Merge branch 'ollama:main' into main

This commit is contained in:
likelovewant
2024-07-06 09:41:21 +08:00
committed by GitHub
25 changed files with 338 additions and 448 deletions

View File

@@ -58,6 +58,7 @@ jobs:
runs-on: ${{ matrix.os }}
env:
GOARCH: ${{ matrix.arch }}
CGO_ENABLED: '1'
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
@@ -79,6 +80,7 @@ jobs:
- run: go generate -x ./...
if: ${{ ! startsWith(matrix.os, 'windows-') }}
name: 'Unix Go Generate'
- run: go build .
- uses: actions/upload-artifact@v4
with:
name: ${{ matrix.os }}-${{ matrix.arch }}-libraries

View File

@@ -104,7 +104,7 @@ like to use. For example, to compile an optimized binary for an Intel i9-9880H,
you might use:
```
OLLAMA_CUSTOM_CPU_DEFS="-DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_F16C=on -DLLAMA_FMA=on" go generate ./...
OLLAMA_CUSTOM_CPU_DEFS="-DGGML_AVX=on -DGGML_AVX2=on -DGGML_F16C=on -DGGML_FMA=on" go generate ./...
go build .
```

View File

@@ -89,3 +89,8 @@ Sometimes the Ollama can have difficulties initializing the GPU. When you check
If none of those resolve the problem, gather additional information and file an issue:
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
## Windows Terminal Errors
Older versions of Windows 10 (e.g., 21H1) are known to have a bug where the standard terminal program does not display control characters correctly. This can result in a long string of strings like `←[?25h←[?25l` being displayed, sometimes erroring with `The parameter is incorrect` To resolve this problem, please update to Win 10 22H1 or newer.

View File

@@ -19,7 +19,7 @@ Logs will often be helpful in diagnosing the problem (see
## System Requirements
* Windows 10 or newer, Home or Pro
* Windows 10 22H2 or newer, Home or Pro
* NVIDIA 452.39 or newer Drivers if you have an NVIDIA card
* AMD Radeon Driver https://www.amd.com/en/support if you have a Radeon card

View File

@@ -3,11 +3,14 @@ set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS ollama_llama_server ggml llama
RUNTIME DESTINATION "${CMAKE_BINARY_DIR}/bin"
LIBRARY DESTINATION "${CMAKE_BINARY_DIR}/bin"
COMPONENT ollama_llama_server)
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View File

@@ -1382,12 +1382,50 @@ struct llama_server_context
}
}
std::string common_prefix(const std::string& str1, const std::string& str2) {
auto mismatch_pair = std::mismatch(str1.begin(), str1.end(), str2.begin());
return std::string(str1.begin(), mismatch_pair.first);
}
// Find the slot that has the greatest common prefix
server_slot *prefix_slot(const json &prompt) {
if (!prompt.is_string()) {
return nullptr;
}
std::string prompt_str = prompt.get<std::string>();
server_slot *slot = nullptr;
size_t longest = 0;
for (server_slot &s : slots) {
if (s.available() && s.prompt.is_string()) {
std::string s_prompt = s.prompt.get<std::string>();
std::string prefix = common_prefix(s_prompt, prompt_str);
if (prefix.size() > longest) {
slot = &s;
longest = prefix.size();
}
}
}
if (!slot) {
return get_slot(-1);
}
LOG_INFO("slot with common prefix found", {{
"slot_id", slot->id,
"characters", longest
}});
return slot;
}
void process_single_task(task_server& task)
{
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
server_slot *slot = prefix_slot(task.data["prompt"]);
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later

View File

@@ -81,6 +81,7 @@ apply_patches() {
build() {
cmake -S ${LLAMACPP_DIR} -B ${BUILD_DIR} ${CMAKE_DEFS}
cmake --build ${BUILD_DIR} ${CMAKE_TARGETS} -j8
cmake --install ${BUILD_DIR} --component ollama_llama_server
}
compress() {

View File

@@ -18,16 +18,16 @@ sign() {
fi
}
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DLLAMA_METAL_EMBED_LIBRARY=on -DLLAMA_OPENMP=off"
COMMON_DARWIN_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_METAL_MACOSX_VERSION_MIN=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DGGML_METAL_EMBED_LIBRARY=on -DGGML_OPENMP=off"
case "${GOARCH}" in
"amd64")
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_NATIVE=off"
COMMON_CPU_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DGGML_METAL=off -DGGML_NATIVE=off"
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DLLAMA_BLAS=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DGGML_BLAS=off -DGGML_ACCELERATE=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build
@@ -37,7 +37,7 @@ case "${GOARCH}" in
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu"
echo "Building LCD CPU"
build
@@ -49,7 +49,7 @@ case "${GOARCH}" in
# Approximately 400% faster than LCD on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=off -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=off -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
@@ -61,7 +61,7 @@ case "${GOARCH}" in
# Approximately 10% faster than AVX on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_ACCELERATE=on -DLLAMA_BLAS=off -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_ACCELERATE=on -DGGML_BLAS=off -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation"
@@ -75,14 +75,14 @@ case "${GOARCH}" in
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DLLAMA_BLAS=off -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=off -DLLAMA_ACCELERATE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="-DCMAKE_OSX_DEPLOYMENT_TARGET=11.3 -DCMAKE_SYSTEM_NAME=Darwin -DBUILD_SHARED_LIBS=off -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}_static"
echo "Building static library"
build
if [ -z "$OLLAMA_SKIP_METAL_GENERATE" ]; then
init_vars
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DLLAMA_ACCELERATE=on -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} -DLLAMA_METAL=on ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_DARWIN_DEFS} -DCMAKE_SYSTEM_PROCESSOR=${ARCH} -DCMAKE_OSX_ARCHITECTURES=${ARCH} ${CMAKE_DEFS}"
BUILD_DIR="../build/darwin/${ARCH}/metal"
EXTRA_LIBS="${EXTRA_LIBS} -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders"
build

View File

@@ -60,7 +60,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc)
fi
fi
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off"
COMMON_CMAKE_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
source $(dirname $0)/gen_common.sh
init_vars
git_module_setup
@@ -73,7 +73,7 @@ if [ -z "${OLLAMA_SKIP_STATIC_GENERATE}" -o "${OLLAMA_CPU_TARGET}" = "static" ];
# Static build for linking into the Go binary
init_vars
CMAKE_TARGETS="--target llama --target ggml"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DLLAMA_NATIVE=off -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off -DLLAMA_OPENMP=off ${CMAKE_DEFS}"
CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DGGML_NATIVE=off -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}_static"
echo "Building static library"
build
@@ -93,22 +93,22 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
compress
else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
# -DLLAMA_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
# -DGGML_F16C -- 2012 Intel Ivy Bridge & AMD 2011 Bulldozer (No significant improvement over just AVX)
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
# Note: the following seem to yield slower results than AVX2 - ymmv
# -DLLAMA_AVX512 -- 2017 Intel Skylake and High End DeskTop (HEDT)
# -DLLAMA_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DLLAMA_AVX512_VNNI -- 2021 Intel Alder Lake
# -DGGML_AVX512 -- 2017 Intel Skylake and High End DeskTop (HEDT)
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DLLAMA_NATIVE=off -DLLAMA_OPENMP=off"
COMMON_CPU_DEFS="-DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building LCD CPU"
build
@@ -125,7 +125,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# Approximately 400% faster than LCD on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_FMA=off -DLLAMA_F16C=off ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
@@ -138,7 +138,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# Approximately 10% faster than AVX on same CPU
#
init_vars
CMAKE_DEFS="${COMMON_CPU_DEFS} -DLLAMA_AVX=on -DLLAMA_AVX2=on -DLLAMA_AVX512=off -DLLAMA_FMA=on -DLLAMA_F16C=on ${CMAKE_DEFS}"
CMAKE_DEFS="${COMMON_CPU_DEFS} -DGGML_AVX=on -DGGML_AVX2=on -DGGML_AVX512=off -DGGML_FMA=on -DGGML_F16C=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
build
@@ -179,15 +179,15 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
#
# CUDA compute < 6.0 lacks proper FP16 support on ARM.
# Disabling has minimal performance effect while maintaining compatibility.
ARM64_DEFS="-DLLAMA_AVX=off -DLLAMA_AVX2=off -DLLAMA_AVX512=off -DLLAMA_CUDA_F16=off"
ARM64_DEFS="-DGGML_AVX=off -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_CUDA_F16=off"
fi
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_CUDA_DEFS}" ]; then
echo "OLLAMA_CUSTOM_CUDA_DEFS=\"${OLLAMA_CUSTOM_CUDA_DEFS}\""
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DLLAMA_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DLLAMA_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DGGML_CUDA_FORCE_MMQ=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} -DCMAKE_LIBRARY_PATH=/usr/local/cuda/compat"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
@@ -225,7 +225,7 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
init_vars
source ${ONEAPI_ROOT}/setvars.sh --force # set up environment variables for oneAPI
CC=icx
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL=ON -DLLAMA_SYCL_F16=OFF"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
BUILD_DIR="../build/linux/${ARCH}/oneapi"
EXTRA_LIBS="-fsycl -Wl,-rpath,${ONEAPI_ROOT}/compiler/latest/lib,-rpath,${ONEAPI_ROOT}/mkl/latest/lib,-rpath,${ONEAPI_ROOT}/tbb/latest/lib,-rpath,${ONEAPI_ROOT}/compiler/latest/opt/oclfpga/linux64/lib -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
@@ -263,7 +263,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DLLAMA_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""

View File

@@ -51,8 +51,8 @@ function init_vars {
}
$script:cmakeDefs = @(
"-DBUILD_SHARED_LIBS=on",
"-DLLAMA_NATIVE=off",
"-DLLAMA_OPENMP=off"
"-DGGML_NATIVE=off",
"-DGGML_OPENMP=off"
)
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
@@ -194,9 +194,9 @@ function cleanup {
}
# -DLLAMA_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
# -DLLAMA_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
# -DLLAMA_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
# -DGGML_AVX -- 2011 Intel Sandy Bridge & AMD Bulldozer
# -DGGML_AVX2 -- 2013 Intel Haswell & 2015 AMD Excavator / 2017 AMD Zen
# -DGGML_FMA (FMA3) -- 2013 Intel Haswell & 2012 AMD Piledriver
function build_static() {
@@ -216,13 +216,13 @@ function build_static() {
"-DCMAKE_C_COMPILER=gcc.exe",
"-DCMAKE_CXX_COMPILER=g++.exe",
"-DBUILD_SHARED_LIBS=off",
"-DLLAMA_NATIVE=off",
"-DLLAMA_AVX=off",
"-DLLAMA_AVX2=off",
"-DLLAMA_AVX512=off",
"-DLLAMA_F16C=off",
"-DLLAMA_FMA=off",
"-DLLAMA_OPENMP=off")
"-DGGML_NATIVE=off",
"-DGGML_AVX=off",
"-DGGML_AVX2=off",
"-DGGML_AVX512=off",
"-DGGML_F16C=off",
"-DGGML_FMA=off",
"-DGGML_OPENMP=off")
$script:buildDir="../build/windows/${script:ARCH}_static"
write-host "Building static library"
build
@@ -236,7 +236,7 @@ function build_cpu($gen_arch) {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu"))) {
# remaining llama.cpp builds use MSVC
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DLLAMA_AVX=off", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:cmakeDefs = $script:commonCpuDefs + @("-A", $gen_arch, "-DGGML_AVX=off", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu"
$script:distDir="$script:DIST_BASE\cpu"
write-host "Building LCD CPU"
@@ -251,7 +251,7 @@ function build_cpu($gen_arch) {
function build_cpu_avx() {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx"))) {
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=off", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=off", "-DLLAMA_F16C=off") + $script:cmakeDefs
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=off", "-DGGML_AVX512=off", "-DGGML_FMA=off", "-DGGML_F16C=off") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx"
$script:distDir="$script:DIST_BASE\cpu_avx"
write-host "Building AVX CPU"
@@ -266,7 +266,7 @@ function build_cpu_avx() {
function build_cpu_avx2() {
if ((-not "${env:OLLAMA_SKIP_CPU_GENERATE}" ) -and ((-not "${env:OLLAMA_CPU_TARGET}") -or ("${env:OLLAMA_CPU_TARGET}" -eq "cpu_avx2"))) {
init_vars
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DLLAMA_AVX=on", "-DLLAMA_AVX2=on", "-DLLAMA_AVX512=off", "-DLLAMA_FMA=on", "-DLLAMA_F16C=on") + $script:cmakeDefs
$script:cmakeDefs = $script:commonCpuDefs + @("-A", "x64", "-DGGML_AVX=on", "-DGGML_AVX2=on", "-DGGML_AVX512=off", "-DGGML_FMA=on", "-DGGML_F16C=on") + $script:cmakeDefs
$script:buildDir="../build/windows/${script:ARCH}/cpu_avx2"
$script:distDir="$script:DIST_BASE\cpu_avx2"
write-host "Building AVX2 CPU"
@@ -291,9 +291,9 @@ function build_cuda() {
$script:distDir="$script:DIST_BASE\cuda$script:CUDA_VARIANT"
$script:cmakeDefs += @(
"-A", "x64",
"-DLLAMA_CUDA=ON",
"-DLLAMA_AVX=on",
"-DLLAMA_AVX2=off",
"-DGGML_CUDA=ON",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
"-DCMAKE_CUDA_FLAGS=-t8",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
@@ -331,7 +331,7 @@ function build_oneapi() {
$script:distDir ="$script:DIST_BASE\oneapi$script:ONEAPI_VARIANT"
$script:cmakeDefs += @(
"-G", "MinGW Makefiles",
"-DLLAMA_SYCL=ON",
"-DGGML_SYCL=ON",
"-DCMAKE_C_COMPILER=icx",
"-DCMAKE_CXX_COMPILER=icx",
"-DCMAKE_BUILD_TYPE=Release"
@@ -377,10 +377,10 @@ function build_rocm() {
"-G", "Ninja",
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DLLAMA_HIPBLAS=on",
"-DGGML_HIPBLAS=on",
"-DHIP_PLATFORM=amd",
"-DLLAMA_AVX=on",
"-DLLAMA_AVX2=off",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
"-DCMAKE_POSITION_INDEPENDENT_CODE=on",
"-DAMDGPU_TARGETS=$(amdGPUs)",
"-DGPU_TARGETS=$(amdGPUs)"

View File

@@ -1,12 +1,13 @@
package llm
// #cgo CFLAGS: -Illama.cpp
// #cgo darwin,arm64 LDFLAGS: ${SRCDIR}/build/darwin/arm64_static/libllama.a -lstdc++
// #cgo darwin,amd64 LDFLAGS: ${SRCDIR}/build/darwin/x86_64_static/libllama.a -lstdc++
// #cgo windows,amd64 LDFLAGS: ${SRCDIR}/build/windows/amd64_static/libllama.a -static -lstdc++
// #cgo windows,arm64 LDFLAGS: ${SRCDIR}/build/windows/arm64_static/libllama.a -static -lstdc++
// #cgo linux,amd64 LDFLAGS: ${SRCDIR}/build/linux/x86_64_static/libllama.a -lstdc++
// #cgo linux,arm64 LDFLAGS: ${SRCDIR}/build/linux/arm64_static/libllama.a -lstdc++
// #cgo CFLAGS: -Illama.cpp -Illama.cpp/include -Illama.cpp/ggml/include
// #cgo LDFLAGS: -lllama -lggml -lstdc++
// #cgo darwin,arm64 LDFLAGS: -L${SRCDIR}/build/darwin/arm64_static -L${SRCDIR}/build/darwin/arm64_static/src -L${SRCDIR}/build/darwin/arm64_static/ggml/src -framework Accelerate -framework Metal
// #cgo darwin,amd64 LDFLAGS: -L${SRCDIR}/build/darwin/x86_64_static -L${SRCDIR}/build/darwin/x86_64_static/src -L${SRCDIR}/build/darwin/x86_64_static/ggml/src
// #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/windows/amd64_static -L${SRCDIR}/build/windows/amd64_static/src -L${SRCDIR}/build/windows/amd64_static/ggml/src
// #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/windows/arm64_static -L${SRCDIR}/build/windows/arm64_static/src -L${SRCDIR}/build/windows/arm64_static/ggml/src
// #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux/x86_64_static -L${SRCDIR}/build/linux/x86_64_static/src -L${SRCDIR}/build/linux/x86_64_static/ggml/src
// #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux/arm64_static -L${SRCDIR}/build/linux/arm64_static/src -L${SRCDIR}/build/linux/arm64_static/ggml/src
// #include <stdlib.h>
// #include "llama.h"
import "C"

View File

@@ -1,8 +1,8 @@
diff --git a/common/common.cpp b/common/common.cpp
index 73ff0e85..6adb1a92 100644
index 2c05a4d4..927f0e3d 100644
--- a/common/common.cpp
+++ b/common/common.cpp
@@ -2447,6 +2447,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
@@ -2093,6 +2093,8 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
@@ -12,10 +12,10 @@ index 73ff0e85..6adb1a92 100644
mparams.kv_overrides = NULL;
} else {
diff --git a/common/common.h b/common/common.h
index 58ed72f4..0bb2605e 100644
index 65c0ef81..ebca2c77 100644
--- a/common/common.h
+++ b/common/common.h
@@ -180,6 +180,13 @@ struct gpt_params {
@@ -184,6 +184,13 @@ struct gpt_params {
std::string mmproj = ""; // path to multimodal projector
std::vector<std::string> image; // path to image file(s)
@@ -26,6 +26,6 @@ index 58ed72f4..0bb2605e 100644
+ // context pointer passed to the progress callback
+ void * progress_callback_user_data;
+
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)

View File

@@ -1,17 +1,8 @@
From 544a2d2e646d39e878d87dfbb3398a356bc560ab Mon Sep 17 00:00:00 2001
From: Michael Yang <mxyng@pm.me>
Date: Thu, 23 May 2024 11:18:45 -0700
Subject: [PATCH] throw exception on load errors
---
llama.cpp | 25 ++++++++++++++++---------
1 file changed, 16 insertions(+), 9 deletions(-)
diff --git a/llama.cpp b/llama.cpp
index 15c66077..8ba90b6a 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -6346,7 +6346,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
diff --git a/src/llama.cpp b/src/llama.cpp
index 73f52435..58a00fb1 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -7241,7 +7241,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
}
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
@@ -20,7 +11,7 @@ index 15c66077..8ba90b6a 100644
}
return 0;
@@ -15600,16 +15600,23 @@ struct llama_model * llama_load_model_from_file(
@@ -17564,16 +17564,23 @@ struct llama_model * llama_load_model_from_file(
}
model->rpc_servers.push_back(servers);
}
@@ -52,6 +43,3 @@ index 15c66077..8ba90b6a 100644
}
return model;
--
2.45.1

View File

@@ -1,7 +1,7 @@
diff --git a/ggml-metal.m b/ggml-metal.m
diff --git a/ggml/src/ggml-metal.m b/ggml/src/ggml-metal.m
index 0207b787..b5e9884b 100644
--- a/ggml-metal.m
+++ b/ggml-metal.m
--- a/ggml/src/ggml-metal.m
+++ b/ggml/src/ggml-metal.m
@@ -1396,27 +1396,23 @@ static enum ggml_status ggml_metal_graph_compute(
// to the matrix-vector kernel
int ne11_mm_min = 1;

View File

@@ -1,8 +1,8 @@
diff --git a/llama.cpp b/llama.cpp
index 61948751..4b72a293 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -4824,16 +4824,7 @@ static void llm_load_vocab(
diff --git a/src/llama.cpp b/src/llama.cpp
index 73f52435..2b81b4bd 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -5092,16 +5092,7 @@ static void llm_load_vocab(
// for now, only BPE models have pre-tokenizers
if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
@@ -20,13 +20,13 @@ index 61948751..4b72a293 100644
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
} else if (
tokenizer_pre == "llama3" ||
@@ -4888,7 +4879,8 @@ static void llm_load_vocab(
tokenizer_pre == "poro-chat") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_PORO;
@@ -5164,7 +5155,8 @@ static void llm_load_vocab(
tokenizer_pre == "jais") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_JAIS;
} else {
- throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
+ LLAMA_LOG_WARN("%s: missing or unrecognized pre-tokenizer type, using: 'default'\n", __func__);
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
}
} else {
} else if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;

View File

@@ -1,7 +1,7 @@
diff --git a/llama.cpp b/llama.cpp
diff --git a/src/llama.cpp b/src/llama.cpp
index 40d2ec2c..f34eb79a 100644
--- a/llama.cpp
+++ b/llama.cpp
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -6943,7 +6943,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);

View File

@@ -0,0 +1,45 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 1fe2b9f7..a43312a7 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -13689,7 +13689,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
- const bool has_logits = !cparams.embeddings;
+ const bool has_logits = cparams.causal_attn;
const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE));
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
@@ -13959,17 +13959,25 @@ static int llama_decode_internal(
// no output
res = nullptr;
embd = nullptr;
- } else if (cparams.embeddings) {
- res = nullptr; // do not extract logits for embedding case
- embd = gf->nodes[gf->n_nodes - 1];
- if (strcmp(embd->name, "result_embd_pooled") != 0) {
- embd = gf->nodes[gf->n_nodes - 2];
+ }
+
+ if (cparams.embeddings) {
+ for (int i = gf->n_nodes - 1; i >= 0; --i) {
+ embd = gf->nodes[i];
+ if (strcmp(embd->name, "result_embd_pooled") == 0) {
+ break;
+ }
}
GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor");
- } else {
+ } else {
embd = nullptr; // do not extract embeddings when not needed
GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
}
+
+ if (!cparams.causal_attn) {
+ res = nullptr; // do not extract logits when not needed
+ }
+
// LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
ggml_backend_sched_alloc_graph(lctx.sched, gf);

View File

@@ -1,305 +0,0 @@
From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
From: Ollama maintainers <hello@ollama.com>
Date: Wed, 26 Jun 2024 16:18:09 -0700
Subject: [PATCH] Architecture support
---
llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
1 file changed, 193 insertions(+), 1 deletion(-)
diff --git a/llama.cpp b/llama.cpp
index 61948751..3b4196f5 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -217,6 +217,7 @@ enum llm_arch {
LLM_ARCH_INTERNLM2,
LLM_ARCH_MINICPM,
LLM_ARCH_GEMMA,
+ LLM_ARCH_GEMMA2,
LLM_ARCH_STARCODER2,
LLM_ARCH_MAMBA,
LLM_ARCH_XVERSE,
@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_INTERNLM2, "internlm2" },
{ LLM_ARCH_MINICPM, "minicpm" },
{ LLM_ARCH_GEMMA, "gemma" },
+ { LLM_ARCH_GEMMA2, "gemma2" },
{ LLM_ARCH_STARCODER2, "starcoder2" },
{ LLM_ARCH_MAMBA, "mamba" },
{ LLM_ARCH_XVERSE, "xverse" },
@@ -464,10 +466,12 @@ enum llm_tensor {
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_NORM_2,
LLM_TENSOR_ATTN_OUT_NORM,
+ LLM_TENSOR_ATTN_POST_NORM,
LLM_TENSOR_ATTN_ROT_EMBD,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_INP_SHEXP,
LLM_TENSOR_FFN_NORM,
+ LLM_TENSOR_FFN_POST_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
+ {
+ LLM_ARCH_GEMMA2,
+ {
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
+ { LLM_TENSOR_ATTN_POST_NORM, "blk.%d.post_attention_norm" },
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
+ { LLM_TENSOR_FFN_POST_NORM, "blk.%d.post_ffw_norm" },
+ },
+ },
{
LLM_ARCH_STARCODER2,
{
@@ -1941,6 +1963,8 @@ enum e_model {
MODEL_8x22B,
MODEL_16x12B,
MODEL_10B_128x3_66B,
+ MODEL_9B,
+ MODEL_27B,
};
static const size_t kiB = 1024;
@@ -2114,6 +2138,7 @@ struct llama_layer {
struct ggml_tensor * attn_out_norm_b;
struct ggml_tensor * attn_q_a_norm;
struct ggml_tensor * attn_kv_a_norm;
+ struct ggml_tensor * attn_post_norm;
// attention
struct ggml_tensor * wq;
@@ -2136,6 +2161,7 @@ struct llama_layer {
// normalization
struct ggml_tensor * ffn_norm;
struct ggml_tensor * ffn_norm_b;
+ struct ggml_tensor * ffn_post_norm;
struct ggml_tensor * layer_out_norm;
struct ggml_tensor * layer_out_norm_b;
struct ggml_tensor * ffn_norm_exps;
@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
}
} break;
case LLM_ARCH_GEMMA:
+ {
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+
+ switch (hparams.n_layer) {
+ case 18: model.type = e_model::MODEL_9B; break;
+ case 28: model.type = e_model::MODEL_27B; break;
+ default: model.type = e_model::MODEL_UNKNOWN;
+ }
+ } break;
+ case LLM_ARCH_GEMMA2:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
}
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+
+ // output
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
+
+ const int64_t n_ff = hparams.n_ff;
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+ const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
+ const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ ggml_context * ctx_layer = ctx_for_layer(i);
+ ggml_context * ctx_split = ctx_for_layer_split(i);
+
+ auto & layer = model.layers[i];
+
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
+
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
+ layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
+
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
+ layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
+ }
+ } break;
case LLM_ARCH_STARCODER2:
{
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
@@ -10614,6 +10684,123 @@ struct llm_build_context {
return gf;
}
+ struct ggml_cgraph * build_gemma2() {
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
+
+ struct ggml_tensor * cur;
+ struct ggml_tensor * inpL;
+
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
+ cb(inpL, "inp_scaled", -1);
+
+ // inp_pos - contains the positions
+ struct ggml_tensor * inp_pos = build_inp_pos();
+
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
+
+ for (int il = 0; il < n_layer; ++il) {
+ // norm
+ cur = llm_build_norm(ctx0, inpL, hparams,
+ model.layers[il].attn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_norm", il);
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
+ cb(Qcur, "Qcur", il);
+
+ struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
+ cb(Kcur, "Kcur", il);
+
+ struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
+ cb(Vcur, "Vcur", il);
+
+ Qcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Qcur, "Qcur", il);
+
+ Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
+ cb(Qcur, "Qcur_scaled", il);
+
+ Kcur = ggml_rope_ext(
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
+ n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow);
+ cb(Kcur, "Kcur", il);
+
+ cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
+ model.layers[il].wo, NULL,
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
+ }
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].attn_post_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "attn_post_norm", il);
+
+ struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
+ cb(sa_out, "sa_out", il);
+
+ cur = llm_build_norm(ctx0, sa_out, hparams,
+ model.layers[il].ffn_norm, NULL,
+ LLM_NORM_RMS, cb, il);
+ cb(cur, "ffn_norm", il);
+
+ // feed-forward network
+ {
+ cur = llm_build_ffn(ctx0, cur,
+ model.layers[il].ffn_up, NULL,
+ model.layers[il].ffn_gate, NULL,
+ model.layers[il].ffn_down, NULL,
+ NULL,
+ LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
+ cb(cur, "ffn_out", il);
+ }
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.layers[il].ffn_post_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "ffn_post_norm", -1);
+
+ cur = ggml_add(ctx0, cur, sa_out);
+ cb(cur, "l_out", il);
+
+ // input for next layer
+ inpL = cur;
+ }
+
+ cur = inpL;
+
+ cur = llm_build_norm(ctx0, cur, hparams,
+ model.output_norm, NULL,
+ LLM_NORM_RMS, cb, -1);
+ cb(cur, "result_norm", -1);
+
+ // lm_head
+ cur = ggml_mul_mat(ctx0, model.output, cur);
+ cb(cur, "result_output", -1);
+
+ ggml_build_forward_expand(gf, cur);
+
+ return gf;
+ }
+
struct ggml_cgraph * build_starcoder2() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_gemma();
} break;
+ case LLM_ARCH_GEMMA2:
+ {
+ result = llm.build_gemma2();
+ } break;
case LLM_ARCH_STARCODER2:
{
result = llm.build_starcoder2();
@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_PHI2:
case LLM_ARCH_PHI3:
case LLM_ARCH_GEMMA:
+ case LLM_ARCH_GEMMA2:
case LLM_ARCH_STARCODER2:
case LLM_ARCH_GPTNEOX:
return LLAMA_ROPE_TYPE_NEOX;
@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
if (add_ass) {
ss << "<s>assistant\n";
}
- } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
+ } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
// google/gemma-7b-it
std::string system_prompt = "";
for (auto message : chat) {
--
2.45.2

View File

@@ -0,0 +1,42 @@
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 95fbe3d0..5a02a6ec 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -32,6 +33,14 @@
#include <cinttypes>
#include <limits>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+ #define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
//#define CLIP_DEBUG_FUNCTIONS
// RGB uint8 image
@@ -1055,7 +1064,22 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
return nullptr;
}
+#ifdef _WIN32
+ int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
+ if (!wlen) {
+ return NULL;
+ }
+ wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
+ wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
+ if (!wlen) {
+ free(wbuf);
+ return NULL;
+ }
+ auto fin = std::ifstream(wbuf, std::ios::binary);
+ free(wbuf);
+#else
auto fin = std::ifstream(fname, std::ios::binary);
+#endif
if (!fin) {
LOG_TEE("cannot open model file for loading tensors\n");
clip_free(new_clip);

View File

@@ -0,0 +1,60 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 721b8f4e..cfe7ac40 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8420,14 +8420,14 @@ struct llm_build_context {
}
struct ggml_tensor * build_inp_mean() {
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
cb(lctx.inp_mean, "inp_mean", -1);
ggml_set_input(lctx.inp_mean);
return lctx.inp_mean;
}
struct ggml_tensor * build_inp_cls() {
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
cb(lctx.inp_cls, "inp_cls", -1);
ggml_set_input(lctx.inp_cls);
return lctx.inp_cls;
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
-
sum[seq_id] += 1;
}
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
const llama_pos pos = batch.pos[i];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
-
if (pos == 0) {
data[seq_id] = i;
}

View File

@@ -139,6 +139,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
}
for {
cpus := s.getCpuFn()
var systemMem gpu.GpuInfo
if len(cpus) > 0 {
systemMem = cpus[0]
}
var runnerToExpire *runnerRef
s.loadedMu.Lock()
runner := s.loaded[pending.model.ModelPath]
@@ -192,6 +197,27 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
// Block attempting to load a model larger than system memory + GPU memory
estimate := llm.EstimateGPULayers(gpus, ggml, pending.model.ProjectorPaths, pending.opts)
maxSize := systemMem.FreeMemory
for _, gpu := range gpus {
if gpu.Library == "cpu" {
continue
}
if loadedCount == 0 {
// If no other models are loaded, set the limit based on what's available
maxSize += gpu.FreeMemory
} else {
// Other models could be unloaded, favor total memory for limit
maxSize += gpu.TotalMemory
}
}
if estimate.TotalSize > maxSize {
slog.Warn("model request too large for system", "requested", format.HumanBytes2(estimate.TotalSize), "system", format.HumanBytes2(maxSize))
pending.errCh <- fmt.Errorf("requested model (%s) is too large for this system (%s)", format.HumanBytes2(estimate.TotalSize), format.HumanBytes2(maxSize))
break
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode

View File

@@ -199,6 +199,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario1a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario1a.req.errCh)
case err := <-scenario1a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -212,6 +214,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario1a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario1b.req.errCh)
case err := <-scenario1b.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -230,6 +234,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario2a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario2a.req.errCh)
case err := <-scenario2a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -246,6 +252,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario3a.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3a.req.errCh)
case err := <-scenario3a.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -262,6 +270,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario3b.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3b.req.errCh)
case err := <-scenario3b.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}
@@ -278,6 +288,8 @@ func TestRequests(t *testing.T) {
require.Equal(t, resp.llama, scenario3c.srv)
require.Empty(t, s.pendingReqCh)
require.Empty(t, scenario3c.req.errCh)
case err := <-scenario3c.req.errCh:
t.Fatal(err.Error())
case <-ctx.Done():
t.Fatal("timeout")
}

View File

@@ -91,7 +91,6 @@ type Name struct {
Namespace string
Model string
Tag string
RawDigest string
}
// ParseName parses and assembles a Name from a name string. The
@@ -143,11 +142,6 @@ func ParseNameBare(s string) Name {
var n Name
var promised bool
s, n.RawDigest, promised = cutLast(s, "@")
if promised && n.RawDigest == "" {
n.RawDigest = MissingPart
}
// "/" is an illegal tag character, so we can use it to split the host
if strings.LastIndex(s, ":") > strings.LastIndex(s, "/") {
s, n.Tag, _ = cutPromised(s, ":")
@@ -222,10 +216,6 @@ func (n Name) String() string {
b.WriteByte(':')
b.WriteString(n.Tag)
}
if n.RawDigest != "" {
b.WriteByte('@')
b.WriteString(n.RawDigest)
}
return b.String()
}
@@ -250,16 +240,18 @@ func (n Name) DisplayShortest() string {
return sb.String()
}
func IsValidNamespace(namespace string) bool {
return isValidPart(kindNamespace, namespace)
// IsValidNamespace reports whether the provided string is a valid
// namespace.
func IsValidNamespace(s string) bool {
return isValidPart(kindNamespace, s)
}
// IsValid reports whether all parts of the name are present and valid. The
// digest is a special case, and is checked for validity only if present.
//
// Note: The digest check has been removed as is planned to be added back in
// at a later time.
func (n Name) IsValid() bool {
if n.RawDigest != "" && !isValidPart(kindDigest, n.RawDigest) {
return false
}
return n.IsFullyQualified()
}

View File

@@ -122,21 +122,6 @@ func TestParseNameParts(t *testing.T) {
},
wantFilepath: filepath.Join(part350, part80, part80, part80),
},
{
in: "@digest",
want: Name{
RawDigest: "digest",
},
wantValidDigest: false,
},
{
in: "model@sha256:123",
want: Name{
Model: "model",
RawDigest: "sha256:123",
},
wantValidDigest: true,
},
}
for _, tt := range cases {
@@ -160,22 +145,18 @@ var testCases = map[string]bool{ // name -> valid
"_why/_the/_lucky:_stiff": true,
// minimal
"h/n/m:t@d": true,
"h/n/m:t": true,
"host/namespace/model:tag": true,
"host/namespace/model": false,
"namespace/model": false,
"model": false,
"@sha256-1000000000000000000000000000000000000000000000000000000000000000": false,
"model@sha256-1000000000000000000000000000000000000000000000000000000000000000": false,
"model@sha256:1000000000000000000000000000000000000000000000000000000000000000": false,
// long (but valid)
part80 + "/" + part80 + "/" + part80 + ":" + part80: true,
part350 + "/" + part80 + "/" + part80 + ":" + part80: true,
"h/nn/mm:t@sha256-1000000000000000000000000000000000000000000000000000000000000000": true, // bare minimum part sizes
"h/nn/mm:t@sha256:1000000000000000000000000000000000000000000000000000000000000000": true, // bare minimum part sizes
"h/nn/mm:t": true, // bare minimum part sizes
// unqualified
"m": false,
@@ -196,11 +177,10 @@ var testCases = map[string]bool{ // name -> valid
"@": false,
// not starting with alphanum
"-hh/nn/mm:tt@dd": false,
"hh/-nn/mm:tt@dd": false,
"hh/nn/-mm:tt@dd": false,
"hh/nn/mm:-tt@dd": false,
"hh/nn/mm:tt@-dd": false,
"-hh/nn/mm:tt": false,
"hh/-nn/mm:tt": false,
"hh/nn/-mm:tt": false,
"hh/nn/mm:-tt": false,
// hosts
"host:https/namespace/model:tag": true,
@@ -334,7 +314,7 @@ func FuzzName(f *testing.F) {
f.Fuzz(func(t *testing.T, s string) {
n := ParseNameBare(s)
if n.IsValid() {
parts := [...]string{n.Host, n.Namespace, n.Model, n.Tag, n.RawDigest}
parts := [...]string{n.Host, n.Namespace, n.Model, n.Tag}
for _, part := range parts {
if part == ".." {
t.Errorf("unexpected .. as valid part")