mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 14:53:56 +00:00
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch
This will be redone once my branch is merged upstream in llama.cpp
* feat: Update all patches
There are a number that are no longer needed at all:
- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream
* feat: Sync llama.cpp and ggml
* fix: Update rsync-filter for all moved/new/removed files
* fix: Add files missing from sync
* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs
* fix: Add ggml files missing from sync
* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files
* fix: Remove mtmd main cpp files
* fix: Add missing include in sampling_ext.cpp
* fix: Update llama.go to use mtmd instead of clip/llava
* fix: Add patch for mtmd_input_text
* chore: Ignore *.patched in the patch directory
* fix: Fix support for arch-specific ggml-cpu source files with new arrangement
In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:
1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units
This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:
1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory
* fix: Use mtmd_helper to correctly load the bitmap for the image
* fix: Apply patch for mtmd_text_input
* fix: Add missing stb to llama.cpp rsync-filter
* fix: Add sync'ed stb vendored header
* fix: Use c++17 and include vendor for go wrapper modules
* fix: Update patch 0015 for upstream implementation of uuid
* feat: Bump to the latest tip of the branch
* fix: Update patches for bump
* feat: Bump back to the cenral repo and point at the latest master
This includes granite 4 and a number of other model architectures!
* fix: Revert changes to ggml export GPU UUID patch
* fix: Add patch for GGML_VERSION and GGML_COMMIT constants
* feat: Sync all patched code
* build: Include cmake/common.cmake in ggml sync
* build: Add top-level include for GNUINstallDirs in CMakeLists.txt
This is used to populate CMAKE_INSTALL_BINDIR
* fix: Add a patch to avoid power throttling API on non-msvc windows builds
* fix: Sync patch changes for ggml-cpu.c
* feat: Bump llama.cpp to 4a4f42
This picks up support for Kimi K2 and PLaMO-2
* feat: Sync llama.cpp
* fix: Handle multi-chunk image encodings from mtmd
* fix: Re-number patches after merge with `main`
* feat: Bump to 41e78c in the makefile
* fix: Fix Solar and argsort/copy patches after bump
* fix: Remove Gemma3n CUDA Graphs patch
It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741
* feat: Sync llama.cpp / ggml after latest bump
* build: Remove unnecessary CFLAGS definitions in cpu.go
* fix: Remove unnecessary additions in the rsync-filter
* fix: Remove unused vendored code for chat template parsing
* Revert "fix: Remove Gemma3n CUDA Graphs patch"
This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.
* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes
https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394
* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n
* unwind mxfp4 patch
Prepare to bump ggml with their impl for mxfp4
* bump
* fix windows build error
* Convert tensors at load time
Repack the mxfp4 tensors as ggmls kernels expect them to be.
* convert mlp bf16 to f32
* buffer the conversion better
* reshape earlier
* openai swiglu
* add ids
* split qkv, gate_up
* fix nested alt tags
* fast attention
* remove debug messages
* fix lint
* remove redundant test
* remap values only if source/target are different
* add back i32->i32 copy
* refactor cpu quants
* clean up vendor
* update patch instructions
* clean up patches
* remove webgpu
* update mem
* also handle gpt-oss
* revert convert changes
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
184 lines
5.6 KiB
C++
Vendored
184 lines
5.6 KiB
C++
Vendored
#pragma once
|
|
|
|
#include "llama-batch.h"
|
|
#include "llama-graph.h"
|
|
#include "llama-memory.h"
|
|
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
//
|
|
// llama_memory_recurrent
|
|
//
|
|
|
|
// TODO: extract the cache state used for graph computation into llama_memory_recurrent_context_i
|
|
// see the implementation of llama_kv_cache_unified_context_i for an example how to do it
|
|
class llama_memory_recurrent : public llama_memory_i {
|
|
public:
|
|
|
|
// this callback is used to filter out layers that should not be included in the cache
|
|
using layer_filter_cb = std::function<bool(int32_t il)>;
|
|
|
|
llama_memory_recurrent(
|
|
const llama_model & model,
|
|
layer_filter_cb && filter,
|
|
ggml_type type_r,
|
|
ggml_type type_s,
|
|
bool offload,
|
|
uint32_t mem_size,
|
|
uint32_t n_seq_max);
|
|
|
|
~llama_memory_recurrent() = default;
|
|
|
|
//
|
|
// llama_memory_i
|
|
//
|
|
|
|
llama_memory_context_ptr init_batch(
|
|
llama_batch_allocr & balloc,
|
|
uint32_t n_ubatch,
|
|
bool embd_all) override;
|
|
|
|
llama_memory_context_ptr init_full() override;
|
|
|
|
llama_memory_context_ptr init_update(llama_context * lctx, bool optimize) override;
|
|
|
|
void clear(bool data) override;
|
|
|
|
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
|
|
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
|
|
void seq_keep(llama_seq_id seq_id) override;
|
|
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
|
|
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
|
|
|
|
llama_pos seq_pos_min(llama_seq_id seq_id) const override;
|
|
llama_pos seq_pos_max(llama_seq_id seq_id) const override;
|
|
|
|
bool prepare(const std::vector<llama_ubatch> & ubatches);
|
|
|
|
// find a contiguous slot of memory cells and emplace the ubatch there
|
|
bool find_slot(const llama_ubatch & ubatch);
|
|
|
|
bool get_can_shift() const override;
|
|
|
|
// state write/load
|
|
|
|
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
|
|
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
|
|
|
|
uint32_t head = 0; // the location where the batch will be placed in the cache (see find_slot())
|
|
uint32_t size = 0; // total number of cells, shared across all sequences
|
|
uint32_t used = 0; // used cells (i.e. at least one seq_id)
|
|
|
|
// computed before each graph build
|
|
uint32_t n = 0;
|
|
|
|
// first zero-ed state
|
|
int32_t rs_z = -1;
|
|
|
|
// TODO: optimize for recurrent state needs
|
|
struct mem_cell {
|
|
llama_pos pos = -1;
|
|
int32_t src = -1; // used to know where states should be copied from
|
|
int32_t src0 = -1; // like src, but only used when setting the inputs (allowing to copy once)
|
|
int32_t tail = -1;
|
|
|
|
std::set<llama_seq_id> seq_id;
|
|
|
|
bool has_seq_id(const llama_seq_id & id) const {
|
|
return seq_id.find(id) != seq_id.end();
|
|
}
|
|
|
|
bool is_empty() const {
|
|
return seq_id.empty();
|
|
}
|
|
|
|
bool is_same_seq(const mem_cell & other) const {
|
|
return seq_id == other.seq_id;
|
|
}
|
|
};
|
|
|
|
std::vector<mem_cell> cells;
|
|
|
|
// per layer
|
|
std::vector<ggml_tensor *> r_l;
|
|
std::vector<ggml_tensor *> s_l;
|
|
|
|
private:
|
|
//const llama_model & model;
|
|
const llama_hparams & hparams;
|
|
|
|
const uint32_t n_seq_max = 1;
|
|
|
|
std::vector<ggml_context_ptr> ctxs;
|
|
std::vector<ggml_backend_buffer_ptr> bufs;
|
|
|
|
size_t total_size() const;
|
|
|
|
size_t size_r_bytes() const;
|
|
size_t size_s_bytes() const;
|
|
|
|
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
|
|
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
|
|
|
|
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
|
|
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
|
|
};
|
|
|
|
class llama_memory_recurrent_context : public llama_memory_context_i {
|
|
public:
|
|
// used for errors
|
|
llama_memory_recurrent_context(llama_memory_status status);
|
|
|
|
// used to create a full-cache or update context
|
|
llama_memory_recurrent_context(
|
|
llama_memory_recurrent * mem);
|
|
|
|
// used to create a batch processing context from a batch
|
|
llama_memory_recurrent_context(
|
|
llama_memory_recurrent * mem,
|
|
std::vector<llama_ubatch> ubatches);
|
|
|
|
virtual ~llama_memory_recurrent_context();
|
|
|
|
//
|
|
// llama_memory_context_i
|
|
//
|
|
|
|
bool next() override;
|
|
bool apply() override;
|
|
|
|
llama_memory_status get_status() const override;
|
|
const llama_ubatch & get_ubatch() const override;
|
|
|
|
//
|
|
// llama_memory_recurrent_context specific API
|
|
//
|
|
|
|
uint32_t get_n_rs() const;
|
|
uint32_t get_head() const;
|
|
int32_t get_rs_z() const;
|
|
uint32_t get_size() const;
|
|
|
|
ggml_tensor * get_r_l(int32_t il) const;
|
|
ggml_tensor * get_s_l(int32_t il) const;
|
|
|
|
int32_t s_copy(int i) const;
|
|
|
|
private:
|
|
const llama_memory_status status;
|
|
|
|
llama_memory_recurrent * mem;
|
|
|
|
size_t i_next = 0;
|
|
|
|
std::vector<llama_ubatch> ubatches;
|
|
|
|
//
|
|
// data needed for building the compute graph for the current ubatch:
|
|
// TODO: extract all the state like `head` and `n` here
|
|
//
|
|
|
|
const bool is_full = false;
|
|
};
|