const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG");
debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0;
}
void llama_kv_cache::clear(bool data) {
for (uint32_t s = 0; s < n_stream; ++s) {
v_cells[s].reset();
v_heads[s] = 0;
}
if (data) {
for (auto & buf : bufs) {
ggml_backend_buffer_clear(buf.get(), 0);
}
}
}
bool llama_kv_cache::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
if (seq_id >= 0) {
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
} else {
// match any sequence
for (uint32_t s = 0; s < n_stream; ++s) {
auto & cells = v_cells[s];
auto & head = v_heads[s];
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
cells.rm(i);
if (new_head == cells.size()) {
new_head = i;
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
}
}
return true;
}
void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size());
GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size());
const auto s0 = seq_to_stream[seq_id_src];
const auto s1 = seq_to_stream[seq_id_dst];
if (s0 == s1) {
// since both sequences are in the same stream, no data copy is necessary
// we just have to update the cells meta data
auto & cells = v_cells[s0];
if (seq_id_src == seq_id_dst) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id_src)) {
cells.seq_add(i, seq_id_dst);
}
}
return;
}
// cross-stream sequence copies require to copy the actual buffer data
bool is_full = true;
if (p0 > 0 && p0 + 1 < (int) get_size()) {
is_full = false;
}
if (p1 > 0 && p1 + 1 < (int) get_size()) {
is_full = false;
}
GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers");
// enqueue the copy operation - the buffer copy will be performed during the next update
sc_info.ssrc.push_back(s0);
sc_info.sdst.push_back(s1);
v_cells[s1].reset();
for (uint32_t i = 0; i < v_cells[s0].size(); ++i) {
if (v_cells[s0].seq_has(i, seq_id_src)) {
llama_pos pos = v_cells[s0].pos_get(i);
llama_pos shift = v_cells[s0].get_shift(i);
if (shift != 0) {
pos -= shift;
assert(pos >= 0);
}
v_cells[s1].pos_set(i, pos);
v_cells[s1].seq_add(i, seq_id_dst);
if (shift != 0) {
v_cells[s1].pos_add(i, shift);
}
}
}
v_heads[s1] = v_heads[s0];
//for (uint32_t s = 0; s < n_stream; ++s) {
// LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s));
//}
}
void llama_kv_cache::seq_keep(llama_seq_id seq_id) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
uint32_t new_head = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.seq_keep(i, seq_id)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
// If we freed up a slot, set head to it so searching can start there.
if (new_head != cells.size() && new_head < head) {
head = new_head;
}
}
void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
auto & head = v_heads[seq_to_stream[seq_id]];
if (shift == 0) {
return;
}
uint32_t new_head = cells.size();
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over all cells.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
if (cells.pos_add(i, shift)) {
if (new_head == cells.size()) {
new_head = i;
}
}
}
}
// If we freed up a slot, set head to it so searching can start there.
// Otherwise we just start the next search from the beginning.
head = new_head != cells.size() ? new_head : 0;
}
void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[seq_id]];
if (d == 1) {
return;
}
if (p0 < 0) {
p0 = 0;
}
if (p1 < 0) {
p1 = std::numeric_limits<llama_pos>::max();
}
// If there is no range then return early to avoid looping over the cache.
if (p0 == p1) {
return;
}
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.pos_in(i, p0, p1)) {
continue;
}
if (cells.seq_has(i, seq_id)) {
cells.pos_div(i, d);
}
}
}
llama_pos llama_kv_cache::seq_pos_min(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_min(seq_id);
}
llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size());
const auto & cells = v_cells[seq_to_stream[seq_id]];
return cells.seq_pos_max(seq_id);
}
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
std::map<ggml_backend_buffer_type_t, size_t> ret;
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
}
return ret;
}
llama_memory_context_ptr llama_kv_cache::init_batch(
llama_batch_allocr & balloc,
uint32_t n_ubatch,
bool embd_all) {
GGML_UNUSED(embd_all);
do {
balloc.split_reset();
std::vector<llama_ubatch> ubatches;
while (true) {
auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true);
if (ubatch.n_tokens == 0) {
break;
}
ubatches.push_back(std::move(ubatch)); // NOLINT
}
if (balloc.get_n_used() < balloc.get_n_tokens()) {
// failed to find a suitable split
break;
}
auto sinfos = prepare(ubatches);
if (sinfos.empty()) {
break;
}
return std::make_unique<llama_kv_cache_context>(
this, std::move(sinfos), std::move(ubatches));
} while (false);
return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
}
llama_memory_context_ptr llama_kv_cache::init_full() {
return std::make_unique<llama_kv_cache_context>(this);
}
llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) {
GGML_UNUSED(optimize);
bool do_shift = get_has_shift();
return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info));
}
llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) {
llama_kv_cache::slot_info_vec_t res;
struct state_t {
slot_info sinfo; // slot info for the ubatch
std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch
std::vector<llama_kv_cells> v_cells; // copy of the old cells, before placing the ubatch
};
// remember the old state of the cells so we can restore it in the end
std::vector<state_t> states;
bool success = true;
for (const auto & ubatch : ubatches) {
// only find a suitable slot for the ubatch. don't modify the cells yet
const auto sinfo_new = find_slot(ubatch, false);
if (sinfo_new.empty()) {
success = false;
break;
}
// remeber the position that we found
res.push_back(sinfo_new);
// store the old state of the cells in the recovery stack
{
state_t state = { sinfo_new, v_heads, {} };
for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) {
auto & cells = v_cells[sinfo_new.strm[s]];
state.v_cells.push_back(cells.cp(sinfo_new.idxs[s]));
}
states.push_back(std::move(state));
}
// now emplace the ubatch
apply_ubatch(sinfo_new, ubatch);
}
GGML_ASSERT(!states.empty() || !success);
// iterate backwards and restore the cells to their original state
for (auto it = states.rbegin(); it != states.rend(); ++it) {
const auto & sinfo = it->sinfo;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & cells = v_cells[sinfo.strm[s]];
auto & head = v_heads[sinfo.strm[s]];
cells.set(sinfo.idxs[s], it->v_cells[s]);
head = it->v_heads_old[s];
}
}
if (!success) {
return {};
}
return res;
}
bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) {
bool updated = false;
auto * sched = lctx->get_sched();
if (!sc_info.empty()) {
assert(n_stream > 1 && "stream copy should never happen with a single stream");
llama_synchronize(lctx);
const size_t n_copy = sc_info.ssrc.size();
for (size_t i = 0; i < n_copy; ++i) {
const auto ssrc = sc_info.ssrc[i];
const auto sdst = sc_info.sdst[i];
assert(ssrc < n_stream);
assert(sdst < n_stream);
LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst);
assert(ssrc != sdst);
for (uint32_t il = 0; il < layers.size(); ++il) {
const auto & layer = layers[il];
ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]);
ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]);
}
}
}
if (do_shift) {
if (!get_can_shift()) {
GGML_ABORT("The current KV cache / model configuration does not support K-shift");
}
LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__);
// apply K-shift if needed
if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) {
ggml_backend_sched_reset(sched);
auto * res = lctx->get_gf_res_reserve();
res->reset();
auto * gf = build_graph_shift(res, lctx);
if (!ggml_backend_sched_alloc_graph(sched, gf)) {
LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__);
return updated;
}
res->set_inputs(nullptr);
if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) {
LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__);
return updated;
}
updated = true;
}
for (uint32_t s = 0; s < n_stream; ++s) {
auto & cells = v_cells[s];
cells.reset_shift();
}
}
return updated;
}
llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch, bool cont) const {
if (debug > 0) {
for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) {
const auto seq_id = ubatch.seq_id_unq[s];
const auto stream_id = seq_to_stream[seq_id];
const auto & cells = v_cells[stream_id];
const uint32_t head_cur = v_heads[stream_id];
LLAMA_LOG_DEBUG("%s: stream[%d], n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n",
__func__, stream_id, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa);
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
if (cells.is_empty(i)) {
ss += '.';
} else {
assert(cells.seq_count(i) >= 1);
if (cells.seq_count(i) == 1) {
ss += std::to_string(cells.seq_get(i));
} else {
ss += 'M';
}
}
if (i%256 == 255) {
ss += " *";
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
if ((debug == 2 && n_swa > 0) || debug > 2) {
std::string ss;
for (uint32_t i = 0; i < cells.size(); ++i) {
std::string cur;
if (cells.is_empty(i)) {
cur = '.';
} else {
cur = std::to_string(cells.pos_get(i));
}
const int n = cur.size();
for (int j = 0; j < 5 - n; ++j) {
cur += ' ';
}
ss += cur;
if (i%256 == 255) {
ss += " *";
}
if (i%64 == 63) {
ss += '\n';
}
}
LLAMA_LOG_DEBUG("\n%s\n", ss.c_str());
}
for (int s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (cells.seq_pos_min(s) < 0) {
continue;
}
LLAMA_LOG_DEBUG("%s: stream[%d] min[%d] = %5d, max[%d] = %5d\n", __func__, stream_id, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s));
}
}
}
uint32_t n_tokens = ubatch.n_tokens;
uint32_t n_seqs = 1;
if (n_stream > 1) {
GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0);
n_seqs = ubatch.n_seqs_unq;
n_tokens = n_tokens / n_seqs;
}
slot_info res = {
/*.s0 =*/ LLAMA_MAX_SEQ,
/*.s1 =*/ 0,
/*.strm =*/ { },
/*.idxs =*/ { },
};
res.resize(n_seqs);
for (uint32_t s = 0; s < n_seqs; ++s) {
const auto seq_id = ubatch.seq_id_unq[s];
if (n_stream > 1) {
GGML_ASSERT(ubatch.n_seq_id[s*n_tokens] == 1);
GGML_ASSERT(ubatch.seq_id [s*n_tokens][0] == seq_id);
}
res.s0 = std::min<uint32_t>(res.s0, seq_to_stream[seq_id]);
res.s1 = std::max<uint32_t>(res.s1, seq_to_stream[seq_id]);
res.strm[s] = seq_to_stream[seq_id];
res.idxs[s].reserve(n_tokens);
const auto & cells = v_cells[seq_to_stream[seq_id]];
uint32_t head_cur = v_heads[seq_to_stream[seq_id]];
// if we have enough unused cells before the current head ->
// better to start searching from the beginning of the cache, hoping to fill it
if (head_cur > cells.get_used() + 2*n_tokens) {
head_cur = 0;
}
if (n_tokens > cells.size()) {
LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size());
return { };
}
uint32_t n_tested = 0;
// for continuous slots, we test that all tokens in the ubatch fit, starting from the current head
// for non-continuous slots, we test the tokens one by one
const uint32_t n_test = cont ? n_tokens : 1;
while (true) {
if (head_cur + n_test > cells.size()) {
n_tested += cells.size() - head_cur;
head_cur = 0;
continue;
}
for (uint32_t i = 0; i < n_test; i++) {
const auto idx = head_cur;
head_cur++;
n_tested++;
//const llama_pos pos = ubatch.pos[i];
//const llama_seq_id seq_id = ubatch.seq_id[i][0];
// can we use this cell? either:
// - the cell is empty
// - the cell is occupied only by one sequence:
// - (disabled) mask causally, if the sequence is the same as the one we are inserting
// - mask SWA, using current max pos for that sequence in the cache
// always insert in the cell with minimum pos
bool can_use = cells.is_empty(idx);
if (!can_use && cells.seq_count(idx) == 1) {
const llama_pos pos_cell = cells.pos_get(idx);
// (disabled) causal mask
// note: it's better to purge any "future" tokens beforehand
//if (cells.seq_has(idx, seq_id)) {
// can_use = pos_cell >= pos;
//}
if (!can_use) {
const llama_seq_id seq_id_cell = cells.seq_get(idx);
// SWA mask
if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) {
can_use = true;
}
}
}
if (can_use) {
res.idxs[s].push_back(idx);
} else {
if (cont) {
break;
}
}
}
if (res.idxs[s].size() == n_tokens) {
break;
}
if (cont) {
res.idxs[s].clear();
}
if (n_tested >= cells.size()) {
//LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
return { };
}
}
// we didn't find a suitable slot - return empty result
if (res.idxs[s].size() < n_tokens) {
return { };
}
}
assert(res.s1 >= res.s0);
return res;
}
void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) {
// keep track of the max sequence position that we would overwrite with this ubatch
// for non-SWA cache, this would be always empty
llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ];
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
seq_pos_max_rm[s] = -1;
}
assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size());
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
for (uint32_t ii = 0; ii < sinfo.size(); ++ii) {
const uint32_t i = s*sinfo.size() + ii;
auto & cells = v_cells[sinfo.strm[s]];
const auto idx = sinfo.idxs[s][ii];
if (!cells.is_empty(idx)) {
assert(cells.seq_count(idx) == 1);
const llama_seq_id seq_id = cells.seq_get(idx);
const llama_pos pos = cells.pos_get(idx);
seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos);
cells.rm(idx);
}
cells.pos_set(idx, ubatch.pos[i]);
for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) {
cells.seq_add(idx, ubatch.seq_id[i][s]);
}
}
}
// note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence
// will be present in the cache. so we have to purge any position which is less than those we would overwrite
// ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092
for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) {
if (seq_pos_max_rm[s] == -1) {
continue;
}
GGML_ASSERT(s < seq_to_stream.size());
auto & cells = v_cells[seq_to_stream[s]];
if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) {
LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n",
__func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s);
seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1);
}
}
// move the head at the end of the slot
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
auto & head = v_heads[sinfo.strm[s]];
head = sinfo.idxs[s].back() + 1;
}
}
bool llama_kv_cache::get_can_shift() const {
return true;
}
uint32_t llama_kv_cache::get_size() const {
const auto & cells = v_cells[seq_to_stream[0]];
return cells.size();
}
uint32_t llama_kv_cache::get_n_stream() const {
return n_stream;
}
bool llama_kv_cache::get_has_shift() const {
bool result = false;
for (uint32_t s = 0; s < n_stream; ++s) {
result |= v_cells[s].get_has_shift();
}
return result;
}
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
uint32_t result = 0;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const auto & cells = v_cells[sinfo.strm[s]];
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
}
return result;
}
ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * k = layers[ikv].k;
const uint64_t kv_size = get_size();
const uint64_t n_embd_k_gqa = k->ne[0];
assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
return ggml_view_4d(ctx, k,
hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(k->type, hparams.n_embd_head_k),
ggml_row_size(k->type, n_embd_k_gqa),
ggml_row_size(k->type, n_embd_k_gqa*kv_size),
ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0);
}
ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const {
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const uint64_t kv_size = get_size();
const uint64_t n_embd_v_gqa = v->ne[0];
// [TAG_V_CACHE_VARIABLE]
assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il));
const uint32_t ns = sinfo.s1 - sinfo.s0 + 1;
if (!v_trans) {
// note: v->nb[1] <= v->nb[2]
return ggml_view_4d(ctx, v,
hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns,
ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2]
ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3]
ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0);
}
// note: v->nb[1] > v->nb[2]
return ggml_view_4d(ctx, v,
n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns,
ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1]
ggml_row_size(v->type, kv_size), // v->nb[2]
ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3]
ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0);
}
ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const {
GGML_UNUSED(sinfo);
const int32_t ikv = map_layer_ids.at(il);
ggml_tensor * k = layers[ikv].k;
const int64_t n_embd_head = k_cur->ne[0];
const int64_t n_head = k_cur->ne[1];
const int64_t n_tokens = k_cur->ne[2];
const int64_t n_embd_gqa = n_embd_head*n_head;
// we can merge dims 0 and 1
// TODO: add ggml helper function for this?
GGML_ASSERT(ggml_row_size(k_cur->type, n_embd_head) == k_cur->nb[1]);
k_cur = ggml_view_2d(ctx, k_cur, n_embd_gqa, n_tokens, k_cur->nb[2], 0);
const int64_t n_stream = k->ne[2];
if (n_stream > 1) {
const int64_t kv_size = get_size();
assert(n_embd_gqa == k->ne[0]);
assert(kv_size == k->ne[1]);
// merge the buffer across all streams because the idxs are global
k = ggml_reshape_2d(ctx, k, n_embd_gqa, kv_size*n_stream);
}
// store the current K values into the cache
return ggml_set_rows(ctx, k, k_cur, k_idxs);
}
ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const {
GGML_UNUSED(sinfo);
const int32_t ikv = map_layer_ids.at(il);
auto * v = layers[ikv].v;
const int64_t n_embd_head = v_cur->ne[0];
const int64_t n_head = v_cur->ne[1];
const int64_t n_tokens = v_cur->ne[2];
const int64_t n_embd_gqa = n_embd_head*n_head;
// we can merge dims 0 and 1
GGML_ASSERT(ggml_row_size(v_cur->type, n_embd_head) == v_cur->nb[1]);
const int64_t n_stream = v->ne[2];
// take this branch when FA is enabled (the V cache is not transposed)
if (!v_trans) {
v_cur = ggml_view_2d(ctx, v_cur, n_embd_gqa, n_tokens, v_cur->nb[2], 0);
if (n_stream > 1) {
const int64_t kv_size = get_size();
assert(n_embd_gqa == v->ne[0]);
assert(kv_size == v->ne[1]);
// merge the buffer across all streams because the idxs are global
v = ggml_reshape_2d(ctx, v, n_embd_gqa, kv_size*n_stream);
}
return ggml_set_rows(ctx, v, v_cur, v_idxs);
}
if (ggml_row_size(v_cur->type, n_embd_gqa) == v_cur->nb[2]) {
// we can merge dims 0, 1 and 2
v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens);
} else {
// otherwise -> make a copy to get contiguous data
v_cur = ggml_cont_2d (ctx, v_cur, n_embd_gqa, n_tokens);
}
// [TAG_V_CACHE_VARIABLE]
if (n_embd_gqa < v->ne[0]) {
v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_gqa, 0, 0, 0);
}
// in this branch the v_idxs are constructed in such a way that each row is a single head element
ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, ggml_nelements(v));
v_cur = ggml_reshape_2d(ctx, v_cur, 1, ggml_nelements(v_cur));
return ggml_set_rows(ctx, v_view, v_cur, v_idxs);
}
ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
ggml_set_input(k_idxs);
return k_idxs;
}
ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
const uint32_t n_tokens = ubatch.n_tokens;
ggml_tensor * v_idxs;
if (!v_trans) {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens);
} else {
v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max());
}
ggml_set_input(v_idxs);
return v_idxs;
}
void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
}
void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream());
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int64_t * data = (int64_t *) dst->data;
if (!v_trans) {
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*get_size();
for (uint32_t i = 0; i < sinfo.size(); ++i) {
data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i];
}
}
} else {
// note: the V cache is transposed when not using flash attention
const int64_t kv_size = get_size();
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max();
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa;
for (uint32_t i = 0; i < sinfo.size(); ++i) {
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i];
}
}
}
}
}
void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const {
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
int32_t * data = (int32_t *) dst->data;
for (uint32_t s = 0; s < n_stream; ++s) {
const auto & cells = v_cells[s];
for (uint32_t i = 0; i < cells.size(); ++i) {
data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i);
}
}
}
void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
const uint32_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
float * data = (float *) dst->data;
const int64_t n_kv = dst->ne[0];
const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch
GGML_ASSERT(n_tokens%n_stream == 0);
// n_tps == n_tokens_per_stream
const int64_t n_tps = n_tokens/n_stream;
const int64_t n_tps_pad = GGML_PAD(n_tps, GGML_KQ_MASK_PAD);
std::fill(data, data + ggml_nelements(dst), -INFINITY);
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
// TODO: optimize this section
for (uint32_t h = 0; h < 1; ++h) {
for (uint32_t s = 0; s < n_stream; ++s) {
for (uint32_t ii = 0; ii < n_tps; ++ii) {
const uint32_t i = s*n_tps + ii;
const llama_seq_id seq_id = ubatch->seq_id[i][0];
const auto & cells = v_cells[seq_to_stream[seq_id]];
const llama_pos p1 = ubatch->pos[i];
const uint64_t idst = n_kv*(h*n_stream*n_tps_pad + s*n_tps_pad + ii);
for (uint32_t j = 0; j < n_kv; ++j) {
if (cells.is_empty(j)) {
continue;
}
// mask the token if not the same sequence
if (!cells.seq_has(j, seq_id)) {
continue;
}
const llama_pos p0 = cells.pos_get(j);
// mask future tokens
if (causal_attn && p0 > p1) {
continue;
}
// apply SWA if any
if (is_masked_swa(p0, p1)) {
continue;
}
data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f;
}
}
}
}
}
void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams");
const auto & cells = v_cells[0];
GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer));
GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) dst->data;
const int32_t n_kv = dst->ne[0];
for (int h = 0; h < 1; ++h) {
for (int i = 0; i < n_tokens; ++i) {
for (int j = 0; j < n_kv; ++j) {
// the position when the cells is empty is irrelevant - it will be masked out later in the attention
const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j);
data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false);
}
}
}
}
size_t llama_kv_cache::total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
return size;
}
size_t llama_kv_cache::size_k_bytes() const {
size_t size_k_bytes = 0;
for (const auto & layer : layers) {
size_k_bytes += ggml_nbytes(layer.k);
}
return size_k_bytes;
}
size_t llama_kv_cache::size_v_bytes() const {
size_t size_v_bytes = 0;
for (const auto & layer : layers) {
size_v_bytes += ggml_nbytes(layer.v);
}
return size_v_bytes;
}
ggml_tensor * llama_kv_cache::build_rope_shift(
const llama_cparams & cparams,
ggml_context * ctx,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
float freq_base,
float freq_scale) const {
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE
// @ngxson : this is a workaround
// for M-RoPE, we want to rotate the whole vector when doing KV shift
// a normal RoPE should work, we just need to use the correct ordering
// ref: https://github.com/ggml-org/llama.cpp/pull/13870
? LLAMA_ROPE_TYPE_NEOX
: hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2
? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale))
: cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
// dequantize to f32 -> RoPE -> quantize back
tmp = ggml_cast(ctx, cur, GGML_TYPE_F32);
tmp = ggml_rope_ext(ctx, tmp,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
tmp = ggml_cpy(ctx, tmp, cur);
} else {
// we rotate only the first n_rot dimensions
tmp = ggml_rope_ext_inplace(ctx, cur,
shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow);
}
return tmp;
}
class llm_graph_input_k_shift : public llm_graph_input_i {
public:
llm_graph_input_k_shift(const llama_kv_cache * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_k_shift() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * k_shift; // I32 [kv_size*n_stream]
const llama_kv_cache * kv_self;
};
void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (k_shift) {
kv_self->set_input_k_shift(k_shift);
}
}
ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_context * lctx) const {
auto * ctx = res->get_ctx();
auto * gf = res->get_gf();
const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
auto inp = std::make_unique<llm_graph_input_k_shift>(this);
inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream);
ggml_set_input(inp->k_shift);
const auto & cparams = lctx->get_cparams();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const int64_t n_head_kv = hparams.n_head_kv(il);
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
ggml_tensor * k =
ggml_view_3d(ctx, layer.k,
n_embd_head_k, n_head_kv, get_size()*n_stream,
ggml_row_size(layer.k->type, n_embd_head_k),
ggml_row_size(layer.k->type, n_embd_k_gqa),
0);
ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l);
ggml_build_forward_expand(gf, cur);
}
res->add_input(std::move(inp));
return gf;
}
bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const {
return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1);
}
void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
GGML_UNUSED(flags);
io.write(&n_stream, sizeof(n_stream));
for (uint32_t s = 0; s < n_stream; ++s) {
cell_ranges_t cr { s, {} };
uint32_t cell_count = 0;
const auto & cells = v_cells[s];
// Count the number of cells with the specified seq_id
// Find all the ranges of cells with this seq id (or all, when -1)
uint32_t cell_range_begin = cells.size();
for (uint32_t i = 0; i < cells.size(); ++i) {
if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) {
++cell_count;
if (cell_range_begin == cells.size()) {
cell_range_begin = i;
}
} else {
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, i);
cell_range_begin = cells.size();
}
}
}
if (cell_range_begin != cells.size()) {
cr.data.emplace_back(cell_range_begin, cells.size());
}
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
uint32_t cell_count_check = 0;
for (const auto & range : cr.data) {
cell_count_check += range.second - range.first;
}
GGML_ASSERT(cell_count == cell_count_check);
io.write(&cell_count, sizeof(cell_count));
// skip empty streams
if (cell_count == 0) {
continue;
}
state_write_meta(io, cr, seq_id);
state_write_data(io, cr);
}
}
void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
GGML_UNUSED(flags);
GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()));
uint32_t n_stream_cur;
io.read_to(&n_stream_cur, sizeof(n_stream_cur));
if (n_stream_cur != n_stream) {
throw std::runtime_error("n_stream mismatch");
}
for (uint32_t s = 0; s < n_stream; ++s) {
uint32_t cell_count;
io.read_to(&cell_count, sizeof(cell_count));
if (cell_count == 0) {
continue;
}
const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id];
bool res = true;
res = res && state_read_meta(io, strm, cell_count, seq_id);
res = res && state_read_data(io, strm, cell_count);
if (!res) {
if (seq_id == -1) {
clear(true);
} else {
seq_rm(seq_id, -1, -1);
}
throw std::runtime_error("failed to restore kv cache");
}
}
}
void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const {
const auto & cells = v_cells[cr.strm];
for (const auto & range : cr.data) {
for (uint32_t i = range.first; i < range.second; ++i) {
std::vector<llama_seq_id> seq_ids;
for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) {
if (cur == seq_id || seq_id == -1) {
if (cells.seq_has(i, cur)) {
seq_ids.push_back(cur);
}
}
}
const llama_pos pos = cells.pos_get(i);
const uint32_t n_seq_id = seq_ids.size();
io.write(&pos, sizeof(pos));
io.write(&n_seq_id, sizeof(n_seq_id));
for (const auto & seq_id : seq_ids) {
io.write(&seq_id, sizeof(seq_id));
}
}
}
}
void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const {
const auto & cells = v_cells[cr.strm];
const uint32_t v_trans = this->v_trans ? 1 : 0;
const uint32_t n_layer = layers.size();
io.write(&v_trans, sizeof(v_trans));
io.write(&n_layer, sizeof(n_layer));
std::vector<uint8_t> tmp_buf;
// Iterate and write all the keys first, each row is a cell
// Get whole range at a time
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[cr.strm];
// Write key type
const int32_t k_type_i = (int32_t) k->type;
io.write(&k_type_i, sizeof(k_type_i));
// Write row size of key
const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
io.write(&k_size_row, sizeof(k_size_row));
// Read each range of cells of k_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * k_size_row;
io.write_tensor(k, range.first * k_size_row, buf_size);
}
}
if (!v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write row size of value
const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
io.write(&v_size_row, sizeof(v_size_row));
// Read each range of cells of v_size length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t buf_size = range_size * v_size_row;
io.write_tensor(v, range.first * v_size_row, buf_size);
}
}
} else {
// When v is transposed, we also need the element size and get the element ranges from each row
const uint32_t kv_size = cells.size();
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[cr.strm];
// Write value type
const int32_t v_type_i = (int32_t) v->type;
io.write(&v_type_i, sizeof(v_type_i));
// Write element size
const uint32_t v_size_el = ggml_type_size(v->type);
io.write(&v_size_el, sizeof(v_size_el));
// Write GQA embedding size
io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
// For each row, we get the element values of each cell
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
// Read each range of cells of v_size_el length each into tmp_buf and write out
for (const auto & range : cr.data) {
const size_t range_size = range.second - range.first;
const size_t src_offset = (range.first + j * kv_size) * v_size_el;
const size_t buf_size = range_size * v_size_el;
io.write_tensor(v, src_offset, buf_size);
}
}
}
}
}
bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, llama_seq_id dest_seq_id) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
if (dest_seq_id != -1) {
// single sequence
seq_rm(dest_seq_id, -1, -1);
llama_batch_allocr balloc(hparams.n_pos_per_embd());
llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
ubatch.seq_id_unq[0] = dest_seq_id;
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
if (n_seq_id != 1) {
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
return false;
}
// read the sequence id, but directly discard it - we will use dest_seq_id instead
{
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
}
ubatch.pos[i] = pos;
ubatch.n_seq_id[i] = n_seq_id;
ubatch.seq_id[i] = &dest_seq_id;
}
const auto sinfo = find_slot(ubatch, true);
if (sinfo.empty()) {
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
return false;
}
apply_ubatch(sinfo, ubatch);
const auto head_cur = sinfo.head();
// keep the head at the old position because we will read the KV data into it in state_read_data()
head = head_cur;
LLAMA_LOG_DEBUG("%s: head_cur = %d, head = %d, cell_count = %d, dest_seq_id = %d\n", __func__, head_cur, head, cell_count, dest_seq_id);
// DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values)
// Assume that this is one contiguous block of cells
GGML_ASSERT(head_cur + cell_count <= cells.size());
GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]);
GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]);
GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id));
GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id));
} else {
// whole KV cache restore
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
return false;
}
clear(true);
for (uint32_t i = 0; i < cell_count; ++i) {
llama_pos pos;
uint32_t n_seq_id;
io.read_to(&pos, sizeof(pos));
io.read_to(&n_seq_id, sizeof(n_seq_id));
cells.pos_set(i, pos);
for (uint32_t j = 0; j < n_seq_id; ++j) {
llama_seq_id seq_id;
io.read_to(&seq_id, sizeof(seq_id));
if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) {
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max);
return false;
}
cells.seq_add(i, seq_id);
}
}
head = 0;
}
return true;
}
bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count) {
auto & cells = v_cells[strm];
auto & head = v_heads[strm];
uint32_t v_trans;
uint32_t n_layer;
io.read_to(&v_trans, sizeof(v_trans));
io.read_to(&n_layer, sizeof(n_layer));
if (n_layer != layers.size()) {
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size());
return false;
}
if (cell_count > cells.size()) {
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size());
return false;
}
if (this->v_trans != (bool) v_trans) {
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__);
return false;
}
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
auto * k = layer.k_stream[strm];
// Read type of key
int32_t k_type_i_ref;
io.read_to(&k_type_i_ref, sizeof(k_type_i_ref));
const int32_t k_type_i = (int32_t) k->type;
if (k_type_i != k_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
return false;
}
// Read row size of key
uint64_t k_size_row_ref;
io.read_to(&k_size_row_ref, sizeof(k_size_row_ref));
const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa);
if (k_size_row != k_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the keys for the whole cell range
ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row);
}
}
if (!this->v_trans) {
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read row size of value
uint64_t v_size_row_ref;
io.read_to(&v_size_row_ref, sizeof(v_size_row_ref));
const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa);
if (v_size_row != v_size_row_ref) {
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il);
return false;
}
if (cell_count) {
// Read and set the values for the whole cell range
ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row);
}
}
} else {
// For each layer, read the values for each cell (transposed)
for (const auto & layer : layers) {
const uint32_t il = layer.il;
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
auto * v = layer.v_stream[strm];
// Read type of value
int32_t v_type_i_ref;
io.read_to(&v_type_i_ref, sizeof(v_type_i_ref));
const int32_t v_type_i = (int32_t) v->type;
if (v_type_i != v_type_i_ref) {
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
return false;
}
// Read element size of value
uint32_t v_size_el_ref;
io.read_to(&v_size_el_ref, sizeof(v_size_el_ref));
const size_t v_size_el = ggml_type_size(v->type);
if (v_size_el != v_size_el_ref) {
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il);
return false;
}
// Read GQA embedding size
uint32_t n_embd_v_gqa_ref;
io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref));
if (n_embd_v_gqa != n_embd_v_gqa_ref) {
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il);
return false;
}
if (cell_count) {
// For each row in the transposed matrix, read the values for the whole cell range
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
const size_t dst_offset = (head + j * cells.size()) * v_size_el;
ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el);
}
}
}
}
return true;
}
//
// llama_kv_cache_context
//
llama_kv_cache_context::llama_kv_cache_context(llama_memory_status status) : status(status) {}
llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) {
n_kv = kv->get_size();
const uint32_t n_stream = kv->get_n_stream();
// create a dummy slot info - the actual data is irrelevant. we just need to build the graph
sinfos.resize(1);
sinfos[0].s0 = 0;
sinfos[0].s1 = n_stream - 1;
sinfos[0].idxs.resize(n_stream);
for (uint32_t s = 0; s < n_stream; ++s) {
sinfos[0].strm.push_back(s);
sinfos[0].idxs[s].resize(1, 0);
}
}
llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache * kv,
llama_context * lctx,
bool do_shift,
stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) {
if (!do_shift && this->sc_info.empty()) {
status = LLAMA_MEMORY_STATUS_NO_UPDATE;
}
}
llama_kv_cache_context::llama_kv_cache_context(
llama_kv_cache * kv,
llama_kv_cache::slot_info_vec_t sinfos,
std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) {
}
llama_kv_cache_context::~llama_kv_cache_context() = default;
bool llama_kv_cache_context::next() {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
if (++i_cur >= ubatches.size()) {
return false;
}
return true;
}
bool llama_kv_cache_context::apply() {
assert(!llama_memory_status_is_fail(status));
// no ubatches -> this is a KV cache update
if (ubatches.empty()) {
kv->update(lctx, do_shift, sc_info);
return true;
}
kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]);
n_kv = kv->get_n_kv(sinfos[i_cur]);
return true;
}
llama_memory_status llama_kv_cache_context::get_status() const {
return status;
}
const llama_ubatch & llama_kv_cache_context::get_ubatch() const {
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
return ubatches[i_cur];
}
uint32_t llama_kv_cache_context::get_n_kv() const {
return n_kv;
}
ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const {
return kv->get_k(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_context::get_v(ggml_context * ctx, int32_t il) const {
return kv->get_v(ctx, il, n_kv, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const {
return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const {
return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]);
}
ggml_tensor * llama_kv_cache_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_k_idxs(ctx, ubatch);
}
ggml_tensor * llama_kv_cache_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const {
return kv->build_input_v_idxs(ctx, ubatch);
}
void llama_kv_cache_context::set_input_k_shift(ggml_tensor * dst) const {
kv->set_input_k_shift(dst);
}
void llama_kv_cache_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]);
}
void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const {
kv->set_input_kq_mask(dst, ubatch, causal_attn);
}
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
kv->set_input_pos_bucket(dst, ubatch);
}
uint32_t llama_kv_cache::get_padding(const llama_cparams & cparams) {
// the FA kernels require padding to avoid extra runtime boundary checks
return cparams.flash_attn ? 256u : 32u;
}