Merge branch 'ollama:main' into main

This commit is contained in:
likelovewant
2025-08-13 12:36:50 +08:00
committed by GitHub
21 changed files with 729 additions and 249 deletions

View File

@@ -66,6 +66,7 @@ Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clarity on good commit messages, and bad
docs: simplify manual installation with shorter curl commands
Bad Examples:

View File

@@ -769,8 +769,8 @@ func (t *ThinkValue) IsString() bool {
return ok
}
// AsBool returns the value as a bool (true if enabled in any way)
func (t *ThinkValue) AsBool() bool {
// Bool returns the value as a bool (true if enabled in any way)
func (t *ThinkValue) Bool() bool {
if t == nil || t.Value == nil {
return false
}
@@ -786,8 +786,8 @@ func (t *ThinkValue) AsBool() bool {
}
}
// AsString returns the value as a string
func (t *ThinkValue) AsString() string {
// String returns the value as a string
func (t *ThinkValue) String() string {
if t == nil || t.Value == nil {
return ""
}

View File

@@ -171,7 +171,8 @@ func (si SystemInfo) GetOptimalThreadCount() int {
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "metal" ||
supportsFA := gpu.Library == "cpu" ||
gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"

View File

@@ -1593,7 +1593,7 @@ Then there is a series of downloading responses. Until any of the download is co
```json
{
"status": "downloading digestname",
"status": "pulling digestname",
"digest": "digestname",
"total": 2142590208,
"completed": 241970

View File

@@ -20,9 +20,9 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 4096 tokens.
By default, Ollama uses a context window size of 4096 tokens for most models. The `gpt-oss` model has a default context window size of 8192 tokens.
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
This can be overridden in Settings in the Windows and macOS App, or with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
@@ -46,6 +46,8 @@ curl http://localhost:11434/api/generate -d '{
}'
```
Setting the context length higher may cause the model to not be able to fit onto the GPU which make the model run more slowly.
## How can I tell if my model was loaded onto the GPU?
Use the `ollama ps` command to see what models are currently loaded into memory.
@@ -57,8 +59,8 @@ ollama ps
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR UNTIL
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
> NAME ID SIZE PROCESSOR CONTEXT UNTIL
> gpt-oss:20b 05afbac4bad6 16 GB 100% GPU 8192 4 minutes from now
> ```
The `Processor` column will show which memory the model was loaded in to:
@@ -148,9 +150,11 @@ docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## Does Ollama send my prompts and answers back to ollama.com?
## Does Ollama send my prompts and responses back to ollama.com?
No. Ollama runs locally, and conversation data does not leave your machine.
If you're running a model locally, your prompts and responses will always stay on your machine. Ollama Turbo in the App allows you to run your queries on Ollama's servers if you don't have a powerful enough GPU. Web search lets a model query the web, giving you more accurate and up-to-date information. Both Turbo and web search require sending your prompts and responses to Ollama.com. This data is neither logged nor stored.
If you don't want to see the Turbo and web search options in the app, you can disable them in Settings by turning on Airplane mode. In Airplane mode, all models will run locally, and your prompts and responses will stay on your machine.
## How can I expose Ollama on my network?
@@ -345,4 +349,4 @@ Ollama for Windows and macOS register as a login item during installation. You
- Open `Settings` -> `Users & Groups` -> `Login Items` and find the `Ollama` entry, then click the `-` (minus) to remove
**MacOS Ventura (v13) and later**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.

View File

@@ -28,7 +28,7 @@ import (
"github.com/stretchr/testify/require"
)
const (
var (
smol = "llama3.2:1b"
)
@@ -37,6 +37,7 @@ var (
// Note: add newer models at the top of the list to test them first
ollamaEngineChatModels = []string{
"gpt-oss:20b",
"gemma3n:e2b",
"mistral-small3.2:latest",
"deepseek-r1:1.5b",
@@ -126,6 +127,7 @@ var (
"gemma3n",
"glm4",
"goliath",
"gpt-oss:20b",
"granite-code",
"granite3-dense",
"granite3-guardian",
@@ -255,8 +257,13 @@ var (
}
)
func Init() {
func init() {
lifecycle.InitLogging()
custom := os.Getenv("OLLAMA_TEST_SMOL_MODEL")
if custom != "" {
slog.Info("setting smol test model to " + custom)
smol = custom
}
}
func FindPort() string {

View File

@@ -7,12 +7,12 @@ This enables matching up devices and information reported by the backend
with tools (e.g. nvidia-smi) and system management libraries (e.g. nvml).
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-cuda/ggml-cuda.cu | 39 ++++++++++++++++++++++++++++++++
ggml/src/ggml-cuda/ggml-cuda.cu | 67 +++++++++++++++++++++++++++++---
ggml/src/ggml-metal/ggml-metal.m | 1 +
3 files changed, 41 insertions(+)
3 files changed, 63 insertions(+), 6 deletions(-)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 74e46716..48839339 100644
index 74e467163..48839339d 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -152,6 +152,7 @@ extern "C" {
@@ -24,10 +24,93 @@ index 74e46716..48839339 100644
size_t memory_total;
enum ggml_backend_dev_type type;
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index cb0d8528..d6960174 100644
index cb0d8528d..1492368de 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -2884,6 +2884,7 @@ struct ggml_backend_cuda_device_context {
@@ -173,6 +173,51 @@ static int ggml_cuda_parse_id(char devName[]) {
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
+static std::string ggml_cuda_parse_uuid(cudaDeviceProp prop, int device_num) {
+ char id[64];
+
+ #if !defined(GGML_USE_HIP)
+ snprintf(id, sizeof(id),
+ "GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
+ (unsigned char)prop.uuid.bytes[0],
+ (unsigned char)prop.uuid.bytes[1],
+ (unsigned char)prop.uuid.bytes[2],
+ (unsigned char)prop.uuid.bytes[3],
+ (unsigned char)prop.uuid.bytes[4],
+ (unsigned char)prop.uuid.bytes[5],
+ (unsigned char)prop.uuid.bytes[6],
+ (unsigned char)prop.uuid.bytes[7],
+ (unsigned char)prop.uuid.bytes[8],
+ (unsigned char)prop.uuid.bytes[9],
+ (unsigned char)prop.uuid.bytes[10],
+ (unsigned char)prop.uuid.bytes[11],
+ (unsigned char)prop.uuid.bytes[12],
+ (unsigned char)prop.uuid.bytes[13],
+ (unsigned char)prop.uuid.bytes[14],
+ (unsigned char)prop.uuid.bytes[15]
+ );
+ #else
+ #ifdef _WIN32
+ snprintf(id, sizeof(id), "%d", device_num);
+ #else
+ try {
+ std::string uuid = std::string(prop.uuid.bytes, 16);
+
+ size_t pos = 0;
+ unsigned long long v = stoull(uuid, &pos, 16);
+ if (v == 0 || pos != uuid.size() || (!uuid.empty() && uuid[0] == '-'))
+ throw std::invalid_argument("invalid uuid");
+
+ snprintf(id, sizeof(id), "GPU-%016llx", v);
+ } catch (const std::exception &e) {
+ snprintf(id, sizeof(id), "%d", device_num);
+ }
+ #endif
+ #endif
+
+ return id;
+}
+
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards:
@@ -261,22 +306,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].cc += prop.minor * 0x10;
}
}
- GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d\n",
+ GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d, ID: %s\n",
id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff,
- device_vmm ? "yes" : "no", prop.warpSize);
+ device_vmm ? "yes" : "no", prop.warpSize, ggml_cuda_parse_uuid(prop, id).c_str());
#elif defined(GGML_USE_MUSA)
// FIXME: Ensure compatibility with varying warp sizes across different MUSA archs.
info.devices[id].warp_size = 32;
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = GGML_CUDA_CC_OFFSET_MTHREADS + prop.major * 0x100;
info.devices[id].cc += prop.minor * 0x10;
- GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
- id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
+ GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
+ id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
+ ggml_cuda_parse_uuid(prop, id).c_str());
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
- GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
- id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
+ GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
+ id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
+ ggml_cuda_parse_uuid(prop, id).c_str());
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
@@ -2884,6 +2931,7 @@ struct ggml_backend_cuda_device_context {
int device;
std::string name;
std::string description;
@@ -35,7 +118,7 @@ index cb0d8528..d6960174 100644
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -2896,6 +2897,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
@@ -2896,6 +2944,11 @@ static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t
return ctx->description.c_str();
}
@@ -47,7 +130,7 @@ index cb0d8528..d6960174 100644
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
ggml_cuda_set_device(ctx->device);
@@ -2910,6 +2916,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
@@ -2910,6 +2963,7 @@ static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
props->name = ggml_backend_cuda_device_get_name(dev);
props->description = ggml_backend_cuda_device_get_description(dev);
@@ -55,47 +138,16 @@ index cb0d8528..d6960174 100644
props->type = ggml_backend_cuda_device_get_type(dev);
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
@@ -3458,6 +3465,38 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
@@ -3457,6 +3511,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
+ dev_ctx->id = ggml_cuda_parse_uuid(prop, i);
+ #if !defined(GGML_USE_HIP)
+ char id[64];
+ snprintf(id, sizeof(id),
+ "GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
+ (unsigned char)prop.uuid.bytes[0],
+ (unsigned char)prop.uuid.bytes[1],
+ (unsigned char)prop.uuid.bytes[2],
+ (unsigned char)prop.uuid.bytes[3],
+ (unsigned char)prop.uuid.bytes[4],
+ (unsigned char)prop.uuid.bytes[5],
+ (unsigned char)prop.uuid.bytes[6],
+ (unsigned char)prop.uuid.bytes[7],
+ (unsigned char)prop.uuid.bytes[8],
+ (unsigned char)prop.uuid.bytes[9],
+ (unsigned char)prop.uuid.bytes[10],
+ (unsigned char)prop.uuid.bytes[11],
+ (unsigned char)prop.uuid.bytes[12],
+ (unsigned char)prop.uuid.bytes[13],
+ (unsigned char)prop.uuid.bytes[14],
+ (unsigned char)prop.uuid.bytes[15]
+ );
+ dev_ctx->id = id;
+ #else
+ #ifdef _WIN32
+ char id[16];
+ snprintf(id, sizeof(id), "%d", i);
+ dev_ctx->id = id;
+ #else
+ dev_ctx->id = "GPU-" + std::string(prop.uuid.bytes, 16);
+ #endif
+ #endif
+
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,
/* .reg = */ &reg,
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 1b56f858..a9eeebc6 100644
index 1b56f858c..a9eeebc6a 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -5703,6 +5703,7 @@ static enum ggml_backend_dev_type ggml_backend_metal_device_get_type(ggml_backen

View File

@@ -0,0 +1,99 @@
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Jesse Gross <jesse@ollama.com>
Date: Wed, 23 Jul 2025 11:58:49 -0700
Subject: [PATCH] ggml: No-alloc mode
Callers can set a backend buffer type to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.
Defaults to false for newly created backend buffer types.
---
ggml/include/ggml-backend.h | 1 +
ggml/src/ggml-backend-impl.h | 2 ++
ggml/src/ggml-backend.cpp | 19 ++++++++++++++++++-
3 files changed, 21 insertions(+), 1 deletion(-)
diff --git a/ggml/include/ggml-backend.h b/ggml/include/ggml-backend.h
index 48839339..3903c3cb 100644
--- a/ggml/include/ggml-backend.h
+++ b/ggml/include/ggml-backend.h
@@ -35,6 +35,7 @@ extern "C" {
//
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
+ GGML_API void ggml_backend_buft_set_alloc (ggml_backend_buffer_type_t buft, bool alloc);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
diff --git a/ggml/src/ggml-backend-impl.h b/ggml/src/ggml-backend-impl.h
index c36c12d6..81749a5a 100644
--- a/ggml/src/ggml-backend-impl.h
+++ b/ggml/src/ggml-backend-impl.h
@@ -32,6 +32,7 @@ extern "C" {
struct ggml_backend_buffer_type_i iface;
ggml_backend_dev_t device;
void * context;
+ bool no_alloc;
};
//
@@ -63,6 +64,7 @@ extern "C" {
void * context;
size_t size;
enum ggml_backend_buffer_usage usage;
+ bool no_alloc;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
diff --git a/ggml/src/ggml-backend.cpp b/ggml/src/ggml-backend.cpp
index be335e8c..84928bc3 100644
--- a/ggml/src/ggml-backend.cpp
+++ b/ggml/src/ggml-backend.cpp
@@ -35,12 +35,22 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
+void ggml_backend_buft_set_alloc(ggml_backend_buffer_type_t buft, bool alloc) {
+ buft->no_alloc = !alloc;
+}
+
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
if (size == 0) {
// return a dummy buffer for zero-sized allocations
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
+ if (buft->no_alloc) {
+ ggml_backend_buffer_t buf = ggml_backend_buffer_init(buft, {}, NULL, size);
+ buf->no_alloc = true;
+ return buf;
+ }
+
return buft->iface.alloc_buffer(buft, size);
}
@@ -89,7 +99,8 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
/* .buft = */ buft,
/* .context = */ context,
/* .size = */ size,
- /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
+ /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY,
+ /* .no_alloc = */ false
};
return buffer;
@@ -119,6 +130,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return NULL;
}
+ // If we aren't allocating memory, return a placeholder non-NULL pointer
+ // that meets alignment requirements
+ if (buffer->no_alloc) {
+ return (void *)ggml_backend_buffer_get_alignment(buffer);
+ }
+
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");

View File

@@ -15,6 +15,9 @@ import (
)
type Backend interface {
// Close frees all memory associated with this backend
Close()
Load(ctx context.Context, progress func(float32)) error
// BackendMemory returns the memory allocations that were made for this model

View File

@@ -19,6 +19,7 @@ import (
"slices"
"strconv"
"strings"
"sync"
"sync/atomic"
"unicode"
"unsafe"
@@ -33,15 +34,33 @@ import (
"golang.org/x/sync/errgroup"
)
func devices() []*C.struct_ggml_backend_device {
ggml.OnceLoad()
ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
for i := range ds {
ds[i] = C.ggml_backend_dev_get(C.size_t(i))
}
var (
cpus, accels, gpus []C.ggml_backend_dev_t
backends map[C.ggml_backend_dev_t]C.ggml_backend_t
)
return ds
}
var initDevices = sync.OnceFunc(func() {
ggml.OnceLoad()
backends = make(map[C.ggml_backend_dev_t]C.ggml_backend_t)
for i := range C.ggml_backend_dev_count() {
d := C.ggml_backend_dev_get(i)
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
backends[d] = C.ggml_backend_dev_init(d, nil)
}
})
type Backend struct {
// modelPath is the location of the model data
@@ -53,28 +72,31 @@ type Backend struct {
// to the name that is used by the model definition
tensorLoadTargets map[string][]string
sched *C.struct_ggml_backend_sched
schedBackends []*C.struct_ggml_backend
schedBufts []*C.struct_ggml_backend_buffer_type
sched C.ggml_backend_sched_t
schedBackends []C.ggml_backend_t
schedBufts []C.ggml_backend_buffer_type_t
tensors map[string]*C.struct_ggml_tensor
// input is the backend used for inputs
input *C.struct_ggml_backend_buffer_type
input C.ggml_backend_buffer_type_t
// layers is the backend used for repeating layers
layers map[int]*C.struct_ggml_backend_buffer_type
layers map[int]C.ggml_backend_buffer_type_t
// requiredMemory is the cumulative memory allocations needed by the backend
requiredMemory *ml.BackendMemory
// btDeviceMemory maps from a buffer type to the memory allocations associated with that device
btDeviceMemory map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory
btDeviceMemory map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory
flashAttention bool
// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
maxGraphNodes int
// weightBuffers are the GGML contexts and buffers for allocating weights
weightBuffers map[*C.struct_ggml_context]C.ggml_backend_buffer_t
}
func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
@@ -99,27 +121,14 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
"num_key_values", len(meta.KV()),
)
initDevices()
var requiredMemory ml.BackendMemory
btDeviceMemory := make(map[*C.struct_ggml_backend_buffer_type]*ml.DeviceMemory)
btDeviceMemory := make(map[C.ggml_backend_buffer_type_t]*ml.DeviceMemory)
type deviceBufferType struct {
d *C.struct_ggml_backend_device
bts []*C.struct_ggml_backend_buffer_type
}
var cpus, accels, gpus []*C.struct_ggml_backend_device
for _, d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
}
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
accels = append(accels, d)
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
gpus = append(gpus, d)
}
d C.ggml_backend_dev_t
bts []C.ggml_backend_buffer_type_t
}
blocks := int(meta.KV().BlockCount())
@@ -149,7 +158,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
bt := C.ggml_backend_dev_buffer_type(d)
gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
d: d,
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
bts: append([]C.ggml_backend_buffer_type_t{bt}, cpuDeviceBufferType.bts...),
})
btDeviceMemory[bt] = &requiredMemory.GPUs[i]
requiredMemory.GPUs[i].Name = C.GoString(C.ggml_backend_dev_name(d))
@@ -235,16 +244,14 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
targets := make(map[string][]string)
// contexts are shared by tensors of the same buffer type
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type, layer int) *C.struct_ggml_tensor {
ctxs := make(map[C.ggml_backend_buffer_type_t]*C.struct_ggml_context)
createTensor := func(t tensor, bts []C.ggml_backend_buffer_type_t, layer int) *C.struct_ggml_tensor {
for _, bt := range bts {
if _, ok := ctxs[bt]; !ok {
// slog.Info("XXX before ggml_init")
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
no_alloc: true,
})
// slog.Info("XXX after ggml_init")
}
targets[t.source.Name] = append(targets[t.source.Name], t.target)
@@ -332,7 +339,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
// allocate buffers for each context
bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
bbs := make(map[*C.struct_ggml_context]C.ggml_backend_buffer_t, len(ctxs))
for bt, c := range ctxs {
if C.ggml_get_first_tensor(c) == nil {
continue
@@ -350,6 +357,14 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
if b == nil {
for _, b := range bbs {
C.ggml_backend_buffer_free(b)
}
for _, ctx := range ctxs {
C.ggml_free(ctx)
}
panic(ml.ErrNoMem{BackendMemory: requiredMemory})
}
@@ -390,13 +405,13 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
}
// map devices to backend buffer types so new tensors can be assigned to the correct device
deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
deviceBufferTypes := make(map[C.ggml_backend_dev_t]C.ggml_backend_buffer_type_t)
// create backends and buffer types used for the compute graph scheduler
var schedBackends []*C.struct_ggml_backend
var schedBufts []*C.struct_ggml_backend_buffer_type
var schedBackends []C.ggml_backend_t
var schedBufts []C.ggml_backend_buffer_type_t
for _, d := range append(gpus, append(accels, cpus...)...) {
b := C.ggml_backend_dev_init(d, nil)
b := backends[d]
bt := C.ggml_backend_get_default_buffer_type(b)
deviceBufferTypes[d] = bt
@@ -428,8 +443,8 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
schedBackends: schedBackends,
schedBufts: schedBufts,
input: deviceBufferTypes[input.d],
layers: func() map[int]*C.struct_ggml_backend_buffer_type {
m := make(map[int]*C.struct_ggml_backend_buffer_type)
layers: func() map[int]C.ggml_backend_buffer_type_t {
m := make(map[int]C.ggml_backend_buffer_type_t)
for i, layer := range layers {
m[i] = deviceBufferTypes[layer.d]
}
@@ -438,6 +453,7 @@ func New(modelPath string, params ml.BackendParams) (ml.Backend, error) {
requiredMemory: &requiredMemory,
btDeviceMemory: btDeviceMemory,
maxGraphNodes: maxGraphNodes,
weightBuffers: bbs,
}, nil
}
@@ -445,6 +461,19 @@ func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Close() {
if b == nil {
return
}
for ctx, b := range b.weightBuffers {
C.ggml_backend_buffer_free(b)
C.ggml_free(ctx)
}
C.ggml_backend_sched_free(b.sched)
}
func (b *Backend) Load(ctx context.Context, progress func(float32)) error {
var doneBytes atomic.Uint64
totalBytes := uint64(b.meta.Length) - b.meta.Tensors().Offset
@@ -541,10 +570,8 @@ func (b *Backend) NewContextSize(n int) ml.Context {
panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
}
var allocatedBuffers []*C.struct_ggml_backend_buffer
var allocatedBuffers []C.ggml_backend_buffer_t
// slog.Info("XXX before ggml_init")
// defer slog.Info("XXX after ggml_init")
return &Context{
b: b,
maxGraphNodes: n,
@@ -572,11 +599,11 @@ type Context struct {
graph *C.struct_ggml_cgraph
// buft is the buffer type used for new tensors
buft *C.struct_ggml_backend_buffer_type
buft C.ggml_backend_buffer_type_t
// allocatedBuffers are buffers for tensors that we have allocated in this context
// so that we can free them when we close the context
allocatedBuffers *[]*C.struct_ggml_backend_buffer
allocatedBuffers *[]C.ggml_backend_buffer_t
// maxGraphNodes is the maximum allowed number of graph nodes in this context
maxGraphNodes int
@@ -1407,55 +1434,3 @@ func (c Context) FromBytes(dtype ml.DType, s []uint8, shape ...int) ml.Tensor {
return t
}
// TODO - DRY this out with New if possible
func newTestBackend(size int) *Backend {
var cpus []*C.struct_ggml_backend_device
for _, d := range devices() {
switch C.ggml_backend_dev_type(d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
if len(cpus) == 0 {
// only the first cpu device should be used
cpus = append(cpus, d)
break
}
}
}
var schedBackends []*C.struct_ggml_backend
var schedBufts []*C.struct_ggml_backend_buffer_type
b := C.ggml_backend_dev_init(cpus[0], nil)
bt := C.ggml_backend_get_default_buffer_type(b)
C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(runtime.NumCPU())))
// C.ggml_backend_cpu_set_n_threads(b, 1) // DEBUGGING
schedBackends = append(schedBackends, b)
schedBufts = append(schedBufts, bt)
return &Backend{
meta: nil,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
C.int(len(schedBackends)),
C.size_t(max(8192, size)),
false,
false,
),
input: bt,
maxGraphNodes: max(8192, size),
schedBackends: schedBackends,
schedBufts: schedBufts,
}
}
func newTestContext(b *Backend, n int) *Context {
n = max(8192, n)
// slog.Info("XXX before ggml_init")
// defer slog.Info("XXX after ggml_init")
return &Context{
b: b,
maxGraphNodes: n,
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
no_alloc: true,
}),
}
}

View File

@@ -35,6 +35,7 @@ extern "C" {
//
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
GGML_API void ggml_backend_buft_set_alloc (ggml_backend_buffer_type_t buft, bool alloc);
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);

View File

@@ -32,6 +32,7 @@ extern "C" {
struct ggml_backend_buffer_type_i iface;
ggml_backend_dev_t device;
void * context;
bool no_alloc;
};
//
@@ -63,6 +64,7 @@ extern "C" {
void * context;
size_t size;
enum ggml_backend_buffer_usage usage;
bool no_alloc;
};
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(

View File

@@ -35,12 +35,22 @@ const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name(buft);
}
void ggml_backend_buft_set_alloc(ggml_backend_buffer_type_t buft, bool alloc) {
buft->no_alloc = !alloc;
}
ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
if (size == 0) {
// return a dummy buffer for zero-sized allocations
return ggml_backend_buffer_init(buft, {}, NULL, 0);
}
if (buft->no_alloc) {
ggml_backend_buffer_t buf = ggml_backend_buffer_init(buft, {}, NULL, size);
buf->no_alloc = true;
return buf;
}
return buft->iface.alloc_buffer(buft, size);
}
@@ -89,7 +99,8 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
/* .buft = */ buft,
/* .context = */ context,
/* .size = */ size,
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
/* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY,
/* .no_alloc = */ false
};
return buffer;
@@ -119,6 +130,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
return NULL;
}
// If we aren't allocating memory, return a placeholder non-NULL pointer
// that meets alignment requirements
if (buffer->no_alloc) {
return (void *)ggml_backend_buffer_get_alignment(buffer);
}
void * base = buffer->iface.get_base(buffer);
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");

View File

@@ -175,6 +175,51 @@ static int ggml_cuda_parse_id(char devName[]) {
}
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
static std::string ggml_cuda_parse_uuid(cudaDeviceProp prop, int device_num) {
char id[64];
#if !defined(GGML_USE_HIP)
snprintf(id, sizeof(id),
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
(unsigned char)prop.uuid.bytes[0],
(unsigned char)prop.uuid.bytes[1],
(unsigned char)prop.uuid.bytes[2],
(unsigned char)prop.uuid.bytes[3],
(unsigned char)prop.uuid.bytes[4],
(unsigned char)prop.uuid.bytes[5],
(unsigned char)prop.uuid.bytes[6],
(unsigned char)prop.uuid.bytes[7],
(unsigned char)prop.uuid.bytes[8],
(unsigned char)prop.uuid.bytes[9],
(unsigned char)prop.uuid.bytes[10],
(unsigned char)prop.uuid.bytes[11],
(unsigned char)prop.uuid.bytes[12],
(unsigned char)prop.uuid.bytes[13],
(unsigned char)prop.uuid.bytes[14],
(unsigned char)prop.uuid.bytes[15]
);
#else
#ifdef _WIN32
snprintf(id, sizeof(id), "%d", device_num);
#else
try {
std::string uuid = std::string(prop.uuid.bytes, 16);
size_t pos = 0;
unsigned long long v = stoull(uuid, &pos, 16);
if (v == 0 || pos != uuid.size() || (!uuid.empty() && uuid[0] == '-'))
throw std::invalid_argument("invalid uuid");
snprintf(id, sizeof(id), "GPU-%016llx", v);
} catch (const std::exception &e) {
snprintf(id, sizeof(id), "%d", device_num);
}
#endif
#endif
return id;
}
static ggml_cuda_device_info ggml_cuda_init() {
#ifdef __HIP_PLATFORM_AMD__
// Workaround for a rocBLAS bug when using multiple graphics cards:
@@ -263,22 +308,24 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.devices[id].cc += prop.minor * 0x10;
}
}
GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d\n",
GGML_LOG_INFO(" Device %d: %s, %s (0x%x), VMM: %s, Wave Size: %d, ID: %s\n",
id, prop.name, prop.gcnArchName, info.devices[id].cc & 0xffff,
device_vmm ? "yes" : "no", prop.warpSize);
device_vmm ? "yes" : "no", prop.warpSize, ggml_cuda_parse_uuid(prop, id).c_str());
#elif defined(GGML_USE_MUSA)
// FIXME: Ensure compatibility with varying warp sizes across different MUSA archs.
info.devices[id].warp_size = 32;
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = GGML_CUDA_CC_OFFSET_MTHREADS + prop.major * 0x100;
info.devices[id].cc += prop.minor * 0x10;
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
ggml_cuda_parse_uuid(prop, id).c_str());
#else
info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
info.devices[id].cc = 100*prop.major + 10*prop.minor;
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s, ID: %s\n",
id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no",
ggml_cuda_parse_uuid(prop, id).c_str());
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
}
@@ -3475,38 +3522,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
cudaDeviceProp prop;
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
dev_ctx->description = prop.name;
#if !defined(GGML_USE_HIP)
char id[64];
snprintf(id, sizeof(id),
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
(unsigned char)prop.uuid.bytes[0],
(unsigned char)prop.uuid.bytes[1],
(unsigned char)prop.uuid.bytes[2],
(unsigned char)prop.uuid.bytes[3],
(unsigned char)prop.uuid.bytes[4],
(unsigned char)prop.uuid.bytes[5],
(unsigned char)prop.uuid.bytes[6],
(unsigned char)prop.uuid.bytes[7],
(unsigned char)prop.uuid.bytes[8],
(unsigned char)prop.uuid.bytes[9],
(unsigned char)prop.uuid.bytes[10],
(unsigned char)prop.uuid.bytes[11],
(unsigned char)prop.uuid.bytes[12],
(unsigned char)prop.uuid.bytes[13],
(unsigned char)prop.uuid.bytes[14],
(unsigned char)prop.uuid.bytes[15]
);
dev_ctx->id = id;
#else
#ifdef _WIN32
char id[16];
snprintf(id, sizeof(id), "%d", i);
dev_ctx->id = id;
#else
dev_ctx->id = "GPU-" + std::string(prop.uuid.bytes, 16);
#endif
#endif
dev_ctx->id = ggml_cuda_parse_uuid(prop, i);
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,

View File

@@ -34,10 +34,12 @@ type ErrorResponse struct {
}
type Message struct {
Role string `json:"role"`
Content any `json:"content"`
Reasoning string `json:"reasoning,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
Role string `json:"role"`
Content any `json:"content"`
Reasoning string `json:"reasoning,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
Name string `json:"name,omitempty"`
ToolCallID string `json:"tool_call_id,omitempty"`
}
type Choice struct {
@@ -101,6 +103,7 @@ type ChatCompletionRequest struct {
ResponseFormat *ResponseFormat `json:"response_format"`
Tools []api.Tool `json:"tools"`
Reasoning *Reasoning `json:"reasoning,omitempty"`
ReasoningEffort *string `json:"reasoning_effort,omitempty"`
}
type ChatCompletion struct {
@@ -401,9 +404,20 @@ func toModel(r api.ShowResponse, m string) Model {
func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
var messages []api.Message
for _, msg := range r.Messages {
toolName := ""
if strings.ToLower(msg.Role) == "tool" {
toolName = msg.Name
if toolName == "" && msg.ToolCallID != "" {
toolName = nameFromToolCallID(r.Messages, msg.ToolCallID)
}
}
switch content := msg.Content.(type) {
case string:
messages = append(messages, api.Message{Role: msg.Role, Content: content, Thinking: msg.Reasoning})
toolCalls, err := fromCompletionToolCall(msg.ToolCalls)
if err != nil {
return nil, err
}
messages = append(messages, api.Message{Role: msg.Role, Content: content, Thinking: msg.Reasoning, ToolCalls: toolCalls, ToolName: toolName})
case []any:
for _, c := range content {
data, ok := c.(map[string]any)
@@ -454,7 +468,21 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
return nil, errors.New("invalid message format")
}
}
// since we might have added multiple messages above, if we have tools
// calls we'll add them to the last message
if len(messages) > 0 && len(msg.ToolCalls) > 0 {
toolCalls, err := fromCompletionToolCall(msg.ToolCalls)
if err != nil {
return nil, err
}
messages[len(messages)-1].ToolCalls = toolCalls
if toolName != "" {
messages[len(messages)-1].ToolName = toolName
}
messages[len(messages)-1].Thinking = msg.Reasoning
}
default:
// content is only optional if tool calls are present
if msg.ToolCalls == nil {
return nil, fmt.Errorf("invalid message content type: %T", content)
}
@@ -467,7 +495,7 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
return nil, errors.New("invalid tool call arguments")
}
}
messages = append(messages, api.Message{Role: msg.Role, ToolCalls: toolCalls})
messages = append(messages, api.Message{Role: msg.Role, Thinking: msg.Reasoning, ToolCalls: toolCalls})
}
}
@@ -514,10 +542,6 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
options["top_p"] = 1.0
}
if r.Reasoning != nil {
options["reasoning"] = *r.Reasoning.Effort
}
var format json.RawMessage
if r.ResponseFormat != nil {
switch strings.ToLower(strings.TrimSpace(r.ResponseFormat.Type)) {
@@ -533,9 +557,15 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
var think *api.ThinkValue
if r.Reasoning != nil {
options["reasoning"] = *r.Reasoning.Effort
think = &api.ThinkValue{
Value: *r.Reasoning.Effort,
}
} else if r.ReasoningEffort != nil {
options["reasoning"] = *r.ReasoningEffort
think = &api.ThinkValue{
Value: *r.ReasoningEffort,
}
}
return &api.ChatRequest{
@@ -549,6 +579,33 @@ func fromChatRequest(r ChatCompletionRequest) (*api.ChatRequest, error) {
}, nil
}
func nameFromToolCallID(messages []Message, toolCallID string) string {
// iterate backwards to be more resilient to duplicate tool call IDs (this
// follows "last one wins")
for i := len(messages) - 1; i >= 0; i-- {
msg := messages[i]
for _, tc := range msg.ToolCalls {
if tc.ID == toolCallID {
return tc.Function.Name
}
}
}
return ""
}
func fromCompletionToolCall(toolCalls []ToolCall) ([]api.ToolCall, error) {
apiToolCalls := make([]api.ToolCall, len(toolCalls))
for i, tc := range toolCalls {
apiToolCalls[i].Function.Name = tc.Function.Name
err := json.Unmarshal([]byte(tc.Function.Arguments), &apiToolCalls[i].Function.Arguments)
if err != nil {
return nil, errors.New("invalid tool call arguments")
}
}
return apiToolCalls, nil
}
func fromCompleteRequest(r CompletionRequest) (api.GenerateRequest, error) {
options := make(map[string]any)

View File

@@ -235,6 +235,210 @@ func TestChatMiddleware(t *testing.T) {
Stream: &False,
},
},
{
name: "chat handler with tools and content",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "content": "Let's see what the weather is like in Paris", "tool_calls": [{"id": "id", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
Content: "Let's see what the weather is like in Paris",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},
},
},
},
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "chat handler with tools and empty content",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "content": "", "tool_calls": [{"id": "id", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},
},
},
},
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "chat handler with tools and thinking content",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "reasoning": "Let's see what the weather is like in Paris", "tool_calls": [{"id": "id", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
Thinking: "Let's see what the weather is like in Paris",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},
},
},
},
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "tool response with call ID",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "tool_calls": [{"id": "id_abc", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]},
{"role": "tool", "tool_call_id": "id_abc", "content": "The weather in Paris is 20 degrees Celsius"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},
},
},
},
},
{
Role: "tool",
Content: "The weather in Paris is 20 degrees Celsius",
ToolName: "get_current_weather",
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "tool response with name",
body: `{
"model": "test-model",
"messages": [
{"role": "user", "content": "What's the weather like in Paris Today?"},
{"role": "assistant", "tool_calls": [{"id": "id", "type": "function", "function": {"name": "get_current_weather", "arguments": "{\"location\": \"Paris, France\", \"format\": \"celsius\"}"}}]},
{"role": "tool", "name": "get_current_weather", "content": "The weather in Paris is 20 degrees Celsius"}
]
}`,
req: api.ChatRequest{
Model: "test-model",
Messages: []api.Message{
{
Role: "user",
Content: "What's the weather like in Paris Today?",
},
{
Role: "assistant",
ToolCalls: []api.ToolCall{
{
Function: api.ToolCallFunction{
Name: "get_current_weather",
Arguments: map[string]any{
"location": "Paris, France",
"format": "celsius",
},
},
},
},
},
{
Role: "tool",
Content: "The weather in Paris is 20 degrees Celsius",
ToolName: "get_current_weather",
},
},
Options: map[string]any{
"temperature": 1.0,
"top_p": 1.0,
},
Stream: &False,
},
},
{
name: "chat handler with streaming tools",
body: `{

View File

@@ -70,6 +70,10 @@ func kvCacheTypeFromStr(s string) ml.DType {
}
func (c *InputCache) Close() {
if c == nil {
return
}
c.cache.Close()
}

View File

@@ -877,6 +877,15 @@ func (s *Server) load(
) {
err := s.initModel(mpath, params, lpath, parallel, kvCacheType, kvSize, multiUserCache)
if err != nil {
var noMem ml.ErrNoMem
if errors.As(err, &noMem) {
// We can't yet handle this but in the future we will
s.cache.Close()
if s.model != nil {
s.model.Backend().Close()
}
}
panic(err)
}

View File

@@ -44,8 +44,8 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.AsBool()
thinkLevel = think.AsString()
thinkVal = think.Bool()
thinkLevel = think.String()
}
var b bytes.Buffer
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[i:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
@@ -105,8 +105,8 @@ func chatPrompt(ctx context.Context, m *Model, tokenize tokenizeFunc, opts *api.
thinkVal := false
thinkLevel := ""
if think != nil {
thinkVal = think.AsBool()
thinkLevel = think.AsString()
thinkVal = think.Bool()
thinkLevel = think.String()
}
if err := m.Template.Execute(&b, template.Values{Messages: append(system, msgs[currMsgIdx:]...), Tools: tools, Think: thinkVal, ThinkLevel: thinkLevel, IsThinkSet: think != nil}); err != nil {
return "", nil, err

View File

@@ -30,6 +30,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
@@ -50,11 +51,16 @@ func experimentEnabled(name string) bool {
var useClient2 = experimentEnabled("client2")
// Low VRAM mode is based on the sum of total VRAM (not free) and triggers
// reduced context length on some models
var lowVRAMThreshold uint64 = 20 * format.GibiByte
var mode string = gin.DebugMode
type Server struct {
addr net.Addr
sched *Scheduler
addr net.Addr
sched *Scheduler
lowVRAM bool
}
func init() {
@@ -112,8 +118,9 @@ func (s *Server) scheduleRunner(ctx context.Context, name string, caps []model.C
return nil, nil, nil, err
}
// This model requires a minimum context to function effectively
if slices.Contains(model.Config.ModelFamilies, "gptoss") {
// This model is much more capable with a larger context, so set that
// unless it would penalize performance too much
if !s.lowVRAM && slices.Contains(model.Config.ModelFamilies, "gptoss") {
opts.NumCtx = max(opts.NumCtx, 8192)
}
@@ -198,7 +205,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
// Validate Think value: string values currently only allowed for gptoss models
if req.Think != nil && req.Think.IsString() && !useHarmony {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("think value %q is not supported for this model", req.Think.AsString())})
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("think value %q is not supported for this model", req.Think.String())})
return
}
@@ -206,7 +213,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
if req.Suffix != "" {
caps = append(caps, model.CapabilityInsert)
}
if req.Think != nil && req.Think.AsBool() {
if req.Think != nil && req.Think.Bool() {
caps = append(caps, model.CapabilityThinking)
// TODO(drifkin): consider adding a warning if it's false and the model
// doesn't support thinking. It's not strictly required, but it can be a
@@ -281,10 +288,10 @@ func (s *Server) GenerateHandler(c *gin.Context) {
values.Messages = append(msgs, api.Message{Role: "user", Content: req.Prompt})
}
values.Think = req.Think != nil && req.Think.AsBool()
values.Think = req.Think != nil && req.Think.Bool()
values.ThinkLevel = ""
if req.Think != nil {
values.ThinkLevel = req.Think.AsString()
values.ThinkLevel = req.Think.String()
}
values.IsThinkSet = req.Think != nil
@@ -310,7 +317,7 @@ func (s *Server) GenerateHandler(c *gin.Context) {
var thinkingState *thinking.Parser
if !useHarmony {
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if req.Think != nil && req.Think.AsBool() && openingTag != "" && closingTag != "" {
if req.Think != nil && req.Think.Bool() && openingTag != "" && closingTag != "" {
thinkingState = &thinking.Parser{
OpeningTag: openingTag,
ClosingTag: closingTag,
@@ -364,7 +371,8 @@ func (s *Server) GenerateHandler(c *gin.Context) {
*toolName = strings.TrimPrefix(*toolName, "functions.")
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
ch <- gin.H{"error parsing tool call": err.Error()}
errStr := fmt.Sprintf("error parsing tool call: raw='%s', err=%s", toolContent, err.Error())
ch <- gin.H{"error": errStr}
return
}
@@ -1382,6 +1390,15 @@ func Serve(ln net.Listener) error {
gpus := discover.GetGPUInfo()
gpus.LogDetails()
var totalVRAM uint64
for _, gpu := range gpus {
totalVRAM += gpu.TotalMemory - envconfig.GpuOverhead()
}
if totalVRAM < lowVRAMThreshold {
s.lowVRAM = true
slog.Info("entering low vram mode", "total vram", format.HumanBytes2(totalVRAM), "threshold", format.HumanBytes2(lowVRAMThreshold))
}
err = srvr.Serve(ln)
// If server is closed from the signal handler, wait for the ctx to be done
// otherwise error out quickly
@@ -1530,7 +1547,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
if len(req.Tools) > 0 {
caps = append(caps, model.CapabilityTools)
}
if req.Think != nil && req.Think.AsBool() {
if req.Think != nil && req.Think.Bool() {
caps = append(caps, model.CapabilityThinking)
}
@@ -1584,7 +1601,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
// Validate Think value: string values currently only allowed for gptoss models
if req.Think != nil && req.Think.IsString() && !useHarmony {
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("think value %q is not supported for this model", req.Think.AsString())})
c.JSON(http.StatusBadRequest, gin.H{"error": fmt.Sprintf("think value %q is not supported for this model", req.Think.String())})
return
}
@@ -1603,7 +1620,7 @@ func (s *Server) ChatHandler(c *gin.Context) {
var thinkingState *thinking.Parser
openingTag, closingTag := thinking.InferTags(m.Template.Template)
if req.Think != nil && req.Think.AsBool() && openingTag != "" && closingTag != "" {
if req.Think != nil && req.Think.Bool() && openingTag != "" && closingTag != "" {
thinkingState = &thinking.Parser{
OpeningTag: openingTag,
ClosingTag: closingTag,
@@ -1655,7 +1672,8 @@ func (s *Server) ChatHandler(c *gin.Context) {
*toolName = strings.TrimPrefix(*toolName, "functions.")
var args api.ToolCallFunctionArguments
if err := json.Unmarshal([]byte(toolContent), &args); err != nil {
ch <- gin.H{"error parsing tool call": err.Error()}
errStr := fmt.Sprintf("error parsing tool call: raw='%s', err=%s", toolContent, err.Error())
ch <- gin.H{"error": errStr}
return
}
res.Message.ToolCalls = []api.ToolCall{{Function: api.ToolCallFunction{Name: *toolName, Arguments: args}}}

View File

@@ -758,8 +758,6 @@ func (a ByDurationAndName) Less(i, j int) bool {
// If numParallel is <= 0, this will attempt try to optimize parallelism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
var estimatedVRAM uint64
var numParallelToTry []int
if *numParallel <= 0 {
// If no specific parallel setting was provided, try larger then smaller, always end with 1
@@ -769,39 +767,51 @@ func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuIn
}
for _, gl := range gpus.ByLibrary() {
var ok bool
sgl := append(make(discover.GpuInfoList, 0, len(gl)), gl...)
// TODO - potentially sort by performance capability, existing models loaded, etc.
// TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them
// Note: at present, this will favor more VRAM over faster GPU speed in mixed setups
// Note: at present, this will favor most current available VRAM descending and ignoring faster GPU speed in mixed setups
sort.Sort(sort.Reverse(discover.ByFreeMemory(sgl)))
// First attempt to fit the model into a single GPU
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread() {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
if !envconfig.SchedSpread() {
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
// Try to pack into as few GPUs as possible, starting from 1 GPU
for numGPUs := 1; numGPUs <= len(sgl); numGPUs++ {
gpuSubset := sgl[:numGPUs]
ok, estimatedVRAM := llm.PredictServerFit(gpuSubset, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p)
if ok {
slog.Info("new model will fit in available VRAM across minimum required GPUs, loading",
"model", req.model.ModelPath,
"library", sgl[0].Library,
"parallel", p,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", numGPUs)
*numParallel = p
return []discover.GpuInfo{g}
return gpuSubset
}
}
}
}
} else {
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// TODO future refinements
// - if multiple Libraries, see if any single GPU in any Library will fit
// - try subsets of GPUs instead of just falling back to 1 or all in a family
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
// Now try all the GPUS (OLLAMA_SCHED_SPREAD is set)
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM := llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, p); ok {
slog.Info("new model will fit in available VRAM, loading",
"model", req.model.ModelPath,
"library", sgl[0].Library,
"parallel", p,
"required", format.HumanBytes2(estimatedVRAM),
"gpus", len(sgl))
*numParallel = p
return sgl
}
}
}
}