mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-21 22:33:56 +00:00
Merge branch 'ollama:main' into main
This commit is contained in:
@@ -82,7 +82,8 @@ Here are some example models that can be downloaded:
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
|
||||
> Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
## Customize a model
|
||||
|
||||
@@ -314,6 +315,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
- [AI Studio](https://github.com/MindWorkAI/AI-Studio)
|
||||
- [Sidellama](https://github.com/gyopak/sidellama) (browser-based LLM client)
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
|
||||
### Terminal
|
||||
|
||||
|
||||
119
docs/api.md
119
docs/api.md
@@ -40,6 +40,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `suffix`: the text after the model response
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
|
||||
Advanced parameters (optional):
|
||||
@@ -57,7 +58,8 @@ Advanced parameters (optional):
|
||||
|
||||
Enable JSON mode by setting the `format` parameter to `json`. This will structure the response as a valid JSON object. See the JSON mode [example](#request-json-mode) below.
|
||||
|
||||
> Note: it's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
|
||||
> [!IMPORTANT]
|
||||
> It's important to instruct the model to use JSON in the `prompt`. Otherwise, the model may generate large amounts whitespace.
|
||||
|
||||
### Examples
|
||||
|
||||
@@ -148,8 +150,44 @@ If `stream` is set to `false`, the response will be a single JSON object:
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (with suffix)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/generate -d '{
|
||||
"model": "codellama:code",
|
||||
"prompt": "def compute_gcd(a, b):",
|
||||
"suffix": " return result",
|
||||
"options": {
|
||||
"temperature": 0
|
||||
},
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "codellama:code",
|
||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||
"response": "\n if a == 0:\n return b\n else:\n return compute_gcd(b % a, a)\n\ndef compute_lcm(a, b):\n result = (a * b) / compute_gcd(a, b)\n",
|
||||
"done": true,
|
||||
"done_reason": "stop",
|
||||
"context": [...],
|
||||
"total_duration": 1162761250,
|
||||
"load_duration": 6683708,
|
||||
"prompt_eval_count": 17,
|
||||
"prompt_eval_duration": 201222000,
|
||||
"eval_count": 63,
|
||||
"eval_duration": 953997000
|
||||
}
|
||||
```
|
||||
|
||||
#### Request (JSON mode)
|
||||
|
||||
> [!IMPORTANT]
|
||||
> When `format` is set to `json`, the output will always be a well-formed JSON object. It's important to also instruct the model to respond in JSON.
|
||||
|
||||
##### Request
|
||||
@@ -380,12 +418,14 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: tools for the model to use if supported. Requires `stream` to be set to `false`
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user` or `assistant`
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools the model wants to use
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -622,6 +662,79 @@ curl http://localhost:11434/api/chat -d '{
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (with tools)
|
||||
|
||||
##### Request
|
||||
|
||||
```
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "mistral",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the weather today in Paris?"
|
||||
}
|
||||
],
|
||||
"stream": false,
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"description": "Get the current weather for a location",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string",
|
||||
"description": "The location to get the weather for, e.g. San Francisco, CA"
|
||||
},
|
||||
"format": {
|
||||
"type": "string",
|
||||
"description": "The format to return the weather in, e.g. 'celsius' or 'fahrenheit'",
|
||||
"enum": ["celsius", "fahrenheit"]
|
||||
}
|
||||
},
|
||||
"required": ["location", "format"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "mistral:7b-instruct-v0.3-q4_K_M",
|
||||
"created_at": "2024-07-22T20:33:28.123648Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "get_current_weather",
|
||||
"arguments": {
|
||||
"format": "celsius",
|
||||
"location": "Paris, FR"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 885095291,
|
||||
"load_duration": 3753500,
|
||||
"prompt_eval_count": 122,
|
||||
"prompt_eval_duration": 328493000,
|
||||
"eval_count": 33,
|
||||
"eval_duration": 552222000
|
||||
}
|
||||
```
|
||||
|
||||
## Create a Model
|
||||
|
||||
```shell
|
||||
@@ -1173,4 +1286,4 @@ curl http://localhost:11434/api/embeddings -d '{
|
||||
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
|
||||
]
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
# Ollama Model File
|
||||
|
||||
> Note: `Modelfile` syntax is in development
|
||||
> [!NOTE]
|
||||
> `Modelfile` syntax is in development
|
||||
|
||||
A model file is the blueprint to create and share models with Ollama.
|
||||
|
||||
|
||||
@@ -78,8 +78,8 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
- [x] Streaming
|
||||
- [x] JSON mode
|
||||
- [x] Reproducible outputs
|
||||
- [x] Tools (streaming support coming soon)
|
||||
- [ ] Vision
|
||||
- [ ] Function calling
|
||||
- [ ] Logprobs
|
||||
|
||||
#### Supported request fields
|
||||
@@ -97,9 +97,9 @@ curl http://localhost:11434/v1/chat/completions \
|
||||
- [x] `temperature`
|
||||
- [x] `top_p`
|
||||
- [x] `max_tokens`
|
||||
- [ ] `logit_bias`
|
||||
- [ ] `tools`
|
||||
- [x] `tools`
|
||||
- [ ] `tool_choice`
|
||||
- [ ] `logit_bias`
|
||||
- [ ] `user`
|
||||
- [ ] `n`
|
||||
|
||||
|
||||
173
docs/template.md
Normal file
173
docs/template.md
Normal file
@@ -0,0 +1,173 @@
|
||||
# Template
|
||||
|
||||
Ollama provides a powerful templating engine backed by Go's built-in templating engine to construct prompts for your large language model. This feature is a valuable tool to get the most out of your models.
|
||||
|
||||
## Basic Template Structure
|
||||
|
||||
A basic Go template consists of three main parts:
|
||||
|
||||
* **Layout**: The overall structure of the template.
|
||||
* **Variables**: Placeholders for dynamic data that will be replaced with actual values when the template is rendered.
|
||||
* **Functions**: Custom functions or logic that can be used to manipulate the template's content.
|
||||
|
||||
Here's an example of a simple chat template:
|
||||
|
||||
```gotmpl
|
||||
{{- range .Messages }}
|
||||
{{ .Role }}: {{ .Content }}
|
||||
{{- end }}
|
||||
```
|
||||
|
||||
In this example, we have:
|
||||
|
||||
* A basic messages structure (layout)
|
||||
* Three variables: `Messages`, `Role`, and `Content` (variables)
|
||||
* A custom function (action) that iterates over an array of items (`range .Messages`) and displays each item
|
||||
|
||||
## Adding templates to your model
|
||||
|
||||
By default, models imported into Ollama have a default template of `{{ .Prompt }}`, i.e. user inputs are sent verbatim to the LLM. This is appropriate for text or code completion models but lacks essential markers for chat or instruction models.
|
||||
|
||||
Omitting a template in these models puts the responsibility of correctly templating input onto the user. Adding a template allows users to easily get the best results from the model.
|
||||
|
||||
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
|
||||
|
||||
```dockerfile
|
||||
FROM llama3
|
||||
|
||||
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>
|
||||
|
||||
{{ .System }}<|eot_id|>
|
||||
{{- end }}
|
||||
{{- range .Messages }}<|start_header_id|>{{ .Role }}<|end_header_id|>
|
||||
|
||||
{{ .Content }}<|eot_id|>
|
||||
{{- end }}<|start_header_id|>assistant<|end_header_id|>
|
||||
|
||||
"""
|
||||
```
|
||||
|
||||
## Variables
|
||||
|
||||
`System` (string): system prompt
|
||||
|
||||
`Prompt` (string): user prompt
|
||||
|
||||
`Response` (string): assistant response
|
||||
|
||||
`Suffix` (string): text inserted after the assistant's response
|
||||
|
||||
`Messages` (list): list of messages
|
||||
|
||||
`Messages[].Role` (string): role which can be one of `system`, `user`, `assistant`, or `tool`
|
||||
|
||||
`Messages[].Content` (string): message content
|
||||
|
||||
`Messages[].ToolCalls` (list): list of tools the model wants to call
|
||||
|
||||
`Messages[].ToolCalls[].Function` (object): function to call
|
||||
|
||||
`Messages[].ToolCalls[].Function.Name` (string): function name
|
||||
|
||||
`Messages[].ToolCalls[].Function.Arguments` (map): mapping of argument name to argument value
|
||||
|
||||
`Tools` (list): list of tools the model can access
|
||||
|
||||
`Tools[].Type` (string): schema type. `type` is always `function`
|
||||
|
||||
`Tools[].Function` (object): function definition
|
||||
|
||||
`Tools[].Function.Name` (string): function name
|
||||
|
||||
`Tools[].Function.Description` (string): function description
|
||||
|
||||
`Tools[].Function.Parameters` (object): function parameters
|
||||
|
||||
`Tools[].Function.Parameters.Type` (string): schema type. `type` is always `object`
|
||||
|
||||
`Tools[].Function.Parameters.Required` (list): list of required properties
|
||||
|
||||
`Tools[].Function.Parameters.Properties` (map): mapping of property name to property definition
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Type` (string): property type
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Description` (string): property description
|
||||
|
||||
`Tools[].Function.Parameters.Properties[].Enum` (list): list of valid values
|
||||
|
||||
## Tips and Best Practices
|
||||
|
||||
Keep the following tips and best practices in mind when working with Go templates:
|
||||
|
||||
* **Be mindful of dot**: Control flow structures like `range` and `with` changes the value `.`
|
||||
* **Out-of-scope variables**: Use `$.` to reference variables not currently in scope, starting from the root
|
||||
* **Whitespace control**: Use `-` to trim leading (`{{-`) and trailing (`-}}`) whitespace
|
||||
|
||||
## Examples
|
||||
|
||||
### Example Messages
|
||||
|
||||
#### ChatML
|
||||
|
||||
ChatML is a popular template format. It can be used for models such as Databrick's DBRX, Intel's Neural Chat, and Microsoft's Orca 2.
|
||||
|
||||
```gotmpl
|
||||
{{- if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
{{ end }}
|
||||
{{- range .Messages }}<|im_start|>{{ .Role }}
|
||||
{{ .Content }}<|im_end|>
|
||||
{{ end }}<|im_start|>assistant
|
||||
{{ else }}
|
||||
{{ if .System }}<|im_start|>system
|
||||
{{ .System }}<|im_end|>
|
||||
```
|
||||
|
||||
### Example Tools
|
||||
|
||||
Tools support can be added to a model by adding a `{{ .Tools }}` node to the template. This feature is useful for models trained to call external tools and can a powerful tool for retrieving real-time data or performing complex tasks.
|
||||
|
||||
#### Mistral
|
||||
|
||||
Mistral v0.3 and Mixtral 8x22B supports tool calling.
|
||||
|
||||
```gotmpl
|
||||
{{- range $index, $_ := .Messages }}
|
||||
{{- if eq .Role "user" }}
|
||||
{{- if and (le (len (slice $.Messages $index)) 2) $.Tools }}[AVAILABLE_TOOLS] {{ json $.Tools }}[/AVAILABLE_TOOLS]
|
||||
{{- end }}[INST] {{ if and (eq (len (slice $.Messages $index)) 1) $.System }}{{ $.System }}
|
||||
|
||||
{{ end }}{{ .Content }}[/INST]
|
||||
{{- else if eq .Role "assistant" }}
|
||||
{{- if .Content }} {{ .Content }}</s>
|
||||
{{- else if .ToolCalls }}[TOOL_CALLS] [
|
||||
{{- range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ json .Function.Arguments }}}
|
||||
{{- end }}]</s>
|
||||
{{- end }}
|
||||
{{- else if eq .Role "tool" }}[TOOL_RESULTS] {"content": {{ .Content }}}[/TOOL_RESULTS]
|
||||
{{- end }}
|
||||
{{- end }}
|
||||
```
|
||||
|
||||
### Example Fill-in-Middle
|
||||
|
||||
Fill-in-middle support can be added to a model by adding a `{{ .Suffix }}` node to the template. This feature is useful for models that are trained to generate text in the middle of user input, such as code completion models.
|
||||
|
||||
#### CodeLlama
|
||||
|
||||
CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://ollama.com/library/codellama:13b-code) code completion models support fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
<PRE> {{ .Prompt }} <SUF>{{ .Suffix }} <MID>
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> CodeLlama 34B and 70B code completion and all instruct and Python fine-tuned models do not support fill-in-middle.
|
||||
|
||||
#### Codestral
|
||||
|
||||
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
||||
```
|
||||
@@ -4,12 +4,45 @@ package integration
|
||||
|
||||
import (
|
||||
"context"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
|
||||
func floatsEqual32(a, b float32) bool {
|
||||
return math.Abs(float64(a-b)) <= 1e-4
|
||||
}
|
||||
|
||||
func floatsEqual64(a, b float64) bool {
|
||||
return math.Abs(a-b) <= 1e-4
|
||||
}
|
||||
|
||||
func TestAllMiniLMEmbeddings(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
req := api.EmbeddingRequest{
|
||||
Model: "all-minilm",
|
||||
Prompt: "why is the sky blue?",
|
||||
}
|
||||
|
||||
res, err := embeddingTestHelper(ctx, t, req)
|
||||
|
||||
if err != nil {
|
||||
t.Fatalf("error: %v", err)
|
||||
}
|
||||
|
||||
if len(res.Embedding) != 384 {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embedding))
|
||||
}
|
||||
|
||||
if !floatsEqual64(res.Embedding[0], 0.06642947345972061) {
|
||||
t.Fatalf("expected 0.06642947345972061, got %.16f", res.Embedding[0])
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLMEmbed(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
@@ -33,8 +66,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if res.Embeddings[0][0] != 0.010071031 {
|
||||
t.Fatalf("expected 0.010071031, got %f", res.Embeddings[0][0])
|
||||
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) {
|
||||
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
|
||||
}
|
||||
}
|
||||
|
||||
@@ -61,12 +94,12 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
|
||||
t.Fatalf("expected 384 floats, got %d", len(res.Embeddings[0]))
|
||||
}
|
||||
|
||||
if res.Embeddings[0][0] != 0.010071031 || res.Embeddings[1][0] != -0.009802706 {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %f and %f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
if !floatsEqual32(res.Embeddings[0][0], 0.010071031) || !floatsEqual32(res.Embeddings[1][0], -0.009802706) {
|
||||
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
|
||||
}
|
||||
}
|
||||
|
||||
func TestAllMiniLmEmbedTruncate(t *testing.T) {
|
||||
func TestAllMiniLMEmbedTruncate(t *testing.T) {
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 2*time.Minute)
|
||||
defer cancel()
|
||||
|
||||
@@ -135,6 +168,22 @@ func TestAllMiniLmEmbedTruncate(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func embeddingTestHelper(ctx context.Context, t *testing.T, req api.EmbeddingRequest) (*api.EmbeddingResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatalf("failed to pull model %s: %v", req.Model, err)
|
||||
}
|
||||
|
||||
response, err := client.Embeddings(ctx, &req)
|
||||
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return response, nil
|
||||
}
|
||||
|
||||
func embedTestHelper(ctx context.Context, t *testing.T, req api.EmbedRequest) (*api.EmbedResponse, error) {
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
|
||||
@@ -8,6 +8,7 @@ import (
|
||||
"io"
|
||||
"log/slog"
|
||||
"math"
|
||||
"math/rand/v2"
|
||||
"net/http"
|
||||
"net/url"
|
||||
"os"
|
||||
@@ -141,6 +142,32 @@ func (b *blobDownload) Run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
b.err = b.run(ctx, requestURL, opts)
|
||||
}
|
||||
|
||||
func newBackoff(maxBackoff time.Duration) func(ctx context.Context) error {
|
||||
var n int
|
||||
return func(ctx context.Context) error {
|
||||
if ctx.Err() != nil {
|
||||
return ctx.Err()
|
||||
}
|
||||
|
||||
n++
|
||||
|
||||
// n^2 backoff timer is a little smoother than the
|
||||
// common choice of 2^n.
|
||||
d := min(time.Duration(n*n)*10*time.Millisecond, maxBackoff)
|
||||
// Randomize the delay between 0.5-1.5 x msec, in order
|
||||
// to prevent accidental "thundering herd" problems.
|
||||
d = time.Duration(float64(d) * (rand.Float64() + 0.5))
|
||||
t := time.NewTimer(d)
|
||||
defer t.Stop()
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return ctx.Err()
|
||||
case <-t.C:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *registryOptions) error {
|
||||
defer blobDownloadManager.Delete(b.Digest)
|
||||
ctx, b.CancelFunc = context.WithCancel(ctx)
|
||||
@@ -153,6 +180,52 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
|
||||
_ = file.Truncate(b.Total)
|
||||
|
||||
directURL, err := func() (*url.URL, error) {
|
||||
ctx, cancel := context.WithTimeout(ctx, 30*time.Second)
|
||||
defer cancel()
|
||||
|
||||
backoff := newBackoff(10 * time.Second)
|
||||
for {
|
||||
// shallow clone opts to be used in the closure
|
||||
// without affecting the outer opts.
|
||||
newOpts := new(registryOptions)
|
||||
*newOpts = *opts
|
||||
|
||||
newOpts.CheckRedirect = func(req *http.Request, via []*http.Request) error {
|
||||
if len(via) > 10 {
|
||||
return errors.New("maxium redirects exceeded (10) for directURL")
|
||||
}
|
||||
|
||||
// if the hostname is the same, allow the redirect
|
||||
if req.URL.Hostname() == requestURL.Hostname() {
|
||||
return nil
|
||||
}
|
||||
|
||||
// stop at the first redirect that is not
|
||||
// the same hostname as the original
|
||||
// request.
|
||||
return http.ErrUseLastResponse
|
||||
}
|
||||
|
||||
resp, err := makeRequestWithRetry(ctx, http.MethodGet, requestURL, nil, nil, newOpts)
|
||||
if err != nil {
|
||||
slog.Warn("failed to get direct URL; backing off and retrying", "err", err)
|
||||
if err := backoff(ctx); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
continue
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
if resp.StatusCode != http.StatusTemporaryRedirect {
|
||||
return nil, fmt.Errorf("unexpected status code %d", resp.StatusCode)
|
||||
}
|
||||
return resp.Location()
|
||||
}
|
||||
}()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
g, inner := errgroup.WithContext(ctx)
|
||||
g.SetLimit(numDownloadParts)
|
||||
for i := range b.Parts {
|
||||
@@ -165,7 +238,7 @@ func (b *blobDownload) run(ctx context.Context, requestURL *url.URL, opts *regis
|
||||
var err error
|
||||
for try := 0; try < maxRetries; try++ {
|
||||
w := io.NewOffsetWriter(file, part.StartsAt())
|
||||
err = b.downloadChunk(inner, requestURL, w, part, opts)
|
||||
err = b.downloadChunk(inner, directURL, w, part, opts)
|
||||
switch {
|
||||
case errors.Is(err, context.Canceled), errors.Is(err, syscall.ENOSPC):
|
||||
// return immediately if the context is canceled or the device is out of space
|
||||
|
||||
@@ -54,6 +54,8 @@ type registryOptions struct {
|
||||
Username string
|
||||
Password string
|
||||
Token string
|
||||
|
||||
CheckRedirect func(req *http.Request, via []*http.Request) error
|
||||
}
|
||||
|
||||
type Model struct {
|
||||
@@ -1131,7 +1133,9 @@ func makeRequest(ctx context.Context, method string, requestURL *url.URL, header
|
||||
req.ContentLength = contentLength
|
||||
}
|
||||
|
||||
resp, err := http.DefaultClient.Do(req)
|
||||
resp, err := (&http.Client{
|
||||
CheckRedirect: regOpts.CheckRedirect,
|
||||
}).Do(req)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user