Merge branch 'ollama:main' into main

This commit is contained in:
likelovewant
2024-11-17 22:54:33 +08:00
committed by GitHub
24 changed files with 351 additions and 155 deletions

View File

@@ -281,7 +281,7 @@ jobs:
shell: bash
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 8m0s -v
args: --timeout 10m0s -v
test:
strategy:
matrix:

View File

@@ -5,6 +5,8 @@ ARG CUDA_V11_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
ARG CUDA_VERSION_12=12.4.0
ARG CUDA_V12_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
ARG ROCM_VERSION=6.1.2
ARG JETPACK_6=r36.2.0
ARG JETPACK_5=r35.4.1
### To create a local image for building linux binaries on mac or windows with efficient incremental builds
#
@@ -13,7 +15,7 @@ ARG ROCM_VERSION=6.1.2
#
### Then incremental builds will be much faster in this container
#
# make -C llama -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
# make -j 10 && go build -trimpath -o dist/linux-amd64/ollama .
#
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCM_VERSION}-complete AS unified-builder-amd64
ARG CMAKE_VERSION
@@ -76,9 +78,9 @@ ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
if grep "^flags" /proc/cpuinfo|grep avx>/dev/null; then \
make -C llama -j $(expr $(nproc) / 2 ) ; \
make -j $(expr $(nproc) / 2 ) ; \
else \
make -C llama -j 5 ; \
make -j 5 ; \
fi
FROM --platform=linux/arm64 unified-builder-arm64 AS runners-arm64
@@ -90,7 +92,46 @@ ARG CUDA_V11_ARCHITECTURES
ARG CUDA_V12_ARCHITECTURES
ARG OLLAMA_FAST_BUILD
RUN --mount=type=cache,target=/root/.ccache \
make -C llama -j 8
make -j 5
# Jetsons need to be built in discrete stages
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_5} AS runners-jetpack5-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v11 \
CUDA_ARCHITECTURES="72;87" \
GPU_RUNNER_VARIANT=_jetpack5 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ollama/cuda_jetpack5
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK_6} AS runners-jetpack6-arm64
ARG GOLANG_VERSION
RUN apt-get update && apt-get install -y git curl ccache && \
curl -s -L https://dl.google.com/go/go${GOLANG_VERSION}.linux-arm64.tar.gz | tar xz -C /usr/local && \
ln -s /usr/local/go/bin/go /usr/local/bin/go && \
ln -s /usr/local/go/bin/gofmt /usr/local/bin/gofmt && \
apt-get clean && rm -rf /var/lib/apt/lists/*
WORKDIR /go/src/github.com/ollama/ollama/
COPY . .
ARG CGO_CFLAGS
ENV GOARCH arm64
RUN --mount=type=cache,target=/root/.ccache \
make -j 5 cuda_v12 \
CUDA_ARCHITECTURES="87" \
GPU_RUNNER_VARIANT=_jetpack6 \
CGO_EXTRA_LDFLAGS_LINUX=-L/usr/local/cuda/lib64/stubs \
DIST_LIB_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama \
DIST_GPU_RUNNER_DEPS_DIR=/go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ollama/cuda_jetpack6
# Intermediate stages used for ./scripts/build_linux.sh
@@ -134,12 +175,20 @@ FROM --platform=linux/arm64 builder-arm64 AS build-arm64
COPY . .
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/build/ build/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/ dist/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/build/ build/
ARG GOFLAGS
ARG CGO_CFLAGS
RUN --mount=type=cache,target=/root/.ccache \
go build -trimpath -o dist/linux-arm64/bin/ollama .
RUN cd dist/linux-$GOARCH && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH.tgz
RUN cd dist/linux-$GOARCH-jetpack5 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack5.tgz
RUN cd dist/linux-$GOARCH-jetpack6 && \
tar --exclude runners -cf - . | pigz --best > ../ollama-linux-$GOARCH-jetpack6.tgz
FROM --platform=linux/amd64 scratch AS dist-amd64
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/ollama-linux-*.tgz /
@@ -180,16 +229,19 @@ RUN rm -rf \
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-amd64
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-cuda-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/
FROM --platform=linux/arm64 ubuntu:22.04 AS runtime-arm64
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/bin/ /bin/
COPY --from=runners-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64/lib/ /lib/
COPY --from=runners-jetpack5-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack5/lib/ /lib/
COPY --from=runners-jetpack6-arm64 /go/src/github.com/ollama/ollama/dist/linux-arm64-jetpack6/lib/ /lib/
# ROCm libraries larger so we keep it distinct from the CPU/CUDA image
FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
@@ -198,7 +250,7 @@ FROM --platform=linux/amd64 ubuntu:22.04 AS runtime-rocm
COPY --from=build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64-rocm/lib/ /lib/
RUN apt-get update && \
apt-get install -y ca-certificates && \
rm -rf /var/lib/apt/lists/*
apt-get clean && rm -rf /var/lib/apt/lists/*
COPY --from=container-build-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/bin/ /bin/
COPY --from=runners-rocm-amd64 /go/src/github.com/ollama/ollama/dist/linux-amd64/lib/ /lib/

View File

@@ -66,9 +66,11 @@ Ollama supports a list of models available on [ollama.com/library](https://ollam
Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| ------------------ | ---------- | ----- | -------------------------------- |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.2 Vision | 11B | 7.9GB | `ollama run llama3.2-vision` |
| Llama 3.2 Vision | 90B | 55GB | `ollama run llama3.2-vision:90b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
@@ -377,6 +379,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama eBook Summary](https://github.com/cognitivetech/ollama-ebook-summary/)
- [Ollama Mixture of Experts (MOE) in 50 lines of code](https://github.com/rapidarchitect/ollama_moe)
- [vim-intelligence-bridge](https://github.com/pepo-ec/vim-intelligence-bridge) Simple interaction of "Ollama" with the Vim editor
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
### Apple Vision Pro
- [Enchanted](https://github.com/AugustDev/enchanted)
@@ -433,6 +436,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama PHP](https://github.com/ArdaGnsrn/ollama-php)
- [Agents-Flex for Java](https://github.com/agents-flex/agents-flex) with [example](https://github.com/agents-flex/agents-flex/tree/main/agents-flex-llm/agents-flex-llm-ollama/src/test/java/com/agentsflex/llm/ollama)
- [Ollama for Swift](https://github.com/mattt/ollama-swift)
- [GoLamify](https://github.com/prasad89/golamify)
### Mobile
@@ -470,6 +474,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jk011ru/vnc-lm) (A containerized Discord bot with support for attachments and web links)
- [LSP-AI](https://github.com/SilasMarvin/lsp-ai) (Open-source language server for AI-powered functionality)
- [QodeAssist](https://github.com/Palm1r/QodeAssist) (AI-powered coding assistant plugin for Qt Creator)

View File

@@ -55,7 +55,7 @@ func checkError(resp *http.Response, body []byte) error {
// ClientFromEnvironment creates a new [Client] using configuration from the
// environment variable OLLAMA_HOST, which points to the network host and
// port on which the ollama service is listenting. The format of this variable
// port on which the ollama service is listening. The format of this variable
// is:
//
// <scheme>://<host>:<port>

View File

@@ -12,7 +12,7 @@ import (
"time"
)
// StatusError is an error with and HTTP status code.
// StatusError is an error with an HTTP status code and message.
type StatusError struct {
StatusCode int
Status string
@@ -57,7 +57,7 @@ type GenerateRequest struct {
Template string `json:"template"`
// Context is the context parameter returned from a previous call to
// Generate call. It can be used to keep a short conversational memory.
// [Client.Generate]. It can be used to keep a short conversational memory.
Context []int `json:"context,omitempty"`
// Stream specifies whether the response is streaming; it is true by default.
@@ -90,14 +90,14 @@ type ChatRequest struct {
// Messages is the messages of the chat - can be used to keep a chat memory.
Messages []Message `json:"messages"`
// Stream enable streaming of returned response; true by default.
// Stream enables streaming of returned responses; true by default.
Stream *bool `json:"stream,omitempty"`
// Format is the format to return the response in (e.g. "json").
Format string `json:"format"`
// KeepAlive controls how long the model will stay loaded into memory
// followin the request.
// following the request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Tools is an optional list of tools the model has access to.
@@ -203,8 +203,8 @@ type Metrics struct {
EvalDuration time.Duration `json:"eval_duration,omitempty"`
}
// Options specified in [GenerateRequest], if you add a new option here add it
// to the API docs also.
// Options specified in [GenerateRequest]. If you add a new option here, also
// add it to the API docs.
type Options struct {
Runner

View File

@@ -800,9 +800,9 @@ func ShowHandler(cmd *cobra.Command, args []string) error {
case "parameters":
fmt.Println(resp.Parameters)
case "system":
fmt.Println(resp.System)
fmt.Print(resp.System)
case "template":
fmt.Println(resp.Template)
fmt.Print(resp.Template)
}
return nil

View File

@@ -350,7 +350,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
return nil, err
}
}
gpuInfo.DependencyPath = libDir
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once

View File

@@ -111,7 +111,7 @@ func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,

View File

@@ -240,7 +240,7 @@ func GetGPUInfo() GpuInfoList {
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
DependencyPath: []string{depPath},
},
CPUs: details,
},
@@ -293,11 +293,11 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
gpuInfo.DependencyPath = []string{filepath.Join(depPath, "cuda_"+variant), depPath}
}
}
}
@@ -370,7 +370,7 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = depPath
gpuInfo.DependencyPath = []string{depPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}

View File

@@ -25,7 +25,7 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"`
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`

View File

@@ -50,6 +50,9 @@ sudo systemctl restart docker
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
> [!NOTE]
> If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version. Pass the environment variable JETSON_JETPACK=5 or JETSON_JETPACK=6 to the container to select version 5 or 6.
### AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:

View File

@@ -32,7 +32,7 @@ ollama run my-model
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
@@ -67,14 +67,12 @@ ollama run my-model
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, and Llama 3.1);
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
This includes importing foundation models as well as any fine tuned models which which have been _fused_ with a foundation model.
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:

View File

@@ -120,7 +120,7 @@ FROM <model directory>
The model directory should contain the Safetensors weights for a supported architecture.
Currently supported model architectures:
* Llama (including Llama 2, Llama 3, and Llama 3.1)
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2)
* Mistral (including Mistral 1, Mistral 2, and Mixtral)
* Gemma (including Gemma 1 and Gemma 2)
* Phi3

View File

@@ -95,7 +95,9 @@ If none of those resolve the problem, gather additional information and file an
On linux, AMD GPU access typically requires `video` and/or `render` group membership to access the `/dev/kfd` device. If permissions are not set up correctly, Ollama will detect this and report an error in the server log.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -ld /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the group assignments on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices.
When running in a container, in some Linux distributions and container runtimes, the ollama process may be unable to access the GPU. Use `ls -lnd /dev/kfd /dev/dri /dev/dri/*` on the host system to determine the **numeric** group IDs on your system, and pass additional `--group-add ...` arguments to the container so it can access the required devices. For example, in the following output `crw-rw---- 1 0 44 226, 0 Sep 16 16:55 /dev/dri/card0` the group ID column is `44`
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
If you are experiencing problems getting Ollama to correctly discover or use your GPU for inference, the following may help isolate the failure.
- `AMD_LOG_LEVEL=3` Enable info log levels in the AMD HIP/ROCm libraries. This can help show more detailed error codes that can help troubleshoot problems

6
go.mod
View File

@@ -12,7 +12,7 @@ require (
github.com/spf13/cobra v1.7.0
github.com/stretchr/testify v1.9.0
github.com/x448/float16 v0.8.4
golang.org/x/sync v0.3.0
golang.org/x/sync v0.9.0
)
require (
@@ -22,7 +22,7 @@ require (
github.com/mattn/go-runewidth v0.0.14
github.com/nlpodyssey/gopickle v0.3.0
github.com/pdevine/tensor v0.0.0-20240510204454-f88f4562727c
golang.org/x/image v0.14.0
golang.org/x/image v0.22.0
)
require (
@@ -73,7 +73,7 @@ require (
golang.org/x/net v0.25.0 // indirect
golang.org/x/sys v0.20.0
golang.org/x/term v0.20.0
golang.org/x/text v0.15.0
golang.org/x/text v0.20.0
google.golang.org/protobuf v1.34.1
gopkg.in/yaml.v3 v3.0.1 // indirect
)

6
go.sum
View File

@@ -232,6 +232,8 @@ golang.org/x/image v0.0.0-20201208152932-35266b937fa6/go.mod h1:FeLwcggjj3mMvU+o
golang.org/x/image v0.0.0-20210216034530-4410531fe030/go.mod h1:FeLwcggjj3mMvU+oOTbSwawSJRM1uh48EjtB4UJZlP0=
golang.org/x/image v0.14.0 h1:tNgSxAFe3jC4uYqvZdTr84SZoM1KfwdC9SKIFrLjFn4=
golang.org/x/image v0.14.0/go.mod h1:HUYqC05R2ZcZ3ejNQsIHQDQiwWM4JBqmm6MKANTp4LE=
golang.org/x/image v0.22.0 h1:UtK5yLUzilVrkjMAZAZ34DXGpASN8i8pj8g+O+yd10g=
golang.org/x/image v0.22.0/go.mod h1:9hPFhljd4zZ1GNSIZJ49sqbp45GKK9t6w+iXvGqZUz4=
golang.org/x/lint v0.0.0-20181026193005-c67002cb31c3/go.mod h1:UVdnD1Gm6xHRNCYTkRU2/jEulfH38KcIWyp/GAMgvoE=
golang.org/x/lint v0.0.0-20190227174305-5b3e6a55c961/go.mod h1:wehouNa3lNwaWXcvxsM5YxQ5yQlVC4a0KAMCusXpPoU=
golang.org/x/lint v0.0.0-20190313153728-d0100b6bd8b3/go.mod h1:6SW0HCj/g11FgYtHlgUYUwCkIfeOF89ocIRzGO/8vkc=
@@ -267,6 +269,8 @@ golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJ
golang.org/x/sync v0.0.0-20210220032951-036812b2e83c/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.3.0 h1:ftCYgMx6zT/asHUrPw8BLLscYtGznsLAnjq5RH9P66E=
golang.org/x/sync v0.3.0/go.mod h1:FU7BRWz2tNW+3quACPkgCx/L+uEAv1htQ0V83Z9Rj+Y=
golang.org/x/sync v0.9.0 h1:fEo0HyrW1GIgZdpbhCRO0PkJajUS5H9IFUztCgEo2jQ=
golang.org/x/sync v0.9.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20180830151530-49385e6e1522/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190312061237-fead79001313/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
@@ -293,6 +297,8 @@ golang.org/x/text v0.3.5/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.3.6/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.15.0 h1:h1V/4gjBv8v9cjcR6+AR5+/cIYK5N/WAgiv4xlsEtAk=
golang.org/x/text v0.15.0/go.mod h1:18ZOQIKpY8NJVqYksKHtTdi31H5itFRjB5/qKTNYzSU=
golang.org/x/text v0.20.0 h1:gK/Kv2otX8gz+wn7Rmb3vT96ZwuoxnQlY+HlJVj7Qug=
golang.org/x/text v0.20.0/go.mod h1:D4IsuqiFMhST5bX19pQ9ikHC2GsaKyk/oF+pn3ducp4=
golang.org/x/tools v0.0.0-20180525024113-a5b4c53f6e8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190114222345-bf090417da8b/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=

View File

@@ -21,6 +21,8 @@ package llama
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5 -L/usr/local/cuda-11/lib64
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6 -L/usr/local/cuda-12/lib64
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
@@ -36,8 +38,8 @@ package llama
#cgo linux CXXFLAGS: -D_GNU_SOURCE
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
@@ -598,6 +600,10 @@ func (c *Context) SetCrossAttention(state bool) {
C.llama_set_cross_attention(c.c, C.bool(state))
}
func (c *Context) Synchronize() {
C.llama_synchronize(c.c)
}
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {

View File

@@ -20,7 +20,7 @@ GPU_COMPILER_CFLAGS_LINUX = $(CFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_COMPILER_CXXFLAGS_WIN = $(CXXFLAGS) -D_WIN32_WINNT=0x602
GPU_COMPILER_CXXFLAGS_LINUX = $(CXXFLAGS) -Xcompiler -fPIC -D_GNU_SOURCE
GPU_LIBS = $(sort $(wildcard $(addsuffix *.$(SHARED_EXT)*,$(addprefix $(GPU_LIB_DIR)/$(SHARED_PREFIX),$(GPU_RUNNER_LIBS_SHORT)))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_LIB_DIR)/,$(notdir $(GPU_LIBS))))
GPU_DIST_DEPS_LIBS= $(sort $(addprefix $(DIST_GPU_RUNNER_DEPS_DIR)/,$(notdir $(GPU_LIBS))))
ifeq ($(OS),linux)
CUDA_PATH?=/usr/local/cuda

View File

@@ -2,6 +2,7 @@ package main
import (
"errors"
"fmt"
"log/slog"
"reflect"
"time"
@@ -22,7 +23,11 @@ type InputCache struct {
lc *llama.Context
}
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) *InputCache {
func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache bool) (*InputCache, error) {
if kvSize/numSlots < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
for i := range slots {
@@ -37,7 +42,7 @@ func NewInputCache(lc *llama.Context, kvSize int, numSlots int, multiUserCache b
slots: slots,
multiUserCache: multiUserCache,
lc: lc,
}
}, nil
}
// Locking: Operations on InputCacheSlot (including finding one
@@ -58,7 +63,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, int, error) {
func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCacheSlot, []input, error) {
var slot *InputCacheSlot
var numPast int
var err error
@@ -75,7 +80,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
slot, numPast, err = c.findBestCacheSlot(prompt)
}
if err != nil {
return nil, nil, 0, err
return nil, nil, err
}
if !cachePrompt {
@@ -102,7 +107,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input, cachePrompt bool) (*InputCach
prompt = prompt[numPast:]
slot.Inputs = slot.Inputs[:numPast]
return slot, prompt, numPast, nil
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input) (*InputCacheSlot, int, error) {
@@ -194,14 +199,30 @@ func countCommonPrefix(a []input, b []input) int {
return count
}
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int, numDiscard int, numPast int) {
// TODO (jessegross): KV cache removal can fail for certain types of models
// server.cpp doesn't handle this, though we can be more graceful
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+numDiscard)
c.lc.KvCacheSeqAdd(slot.Id, numKeep+numDiscard, numPast, -numDiscard)
// Frees up space in the KV cache by deleting the oldest half of history and shifting
// the newest half into that space (saving numKeep inputs at the beginning).
//
// Assumes that at least 1 entry can be freed up by shifting (i.e. numKeep < numCtx)
func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int) {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
for i := numKeep + numDiscard; i < len(slot.Inputs); i++ {
slot.Inputs[i-numDiscard] = slot.Inputs[i]
currentFree := c.numCtx - len(slot.Inputs)
discard := targetFree - currentFree
if discard <= 0 {
return
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-numDiscard]
slog.Debug("context limit hit - shifting", "limit", c.numCtx, "input", len(slot.Inputs),
"keep", numKeep, "discard", discard)
// TODO (jessegross): KV cache removal can fail for certain types of models
c.lc.KvCacheSeqRm(slot.Id, numKeep, numKeep+discard)
c.lc.KvCacheSeqAdd(slot.Id, numKeep+discard, len(slot.Inputs), -discard)
for i := numKeep + discard; i < len(slot.Inputs); i++ {
slot.Inputs[i-discard] = slot.Inputs[i]
}
slot.Inputs = slot.Inputs[:len(slot.Inputs)-discard]
}

View File

@@ -20,6 +20,8 @@ import (
"time"
"unicode/utf8"
"golang.org/x/sync/semaphore"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llama"
)
@@ -34,9 +36,6 @@ type input struct {
}
type Sequence struct {
// number of inputs evaluated
numPast int
// batch index
iBatch int
@@ -112,21 +111,15 @@ func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequen
params.numKeep = len(inputs)
}
if !params.embedding {
// Subtracting 4 ensures that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-4)
params.numKeep += s.bosToken
} else {
// Embeddings are 1 shot - just truncate to the context window, without ever shifting
params.numKeep = min(params.numKeep, s.cache.numCtx)
if s.model.AddBOSToken() {
params.numKeep += 1
}
// truncate to fit in context window
// Ensure that at least 1 input can be discarded during shift
params.numKeep = min(params.numKeep, s.cache.numCtx-1)
if len(inputs) > s.cache.numCtx {
slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "numKeep", params.numKeep)
newInputs := inputs[:params.numKeep]
newInputs = append(newInputs, inputs[len(inputs)-s.cache.numCtx+params.numKeep:]...)
inputs = newInputs
slog.Warn("input exceeds context length", "prompt", len(inputs), "limit", s.cache.numCtx)
}
var sc *llama.SamplingContext
@@ -170,7 +163,6 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
for i, part := range parts {
// text - tokenize
if strings.TrimSpace(part) != "" {
tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
if err != nil {
return nil, err
@@ -179,7 +171,6 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
for _, t := range tokens {
inputs = append(inputs, input{token: t})
}
}
// image - generate image embedding
if i < len(matches) {
@@ -212,41 +203,51 @@ func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
}
type Server struct {
model *llama.Model
lc *llama.Context
// is the server ready to process requests?
// protects access to model and image
ready sync.WaitGroup
// required for image embeddings
// loaded model
model *llama.Model
// image model context for multi-modal models
image *ImageContext
// status for external health reporting - loading, ready to serve, etc.
status ServerStatus
// current progress on loading the model
progress float32
// number of simultaneous requests to handle
parallel int
// maximum number of elements in a batch (per sequence)
// TODO (jmorganca): make this n_batch
batchSize int
// parallel is the number of parallel requests to handle
parallel int
// protects access to everything below this line
// this is context state needed for decoding
mu sync.Mutex
// seqs is the list of parallel sequences being evaluated
// TODO (jmorganca): this can probably be moved into run()
// indicates that data is ready for processing
cond *sync.Cond
// decoding state
lc *llama.Context
// the list of simultaneous sequences being evaluated
seqs []*Sequence
// seqs can have a maximum of parallel entries, which
// is enfoced by seqSem
seqsSem *semaphore.Weighted
// KV cache
cache *InputCache
// does this model require a beginning of sequence token?
bosToken int
// next sequence for prompt processing to avoid starvation
nextSeq int
// is the server ready to process requests?
ready sync.WaitGroup
mu sync.Mutex
cond *sync.Cond
progress float32
status ServerStatus
}
func (s *Server) allNil() bool {
@@ -258,18 +259,6 @@ func (s *Server) allNil() bool {
return true
}
func (s *Server) shiftContext(seq *Sequence) {
numLeft := seq.numPast - seq.numKeep
numDiscard := numLeft / 2
slog.Debug("context limit hit - shifting", "limit", s.cache.numCtx, "numPast", seq.numPast,
"numKeep", seq.numKeep, "numLeft", numLeft, "numDiscard", numDiscard)
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep, numDiscard, seq.numPast)
seq.numPast -= numDiscard
}
func flushPending(seq *Sequence) bool {
joined := strings.Join(seq.pendingResponses, "")
seq.pendingResponses = []string{}
@@ -368,18 +357,33 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
continue
}
// If an error occurred during the processing of a previous batch then we may have emptied the inputs
// without adding a new one. In this case, end the sequence rather than infinite looping.
if len(seq.inputs) == 0 {
slog.Error("removing sequence due to no input tokens", "index", seqIdx, "cache id", seq.cache.Id)
s.removeSequence(seqIdx, "error")
continue
}
// if past the num predict limit
if seq.numPredict > 0 && seq.numPredicted > seq.numPredict {
if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
s.removeSequence(seqIdx, "limit")
continue
}
if seq.numPast+len(seq.inputs) > s.cache.numCtx {
s.shiftContext(seq)
var numInputsProcessed int
shifted := false
for i, input := range seq.inputs {
if len(seq.cache.Inputs)+1 > s.cache.numCtx {
if !shifted {
s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
shifted = true
} else {
break
}
}
var numInputsProcessed int
for i, input := range seq.inputs {
embedding := input.embed != nil
// If we don't currently have a batch, use one of the correct type and
@@ -403,13 +407,12 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
}
crossAttention = seq.crossAttention
batch.Add(input.token, input.embed, seq.numPast, numInputsProcessed+1 == len(seq.inputs), seq.cache.Id)
seq.numPast++
batch.Add(input.token, input.embed, len(seq.cache.Inputs), i+1 == len(seq.inputs), seq.cache.Id)
seq.cache.Inputs = append(seq.cache.Inputs, input)
numInputsProcessed++
}
if numInputsProcessed > 0 {
seq.cache.Inputs = append(seq.cache.Inputs, seq.inputs[:numInputsProcessed]...)
seq.inputs = seq.inputs[numInputsProcessed:]
seq.iBatch = batch.NumTokens() - 1
}
@@ -427,6 +430,13 @@ func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch)
return
}
if crossAttention {
// synchronize state to ensure the cross attention batch is complete.
// needed specifically for multi-GPU systems otherwise an inflight
// task may be incorrectly invalidated causing a crash
s.lc.Synchronize()
}
for i, seq := range s.seqs {
if seq == nil {
continue
@@ -627,12 +637,17 @@ func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
return
}
// TODO (jmorganca): add to sequence queue instead of
// failing if a slot isn't available
// Ensure that a place to put the sequence is available
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return
}
defer s.seqsSem.Release(1)
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@@ -711,11 +726,17 @@ func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
return
}
// TODO (jessegross): Wait for a free slot instead of failing and blocking forever
// Ensure that a place to put the sequence is available
if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
slog.Error("Failed to acquire semaphore", "error", err)
return
}
defer s.seqsSem.Release(1)
s.mu.Lock()
for i, sq := range s.seqs {
if sq == nil {
seq.cache, seq.inputs, seq.numPast, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
if err != nil {
s.mu.Unlock()
http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
@@ -802,10 +823,6 @@ func (s *Server) loadModel(
}
}
if s.model.AddBOSToken() {
s.bosToken = 1
}
if ppath != "" {
var err error
s.image, err = NewImageContext(s.lc, ppath)
@@ -814,7 +831,10 @@ func (s *Server) loadModel(
}
}
s.cache = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
if err != nil {
panic(err)
}
s.status = ServerStatusReady
s.ready.Done()
@@ -867,6 +887,7 @@ func main() {
batchSize: *batchSize,
parallel: *parallel,
seqs: make([]*Sequence, *parallel),
seqsSem: semaphore.NewWeighted(int64(*parallel)),
status: ServerStatusLoadingModel,
}

View File

@@ -306,9 +306,9 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
// Note: we always put the dependency path first
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != "" {
if gpus[0].DependencyPath != nil {
// assume gpus from the same library have the same dependency path
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
libraryPaths = append(gpus[0].DependencyPath, libraryPaths...)
}
server := filepath.Join(dir, "ollama_llama_server")

View File

@@ -65,9 +65,22 @@ var (
errInvalidCommand = errors.New("command must be one of \"from\", \"license\", \"template\", \"system\", \"adapter\", \"parameter\", or \"message\"")
)
type ParserError struct {
LineNumber int
Msg string
}
func (e *ParserError) Error() string {
if e.LineNumber > 0 {
return fmt.Sprintf("(line %d): %s", e.LineNumber, e.Msg)
}
return e.Msg
}
func ParseFile(r io.Reader) (*File, error) {
var cmd Command
var curr state
var currLine int = 1
var b bytes.Buffer
var role string
@@ -84,11 +97,18 @@ func ParseFile(r io.Reader) (*File, error) {
return nil, err
}
if isNewline(r) {
currLine++
}
next, r, err := parseRuneForState(r, curr)
if errors.Is(err, io.ErrUnexpectedEOF) {
return nil, fmt.Errorf("%w: %s", err, b.String())
} else if err != nil {
return nil, err
return nil, &ParserError{
LineNumber: currLine,
Msg: err.Error(),
}
}
// process the state transition, some transitions need to be intercepted and redirected
@@ -96,7 +116,10 @@ func ParseFile(r io.Reader) (*File, error) {
switch curr {
case stateName:
if !isValidCommand(b.String()) {
return nil, errInvalidCommand
return nil, &ParserError{
LineNumber: currLine,
Msg: errInvalidCommand.Error(),
}
}
// next state sometimes depends on the current buffer value
@@ -117,7 +140,10 @@ func ParseFile(r io.Reader) (*File, error) {
cmd.Name = b.String()
case stateMessage:
if !isValidMessageRole(b.String()) {
return nil, errInvalidMessageRole
return nil, &ParserError{
LineNumber: currLine,
Msg: errInvalidMessageRole.Error(),
}
}
role = b.String()

View File

@@ -3,6 +3,7 @@ package parser
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
@@ -180,8 +181,15 @@ func TestParseFileBadCommand(t *testing.T) {
FROM foo
BADCOMMAND param1 value1
`
parserError := &ParserError{
LineNumber: 3,
Msg: errInvalidCommand.Error(),
}
_, err := ParseFile(strings.NewReader(input))
require.ErrorIs(t, err, errInvalidCommand)
if !errors.As(err, &parserError) {
t.Errorf("unexpected error: expected: %s, actual: %s", parserError.Error(), err.Error())
}
}
func TestParseFileMessages(t *testing.T) {
@@ -245,7 +253,10 @@ FROM foo
MESSAGE badguy I'm a bad guy!
`,
nil,
errInvalidMessageRole,
&ParserError{
LineNumber: 3,
Msg: errInvalidMessageRole.Error(),
},
},
{
`
@@ -264,13 +275,35 @@ MESSAGE system`,
},
}
for _, c := range cases {
for _, tt := range cases {
t.Run("", func(t *testing.T) {
modelfile, err := ParseFile(strings.NewReader(c.input))
require.ErrorIs(t, err, c.err)
modelfile, err := ParseFile(strings.NewReader(tt.input))
if modelfile != nil {
assert.Equal(t, c.expected, modelfile.Commands)
assert.Equal(t, tt.expected, modelfile.Commands)
}
if tt.err == nil {
if err != nil {
t.Fatalf("expected no error, but got %v", err)
}
return
}
switch tt.err.(type) {
case *ParserError:
var pErr *ParserError
if errors.As(err, &pErr) {
// got the correct type of error
return
}
}
if errors.Is(err, tt.err) {
return
}
t.Fatalf("unexpected error: expected: %v, actual: %v", tt.err, err)
})
}
}

View File

@@ -93,6 +93,22 @@ else
fi
fi
# Check for NVIDIA JetPack systems with additional downloads
if [ -f /etc/nv_tegra_release ] ; then
if grep R36 /etc/nv_tegra_release > /dev/null ; then
status "Downloading JetPack 6 components"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-jetpack6.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
elif grep R35 /etc/nv_tegra_release > /dev/null ; then
status "Downloading JetPack 5 components"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-jetpack5.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
else
warning "Unsupported JetPack version detected. GPU may not be supported"
fi
fi
install_success() {
status 'The Ollama API is now available at 127.0.0.1:11434.'
@@ -163,6 +179,13 @@ if [ "$IS_WSL2" = true ]; then
exit 0
fi
# Don't attempt to install drivers on Jetson systems
if [ -f /etc/nv_tegra_release ] ; then
status "NVIDIA JetPack ready."
install_success
exit 0
fi
# Install GPU dependencies on Linux
if ! available lspci && ! available lshw; then
warning "Unable to detect NVIDIA/AMD GPU. Install lspci or lshw to automatically detect and install GPU dependencies."