Compare commits

...

129 Commits

Author SHA1 Message Date
likelovewant
51e1480751 Merge branch 'ollama:main' into main 2025-10-30 10:15:05 +08:00
Grace
0a2d92081b Removing whitespace between Thinking and Content in Qwen3VL (#12838)
Eats extra whitespace at the end/beginning of content
2025-10-29 15:14:28 -07:00
Daniel Hiltgen
c88647104d int: harden server lifecycle (#12835)
this should reduce zombies during integration runs
2025-10-29 11:50:56 -07:00
Patrick Devine
05aff4a4f1 tests: fix embeddinggemma integration test (#12830) 2025-10-29 11:07:28 -07:00
Michael Yang
0d140bd1af fix: conv2d bias (#12834) 2025-10-29 11:03:43 -07:00
Jeffrey Morgan
93e45f0f0d docs: temporarily restore api.md and cleanup docs paths (#12818) 2025-10-28 23:25:48 -07:00
Jeffrey Morgan
a342160803 docs: fix root api documentation page (#12813) 2025-10-28 19:17:54 -07:00
Jeffrey Morgan
f6c29409dc docs: add new cloud model + fix openai redirect (#12812) 2025-10-28 19:09:07 -07:00
Michael Yang
7d25b9e194 feat(model): add qwen3vl (#12665) 2025-10-28 17:39:47 -07:00
Patrick Devine
36d64fb531 embed: add distance correlation test for library embed models (#12796) 2025-10-28 16:57:27 -07:00
Parth Sareen
d828517e78 docs: update readme and links (#12809) 2025-10-28 16:20:02 -07:00
Daniel Hiltgen
14977a9350 Fix vulkan PCI ID and ID handling (#12775)
* Fix vulkan PCI ID and ID handling

Intel GPUs may not report PCI IDs which was leading to incorrect overlap
detection.  Switch to using the existing PCI IDs, however AMD GPUs claim not to
report PCI IDs, but actually do, so try anyway, as this is required for ADLX to
find the GPUs on Windows. Numeric IDs lead to scheduling problems, so this also
switches Vulkan to use UUID based IDs. The GPU discovery patches have been
squashed into a single patch to simplify future rebases.

* review comments
2025-10-28 15:15:35 -07:00
Patrick Devine
29f63f37c8 Revert "server: Consolidate embedding truncation in runner (#12730)" (#12810)
This reverts commit 5d347f6d6f.
2025-10-28 14:49:14 -07:00
Parth Sareen
3d99d9779a docs: add docs for docs.ollama.com (#12805) 2025-10-28 13:18:48 -07:00
Parth Sareen
6d02a43a75 docs: rename to mdx to setup docs site (#12804) 2025-10-28 13:04:31 -07:00
Parth Sareen
5483497d7a Revert "docs: add reference to docs.ollama.com (#12800)" (#12803)
This reverts commit 934dd9e196.
2025-10-28 12:52:49 -07:00
Parth Sareen
934dd9e196 docs: add reference to docs.ollama.com (#12800) 2025-10-28 12:44:02 -07:00
Michael Yang
1188f408dd s/From*Slice/From*s/ (#12255) 2025-10-28 12:08:49 -07:00
nicole pardal
15c7d30d9a embedding tests: added check against exact base64 string (#12790) 2025-10-28 10:37:20 -07:00
Devon Rifkin
9862317174 Merge pull request #12793 from ollama/drifkin/12792_renderer-parser-from
create: inherit FROM model's renderer/parser
2025-10-28 00:15:46 -07:00
Michael Yang
ec9eb28f4c gemma3: make embedding non-causal (#12297) 2025-10-27 19:54:08 -07:00
Devon Rifkin
1bdd816910 create: inherit FROM model's renderer/parser
On main, the `RENDERER` and `PARSER` fields from the `Modelfile` don't
get propagated to a new model created with a `req.From` parameter. This
is easily triggered via `ollama run qwen3-coder`, then running some save
command like `/save qwen3-coder-custom`.

Added a regression test for this, and then open the config for the
"from" model in order to use its renderer/parser as a default for the
new model. This will fix the CLI and also API-based creates.

Fixes: https://github.com/ollama/ollama/issues/12792
2025-10-27 15:14:19 -07:00
nicole pardal
5d347f6d6f server: Consolidate embedding truncation in runner (#12730)
Currently, checking the length of prompts for embeddings to ensure
they fit in the context window (and possible truncation) occurs in
two places - the Ollama server and runner. This can lead to
inconsistencies in both the checks and reported number of tokens
processed. Since we have to do this processing in the runner, this
consolidates all of the logic there.
2025-10-27 11:59:12 -07:00
Patrick Devine
b97eb2b858 cloud: set the proxy content-type to the same as local models (#12759) 2025-10-25 10:57:10 -07:00
Jesse Gross
ad6f6a1d29 llm: Change memory allocation backoff from exponential to incremental
If we create a memory layout that should fit based on report free VRAM
but allocation still fails, we start applying a backoff. This reduces
free VRAM by an exponential percentage (1%, 2%, 4%...). However, the
points chosen tend to be too dense at the beginning and too sparse at
the end. Therefore, this switches to an incremental backoff (10%, 20%,
30%...).
2025-10-23 12:58:31 -07:00
Vinh Nguyen
6723a40be6 readme: add VT Code project to terminal community integrations (#12749) 2025-10-23 12:29:50 -07:00
Daniel Hiltgen
3258a89b6e DRY out the runner lifecycle code (#12540)
* DRY out the runner lifecycle code

Now that discovery uses the runners as well, this unifies the runner spawning code
into a single place.  This also unifies GPU discovery types with the newer ml.DeviceInfo

* win: make incremental builds better

Place build artifacts in discrete directories so incremental builds don't have to start fresh

* Adjust sort order to consider iGPUs

* handle cpu inference oom scenarios

* review comments
2025-10-23 11:20:02 -07:00
Jesse Gross
1c093e97af kvcache: Remove special case for reservation mask
We currently short circuit generation of the cache mask and just
generate an empty tensor of the correct size. However, in some
cases, this can also skip a cast operation. This can result in the
worst case graph being not fully worst case.

We don't actually need the fast path for mask generation, so it's
better to just use the normal code path.
2025-10-22 17:38:04 -07:00
Jesse Gross
a8d9c2648e llamarunner: Record the time for all batches during prompt processing
Currently, we only record the time for the last batch when processing
the prompt. This results in unrealistically high numbers for the
old llama runner.

Before:
total duration:       31.273112939s
load duration:        4.97054657s
prompt eval count:    32768 token(s)
prompt eval duration: 235.137439ms
prompt eval rate:     139356.80 tokens/s
eval count:           1873 token(s)
eval duration:        18.173182374s
eval rate:            103.06 tokens/s

After:
total duration:       30.024798033s
load duration:        4.758588663s
prompt eval count:    32768 token(s)
prompt eval duration: 7.779621548s
prompt eval rate:     4212.03 tokens/s
eval count:           1769 token(s)
eval duration:        17.148014223s
eval rate:            103.16 tokens/s
2025-10-22 13:52:58 -07:00
frob
0334e67ffd tools: parse tool calls that don't conform to ("name": name, "arguments": args} (#12738) 2025-10-22 11:34:27 -07:00
nicole pardal
e0ead1adee embeddings: base64 encoding fix (#12715) 2025-10-22 11:27:44 -07:00
Patrick Devine
d515aed6c3 cloud: don't error sending empty messages (#12724) 2025-10-21 18:12:14 -07:00
likelovewant
7f551c41e7 Merge branch 'ollama:main' into main 2025-10-21 19:38:31 +08:00
Jeffrey Morgan
5fe7ba1b9b runner: always truncate embeddings requests (#12714) 2025-10-20 16:47:05 -07:00
Michael Yang
d2b63c19b3 fs(ggml): fill in arch prefix if necessary (#12646) 2025-10-20 16:42:18 -07:00
Jeffrey Morgan
94f110b35a model/parsers: remove warning for missing <think> tag for qwen3-vl (#12713) 2025-10-20 16:03:43 -07:00
Daniel Hiltgen
5d22953ba7 cuda: get driver version after props (#12707)
Users on Windows without GPUs are reporting errors relating to
cudaDriverGetVersion with the device set to -1.  This ensures we only grab the
driver once we're enumerating actual devices.
2025-10-20 10:57:27 -07:00
Daniel Hiltgen
d245dffed8 rocm: give it more time to bootstrap (#12681)
Some users are hitting timeouts.  We'd like to make this faster, but for now make sure we don't timeout too aggressively.
2025-10-20 09:43:05 -07:00
likelovewant
cb13784a11 merge update 2025-10-18 23:03:13 +08:00
Daniel Hiltgen
bc1a818fdc contiguous input per layer (#12686)
Co-authored-by: Michael Yang <git@mxy.ng>
2025-10-17 18:39:18 -07:00
Daniel Hiltgen
ba2253dc30 win: more verbose load failures (#12683)
When loading the dynamic libraries, if something goes wrong report some
details.  Unfortunately this wont explain which dependencies are missing,
but this breadcrumb in the logs should help us diagnose GPU discovery
failures.
2025-10-17 17:13:16 -07:00
Daniel Hiltgen
68e04c7ff8 test: harden scheduler tests (#12662)
* test: harden scheduler tests

This removes reschedDelay which was stale code, and adds
a new configurable timeout for the waitForVRAMRecovery so
tests can now set the timeout to be very short to avoid the
scheduler getting stuck and hitting a test timeout.

* test: tune tests for partial loads

Give stress tests more time when the model is split between CPU/GPU
2025-10-17 08:56:44 -07:00
Daniel Hiltgen
270679932f cuda: tidy up CC settings (#12668)
8.7 is Jetpack only, so no need on x86 builds
10.3 covers [G]B300
2025-10-16 16:39:30 -07:00
Jeffrey Morgan
65fb3ff49d renderers: add global flag for setting [img] tags (#12669)
Adds a temporary global flag to renderers that causes renderers to always
render images as [img]. In a follow up change, we will consider making this
the default, and this flag could eventually be removed
2025-10-16 16:37:32 -07:00
Grace
e2a0b24435 Grace/qwen3 thinking (#12647)
* changing initial status to take into consideration prefill

* Add seperate strings for content and thinking builder

* thinking tests

* remove white space from string before closing think tag
2025-10-16 15:29:41 -07:00
Daniel Hiltgen
1813ff85a0 cuda: bring back CC 5.2 (#12666)
Forward compat on the newer driver doesn't seem to be working.
This should get 5.2 working on newer drivers again.
2025-10-16 13:07:41 -07:00
Daniel Hiltgen
b531777a66 test: add a few missing embedding models (#12661) 2025-10-16 09:36:25 -07:00
Daniel Hiltgen
fe3ec8dbf0 Revert "Workaround broken NVIDIA iGPU free VRAM data (#12490)" (#12642)
The workaround has been moved into the underlying C++ code.

This reverts commit e4340667e3.
2025-10-16 09:09:48 -07:00
Thomas Stocker
c744134287 vulkan: Get FilterID from Backend for Vulkan (#12655)
* vulkan: Get FilterID from Backend for Vulkan

* Fixing patch
2025-10-16 09:07:35 -07:00
weedge
4be41d2d45 readme: add achatbot-go to community integrations (#12629) 2025-10-15 21:54:15 -07:00
zhetaicheleba
de670570c9 fs/ggml: fix function name in comment (#12630) 2025-10-15 21:53:38 -07:00
Devon Rifkin
201d93716e Merge pull request #12651 from ollama/drifkin/oai-conversion
openai: make tool call conversion fns public
2025-10-15 21:10:30 -07:00
Devon Rifkin
160cecc8e2 openai: make tool call conversion fns public 2025-10-15 20:54:58 -07:00
Daniel Hiltgen
8b6e5baee7 CI: Set up temporary opt-out Vulkan support (#12614)
Initially Vulkan support in Ollama will require building from source.  Once it is
more thoroughly tested and we have fixed any critical bugs, then we can
bundle Vulkan into the official binary releases.
2025-10-15 14:18:01 -07:00
Daniel Hiltgen
75d17fc6c2 perf: backport cuda iGPU sched spin (#12641) 2025-10-15 11:52:14 -07:00
Santosh Bhavani
8fafc8af77 ml/backend/ggml: NVML fallback for unified memory GPUs (#12619)
* Simplify NVML fallback for unified memory GPUs

Remove device-specific checks and environment variable dependency for
NVML_ERROR_NOT_SUPPORTED fallback. When NVML doesn't support memory
queries, unconditionally use /proc/meminfo instead of checking device
names or OLLAMA_UNIFIED_MEMORY environment variable.

This provides better memory reporting by using MemAvailable which
accounts for reclaimable memory, avoiding the underreporting issue
described in NVIDIA support article a_id/5728.

Tested on NVIDIA GB10 unified memory iGPU with consistent and accurate
memory reporting across multiple model load/unload cycles.

* Add NVML fallback patch for unified memory GPUs
2025-10-15 11:40:06 -07:00
Jesse Gross
c3c85aa06c llm: Enable flash attention by default for gemma3 2025-10-15 10:42:12 -07:00
Jeffrey Morgan
0d713051a2 envconfig: default to port 443 when connecting to ollama.com (#12617) 2025-10-14 23:38:24 -07:00
Parth Sareen
c4c5a4a01e types: send index for tool calls (#12625) 2025-10-14 19:35:15 -07:00
Jesse Gross
3dcfd5f69e llm: Perform eviction when num_gpu is set with new estimates
Currently, if you set num_gpu then this forces the model to
load with that number of layers in the current configuration.
This is done regardless of any other information, which means
that no eviction is performed even if another model is loaded.

This behavior is different from the old estimates (and still
happens for models that runs on the llama engine). In those
cases, models would be evicted if needed to load at the requested
number of layers. That behavior is more useful and less surprising,
so this changes the new estimates to match.

Fixes #12580
2025-10-14 17:46:36 -07:00
Devon Rifkin
53a969d509 Merge pull request #12621 from ollama/drifkin/any-of
qwen3-coder: support anyOf when parsing tool calls
2025-10-14 15:51:24 -07:00
Devon Rifkin
08fbb60bb2 qwen3-coder: support anyOf when parsing tool calls 2025-10-14 15:33:05 -07:00
Daniel Hiltgen
850da848c5 logs: fix bogus "0 MiB free" log line (#12590)
On the llama runner, after the recent GGML bump a new log line reports
incorrect 0 MiB free after our patch to remove memory from the props.  This
adjusts the llama.cpp code to fetch the actual free memory of the active device.
2025-10-14 11:26:28 -07:00
Thomas Stocker
2aba569a2a Vulkan based on #9650 (#11835)
* implement the vulkan C backend

* add support in gpu.go

* add support in gen_linux.sh

* it builds

* fix segfault

* fix compilation

* fix free memory monitor

* fix total memory monitor

* update gpu.go

* fix build

* fix check_perfmon len

* remove cap_get_bound check

* fix vulkan handle releasing

* fix build on federa 40

* fix vulkan on windows

* making amdgpu work on arm achitecutre with vulkan

* add x86_64 lines in VulkanGlobs and capLinuxGlobs

* add aarch64 lines in vulkanGlobs and capLinuxGlobs

* Fix variable name

* Add vulkan build patch from @jmorganca

* Sync vendored ggml to add Vulkan support

* Updated dockerfile

https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Installing rocm library

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* This version works well

built based on this: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Applied 00-fix-vulkan-building.patch

Work done by McBane87 here: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Fixed the "detached head" issues

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merged in the right direction

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merging the latest stable (#2)

* Applied 00-fix-vulkan-building.patch

* Implemented vulkan backend based on the work done by whyvl, Dts0, McBane87 and others

Tested on AMD Ryzen 7 8845HS w/ Radeon 780M Graphics with ROCm disabled

```
[GIN-debug] POST   /v1/chat/completions      --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (6 handlers)
[GIN-debug] POST   /v1/completions           --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (6 handlers)
[GIN-debug] POST   /v1/embeddings            --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (6 handlers)
[GIN-debug] GET    /v1/models                --> github.com/ollama/ollama/server.(*Server).ListHandler-fm (6 handlers)
[GIN-debug] GET    /v1/models/:model         --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (6 handlers)
time=2025-03-11T13:00:40.793Z level=INFO source=gpu.go:199 msg="vulkan: load libvulkan and libcap ok"
time=2025-03-11T13:00:40.877Z level=INFO source=gpu.go:421 msg="error looking up vulkan GPU memory" error="device is a CPU"
time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:443 msg="amdgpu detected, but no compatible rocm library found.  Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install"
time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:348 msg="unable to verify rocm library: no suitable rocm found, falling back to CPU"
time=2025-03-11T13:00:40.879Z level=INFO source=types.go:137 msg="inference compute" id=0 library=vulkan variant="" compute=1.3 driver=1.3 name="AMD Radeon Graphics (RADV GFX1103_R1)" total="15.6 GiB" available="15.6 GiB"
```

```
 # ollama run phi4:14b
>>> /set verbose
Set 'verbose' mode.
>>> how's it going?
Hello! I'm here to help you with any questions or tasks you have. How can I assist you today? 😊

total duration:       3.341959745s
load duration:        18.165612ms
prompt eval count:    15 token(s)
prompt eval duration: 475ms
prompt eval rate:     31.58 tokens/s
eval count:           26 token(s)
eval duration:        2.846s
eval rate:            9.14 tokens/s
>>>
```

* This is no longer needed

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21

Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Applied 04-disable-mmap-vulkan.patch

From: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Pulled new upstream code for ggml-bulkan backend

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5)

* readme: add Ellama to list of community integrations (#9800)

* readme: add screenpipe to community integrations (#9786)

* Add support for ROCm gfx1151 (#9773)

* conditionally enable parallel pipelines

* sample: make mutations in transforms explicit (#9743)

* updated minP to use early exit making use of sorted tokens

* ml/backend/ggml: allocate memory with malloc when loading model (#9822)

* runner: remove cache prompt flag from ollama runner (#9826)

We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.

* ollamarunner: Check for minBatch of context space when shifting

Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.

* Applied latest patches from McBane87

See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Add ability to enable flash attention on vulkan (#4)

* discover: add flash attention handling for vulkan
* envconfig: fix typo in config.go

As part of the process some code was refactored and I added a new field
FlashAttention to GpuInfo since the previous solution didn't allow for a
granular check via vulkan extensions. As a side effect, this now allows
for granular per-device FA support checking in other places

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>

* Revert Readme changes

* Revert

* Revert changes in amd_linux.go

* Revert changes in amd_linux.go

* Remove flashattention setting gpu.go

* Revert whitespace changes in gpu.go

* Revert changes in transforms_test.go

* Revert changes in runner.go

* Revert changes in Makefile.sync

* Revert some unintented changes in Dockerfile

* Revert vulkan copy changes in Dockerfile

* Update Vulkan Code to de4c07f93783a1a96456a44dc16b9db538ee1618

* Fixed duplicate sync in ggml.go

* Revert changes in ggml.go

* Revert chnages in ggml.go

* enable falsh attention on vulkan

* revert remove parenthesis

* fixed flash attention logic enabling

* vk_check_flash_attention 0 means supported

* Update gpu.go

* Add vulkan to Windows Build script

* Remove commented out code

* Enable Vulkan Flash attention in FlashAttentionSupported

* Fix logging

* Update Vulkan backend to e54d41befcc1575f4c898c5ff4ef43970cead75f

* Removed libcap related code

libcap is not directly related to Vulkan and should be added by its own PR. It adds additional library dependencies for building and also requires users to run setcap or run ollama as root, which is not ideal for easy use

* Fix Unit Test (Add Vulkan Library)

* Add vulkan to TestHomogeneousGPUs
Test

* vulkan: get GPU ID (ollama v0.11.5)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* disable mmap for vulkan

* Reduce Changes remove TestHomogeneousGPUs (doesn't exist on master)

* Update vulkan version to the version used in llama.cpp

* rename gpu patch to correct number

* added Vulkan API to get correct Device UUID

current UUID from pipelineCacheUUID does not match CUDA

* Fix GPU ID Patch

* Remove Code not in llama.cpp

* modified UUID code inside ggml

* Fix Patch

* Copied minimal definition from vulkan header

* Fix compile error in Mac

Metal is preferred so we're disabling Vulkan for now

* Removed unused code

Fix linter error in CI

* Fix patches apply

* fixing lint error

* Removed unneeded function call

Somehow removing this call fixed the crashing when Vulkan header was removed

* added missing NL

* Fixed missing members in Vulkan header

also added zero clear for some structs

* Fixed wrong structure ID

* Fixed Vulkan header

More aligned with official header definition now

* buildvulkanAsSeperateFunction

* Vulkan on Windows Test

* temporarly comment out gate to run windows task

* use temporarly windows-latest for build

* Commenting out other presets to build vulkan

* reenable cpu

* commenting out error action stop

* temporarly commenting out rocm

* set vulkan path

* comment out cude for faster turnaround

* correct vulkan install

* correct vulkan silent install

* fixed install command

* revert debugging changes (vulkan builds on windows)

* revert windows-latest

* trying to build vulkan for linux

* temporarly disable cuda and rocm

* try again linux build

* fix version

* trying to fix

* trying again

* trying again

* fix version

* fixed vulkan-sdk name

* try again

* trying again

* try without version number

* try again

* add some more extra

* trying to use version 1.4.313

* revert debugging changes

* Filter out already supported gpus

* revert debug code

* Use runners for GPU discovery

This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.

* timing info for runner

* WIP - wire up Vulkan with the new engine based discovery

Not a complete implementation - free VRAM is better, but not accurate on
windows

* fix - trust the library paths from discovery when starting runner

* fix index bug

* fix vulkan ids to be underlying

* fix - give bootstrapping more time on slow systems

* Test if Vulkan device is supported

* vk_check_flash_attention is not needed (coompat2 coopmapt and scalar implementation exist)

* Handle GGML_VK_VISIBLE_DEVICES

* ask for supported first

* win: fix CPU query buffer handling

Try in a short loop until we get the size right.

* test: harden integration tests for slow start

If the server takes a while to start up, block
tests from starting until it's online to avoid
setting large timeouts in individual test cases.

* gofumpt fix

* fix build

* merge fixes

* merge fixes

* fixed build

* merge fixes

* fixing build

* fixed build

* fixed formatting

* fixed build

* fix vulkan gpu id patch

* sync llama.cpp vulkan code

* update build windows script

* merge fixes

* fix format

* fixed vulkan casing

* handle igpu as gpu

* improve case

* print out unknown library

* rturn Vulkan for vulkan library

* Revert "rturn Vulkan for vulkan library"

This reverts commit 690461a12fd5e93295d174c97edefb2bc33285b1.

* fixed patch number

* return Library Name

* remvoe debug code

* return integrated in vulkan backend

* Return pci Properties

* update patch

* directly get pci proeprties without parsing

* workaround for filtering devices. Correct way is to have a LibraryPosition Parameter in the deviceInfo

* Revert "directly get pci proeprties without parsing"

This reverts commit 8e0624851f5ed7d9f74518f574dfb422e4dd4dc2.

* Set FilteredID for Environment Filtering

* ROCm Library is named ROCm

* revert changes in patch

* Create 0028-vulkan-pci-and-memory.patch

* vulkan memory patch

* casing fix

* Add more pci properties

* Added better memory management

* Added better memory managament

* fixed patch

* Fixed patch

* FilterID creation group by library

* filter out vulkan supported by other gpu

* fixing deviceid compare

* Vulkan Fix FA coopmat1 invalid array indexing

* Use everywhere the same Vulkan Version 1.4.321.1

* Remove unneeded patch

* vulkan update

* sync vulkan glsl files

* only use for vulkan the filteredid (numeric device number)

* simplify code

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: pufferffish <github@bandersnatch.anonaddy.com>
Co-authored-by: KOISHI KOMEIJI FROM TOUHOU 11 <fuck>
Co-authored-by: DSLstandard <qgeneral35@gmail.com>
Co-authored-by: pufferffish <me@windtfw.com>
Co-authored-by: yeongbba <yeongmo.lee@logpresso.com>
Co-authored-by: tomaThomas <tomathomas@mailbox.org>
Co-authored-by: Antoine Viallon <antoine@lesviallon.fr>
Co-authored-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>
Co-authored-by: Masato Nakasaka <masato.nakasaka@intel.com>
Co-authored-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-10-14 10:59:58 -07:00
Devon Rifkin
fd8aa947f3 Merge pull request #12562 from ollama/drifkin/registries
add registries for parsers/renderers
2025-10-14 02:01:53 -07:00
Devon Rifkin
ddaca643d0 add registries for parsers/renderers 2025-10-14 01:13:54 -07:00
Grace
05982a95cb Qwen3VL Cloud Parser and Renderer (#12526)
* working (other than tool call is the incorrect order) for tool calls and tools

* Tests work, other than image tags (tests do not go through server) and tools (not in the correct order, but contents are the same)

* testing for qwen3vl parser - toolparser is working

* made changes to JSON tool parser, wraps the TollCallFunction with a TollCall object

* Working parser for thinking models - assumes state of thinking, emits unambiguous content in thinking, does not call tool call in thinking

* changed the parser to start with collecting content

* thinking prefill

* add hasThinkingSupport parameter to parser

* qwen3-vl -> qwen3-vl-instruct for renderer/parser

* Add hasThinkingSupport=false to QwenVLParser

---------

Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-10-13 16:52:33 -07:00
Gabe Goodhart
4987f13d34 Llama cpp bump (df1b612): granite docling / mamba2 optimizations / multimodal encoding fixes (#12552)
* feat: Bump llama.cpp to df1b612

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(mtmd): Correctly encode text chunks during mtmd tokenization

There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Use MtmdChunk in image_test

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix unnecessary conversion linting

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(ggml): Revert changes to ggml_hip.cpp

These changes were done largely by our code assistant and are likely wrong

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Revert changes in mem_nvml.cpp

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update sync point to 1deee0

This brings in several more optimization commits and model support for
EmbeddingGemma

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches for 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: sync for bump to 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Bad patch updates with errant `+`

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp/ggml to 7049736

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: format-patches after latest bump

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-13 15:26:18 -07:00
Jeffrey Morgan
e638f2acb6 runner: fix shifting on llama runner (#12604) 2025-10-13 13:46:33 -07:00
Michael Yang
18087f2ec7 Revert "use llama runner for qwen3 (#12556)"
This reverts commit 3d32249c74.
2025-10-13 13:30:30 -07:00
Michael Yang
6c833d5f8d fix(qwen3): deepseek distill
deepseek's qwen3 distill uses a different rope scheme so support both
2025-10-13 13:30:30 -07:00
Jeffrey Morgan
6544e14735 Reapply "add truncate and shift parameters" (#12582) 2025-10-11 16:06:14 -07:00
Devon Rifkin
5db8a818a1 Merge pull request #12581 from ollama/drifkin/renderer-api-generate
routes: fix built-in renderers for `api/generate`
2025-10-11 14:10:23 -07:00
Devon Rifkin
6db8da9958 routes: fix built-in renderers for api/generate
Made it so when api/generate builds up a message array and generates the
prompt it now goes through the same function as `api/chat` for
consistency. This is where we hook the optional built-in renderers to
bypass templates, which was missing for `api/generate` before this
change.

Closes: #12578
2025-10-11 13:57:43 -07:00
frob
0c68ec8d6a discover: fix typo (#12565) 2025-10-11 12:06:02 -07:00
Daniel Hiltgen
70d9e363e1 doc: remove AMD EOL GPUs (#12567) 2025-10-10 17:16:29 -07:00
Michael Yang
1a2feb2a97 ollamarunner: fix deadlock
hardErrCh will deadlock since forwardBatch is blocked on
computeStartedCh which never gets sent. since the response to
hardErrCh is to panic, just panic instead
2025-10-10 16:49:57 -07:00
Daniel Hiltgen
aab2190420 implement nvml for linux (#12517)
* implement nvml for linux

* Improve scheduler logging when VRAM doesn't recover
2025-10-10 15:15:56 -07:00
Michael Yang
629db9dc43 comment split 2025-10-10 13:25:34 -07:00
Michael Yang
e0cd511661 fix test 2025-10-10 13:25:34 -07:00
Michael Yang
207332078f fix lint 2025-10-10 13:25:34 -07:00
Michael Yang
93085127f4 convert: slice gate_up weight 2025-10-10 13:25:34 -07:00
Michael Yang
c00fa9cc2b convert: split gate_up bias 2025-10-10 13:25:34 -07:00
yajianggroup
df411c4b02 refactor: using testing.B.Loop
Signed-off-by: yajianggroup <yajianggroup@outlook.com>
2025-10-10 13:25:29 -07:00
Jeffrey Morgan
3d32249c74 use llama runner for qwen3 (#12556) 2025-10-09 19:08:21 -07:00
Patrick Devine
d681cd7c29 thinking: allow "think": false for non-thinking models (#12555) 2025-10-09 18:46:00 -07:00
shengxinjing
47298fce39 refactor: use builtin max and min 2025-10-09 16:17:52 -07:00
shengxinjing
4a48937ef1 refactor: use builtin max and min 2025-10-09 16:17:52 -07:00
Michael Yang
967a82f52f ollamarunner: measure only active time 2025-10-09 15:44:04 -07:00
Michael Yang
bbbc73d637 llamarunner: update metrics
this change updates how metrics are collected. until now, performance
metrics, specifically initial input processing and subsequent generation
durations, were collected by taking the timestamp when creating a new
sequence, the first token generation, and completing generation. the
processing duration is taken as first token generation sub sequence
creation while generation is taken as completing generation sub first
token generation.

while this approach is an accurate end-to-end metric of processing and
generation, it's not comparable to other tools which only measure the
active, i.e. decode, duration.

this change updates the metrics to only capture decode duration so it
can be more directly compared to other tools
2025-10-09 15:44:04 -07:00
Daniel Hiltgen
15e3611d3d logs: quiet down context canceled on completion and scheduler noise (#12553)
* logs: quiet down context canceled on completion

If the client closes the connection before Completion finishes, we were
logging at error level implying the runner crashed which was misleading.

time=2025-10-08T22:59:20.566-07:00 level=ERROR source=server.go:1490 msg="post predict" error="Post \"http://127.0.0.1:57736/completion\": context canceled"

* quiet down scheduler log error on expected case

Since we don't hold the lock while performing memory load calculations, other
runners can unload in parallel, so finding no runner to unload is a valid scenario
which we shouldn't log at error level.
2025-10-09 10:37:47 -07:00
Parth Sareen
77060d462c routes: structured outputs for gpt-oss (#12460) 2025-10-08 19:13:38 -07:00
Patrick Devine
1b91d4dda1 openai: change the reasonin_effort field to also take none 2025-10-08 18:21:01 -07:00
Jeffrey Morgan
7d965258ce Revert "add truncate and shift parameters (#12519)" (#12545)
This reverts commit 6a62b894c7.
2025-10-08 17:57:57 -07:00
Jeffrey Morgan
6a62b894c7 add truncate and shift parameters (#12519) 2025-10-08 17:05:05 -07:00
Patrick Devine
90d429f5a8 thinking: turn on thinking mode for all reasoning models (#12533) 2025-10-08 16:50:13 -07:00
Jesse Gross
1fc35f1260 kvcache: Clean up sliding window state with independent batches
Sliding windows models (e.g. gpt-oss, gemma3) remove tokens that
are out of the cache's window each time we start a new forward pass.

The cache storage needs to handle the window size for each sequence
plus the batch size, since the batch needs to attend to the full
window size. This means that we have greater than a window size
stored while processing the batch.

When the next batch comes, we are currently only looking at the
sequences in the incoming batch to slide the window forward.
However, we also need to clean up the other sequences that might
be occupying space in the batch processing buffer to ensure each
sequence is only using its window size of storage. Failure to do
this can result in "no kv cache slot found" errors.

Fixes: #10127
2025-10-08 16:43:14 -07:00
Jesse Gross
aa45f7ce27 discover: Disable flash attention for Jetson Xavier (CC 7.2)
GGML picks the wrong kernel and these systems fail with:
Sep 28 22:25:39 xavier ollama[48999]: //ml/backend/ggml/ggml/src/ggml-cuda/fattn-wmma-f16.cu:437:
ERROR: CUDA kernel flash_attn_ext_f16 has no device code compatible with CUDA arch 720. ggml-cuda.cu
was compiled for: __CUDA_ARCH_LIST__

Fixes #12442
2025-10-08 09:56:15 -07:00
Daniel Hiltgen
4e5d862ec4 Integration test tuning (#12492)
Remove some flaky scenarios, and switch to chat for better reliability
2025-10-08 09:51:25 -07:00
Daniel Hiltgen
303be9304c docs: improve accuracy of LLM library docs (#12530) 2025-10-07 16:21:07 -07:00
Daniel Hiltgen
bd15eba4e4 Bring back escape valve for llm libraries and fix Jetpack6 crash (#12529)
* Bring back escape valve for llm libraries

If the new discovery logic picks the wrong library, this gives users the
ability to force a specific one using the same pattern as before. This
can also potentially speed up bootstrap discovery if one of the libraries
takes a long time to load and ultimately bind to no devices.  For example
unsupported AMD iGPUS can sometimes take a while to discover and rule out.

* Bypass extra discovery on jetpack systems

On at least Jetpack6, cuda_v12 appears to expose the iGPU, but crashes later on in
cublasInit so if we detect a Jetpack, short-circuit and use that variant.
2025-10-07 16:06:14 -07:00
Devon Rifkin
bc71278670 Merge pull request #12509 from ollama/drifkin/oai-compat-refactor
openai: refactor to split compat layer and middleware
2025-10-06 16:22:08 -07:00
Daniel Hiltgen
918231931c win: fix build script (#12513) 2025-10-06 14:46:45 -07:00
Daniel Hiltgen
04c1849878 discovery: prevent dup OLLAMA_LIBRARY_PATH (#12514)
This variable isn't currently documented or intended as something the user can
override, but if the user happens to set OLLAMA_LIBRARY_PATH we were doubling
this in the subprocess environment which will cause problems with the new
bootstrap discovery logic.
2025-10-06 14:36:44 -07:00
Devon Rifkin
2c2f4deaa9 openai: refactor to split compat layer and middleware
This makes the core openai compat layer independent of the middleware
that adapts it to our particular gin routes
2025-10-05 14:18:56 -07:00
Daniel Hiltgen
292767afb4 CI: fix win arm build (#12502)
Resolve subtle erroraction stickiness difference between x86 and arm builder setup
2025-10-04 11:46:45 -07:00
Daniel Hiltgen
ae5e0f0889 CI: replace clang compiler for windows (#12495) 2025-10-04 09:18:42 -07:00
Jesse Gross
19e6796eac llm: Support KV cache quantization with gpt-oss
With the new version of GGML in #12245, KV cache quantization
no longer causes a fallback to CPU.
2025-10-03 16:31:58 -07:00
Grace
33801c1597 Fixed Deepseek2 adding nil tensor error 2025-10-03 14:20:06 -07:00
Daniel Hiltgen
e4340667e3 Workaround broken NVIDIA iGPU free VRAM data (#12490)
The CUDA APIs for reporting free VRAM are useless on NVIDIA iGPU
systems as they only return the kernels actual free memory and ignore
buff/cache allocations which on a typical system will quickly fill up
most of the free system memory.  As a result, we incorrectly think
there's very little available for GPU allocations which is wrong.
2025-10-03 12:17:21 -07:00
Patrick Devine
2fa1e92a99 test: add template error test (#12489) 2025-10-03 12:05:34 -07:00
Daniel Hiltgen
07e36761c3 ci: place rocm windows in correct runner dir (#12487) 2025-10-03 07:28:40 -07:00
Daniel Hiltgen
c29fb007c0 CI: temporarily disable clang install (#12486)
This will likely yield builds that have problems with unicode characters
but at least we can start testing the release while we try to find an
alternate clang compiler for windows, or mingw ships a fixed version.
2025-10-02 20:31:18 -07:00
Daniel Hiltgen
730ed6e9e1 ci: fix windows build (#12485) 2025-10-02 19:16:01 -07:00
Daniel Hiltgen
dc06601677 ci: fix windows build (#12484) 2025-10-02 18:59:26 -07:00
Patrick Devine
1ed2881ef0 templates: fix crash in improperly defined templates (#12483) 2025-10-02 17:25:55 -07:00
Jesse Gross
0bda72892c llm: Enable flash attention by default for qwen3 and qwen3moe 2025-10-02 17:04:10 -07:00
Daniel Hiltgen
55ca827267 AMD: block running on unsupported gfx900/gfx906 (#12481) 2025-10-02 16:53:05 -07:00
Daniel Hiltgen
c68f367ef6 Update GGML to b6646 (#12245)
Notable EOLs with this change:
- MacOS v12 and v13 are no longer supported (v14+ required)
- AMD gfx900 and gfx906 are no longer supported
2025-10-02 14:47:10 -07:00
Jesse Gross
fdb109469f llm: Allow overriding flash attention setting
As we automatically enable flash attention for more models, there
are likely some cases where we get it wrong. This allows setting
OLLAMA_FLASH_ATTENTION=0 to disable it, even for models that usually
have flash attention.
2025-10-02 12:07:20 -07:00
Daniel Hiltgen
05a43e078a fix panic on bootstrapDevices (#12475)
Wrong index variable was used.
2025-10-01 17:39:29 -07:00
Daniel Hiltgen
bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00
Devon Rifkin
6b50f2b9cd Merge pull request #12461 from ollama/drifkin/qwen3-coder-tweaks
qwen3-coder: fix tool definition type rendering
2025-09-30 19:47:44 -07:00
Michael Yang
35ac4eb12c fix keep alive
this reference to keep alive was missed in #12041 so chat has a
diffferent behaviour than generate
2025-09-30 17:22:28 -07:00
Jesse Gross
3d0b1734c0 ggml: Preallocate CUDA pool memory
The GGML CUDA backend allocates additional memory for intermediate
results during calculation. This memory isn't currently allocated
during worst case graph reservation and therefore not included in
scheduling. This means that as these buffers potentially grow
with context length, we could crash.

This extends the memory allocation system down layer from the GGML
graph to the CUDA layer, preallocating the worst case memory there
as well.

Fixes #11753
2025-09-30 15:04:43 -07:00
Jesse Gross
efaee8c2d6 ggml: Backport scale kernel fixes
The GGML scale kernel uses signed 32-bit ints to represent
the number of elements in the tensor. For large images,
mistral-small3.2 overflows this, triggering CUDA errors due
to negative arguments.

Currently, this can happen when the user passes a large image
to mistral-small3.2. However, with upcoming changes to reserve
CUDA memory, it happens every time mistral-small is loaded as
we reserve using a worst case batch.

This patch is part of an upstream GGML commit and should be removed
after GGML is updated past 0a1b398 "ggml: add ops for WAN video model
(cuda && cpu) (#15669)".

Fixes #10388
2025-09-30 15:04:43 -07:00
Jesse Gross
734b57da0e ggml: Remove allocation status reporting
For each memory allocation we report the size of the (attempted)
allocation and whether it succeeded or failed. The latter status
reporting proved to be not that useful in practice as systems
such as Windows can automatically overflow from VRAM into RAM,
resultings in successful allocations even when there isn't
enough memory where we wanted.

As a result, this information is only used for debug logging,
which isn't worthwhile enough for the amount of code. It
also isn't fully accurate, as multiple allocations may result
in partial failures.
2025-09-30 15:04:43 -07:00
Devon Rifkin
83021fcf0f qwen3-coder: fix tool definition type rendering 2025-09-30 15:03:15 -07:00
Michael Yang
0469861d9d build: call find_package to instantiate library paths 2025-09-30 13:12:46 -07:00
705 changed files with 83310 additions and 28979 deletions

View File

@@ -94,7 +94,7 @@ jobs:
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: ''
runner_dir: 'rocm'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -163,6 +163,7 @@ jobs:
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
Remove-Item -Path dist\lib\ollama\rocm\rocblas\library\*gfx906* -ErrorAction SilentlyContinue
env:
CMAKE_GENERATOR: Ninja
- uses: actions/upload-artifact@v4
@@ -175,19 +176,19 @@ jobs:
matrix:
os: [windows]
arch: [amd64, arm64]
include:
- os: windows
arch: amd64
llvmarch: x86_64
- os: windows
arch: arm64
llvmarch: aarch64
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: [setup-environment]
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- name: Install AMD64 system dependencies
if: matrix.arch == 'amd64'
run: |
$ErrorActionPreference = "Stop"
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install ARM64 system dependencies
if: matrix.arch == 'arm64'
run: |
@@ -199,15 +200,29 @@ jobs:
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install clang and gcc-compat
run: |
$ErrorActionPreference = "Stop"
Set-ExecutionPolicy Bypass -Scope Process -Force
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-${{ matrix.llvmarch }}.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt*").path
echo "$installPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
- name: Verify gcc is actually clang
run: |
$ErrorActionPreference='Continue'
$version=& gcc -v 2>&1
$version=$version -join "`n"
echo "gcc is $version"
if ($version -notmatch 'clang') {
echo "ERROR: GCC must be clang for proper utf16 handling"
exit 1
}
$ErrorActionPreference='Stop'
- run: |
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
- uses: actions/upload-artifact@v4
@@ -222,13 +237,13 @@ jobs:
include:
- os: linux
arch: amd64
target: archive
target: archive_novulkan
- os: linux
arch: amd64
target: rocm
- os: linux
arch: arm64
target: archive
target: archive_novulkan
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
@@ -284,12 +299,14 @@ jobs:
include:
- os: linux
arch: arm64
target: novulkan
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
target: novulkan
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
@@ -302,6 +319,14 @@ jobs:
CGO_CXXFLAGS
GOFLAGS
FLAVOR=rocm
- os: linux
arch: amd64
suffix: '-vulkan'
target: default
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
@@ -319,6 +344,7 @@ jobs:
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
target: ${{ matrix.target }}
build-args: ${{ matrix.build-args }}
outputs: type=image,name=${{ vars.DOCKER_REPO }},push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest

View File

@@ -52,6 +52,12 @@ jobs:
container: rocm/dev-ubuntu-22.04:6.1.2
extra-packages: rocm-libs
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
- preset: Vulkan
container: ubuntu:22.04
extra-packages: >
mesa-vulkan-drivers vulkan-tools
libvulkan1 libvulkan-dev
vulkan-sdk cmake ccache g++ make
runs-on: linux
container: ${{ matrix.container }}
steps:
@@ -59,7 +65,19 @@ jobs:
- run: |
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
# Add LunarG Vulkan SDK apt repo for Ubuntu 22.04
if [ "${{ matrix.preset }}" = "Vulkan" ]; then
$sudo apt-get install -y --no-install-recommends wget gnupg ca-certificates software-properties-common
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | $sudo gpg --dearmor -o /usr/share/keyrings/lunarg-archive-keyring.gpg
# Use signed-by to bind the repo to the installed keyring to avoid NO_PUBKEY
echo "deb [signed-by=/usr/share/keyrings/lunarg-archive-keyring.gpg] https://packages.lunarg.com/vulkan/1.4.313 jammy main" | $sudo tee /etc/apt/sources.list.d/lunarg-vulkan-1.4.313-jammy.list > /dev/null
$sudo apt-get update
fi
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
# Export VULKAN_SDK if provided by LunarG package (defensive)
if [ -d "/usr/lib/x86_64-linux-gnu/vulkan" ] && [ "${{ matrix.preset }}" = "Vulkan" ]; then
echo "VULKAN_SDK=/usr" >> $GITHUB_ENV
fi
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
@@ -92,18 +110,21 @@ jobs:
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
- preset: Vulkan
install: https://sdk.lunarg.com/sdk/download/1.4.321.1/windows/vulkansdk-windows-X64-1.4.321.1.exe
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm' || matrix.preset == 'Vulkan'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
C:\VulkanSDK
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
@@ -133,6 +154,18 @@ jobs:
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'Vulkan'
name: Install Vulkan ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList "-c","--am","--al","in" -NoNewWindow -Wait
}
$vulkanPath = (Resolve-Path "C:\VulkanSDK\*").path
echo "$vulkanPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "VULKAN_SDK=$vulkanPath" >> $env:GITHUB_ENV
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:

View File

@@ -109,6 +109,7 @@ if(CMAKE_HIP_COMPILER)
endif()
if(AMDGPU_TARGETS)
find_package(hip REQUIRED)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
if (WIN32)
@@ -117,7 +118,6 @@ if(CMAKE_HIP_COMPILER)
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
@@ -128,15 +128,27 @@ if(CMAKE_HIP_COMPILER)
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
endif()
find_package(Vulkan)
if(Vulkan_FOUND)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-vulkan)
install(TARGETS ggml-vulkan
RUNTIME_DEPENDENCIES
PRE_INCLUDE_REGEXES vulkan
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
)
endif()

View File

@@ -30,7 +30,7 @@
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;120",
"CMAKE_CUDA_ARCHITECTURES": "50;52;60;61;70;75;80;86;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
@@ -38,7 +38,7 @@
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;103-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
@@ -68,8 +68,12 @@
"inherits": [ "ROCm" ],
"cacheVariables": {
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx1151;gfx1200;gfx1201;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1011:xnack-;gfx1012:xnack-;"
"AMDGPU_TARGETS": "gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
},
{
"name": "Vulkan",
"inherits": [ "Default" ]
}
],
"buildPresets": [
@@ -122,6 +126,11 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"configurePreset": "ROCm 6"
},
{
"name": "Vulkan",
"targets": [ "ggml-vulkan" ],
"configurePreset": "Vulkan"
}
]
}

View File

@@ -7,6 +7,7 @@ ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
ARG VULKANVERSION=1.4.321.1
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
@@ -17,6 +18,16 @@ RUN yum install -y yum-utils \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ARG VULKANVERSION
RUN wget https://sdk.lunarg.com/sdk/download/${VULKANVERSION}/linux/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz -O /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
&& tar xvf /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
&& dnf -y install ninja-build \
&& ln -s /usr/bin/python3 /usr/bin/python \
&& /${VULKANVERSION}/vulkansdk -j 8 vulkan-headers \
&& /${VULKANVERSION}/vulkansdk -j 8 shaderc
RUN cp -r /${VULKANVERSION}/x86_64/include/* /usr/local/include/ \
&& cp -r /${VULKANVERSION}/x86_64/lib/* /usr/local/lib
ENV PATH=/${VULKANVERSION}/x86_64/bin:$PATH
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache
@@ -77,9 +88,10 @@ FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
cmake --preset 'ROCm 6' -DOLLAMA_RUNNER_DIR="rocm" \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
RUN rm -f dist/lib/ollama/rocm/rocblas/library/*gfx90[06]*
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -89,7 +101,7 @@ COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
cmake --preset 'JetPack 5' -DOLLAMA_RUNNER_DIR="cuda_jetpack5" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
@@ -101,10 +113,17 @@ COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
cmake --preset 'JetPack 6' -DOLLAMA_RUNNER_DIR="cuda_jetpack6" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS vulkan
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'Vulkan' -DOLLAMA_RUNNER_DIR="vulkan" \
&& cmake --build --parallel --preset 'Vulkan' \
&& cmake --install build --component Vulkan --strip --parallel 8
FROM base AS build
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
@@ -122,27 +141,54 @@ RUN --mount=type=cache,target=/root/.cache/go-build \
FROM --platform=linux/amd64 scratch AS amd64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
COPY --from=vulkan dist/lib/ollama /lib/ollama/
FROM --platform=linux/arm64 scratch AS arm64
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama /lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama /lib/ollama/cuda_jetpack6
COPY --from=jetpack-5 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-6 dist/lib/ollama/ /lib/ollama/
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
FROM ${FLAVOR} AS archive
ARG VULKANVERSION
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:24.04
# Temporary opt-out stages for Vulkan
FROM --platform=linux/amd64 scratch AS amd64_novulkan
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
FROM arm64 AS arm64_novulkan
FROM ${FLAVOR}_novulkan AS archive_novulkan
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:24.04 AS novulkan
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive_novulkan /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive_novulkan /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM ubuntu:24.04 AS default
RUN apt-get update \
&& apt-get install -y ca-certificates libvulkan1 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=e54d41befcc1575f4c898c5ff4ef43970cead75f
FETCH_HEAD=7049736b2dd9011bf819e298b844ebbc4b5afdc9
.PHONY: help
help:

View File

@@ -483,6 +483,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
- [VT Code](https://github.com/vinhnx/vtcode) - VT Code is a Rust-based terminal coding agent with semantic code intelligence via Tree-sitter. Ollama integration for running local/cloud models with configurable endpoints.
### Apple Vision Pro
@@ -566,6 +567,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
- [achatbot-go](https://github.com/ai-bot-pro/achatbot-go) a multimodal(text/audio/image) chatbot.
### Mobile

View File

@@ -106,6 +106,14 @@ type GenerateRequest struct {
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// Truncate is a boolean that, when set to true, truncates the chat history messages
// if the rendered prompt exceeds the context length limit.
Truncate *bool `json:"truncate,omitempty"`
// Shift is a boolean that, when set to true, shifts the chat history
// when hitting the context length limit instead of erroring.
Shift *bool `json:"shift,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
@@ -140,6 +148,14 @@ type ChatRequest struct {
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// Truncate is a boolean that, when set to true, truncates the chat history messages
// if the rendered prompt exceeds the context length limit.
Truncate *bool `json:"truncate,omitempty"`
// Shift is a boolean that, when set to true, shifts the chat history
// when hitting the context length limit instead of erroring.
Shift *bool `json:"shift,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
@@ -188,7 +204,7 @@ type ToolCall struct {
}
type ToolCallFunction struct {
Index int `json:"index,omitempty"`
Index int `json:"index"`
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
@@ -250,9 +266,9 @@ func (pt PropertyType) String() string {
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
}
@@ -316,7 +332,7 @@ func (t *ToolFunctionParameters) String() string {
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Description string `json:"description,omitempty"`
Parameters ToolFunctionParameters `json:"parameters"`
}
@@ -936,7 +952,7 @@ func (t *ThinkValue) UnmarshalJSON(data []byte) error {
return nil
}
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\")")
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\", true, or false)")
}
// MarshalJSON implements json.Marshaler

View File

@@ -298,6 +298,30 @@ func TestToolFunction_UnmarshalJSON(t *testing.T) {
}
}
func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) {
fn := ToolCallFunction{
Name: "echo",
Arguments: ToolCallFunctionArguments{"message": "hi"},
}
data, err := json.Marshal(fn)
require.NoError(t, err)
raw := map[string]any{}
require.NoError(t, json.Unmarshal(data, &raw))
require.Contains(t, raw, "index")
assert.Equal(t, float64(0), raw["index"])
fn.Index = 3
data, err = json.Marshal(fn)
require.NoError(t, err)
raw = map[string]any{}
require.NoError(t, json.Unmarshal(data, &raw))
require.Contains(t, raw, "index")
assert.Equal(t, float64(3), raw["index"])
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string

View File

@@ -198,6 +198,8 @@ func ConvertModel(fsys fs.FS, f *os.File) error {
conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":

View File

@@ -85,6 +85,19 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
case "scales":
mxfp4s[name].scales = t
}
} else if strings.HasSuffix(t.Name(), "gate_up_exps.bias") {
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
out = append(out, slices.Collect(splitDim(t, 1,
split{
Replacer: strings.NewReplacer("gate_up_exps", "gate_exps"),
slices: []tensor.Slice{nil, tensor.S(0, int(t.Shape()[1]), 2)},
},
split{
Replacer: strings.NewReplacer("gate_up_exps", "up_exps"),
slices: []tensor.Slice{nil, tensor.S(1, int(t.Shape()[1]), 2)},
},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
@@ -97,17 +110,28 @@ func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if !strings.HasSuffix(name, ".weight") {
name += ".weight"
if strings.Contains(name, "ffn_down_exps") {
out = append(out, &ggml.Tensor{
Name: name + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
WriterTo: mxfp4,
})
} else if strings.Contains(name, "ffn_gate_up_exps") {
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "gate_up", "gate", 1) + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
WriterTo: mxfp4.slice(1, 0, int(dims[1]), 2),
}, &ggml.Tensor{
Name: strings.Replace(name, "gate_up", "up", 1) + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
WriterTo: mxfp4.slice(1, 1, int(dims[1]), 2),
})
}
out = append(out, &ggml.Tensor{
Name: name,
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
WriterTo: mxfp4,
})
}
return out
@@ -158,9 +182,21 @@ func (m *gptossModel) Replacements() []string {
}
type mxfp4 struct {
slices []tensor.Slice
blocks, scales Tensor
}
func (m *mxfp4) slice(dim, start, end, step int) *mxfp4 {
slice := slices.Repeat([]tensor.Slice{nil}, len(m.blocks.Shape()))
slice[dim] = tensor.S(start, end, step)
return &mxfp4{
slices: slice,
blocks: m.blocks,
scales: m.scales,
}
}
func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
var b bytes.Buffer
if _, err := m.blocks.WriteTo(&b); err != nil {
@@ -204,6 +240,13 @@ func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
return 0, err
}
if len(m.slices) > 0 {
out, err = out.Slice(m.slices...)
if err != nil {
return 0, err
}
}
out = tensor.Materialize(out)
if err := out.Reshape(out.Shape().TotalSize()); err != nil {

157
convert/convert_qwen3.go Normal file
View File

@@ -0,0 +1,157 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type qwen3Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
NumExperts uint32 `json:"num_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NormTopkProb bool `json:"norm_topk_prob"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
// KV implements ModelConverter.
func (q *qwen3Model) KV(t *Tokenizer) ggml.KV {
arch := "qwen3"
if q.NumExperts > 0 {
arch += "moe"
}
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = arch
kv["block_count"] = q.HiddenLayers
kv["context_length"] = q.MaxPositionEmbeddings
kv["embedding_length"] = q.HiddenSize
kv["feed_forward_length"] = q.IntermediateSize
kv["attention.head_count"] = q.NumAttentionHeads
kv["attention.head_count_kv"] = q.NumKeyValueHeads
kv["attention.key_length"] = q.HeadDim
kv["attention.value_length"] = q.HeadDim
if q.NumExperts > 0 {
kv["expert_count"] = q.NumExperts
kv["expert_used_count"] = q.NumExpertsPerToken
kv["norm_top_k_prob"] = q.NormTopkProb
}
kv["rope.freq_base"] = q.RopeTheta
kv["attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
switch q.RopeScaling.Type {
case "":
// no scaling
case "yarn":
kv["rope.scaling.type"] = q.RopeScaling.Type
kv["rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}
return kv
}
// Tensors implements ModelConverter.
func (q *qwen3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
// TODO: handle split experts
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "ffn_gate_up_exps"):
afterFunc := func(t tensor.Tensor) (tensor.Tensor, error) { return tensor.Transpose(t, 0, 2, 1) }
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("gate_up", "gate"), afterFunc: afterFunc},
split{Replacer: strings.NewReplacer("gate_up", "up"), afterFunc: afterFunc},
) {
t.Shape[1], t.Shape[2] = t.Shape[2], t.Shape[1]
out = append(out, t)
}
case strings.Contains(t.Name(), "ffn_down_exps"):
shape := slices.Clone(t.Shape())
shape[1], shape[2] = shape[2], shape[1]
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tensor.Transpose(tt, 0, 2, 1)
if err != nil {
return nil, err
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
default:
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
// Replacements implements ModelConverter.
func (q *qwen3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.gate.weight", "ffn_gate_inp.weight",
"mlp.experts.down_proj", "ffn_down_exps.weight",
"mlp.experts.gate_up_proj", "ffn_gate_up_exps.weight",
"post_attention_layernorm", "ffn_norm",
"model.norm", "output_norm",
}
}
var _ ModelConverter = (*qwen3Model)(nil)

116
convert/convert_qwen3vl.go Normal file
View File

@@ -0,0 +1,116 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen3VLModel struct {
qwen3Model `json:"text_config"`
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_channels"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
DeepstackVisualIndexes []int32 `json:"deepstack_visual_indexes"`
Size struct {
ShortestEdge uint32 `json:"shortest_edge"`
LongestEdge uint32 `json:"longest_edge"`
} `json:"size"`
ImageMean []float32 `json:"image_mean"`
ImageStd []float32 `json:"image_std"`
} `json:"vision_config"`
}
func (m *qwen3VLModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "preprocessor_config.json")
if err != nil {
return err
}
return json.Unmarshal(bts, &m.VisionModel)
}
func (m *qwen3VLModel) KV(t *Tokenizer) ggml.KV {
kv := m.qwen3Model.KV(t)
arch := "qwen3vl"
if m.NumExperts > 0 {
arch += "moe"
}
// override architecture
kv["general.architecture"] = arch
kv["vision.block_count"] = cmp.Or(m.VisionModel.Depth, 32)
kv["vision.embedding_length"] = m.VisionModel.HiddenSize
kv["vision.attention.head_count"] = cmp.Or(m.VisionModel.NumHeads, 16)
kv["vision.num_channels"] = m.VisionModel.InChannels
kv["vision.patch_size"] = cmp.Or(m.VisionModel.PatchSize, 14)
kv["vision.spatial_merge_size"] = cmp.Or(m.VisionModel.SpatialMergeSize, 2)
kv["vision.attention.layer_norm_epsilon"] = cmp.Or(m.VisionModel.RMSNormEps, 1e-6)
kv["vision.rope.freq_base"] = cmp.Or(m.VisionModel.RopeTheta, 1e4)
kv["vision.temporal_patch_size"] = cmp.Or(m.VisionModel.TemporalPatchSize, 2)
kv["vision.deepstack_visual_indexes"] = m.VisionModel.DeepstackVisualIndexes
kv["vision.shortest_edge"] = m.VisionModel.Size.ShortestEdge
kv["vision.longest_edge"] = m.VisionModel.Size.LongestEdge
kv["vision.image_mean"] = m.VisionModel.ImageMean
kv["vision.image_std"] = m.VisionModel.ImageStd
return kv
}
func (m *qwen3VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var rest []Tensor
var out []*ggml.Tensor
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "attn_qkv"):
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn_qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn_qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn_qkv", "attn_v")},
))...)
case strings.Contains(t.Name(), "patch_embed") && strings.HasSuffix(t.Name(), "weight"):
shape := t.Shape()
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: append([]uint64{shape[0] * shape[1]}, shape[2:]...),
WriterTo: t,
})
default:
rest = append(rest, t)
}
}
return append(m.qwen3Model.Tensors(rest), out...)
}
func (m *qwen3VLModel) Replacements() []string {
return append(
m.qwen3Model.Replacements(),
"model.language_", "",
"model.visual", "v",
"patch_embed.proj", "patch_embed",
"blocks", "blk",
"attn.qkv", "attn_qkv",
"attn.proj", "attn_out",
"deepstack_merger_list", "deepstack_merger",
)
}

View File

@@ -18,6 +18,7 @@ import (
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
)
@@ -339,13 +340,8 @@ func TestConvertAdapter(t *testing.T) {
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
for _, k := range slices.Sorted(maps.Keys(c.Expected)) {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
if diff := cmp.Diff(c.Expected, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
}

View File

@@ -16,10 +16,11 @@ import (
type split struct {
*strings.Replacer
dim int
dim int
slices []tensor.Slice
// fn is an optional function to apply to the tensor after slicing
fn func(tensor.Tensor) (tensor.Tensor, error)
// afterFunc is an optional function to apply to the tensor after slicing
afterFunc func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
@@ -32,9 +33,12 @@ func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
slice := split.slices
if len(slice) == 0 {
slice = slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
}
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
@@ -50,8 +54,8 @@ func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
tt = tensor.Materialize(tt)
if split.fn != nil {
tt, err = split.fn(tt)
if split.afterFunc != nil {
tt, err = split.afterFunc(tt)
if err != nil {
return nil, err
}

View File

@@ -432,7 +432,7 @@ func TestSplitDim(t *testing.T) {
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
split{Replacer: strings.NewReplacer("b", "y"), afterFunc: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))

View File

@@ -1,83 +0,0 @@
//go:build linux || windows
package discover
import (
"errors"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
func rocmLibUsable(libDir string) bool {
slog.Debug("evaluating potential rocm lib dir " + libDir)
for _, g := range ROCmLibGlobs {
res, _ := filepath.Glob(filepath.Join(libDir, g))
if len(res) == 0 {
return false
}
}
return true
}
func GetSupportedGFX(libDir string) ([]string, error) {
var ret []string
files, err := filepath.Glob(filepath.Join(libDir, "rocblas", "library", "TensileLibrary_lazy_gfx*.dat"))
if err != nil {
return nil, err
}
for _, file := range files {
ret = append(ret, strings.TrimSuffix(strings.TrimPrefix(filepath.Base(file), "TensileLibrary_lazy_"), ".dat"))
}
return ret, nil
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "bin")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return hipLibDir, nil
}
}
// Scan the LD_LIBRARY_PATH or PATH
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
paths := os.Getenv(pathEnv)
for _, path := range filepath.SplitList(paths) {
d, err := filepath.Abs(path)
if err != nil {
continue
}
if rocmLibUsable(d) {
return d, nil
}
}
// Well known location(s)
for _, path := range RocmStandardLocations {
if rocmLibUsable(path) {
return path, nil
}
}
return "", errors.New("no suitable rocm found, falling back to CPU")
}

View File

@@ -1,147 +0,0 @@
package discover
import (
"errors"
"fmt"
"log/slog"
"syscall"
"unsafe"
"golang.org/x/sys/windows"
)
const (
hipSuccess = 0
hipErrorNoDevice = 100
)
type hipDevicePropMinimal struct {
Name [256]byte
unused1 [140]byte
GcnArchName [256]byte // gfx####
iGPU int // Doesn't seem to actually report correctly
unused2 [128]byte
}
// Wrap the amdhip64.dll library for GPU discovery
type HipLib struct {
dll windows.Handle
hipGetDeviceCount uintptr
hipGetDeviceProperties uintptr
hipMemGetInfo uintptr
hipSetDevice uintptr
hipDriverGetVersion uintptr
}
func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h
hl.hipGetDeviceCount, err = windows.GetProcAddress(hl.dll, "hipGetDeviceCount")
if err != nil {
return nil, err
}
hl.hipGetDeviceProperties, err = windows.GetProcAddress(hl.dll, "hipGetDeviceProperties")
if err != nil {
return nil, err
}
hl.hipMemGetInfo, err = windows.GetProcAddress(hl.dll, "hipMemGetInfo")
if err != nil {
return nil, err
}
hl.hipSetDevice, err = windows.GetProcAddress(hl.dll, "hipSetDevice")
if err != nil {
return nil, err
}
hl.hipDriverGetVersion, err = windows.GetProcAddress(hl.dll, "hipDriverGetVersion")
if err != nil {
return nil, err
}
return hl, nil
}
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
// so we have to unload/reset the library after we do our initial discovery
// to make sure our updates to that variable are processed by llama.cpp
func (hl *HipLib) Release() {
err := windows.FreeLibrary(hl.dll)
if err != nil {
slog.Warn("failed to unload amdhip64.dll", "error", err)
}
hl.dll = 0
}
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var version int
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
}
slog.Debug("hipDriverGetVersion", "version", version)
driverMajor = version / 10000000
driverMinor = (version - (driverMajor * 10000000)) / 100000
return driverMajor, driverMinor, nil
}
func (hl *HipLib) HipGetDeviceCount() int {
if hl.dll == 0 {
slog.Error("dll has been unloaded")
return 0
}
var count int
status, _, err := syscall.SyscallN(hl.hipGetDeviceCount, uintptr(unsafe.Pointer(&count)))
if status == hipErrorNoDevice {
slog.Info("AMD ROCm reports no devices found")
return 0
}
if status != hipSuccess {
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
}
return count
}
func (hl *HipLib) HipSetDevice(device int) error {
if hl.dll == 0 {
return errors.New("dll has been unloaded")
}
status, _, err := syscall.SyscallN(hl.hipSetDevice, uintptr(device))
if status != hipSuccess {
return fmt.Errorf("failed call to hipSetDevice: %d %s", status, err)
}
return nil
}
func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, error) {
if hl.dll == 0 {
return nil, errors.New("dll has been unloaded")
}
var props hipDevicePropMinimal
status, _, err := syscall.SyscallN(hl.hipGetDeviceProperties, uintptr(unsafe.Pointer(&props)), uintptr(device))
if status != hipSuccess {
return nil, fmt.Errorf("failed call to hipGetDeviceProperties: %d %s", status, err)
}
return &props, nil
}
// free, total, err
func (hl *HipLib) HipMemGetInfo() (uint64, uint64, error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var totalMemory uint64
var freeMemory uint64
status, _, err := syscall.SyscallN(hl.hipMemGetInfo, uintptr(unsafe.Pointer(&freeMemory)), uintptr(unsafe.Pointer(&totalMemory)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipMemGetInfo: %d %s", status, err)
}
return freeMemory, totalMemory, nil
}

View File

@@ -1,549 +0,0 @@
package discover
import (
"bufio"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
// Discovery logic for AMD/ROCm GPUs
const (
DriverVersionFile = "/sys/module/amdgpu/version"
AMDNodesSysfsDir = "/sys/class/kfd/kfd/topology/nodes/"
GPUPropertiesFileGlob = AMDNodesSysfsDir + "*/properties"
// Prefix with the node dir
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
// Direct Rendering Manager sysfs location
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
DRMTotalMemoryFile = "mem_info_vram_total"
DRMUsedMemoryFile = "mem_info_vram_used"
// In hex; properties file is in decimal
DRMUniqueIDFile = "unique_id"
DRMVendorFile = "vendor"
DRMDeviceFile = "device"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"}
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
if !AMDDetected() {
return resp, fmt.Errorf("AMD GPUs not detected")
}
// Opportunistic logging of driver version to aid in troubleshooting
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/download/linux-drivers.html", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
var libDir string
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
gpuCount := 0
gpuOrdinalID := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
if err != nil {
slog.Debug("failed to open sysfs node", "file", match, "error", err)
continue
}
defer fp.Close()
scanner := bufio.NewScanner(fp)
isCPU := false
var major, minor, patch uint64
var vendor, device, uniqueID uint64
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
if strings.HasPrefix(line, "gfx_target_version") {
ver := strings.Fields(line)
// Detect CPUs
if len(ver) == 2 && ver[1] == "0" {
slog.Debug("detected CPU " + match)
isCPU = true
break
}
if len(ver) != 2 || len(ver[1]) < 5 {
slog.Warn("malformed "+match, "gfx_target_version", line)
// If this winds up being a CPU, our offsets may be wrong
continue
}
l := len(ver[1])
var err1, err2, err3 error
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
if err1 != nil || err2 != nil || err3 != nil {
slog.Debug("malformed int " + line)
continue
}
} else if strings.HasPrefix(line, "vendor_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "vendor_id", line)
continue
}
vendor, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "vendor_id", line, "error", err)
}
} else if strings.HasPrefix(line, "device_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "device_id", line)
continue
}
device, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "device_id", line, "error", err)
}
} else if strings.HasPrefix(line, "unique_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "unique_id", line)
continue
}
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "unique_id", line, "error", err)
}
}
// TODO - any other properties we want to extract and record?
// vendor_id + device_id -> pci lookup for "Name"
// Other metrics that may help us understand relative performance between multiple GPUs
}
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
// do reliably report VRAM usage.
if isCPU {
continue
}
// Skip over any GPUs that are masked
if major == 0 && minor == 0 && patch == 0 {
slog.Debug("skipping gpu with gfx000")
continue
}
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
var usedFile string
mapping := []struct {
id uint64
filename string
}{
{vendor, DRMVendorFile},
{device, DRMDeviceFile},
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
}
slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
// Map over to DRM location to find the total/free memory
drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
for _, devDir := range drmMatches {
matched := true
for _, m := range mapping {
if m.id == 0 {
// Null ID means it didn't populate, so we can't use it to match
continue
}
filename := filepath.Join(devDir, m.filename)
buf, err := os.ReadFile(filename)
if err != nil {
slog.Debug("failed to read sysfs node", "file", filename, "error", err)
matched = false
break
}
// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
matched = false
break
}
if cmp != m.id {
matched = false
break
}
}
if !matched {
continue
}
// Found the matching DRM directory
slog.Debug("matched", "amdgpu", match, "drm", devDir)
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
buf, err := os.ReadFile(totalFile)
if err != nil {
slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
break
}
totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
break
}
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
usedMemory, err = getFreeMemory(usedFile)
if err != nil {
slog.Debug("failed to update used memory", "error", err)
}
break
}
var name string
// TODO - PCI ID lookup
if vendor > 0 && device > 0 {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
var ID string
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuOrdinalID)
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
filterID: gpuOrdinalID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuCount,
}
// Keep track of numeric IDs based on valid GPUs
gpuCount += 1
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if (uniqueID != 0 && visible == gpuInfo.ID) || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "index", gpuInfo.index, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Ordinal IDs are based on the visible GPUs
gpuOrdinalID += 1
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
//minVer, err := strconv.Atoi(RocmComputeMajorMin)
//if err != nil {
// slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
//}
// if int(major) < minVer {
// reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
// slog.Warn(reason, "gpu", gpuID)
// unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
// GpuInfo: gpuInfo.GpuInfo,
// Reason: reason,
// })
// continue
//}
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuInfo.ID, "available", format.HumanBytes2(totalMemory-usedMemory))
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
if libDir == "" {
libDir, err = AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
}
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once
if len(supported) == 0 {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := gpuInfo.Compute
if !slices.Contains[[]string, string](supported, gfx) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, "HSA_ENABLE_SDMA=0")
}
// The GPU has passed all the verification steps and is supported
resp = append(resp, gpuInfo)
}
if len(resp) == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
if err := verifyKFDDriverAccess(); err != nil {
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
slog.Error(err.Error())
return nil, err
}
return resp, nil
}
// Quick check for AMD driver so we can skip amdgpu discovery if not present
func AMDDetected() bool {
// Some driver versions (older?) don't have a version file, so just lookup the parent dir
sysfsDir := filepath.Dir(DriverVersionFile)
_, err := os.Stat(sysfsDir)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("amdgpu driver not detected " + sysfsDir)
return false
} else if err != nil {
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
return false
}
return true
}
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
// failing that, tell the user how to download it on their own
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Well known ollama installer path
installedRocmDir := "/usr/share/ollama/lib/rocm"
if rocmLibUsable(installedRocmDir) {
return installedRocmDir, nil
}
// If we still haven't found a usable rocm, the user will have to install it on their own
slog.Warn("amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
_, err = os.Stat(DriverVersionFile)
if err != nil {
return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
}
fp, err := os.Open(DriverVersionFile)
if err != nil {
return 0, 0, err
}
defer fp.Close()
verString, err := io.ReadAll(fp)
if err != nil {
return 0, 0, err
}
pattern := `\A(\d+)\.(\d+).*`
regex := regexp.MustCompile(pattern)
match := regex.FindStringSubmatch(string(verString))
if len(match) < 2 {
return 0, 0, fmt.Errorf("malformed version string %s", string(verString))
}
driverMajor, err = strconv.Atoi(match[1])
if err != nil {
return 0, 0, err
}
driverMinor, err = strconv.Atoi(match[2])
if err != nil {
return 0, 0, err
}
return driverMajor, driverMinor, nil
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
for i := range gpus {
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
if err != nil {
return err
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
}
return nil
}
func getFreeMemory(usedFile string) (uint64, error) {
buf, err := os.ReadFile(usedFile)
if err != nil {
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
}
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
}
return usedMemory, nil
}
func verifyKFDDriverAccess() error {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
} else if errors.Is(err, fs.ErrNotExist) {
// Container runtime failure?
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -1,226 +0,0 @@
package discover
import (
"bytes"
"errors"
"fmt"
"log/slog"
"path/filepath"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
const (
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
iGPUName = "AMD 2099 Graphics"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return nil, err
}
defer hl.Release()
driverMajor, driverMinor, err := hl.AMDDriverVersion()
if err != nil {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
return nil, err
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
slog.Debug("detected hip devices", "count", count)
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
for i := range count {
err = hl.HipSetDevice(i)
if err != nil {
slog.Warn("set device", "id", i, "error", err)
continue
}
props, err := hl.HipGetDeviceProperties(i)
if err != nil {
slog.Warn("get properties", "id", i, "error", err)
continue
}
n := bytes.IndexByte(props.Name[:], 0)
name := string(props.Name[:n])
// TODO is UUID actually populated on windows?
// Can luid be used on windows for setting visible devices (and is it actually set?)
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
freeMemory, totalMemory, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: freeMemory,
},
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
filterID: i,
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
index: i,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// HSA_OVERRIDE_GFX_VERSION not supported on windows
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
resp = append(resp, gpuInfo)
}
return resp, nil
}
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Installer payload (if we're running from some other location)
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil
}
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return err
}
defer hl.Release()
for i := range gpus {
err := hl.HipSetDevice(gpus[i].index)
if err != nil {
return err
}
freeMemory, _, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
gpus[i].FreeMemory = freeMemory
}
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
continue
}
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
if _, err := strconv.Atoi(info.ID); err == nil {
ids = append(ids, fmt.Sprintf("%d", info.filterID))
} else {
ids = append(ids, info.ID)
}
}
if len(ids) == 0 {
return ""
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES=" + strings.Join(ids, ",")
}

View File

@@ -1,24 +0,0 @@
package discover
import (
"os"
"path/filepath"
"runtime"
"strings"
)
func IsNUMA() bool {
if runtime.GOOS != "linux" {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@@ -4,7 +4,9 @@ import (
"bufio"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"reflect"
"regexp"
"sort"
@@ -13,47 +15,6 @@ import (
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
@@ -106,16 +67,17 @@ type linuxCpuInfo struct {
CoreID string `cpuinfo:"core id"`
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
file, err := os.Open(CpuInfoFilename)
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
defer file.Close()
return linuxCPUDetails(file)
}
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
func linuxCPUDetails(file io.Reader) []CPU {
reColumns := regexp.MustCompile("\t+: ")
scanner := bufio.NewScanner(file)
cpuInfos := []linuxCpuInfo{}
@@ -194,5 +156,17 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for _, k := range keys {
result = append(result, *socketByID[k])
}
return result, nil
return result
}
func IsNUMA() bool {
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@@ -2062,18 +2062,9 @@ power management:
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
buf := bytes.NewBufferString(v.input)
cpus, err := linuxCPUDetails(buf)
if err != nil {
t.Fatal(err)
}
cpus := linuxCPUDetails(buf)
slog.Info("example", "scenario", k, "cpus", cpus)
si := SystemInfo{
System: CPUInfo{
CPUs: cpus,
},
}
threadCount := si.GetOptimalThreadCount()
if len(v.expCPUs) != len(cpus) {
t.Fatalf("incorrect number of sockets: expected:%v got:%v", v.expCPUs, cpus)
}
@@ -2088,10 +2079,6 @@ power management:
t.Fatalf("incorrect number of threads: expected:%v got:%v", v.expCPUs[i], c)
}
}
if threadCount != v.expThreadCount {
t.Fatalf("incorrect thread count expected:%d got:%d", v.expThreadCount, threadCount)
}
})
}
}

View File

@@ -26,29 +26,6 @@ var (
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var (
CudartMgmtName = "cudart64_*.dll"
NvcudaMgmtName = "nvcuda.dll"
NvmlMgmtName = "nvml.dll"
OneapiMgmtName = "ze_intel_gpu64.dll"
)
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
@@ -122,27 +99,22 @@ func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
}
func getLogicalProcessorInformationEx() ([]byte, error) {
buf := make([]byte, 1)
buf := make([]byte, 1024)
bufSize := len(buf)
ret, _, err := GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret != 0 {
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
var err error
for range 3 {
var ret uintptr
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 1 && bufSize <= len(buf) {
return buf, nil
}
buf = make([]byte, bufSize)
}
buf = make([]byte, bufSize)
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 0 {
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
}
return buf, nil
return nil, fmt.Errorf("unable to determine CPU details: %w", err)
}
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
@@ -217,10 +189,11 @@ func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
return packages
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
buf, err := getLogicalProcessorInformationEx()
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
packages := processSystemLogicalProcessorInforationList(buf)
cpus := make([]CPU, len(packages))
@@ -230,5 +203,10 @@ func GetCPUDetails() ([]CPU, error) {
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
cpus[i].ThreadCount = pkg.threadCount
}
return cpus, nil
return cpus
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@@ -1,64 +0,0 @@
//go:build linux || windows
package discover
import (
"fmt"
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaVariant(gpuInfos []CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
// Check GPU compute capability FIRST, lowest common denominator if multi-gpu
for _, gpuInfo := range gpuInfos {
if gpuInfo.computeMajor < 7 || (gpuInfo.computeMajor == 7 && gpuInfo.computeMinor < 5) {
// GPU is Pascal or older (CC <= 7.4) - use CUDA v12 (supports CC 6.1)
return "v12"
}
}
// GPU is Turing or newer (CC >= 7.5) - can use newer CUDA
if len(gpuInfos) > 0 && gpuInfos[0].DriverMajor < 13 {
// The detected driver is older than 580 (Aug 2025)
// Warn if their CC is compatible with v13 and they should upgrade their driver to get better performance
slog.Warn("old CUDA driver detected - please upgrade to a newer driver for best performance", "version", fmt.Sprintf("%d.%d", gpuInfos[0].DriverMajor, gpuInfos[0].DriverMinor))
return "v12"
}
return "v13"
}

View File

@@ -1,730 +1,73 @@
//go:build linux || windows
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// GetSystemInfo returns the last cached state of the GPUs on the system
func GetSystemInfo() ml.SystemInfo {
memInfo, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
var threadCount int
cpus := GetCPUDetails()
for _, c := range cpus {
threadCount += c.CoreCount - c.EfficiencyCoreCount
}
if threadCount == 0 {
// Fall back to Go's num CPU
threadCount = runtime.NumCPU()
}
return ml.SystemInfo{
ThreadCount: threadCount,
TotalMemory: memInfo.TotalMemory,
FreeMemory: memInfo.FreeMemory,
FreeSwap: memInfo.FreeSwap,
}
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t
deviceCount int
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
// (string values used to allow ldflags overrides at build time)
var (
CudaComputeMajorMin = "5"
CudaComputeMinorMin = "0"
)
//change valute from 9 to 8 would release the gfx version limits ,refer to https://github.com/likelovewant/ollama-for-amd/issues/51
var RocmComputeMajorMin = "8"
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
func cudaJetpack() string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
if err != nil {
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
}
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
if err != nil {
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
}
bootstrapErrors = []error{}
needRefresh = false
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
driverMajor = int(cHandles.cudart.driver_major)
driverMinor = int(cHandles.cudart.driver_minor)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
// Second pass on NVIDIA GPUs to set lowest common denominator variant and DependencyPaths
variant := cudaVariant(cudaGPUs)
var variantPath string
// Start with our bundled libraries
if variant != "" {
variantPath = filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err != nil {
variantPath = ""
}
}
for i := range cudaGPUs {
cudaGPUs[i].Variant = variant
if variantPath != "" {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
cudaGPUs[i].DependencyPath = append([]string{variantPath}, cudaGPUs[i].DependencyPath...)
}
}
}
// Intel
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs, err = AMDGetGPUInfo()
// The ID field is used in context of the filtered set of GPUS
// so we have to replace any of these numeric IDs with their
// placement in this set of GPUs
for i := range rocmGPUs {
if _, err := strconv.Atoi(rocmGPUs[i].ID); err == nil {
rocmGPUs[i].ID = strconv.Itoa(i)
}
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
// Newer Jetson systems use the SBSU runtime
slog.Debug("unrecognized L4T version", "nv_tegra_release", string(data))
}
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return &resp.ch, libPath, err
}
}
return nil, "", err
}
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
var err error
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath, err
}
}
return 0, nil, "", err
}
func getVerboseState() C.uint16_t {
if envconfig.LogLevel() < slog.LevelInfo {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
if len(l) == 0 {
return nil
}
vd := []string{}
// Only filter the AMD GPUs at this level, let all NVIDIA devices through
if tmp := rocmGetVisibleDevicesEnv(l); tmp != "" {
vd = append(vd, tmp)
}
return vd
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
}
return ""
}

View File

@@ -1,5 +1,3 @@
//go:build darwin
package discover
/*
@@ -11,7 +9,6 @@ import "C"
import (
"log/slog"
"runtime"
"syscall"
"github.com/ollama/ollama/format"
@@ -21,39 +18,6 @@ const (
metalMinimumMemory = 512 * format.MebiByte
)
func GetGPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
if runtime.GOARCH == "amd64" {
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
info := GpuInfo{
Library: "metal",
ID: "0",
}
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
info.FreeMemory = info.TotalMemory
info.MinimumMemory = metalMinimumMemory
return []GpuInfo{info}
}
func GetCPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
@@ -62,13 +26,7 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
// No-op on darwin
return nil
}
func GetSystemInfo() SystemInfo {
mem, _ := GetCPUMem()
func GetCPUDetails() []CPU {
query := "hw.perflevel0.physicalcpu"
perfCores, err := syscall.SysctlUint32(query)
if err != nil {
@@ -81,19 +39,16 @@ func GetSystemInfo() SystemInfo {
query = "hw.logicalcpu"
logicalCores, _ := syscall.SysctlUint32(query)
return SystemInfo{
System: CPUInfo{
GpuInfo: GpuInfo{
memInfo: mem,
},
CPUs: []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
},
return []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
GPUs: GetGPUInfo(),
}
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@@ -1,72 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_H__
#define __GPU_INFO_H__
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <dlfcn.h>
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
#define LOAD_ERR() strdup(dlerror())
#define UNLOAD_LIBRARY(handle) dlclose(handle)
#else
#include <windows.h>
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
#define LOAD_ERR() ({\
LPSTR messageBuffer = NULL; \
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
char *resp = strdup(messageBuffer); \
LocalFree(messageBuffer); \
resp; \
})
#endif
#ifndef LOG
#define LOG(verbose, ...) \
do { \
if (verbose) { \
fprintf(stderr, __VA_ARGS__); \
} \
} while (0)
#endif
#ifdef __cplusplus
extern "C" {
#endif
#define GPU_ID_LEN 64
#define GPU_NAME_LEN 96
typedef struct mem_info {
char *err; // If non-nill, caller responsible for freeing
char gpu_id[GPU_ID_LEN];
char gpu_name[GPU_NAME_LEN];
uint64_t total;
uint64_t free;
uint64_t used;
// Compute Capability
int major;
int minor;
int patch;
} mem_info_t;
void cpu_check_ram(mem_info_t *resp);
#ifdef __cplusplus
}
#endif
#include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_oneapi.h"
#endif // __GPU_INFO_H__
#endif // __APPLE__

View File

@@ -1,181 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
cudartReturn_t ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cudaSetDevice", (void *)&resp->ch.cudaSetDevice},
{"cudaDeviceSynchronize", (void *)&resp->ch.cudaDeviceSynchronize},
{"cudaDeviceReset", (void *)&resp->ch.cudaDeviceReset},
{"cudaMemGetInfo", (void *)&resp->ch.cudaMemGetInfo},
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(cudart_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", cudart_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
cudart_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cudaSetDevice)(0);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDART_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "cudart init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
}
void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
if (h.handle == NULL) {
resp->err = strdup("cudart handle isn't initialized");
return;
}
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
cudaDeviceProp_t props;
ret = (*h.cudaGetDeviceProperties)(&props, i);
if (ret != CUDART_SUCCESS) {
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
resp->major = 0;
resp->minor = 0;
} else {
int allNull = 1;
for (int j = 0; j < 16; j++) {
if (props.uuid.bytes[j] != 0) {
allNull = 0;
break;
}
}
if (allNull != 0) {
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
props.uuid.bytes[0],
props.uuid.bytes[1],
props.uuid.bytes[2],
props.uuid.bytes[3],
props.uuid.bytes[4],
props.uuid.bytes[5],
props.uuid.bytes[6],
props.uuid.bytes[7],
props.uuid.bytes[8],
props.uuid.bytes[9],
props.uuid.bytes[10],
props.uuid.bytes[11],
props.uuid.bytes[12],
props.uuid.bytes[13],
props.uuid.bytes[14],
props.uuid.bytes[15]
);
}
resp->major = props.major;
resp->minor = props.minor;
// TODO add other useful properties from props
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %" PRId64 "\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
void cudart_release(cudart_handle_t h) {
LOG(h.verbose, "releasing cudart library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,145 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_CUDART_H__
#define __GPU_INFO_CUDART_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_ERROR_INVALID_VALUE = 1,
CUDART_ERROR_MEMORY_ALLOCATION = 2,
CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;
typedef enum cudartDeviceAttr_enum {
cudartDevAttrComputeCapabilityMajor = 75,
cudartDevAttrComputeCapabilityMinor = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
cudaDevAttrIntegrated = 18
} cudartDeviceAttr_t;
typedef void *cudartDevice_t; // Opaque is sufficient
typedef struct cudartMemory_st {
size_t total;
size_t free;
size_t used;
} cudartMemory_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
typedef struct cudaDeviceProp {
char name[256]; /**< ASCII string identifying device */
cudaUUID_t uuid; /**< 16-byte unique identifier */
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
size_t totalGlobalMem; /**< Global memory available on device in bytes */
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
int regsPerBlock; /**< 32-bit registers available per block */
int warpSize; /**< Warp size in threads */
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
int maxThreadsPerBlock; /**< Maximum number of threads per block */
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
int clockRate; /**< Clock frequency in kilohertz */
size_t totalConstMem; /**< Constant memory available on device in bytes */
int major; /**< Major compute capability */
int minor; /**< Minor compute capability */
size_t textureAlignment; /**< Alignment requirement for textures */
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
int multiProcessorCount; /**< Number of multiprocessors on device */
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
int integrated; /**< Device is integrated as opposed to discrete */
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
int maxTexture1D; /**< Maximum 1D texture size */
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
int maxSurface1D; /**< Maximum 1D surface size */
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
int ECCEnabled; /**< Device has ECC support enabled */
int pciBusID; /**< PCI bus ID of the device */
int pciDeviceID; /**< PCI device ID of the device */
int pciDomainID; /**< PCI domain ID of the device */
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
int asyncEngineCount; /**< Number of asynchronous engines */
int unifiedAddressing; /**< Device shares a unified address space with the host */
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
int memoryBusWidth; /**< Global memory bus width in bits */
int l2CacheSize; /**< Size of L2 cache in bytes */
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
int streamPrioritiesSupported; /**< Device supports stream priorities */
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
int localL1CacheSupported; /**< Device supports caching locals in L1 */
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
int managedMemory; /**< Device supports allocating managed memory on this system */
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
int computePreemptionSupported; /**< Device supports Compute Preemption */
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
} cudaDeviceProp_t;
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);
cudartReturn_t (*cudaMemGetInfo)(size_t *, size_t *);
cudartReturn_t (*cudaGetDeviceCount)(int *);
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
} cudart_handle_t;
typedef struct cudart_init_resp {
char *err; // If err is non-null handle is invalid
cudart_handle_t ch;
int num_devices;
} cudart_init_resp_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
// TODO - if we keep this library longer term, add cudart_get_free
void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__
#endif // __APPLE__

View File

@@ -1,251 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include <inttypes.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
resp->cudaErr = CUDA_SUCCESS;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cuInit", (void *)&resp->ch.cuInit},
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
{"cuDeviceGetName", (void *)&resp->ch.cuDeviceGetName},
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvcuda_lib_path, msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
}
LOG(resp->ch.verbose, "calling cuInit\n");
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "cuda driver library init failure: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
int version = 0;
resp->ch.driver_major = 0;
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
}
const int buflen = 256;
void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
nvcudaMemory_t memInfo = {0,0};
CUresult ret;
CUdevice device = -1;
CUcontext ctx = NULL;
char buf[buflen + 1];
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) {
resp->err = strdup("cuda driver library handle isn't initialized");
return;
}
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device failed to initialize");
resp->err = strdup(buf);
return;
}
int major = 0;
int minor = 0;
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
} else {
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
} else {
resp->minor = minor;
resp->major = major;
}
}
ret = (*h.cuDeviceGetUuid)(&uuid, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid.bytes[0],
uuid.bytes[1],
uuid.bytes[2],
uuid.bytes[3],
uuid.bytes[4],
uuid.bytes[5],
uuid.bytes[6],
uuid.bytes[7],
uuid.bytes[8],
uuid.bytes[9],
uuid.bytes[10],
uuid.bytes[11],
uuid.bytes[12],
uuid.bytes[13],
uuid.bytes[14],
uuid.bytes[15]
);
}
ret = (*h.cuDeviceGetName)(&resp->gpu_name[0], GPU_NAME_LEN, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device name lookup failure: %d\n", i, ret);
resp->gpu_name[0] = '\0';
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret);
resp->err = strdup(buf);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %" PRId64 "mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %" PRId64 "mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
CUresult ret;
CUcontext ctx = NULL;
CUdevice device = -1;
*free = 0;
*total = 0;
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device failed to initialize");
return;
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to get device context %d", ret);
return;
}
ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device memory info lookup failure %d", ret);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing cuda driver library\n");
UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic?
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,79 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVCUDA_H__
#define __GPU_INFO_NVCUDA_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
CUDA_ERROR_UNKNOWN = 999,
// Other values omitted for now...
} CUresult;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
} CUdevice_attribute;
typedef void *nvcudaDevice_t; // Opaque is sufficient
typedef struct nvcudaMemory_st {
uint64_t total;
uint64_t free;
} nvcudaMemory_t;
typedef struct nvcudaDriverVersion {
int major;
int minor;
} nvcudaDriverVersion_t;
typedef struct CUuuid_st {
unsigned char bytes[16];
} CUuuid;
typedef int CUdevice;
typedef void* CUcontext;
typedef struct nvcuda_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
CUresult (*cuInit)(unsigned int Flags);
CUresult (*cuDriverGetVersion)(int *driverVersion);
CUresult (*cuDeviceGetCount)(int *);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
CUresult (*cuDeviceGetName)(char *name, int len, CUdevice dev);
// Context specific aspects
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
CUresult (*cuCtxDestroy)(CUcontext ctx);
} nvcuda_handle_t;
typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch;
int num_devices;
CUresult cudaErr;
} nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__
#endif // __APPLE__

View File

@@ -1,104 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
}
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %s: %d", uuid, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
*free = 0;
return;
}
*free = memInfo.free;
*total = memInfo.total;
*used = memInfo.used;
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
nvmlReturn_t ret;
ret = (*h.nvmlShutdown)();
if (ret != NVML_SUCCESS) {
LOG(1, "error during nvmlShutdown %d", ret);
}
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,48 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View File

@@ -1,259 +0,0 @@
#ifndef __APPLE__
#include "gpu_info_oneapi.h"
#include <string.h>
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
ze_result_t ret;
resp->err = NULL;
resp->oh.devices = NULL;
resp->oh.num_devices = NULL;
resp->oh.drivers = NULL;
resp->oh.num_drivers = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d;
struct lookup {
char *s;
void **p;
} l[] = {
{"zesInit", (void *)&resp->oh.zesInit},
{"zesDriverGet", (void *)&resp->oh.zesDriverGet},
{"zesDeviceGet", (void *)&resp->oh.zesDeviceGet},
{"zesDeviceGetProperties", (void *)&resp->oh.zesDeviceGetProperties},
{"zesDeviceEnumMemoryModules",
(void *)&resp->oh.zesDeviceEnumMemoryModules},
{"zesMemoryGetProperties", (void *)&resp->oh.zesMemoryGetProperties},
{"zesMemoryGetState", (void *)&resp->oh.zesMemoryGetState},
{NULL, NULL},
};
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
if (!resp->oh.handle) {
char *msg = LOAD_ERR();
snprintf(buf, buflen,
"Unable to load %s library to query for Intel GPUs: %s\n",
oneapi_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose,
"wiring Level-Zero management library functions in %s\n",
oneapi_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
if (!*(l[i].p)) {
resp->oh.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->oh.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s, msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
LOG(resp->oh.verbose, "calling zesInit\n");
ret = (*resp->oh.zesInit)(0);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "calling zesDriverGet\n");
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
resp->oh.devices =
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
for (d = 0; d < resp->oh.num_drivers; d++) {
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
&resp->oh.num_devices[d], NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
resp->oh.devices[d] =
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
ret = (*resp->oh.zesDeviceGet)(
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
}
return;
}
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp) {
ze_result_t ret;
resp->err = NULL;
uint64_t totalMem = 0;
uint64_t usedMem = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d, m;
if (h.handle == NULL) {
resp->err = strdup("Level-Zero handle not initialized");
return;
}
if (driver > h.num_drivers || device > h.num_devices[driver]) {
resp->err = strdup("driver of device index out of bounds");
return;
}
resp->total = 0;
resp->free = 0;
zes_device_ext_properties_t ext_props;
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
ext_props.pNext = NULL;
zes_device_properties_t props;
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
props.pNext = &ext_props;
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get device properties: %d", ret);
resp->err = strdup(buf);
return;
}
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, "%s", props.modelName);
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
// (this is probably wrong...)
// TODO - the driver isn't included - what if there are multiple drivers?
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
if (h.verbose) {
// When in verbose mode, report more information about
// the card we discover.
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
props.modelName);
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
props.brandName);
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
props.vendorName);
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
props.serialNumber);
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
props.boardNumber);
}
// TODO
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
uint32_t memCount = 0;
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
NULL);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
for (m = 0; m < memCount; m++) {
zes_mem_state_t state;
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
state.pNext = NULL;
ret = (*h.zesMemoryGetState)(mems[m], &state);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get memory state: %x", ret);
resp->err = strdup(buf);
free(mems);
return;
}
resp->total += state.size;
resp->free += state.free;
}
free(mems);
}
void oneapi_release(oneapi_handle_t h) {
int d;
LOG(h.verbose, "releasing oneapi library\n");
for (d = 0; d < h.num_drivers; d++) {
if (h.devices != NULL && h.devices[d] != NULL) {
free(h.devices[d]);
}
}
if (h.devices != NULL) {
free(h.devices);
h.devices = NULL;
}
if (h.num_devices != NULL) {
free(h.num_devices);
h.num_devices = NULL;
}
if (h.drivers != NULL) {
free(h.drivers);
h.drivers = NULL;
}
h.num_drivers = 0;
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
if (h.handle == NULL || h.num_devices == NULL) {
return 0;
}
if (driver > h.num_drivers) {
return 0;
}
return (int)h.num_devices[driver];
}
#endif // __APPLE__

View File

@@ -1,203 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_ONEAPI_H__
#define __GPU_INFO_ONEAPI_H__
#include "gpu_info.h"
#define ZE_MAX_DEVICE_NAME 256
#define ZE_MAX_DEVICE_UUID_SIZE 16
#define ZES_STRING_PROPERTY_SIZE 64
#define ZE_BIT(_i) (1 << _i)
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum ze_result_t {
ZE_RESULT_SUCCESS = 0,
// Other values omitted for now...
} ze_result_t;
typedef uint8_t ze_bool_t;
typedef struct _zes_driver_handle_t *zes_driver_handle_t;
typedef struct _zes_device_handle_t *zes_device_handle_t;
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
typedef enum _ze_structure_type_t {
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_structure_type_t;
typedef enum _zes_structure_type_t {
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES = 0x2d,
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_structure_type_t;
typedef enum _zes_mem_type_t {
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_mem_type_t;
typedef enum _zes_mem_loc_t {
ZES_MEM_LOC_SYSTEM = 0,
ZES_MEM_LOC_DEVICE = 1,
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
} zes_mem_loc_t;
typedef enum _zes_mem_health_t {
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
} zes_mem_health_t;
typedef struct _ze_device_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} ze_device_uuid_t;
typedef struct _zes_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} zes_uuid_t;
typedef enum _ze_device_type_t {
ZE_DEVICE_TYPE_GPU = 1,
ZE_DEVICE_TYPE_CPU = 2,
ZE_DEVICE_TYPE_FPGA = 3,
ZE_DEVICE_TYPE_MCA = 4,
ZE_DEVICE_TYPE_VPU = 5,
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_device_type_t;
typedef enum _zes_device_type_t {
ZES_DEVICE_TYPE_GPU = 1,
ZES_DEVICE_TYPE_CPU = 2,
ZES_DEVICE_TYPE_FPGA = 3,
ZES_DEVICE_TYPE_MCA = 4,
ZES_DEVICE_TYPE_VPU = 5,
ZES_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_device_type_t;
typedef uint32_t ze_device_property_flags_t;
typedef enum _ze_device_property_flag_t {
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZE_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZE_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} ze_device_property_flag_t;
typedef uint32_t zes_device_property_flags_t;
typedef enum _zes_device_property_flag_t {
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZES_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} zes_device_property_flag_t;
typedef struct _ze_device_properties_t {
ze_structure_type_t stype;
void *pNext;
ze_device_type_t type;
uint32_t vendorId;
uint32_t deviceId;
ze_device_property_flags_t flags;
uint32_t subdeviceId;
uint32_t coreClockRate;
uint64_t maxMemAllocSize;
uint32_t maxHardwareContexts;
uint32_t maxCommandQueuePriority;
uint32_t numThreadsPerEU;
uint32_t physicalEUSimdWidth;
uint32_t numEUsPerSubslice;
uint32_t numSubslicesPerSlice;
uint32_t numSlices;
uint64_t timerResolution;
uint32_t timestampValidBits;
uint32_t kernelTimestampValidBits;
ze_device_uuid_t uuid;
char name[ZE_MAX_DEVICE_NAME];
} ze_device_properties_t;
typedef struct _zes_device_properties_t {
zes_structure_type_t stype;
void *pNext;
ze_device_properties_t core;
uint32_t numSubdevices;
char serialNumber[ZES_STRING_PROPERTY_SIZE];
char boardNumber[ZES_STRING_PROPERTY_SIZE];
char brandName[ZES_STRING_PROPERTY_SIZE];
char modelName[ZES_STRING_PROPERTY_SIZE];
char vendorName[ZES_STRING_PROPERTY_SIZE];
char driverVersion[ZES_STRING_PROPERTY_SIZE];
} zes_device_properties_t;
typedef struct _zes_device_ext_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_uuid_t uuid;
zes_device_type_t type;
zes_device_property_flags_t flags;
} zes_device_ext_properties_t;
typedef struct _zes_mem_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_mem_type_t type;
ze_bool_t onSubdevice;
uint32_t subdeviceId;
zes_mem_loc_t location;
uint64_t physicalSize;
int32_t busWidth;
int32_t numChannels;
} zes_mem_properties_t;
typedef struct _zes_mem_state_t {
zes_structure_type_t stype;
const void *pNext;
zes_mem_health_t health;
uint64_t free;
uint64_t size;
} zes_mem_state_t;
typedef struct oneapi_handle {
void *handle;
uint16_t verbose;
uint32_t num_drivers;
zes_driver_handle_t *drivers;
uint32_t *num_devices;
zes_device_handle_t **devices;
// TODO Driver major, minor information
// int driver_major;
// int driver_minor;
ze_result_t (*zesInit)(int);
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
zes_device_handle_t *phDevices);
ze_result_t (*zesDeviceGetProperties)(zes_device_handle_t hDevice,
zes_device_properties_t *pProperties);
ze_result_t (*zesDeviceEnumMemoryModules)(zes_device_handle_t hDevice,
uint32_t *pCount,
zes_mem_handle_t *phMemory);
ze_result_t (*zesMemoryGetProperties)(zes_mem_handle_t hMemory,
zes_mem_properties_t *pProperties);
ze_result_t (*zesMemoryGetState)(zes_mem_handle_t hMemory,
zes_mem_state_t *pState);
} oneapi_handle_t;
typedef struct oneapi_init_resp {
char *err; // If err is non-null handle is invalid
oneapi_handle_t oh;
} oneapi_init_resp_t;
typedef struct oneapi_version_resp {
ze_result_t status;
char *str; // Contains version or error string if status != 0
} oneapi_version_resp_t;
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp);
void oneapi_release(oneapi_handle_t h);
int oneapi_get_device_count(oneapi_handle_t h, int driver);
#endif // __GPU_INFO_INTEL_H__
#endif // __APPLE__

View File

@@ -1,60 +0,0 @@
package discover
import (
"runtime"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestBasicGetGPUInfo(t *testing.T) {
info := GetGPUInfo()
assert.NotEmpty(t, len(info))
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
if info[0].Library != "cpu" {
assert.Greater(t, info[0].TotalMemory, uint64(0))
assert.Greater(t, info[0].FreeMemory, uint64(0))
}
}
func TestCPUMemInfo(t *testing.T) {
info, err := GetCPUMem()
require.NoError(t, err)
switch runtime.GOOS {
case "darwin":
t.Skip("CPU memory not populated on darwin")
case "linux", "windows":
assert.Greater(t, info.TotalMemory, uint64(0))
assert.Greater(t, info.FreeMemory, uint64(0))
default:
return
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

501
discover/runner.go Normal file
View File

@@ -0,0 +1,501 @@
package discover
// Runner based GPU discovery
import (
"context"
"io"
"log/slog"
"os"
"os/exec"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
)
var (
deviceMu sync.Mutex
devices []ml.DeviceInfo
libDirs map[string]struct{}
rocmDir string
exe string
bootstrapped bool
)
func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.DeviceInfo {
deviceMu.Lock()
defer deviceMu.Unlock()
startDiscovery := time.Now()
msg := "overall device VRAM discovery took"
defer func() {
slog.Debug(msg, "duration", time.Since(startDiscovery))
}()
if !bootstrapped {
msg = "GPU bootstrap discovery took"
libDirs = make(map[string]struct{})
var err error
exe, err = os.Executable()
if err != nil {
slog.Error("unable to lookup executable path", "error", err)
return nil
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
files, err := filepath.Glob(filepath.Join(LibOllamaPath, "*", "*ggml-*"))
if err != nil {
slog.Debug("unable to lookup runner library directories", "error", err)
}
for _, file := range files {
libDirs[filepath.Dir(file)] = struct{}{}
}
// Our current packaging model places ggml-hip in the main directory
// but keeps rocm in an isolated directory. We have to add it to
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
rocmDir = filepath.Join(LibOllamaPath, "rocm")
if _, err := os.Stat(rocmDir); err != nil {
rocmDir = ""
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
slog.Info("discovering available GPUs...")
requested := envconfig.LLMLibrary()
jetpack := cudaJetpack()
// For our initial discovery pass, we gather all the known GPUs through
// all the libraries that were detected. This pass may include GPUs that
// are enumerated, but not actually supported.
// We run this in serial to avoid potentially initializing a GPU multiple
// times concurrently leading to memory contention
// TODO refactor so we group the lib dirs and do serial per version, but parallel for different libs
for dir := range libDirs {
bootstrapTimeout := 30 * time.Second
var dirs []string
if dir != "" {
if requested != "" && filepath.Base(dir) != requested {
slog.Debug("skipping available library at users request", "requested", requested, "libDir", dir)
continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue
}
}
if dir == "" {
dirs = []string{LibOllamaPath}
} else {
dirs = []string{LibOllamaPath, dir}
}
// ROCm can take a long time on some systems, so give it more time before giving up
if dir != "" && strings.Contains(filepath.Base(dir), "rocm") {
bootstrapTimeout = 60 * time.Second
}
// Typically bootstrapping takes < 1s, but on some systems, with devices
// in low power/idle mode, initialization can take multiple seconds. We
// set a long timeout just for bootstrap discovery to reduce the chance
// of giving up too quickly
ctx1stPass, cancel := context.WithTimeout(ctx, bootstrapTimeout)
defer cancel()
// For this pass, we retain duplicates in case any are incompatible with some libraries
devices = append(devices, bootstrapDevices(ctx1stPass, dirs, nil)...)
}
// In the second pass, we more deeply initialize the GPUs to weed out devices that
// aren't supported by a given library. We run this phase in parallel to speed up discovery.
slog.Debug("evluating which if any devices to filter out", "initial_count", len(devices))
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
var wg sync.WaitGroup
needsDelete := make([]bool, len(devices))
supportedMu := sync.Mutex{}
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
for i := range devices {
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
if devices[i].Library == "Metal" {
continue
}
slog.Debug("verifying GPU is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
wg.Add(1)
go func(i int) {
defer wg.Done()
var envVar string
id := devices[i].ID
if devices[i].Library == "ROCm" {
if runtime.GOOS != "linux" {
envVar = "HIP_VISIBLE_DEVICES"
} else {
envVar = "ROCR_VISIBLE_DEVICES"
}
} else if devices[i].Library == "CUDA" {
envVar = "CUDA_VISIBLE_DEVICES"
} else if devices[i].Library == "Vulkan" {
id = devices[i].FilteredID
envVar = "GGML_VK_VISIBLE_DEVICES"
} else {
slog.Error("Unknown Library:" + devices[i].Library)
}
extraEnvs := map[string]string{
"GGML_CUDA_INIT": "1", // force deep initialization to trigger crash on unsupported GPUs
envVar: id, // Filter to just this one GPU
}
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize",
"id", devices[i].ID,
"libdir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1],
"pci_id", devices[i].PCIID,
"library", devices[i].Library,
)
needsDelete[i] = true
} else {
supportedMu.Lock()
if _, ok := supported[devices[i].Library]; !ok {
supported[devices[i].Library] = make(map[string]map[string]int)
}
if _, ok := supported[devices[i].Library][libDir]; !ok {
supported[devices[i].Library][libDir] = make(map[string]int)
}
supported[devices[i].Library][libDir][devices[i].ID] = i
supportedMu.Unlock()
}
}(i)
}
wg.Wait()
logutil.Trace("supported GPU library combinations before filtering", "supported", supported)
filterOutVulkanThatAreSupportedByOtherGPU(needsDelete)
// Mark for deletion any overlaps - favoring the library version that can cover all GPUs if possible
filterOverlapByLibrary(supported, needsDelete)
// TODO if we ever support multiple ROCm library versions this algorithm will need to be adjusted to keep the rocmID numeric value correct
rocmID := 0
for i := 0; i < len(needsDelete); i++ {
if needsDelete[i] {
logutil.Trace("removing unsupported or overlapping GPU combination", "libDir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1], "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
devices = append(devices[:i], devices[i+1:]...)
needsDelete = append(needsDelete[:i], needsDelete[i+1:]...)
i--
} else if devices[i].Library == "ROCm" {
if _, err := strconv.Atoi(devices[i].ID); err == nil {
// Replace the numeric ID with the post-filtered IDs
devices[i].FilteredID = devices[i].ID
devices[i].ID = strconv.Itoa(rocmID)
}
rocmID++
}
}
// Now filter out any overlap with different libraries (favor CUDA/HIP over others)
for i := 0; i < len(devices); i++ {
for j := i + 1; j < len(devices); j++ {
// For this pass, we only drop exact duplicates
switch devices[i].Compare(devices[j]) {
case ml.SameBackendDevice:
// Same library and device, skip it
devices = append(devices[:j], devices[j+1:]...)
j--
continue
case ml.DuplicateDevice:
// Different library, choose based on priority
var droppedDevice ml.DeviceInfo
if devices[i].Library == "CUDA" || devices[i].Library == "ROCm" {
droppedDevice = devices[j]
} else {
droppedDevice = devices[i]
devices[i] = devices[j]
}
devices = append(devices[:j], devices[j+1:]...)
j--
typeStr := "discrete"
if droppedDevice.Integrated {
typeStr = "iGPU"
}
slog.Debug("dropping duplicate device",
"id", droppedDevice.ID,
"library", droppedDevice.Library,
"compute", droppedDevice.Compute(),
"name", droppedDevice.Name,
"description", droppedDevice.Description,
"libdirs", strings.Join(droppedDevice.LibraryPath, ","),
"driver", droppedDevice.Driver(),
"pci_id", droppedDevice.PCIID,
"type", typeStr,
"total", format.HumanBytes2(droppedDevice.TotalMemory),
"available", format.HumanBytes2(droppedDevice.FreeMemory),
)
continue
}
}
}
// Reset the libDirs to what we actually wind up using for future refreshes
libDirs = make(map[string]struct{})
for _, dev := range devices {
dir := dev.LibraryPath[len(dev.LibraryPath)-1]
if dir != LibOllamaPath {
libDirs[dir] = struct{}{}
}
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
bootstrapped = true
} else {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
// metal never updates free VRAM
return devices
}
slog.Debug("refreshing free memory")
updated := make([]bool, len(devices))
allDone := func() bool {
allDone := true
for _, done := range updated {
if !done {
allDone = false
break
}
}
return allDone
}
// First try to use existing runners to refresh VRAM since they're already
// active on GPU(s)
for _, runner := range runners {
if runner == nil {
continue
}
deviceIDs := runner.GetActiveDeviceIDs()
if len(deviceIDs) == 0 {
// Skip this runner since it doesn't have active GPU devices
continue
}
// Check to see if this runner is active on any devices that need a refresh
skip := true
devCheck:
for _, dev := range deviceIDs {
for i := range devices {
if dev == devices[i].DeviceID {
if !updated[i] {
skip = false
break devCheck
}
}
}
}
if skip {
continue
}
// Typical refresh on existing runner is ~500ms but allow longer if the system
// is under stress before giving up and using stale data.
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
start := time.Now()
updatedDevices := runner.GetDeviceInfos(ctx)
slog.Debug("existing runner discovery took", "duration", time.Since(start))
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
}
// Short circuit if we've updated all the devices
if allDone() {
break
}
}
if !allDone() {
slog.Debug("unable to refresh all GPUs with existing runners, performing bootstrap discovery")
// Bootstrapping may take longer in some cases (AMD windows), but we
// would rather use stale free data to get the model running sooner
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{LibOllamaPath, dir}, nil)
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
// TODO - consider evaluating if new devices have appeared (e.g. hotplug)
}
if allDone() {
break
}
}
if !allDone() {
slog.Warn("unable to refresh free memory, using old values")
}
}
}
return devices
}
func filterOutVulkanThatAreSupportedByOtherGPU(needsDelete []bool) {
// Filter out Vulkan devices that share a PCI ID with a non-Vulkan device that is not marked for deletion
for i := range devices {
if devices[i].Library != "Vulkan" || needsDelete[i] {
continue
}
if devices[i].PCIID == "" {
continue
}
for j := range devices {
if i == j {
continue
}
if devices[j].PCIID == "" {
continue
}
if devices[j].PCIID == devices[i].PCIID && devices[j].Library != "Vulkan" && !needsDelete[j] {
needsDelete[i] = true
slog.Debug("filtering device with duplicate PCI ID",
"id", devices[i].ID,
"library", devices[i].Library,
"libdir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1],
"pci_id", devices[i].PCIID,
"kept_id", devices[j].ID,
"kept_library", devices[j].Library,
)
break
}
}
}
}
func filterOverlapByLibrary(supported map[string]map[string]map[string]int, needsDelete []bool) {
// For multi-GPU systems, use the newest version that supports all the GPUs
for _, byLibDirs := range supported {
libDirs := make([]string, 0, len(byLibDirs))
for libDir := range byLibDirs {
libDirs = append(libDirs, libDir)
}
sort.Sort(sort.Reverse(sort.StringSlice(libDirs)))
anyMissing := false
var newest string
for _, newest = range libDirs {
for _, libDir := range libDirs {
if libDir == newest {
continue
}
if len(byLibDirs[newest]) != len(byLibDirs[libDir]) {
anyMissing = true
break
}
for dev := range byLibDirs[newest] {
if _, found := byLibDirs[libDir][dev]; !found {
anyMissing = true
break
}
}
}
if !anyMissing {
break
}
}
// Now we can mark overlaps for deletion
for _, libDir := range libDirs {
if libDir == newest {
continue
}
for dev, i := range byLibDirs[libDir] {
if _, found := byLibDirs[newest][dev]; found {
slog.Debug("filtering device with overlapping libraries",
"id", dev,
"library", libDir,
"delete_index", i,
"kept_library", newest,
)
needsDelete[i] = true
}
}
}
}
}
type bootstrapRunner struct {
port int
cmd *exec.Cmd
}
func (r *bootstrapRunner) GetPort() int {
return r.port
}
func (r *bootstrapRunner) HasExited() bool {
if r.cmd != nil && r.cmd.ProcessState != nil {
return true
}
return false
}
func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs map[string]string) []ml.DeviceInfo {
var out io.Writer
if envconfig.LogLevel() == logutil.LevelTrace {
out = os.Stderr
}
start := time.Now()
defer func() {
slog.Debug("bootstrap discovery took", "duration", time.Since(start), "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
}()
logutil.Trace("starting runner for device discovery", "libDirs", ollamaLibDirs, "extraEnvs", extraEnvs)
cmd, port, err := llm.StartRunner(
true, // ollama engine
"", // no model
ollamaLibDirs,
out,
extraEnvs,
)
if err != nil {
slog.Debug("failed to start runner to discovery GPUs", "error", err)
return nil
}
go func() {
cmd.Wait() // exit status ignored
}()
defer cmd.Process.Kill()
devices, err := ml.GetDevicesFromRunner(ctx, &bootstrapRunner{port: port, cmd: cmd})
if err != nil {
if cmd.ProcessState != nil && cmd.ProcessState.ExitCode() >= 0 {
// Expected during bootstrapping while we filter out unsupported AMD GPUs
logutil.Trace("runner exited", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "code", cmd.ProcessState.ExitCode())
} else {
slog.Info("failure during GPU discovery", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "error", err)
}
}
logutil.Trace("runner enumerated devices", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "devices", devices)
return devices
}

108
discover/runner_test.go Normal file
View File

@@ -0,0 +1,108 @@
package discover
import (
"testing"
"github.com/ollama/ollama/app/lifecycle"
)
func init() {
lifecycle.InitLogging()
}
func TestFilterOverlapByLibrary(t *testing.T) {
type testcase struct {
name string
inp map[string]map[string]map[string]int
exp []bool
}
for _, tc := range []testcase{
{
name: "empty",
inp: map[string]map[string]map[string]int{},
exp: []bool{}, // needs deletion
},
{
name: "single no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
},
},
exp: []bool{false},
},
{
name: "100% overlap pick 2nd",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{true, true, false, false},
},
{
name: "100% overlap pick 1st",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{false, false, true, true},
},
{
name: "partial overlap pick older",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 1,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 2,
},
},
},
exp: []bool{true, false, false},
},
{
name: "no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
},
},
exp: []bool{false, false},
},
} {
t.Run(tc.name, func(t *testing.T) {
needsDelete := make([]bool, len(tc.exp))
filterOverlapByLibrary(tc.inp, needsDelete)
for i, exp := range tc.exp {
if needsDelete[i] != exp {
t.Fatalf("expected: %v\ngot: %v", tc.exp, needsDelete)
}
}
})
}
}

View File

@@ -1,10 +1,13 @@
package discover
import (
"fmt"
"log/slog"
"path/filepath"
"sort"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type memInfo struct {
@@ -13,53 +16,6 @@ type memInfo struct {
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
}
// Beginning of an `ollama info` command
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
memInfo
Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags)
Variant string `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key=value]
EnvWorkarounds []string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
// False indicates FreeMemory can generally be trusted on this GPU
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
filterID int //nolint:unused,nolintlint // AMD Workaround: The numeric ID of the device used to filter out other devices
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
DriverMinor int `json:"driver_minor,omitempty"`
// TODO other performance capability info to help in scheduling decisions
}
func (gpu GpuInfo) RunnerName() string {
if gpu.Variant != "" {
return gpu.Library + "_" + gpu.Variant
}
return gpu.Library
}
type CPUInfo struct {
GpuInfo
CPUs []CPU
}
// CPU type represents a CPU Package occupying a socket
type CPU struct {
ID string `cpuinfo:"processor"`
@@ -70,116 +26,49 @@ type CPU struct {
ThreadCount int
}
type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
type RocmGPUInfo struct {
GpuInfo
usedFilepath string //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
}
type RocmGPUInfoList []RocmGPUInfo
type OneapiGPUInfo struct {
GpuInfo
driverIndex int //nolint:unused,nolintlint
gpuIndex int //nolint:unused,nolintlint
}
type OneapiGPUInfoList []OneapiGPUInfo
type GpuInfoList []GpuInfo
type UnsupportedGPUInfo struct {
GpuInfo
Reason string `json:"reason"`
}
// Split up the set of gpu info's by Library and variant
func (l GpuInfoList) ByLibrary() []GpuInfoList {
resp := []GpuInfoList{}
libs := []string{}
for _, info := range l {
found := false
requested := info.Library
if info.Variant != "" {
requested += "_" + info.Variant
}
for i, lib := range libs {
if lib == requested {
resp[i] = append(resp[i], info)
found = true
break
func LogDetails(devices []ml.DeviceInfo) {
sort.Sort(sort.Reverse(ml.ByFreeMemory(devices))) // Report devices in order of scheduling preference
for _, dev := range devices {
var libs []string
for _, dir := range dev.LibraryPath {
if strings.Contains(dir, filepath.Join("lib", "ollama")) {
libs = append(libs, filepath.Base(dir))
}
}
if !found {
libs = append(libs, requested)
resp = append(resp, []GpuInfo{info})
typeStr := "discrete"
if dev.Integrated {
typeStr = "iGPU"
}
}
return resp
}
// Report the GPU information into the log an Info level
func (l GpuInfoList) LogDetails() {
for _, g := range l {
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"variant", g.Variant,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,
"total", format.HumanBytes2(g.TotalMemory),
"available", format.HumanBytes2(g.FreeMemory),
"id", dev.ID,
"filtered_id", dev.FilteredID,
"library", dev.Library,
"compute", dev.Compute(),
"name", dev.Name,
"description", dev.Description,
"libdirs", strings.Join(libs, ","),
"driver", dev.Driver(),
"pci_id", dev.PCIID,
"type", typeStr,
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
// CPU inference
if len(devices) == 0 {
dev, _ := GetCPUMem()
slog.Info("inference compute",
"id", "cpu",
"library", "cpu",
"compute", "",
"name", "cpu",
"description", "cpu",
"libdirs", "ollama",
"driver", "",
"pci_id", "",
"type", "",
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
}
// Sort by Free Space
type ByFreeMemory []GpuInfo
func (a ByFreeMemory) Len() int { return len(a) }
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
type SystemInfo struct {
System CPUInfo `json:"system"`
GPUs []GpuInfo `json:"gpus"`
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
DiscoveryErrors []string `json:"discovery_errors"`
}
// Return the optimal number of threads to use for inference
func (si SystemInfo) GetOptimalThreadCount() int {
if len(si.System.CPUs) == 0 {
return 0
}
coreCount := 0
for _, c := range si.System.CPUs {
coreCount += c.CoreCount - c.EfficiencyCoreCount
}
return coreCount
}
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "cpu" ||
gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"
if !supportsFA {
return false
}
}
return true
}

View File

@@ -1,22 +1,22 @@
# Documentation
### Getting Started
* [Quickstart](../README.md#quickstart)
* [Quickstart](https://docs.ollama.com/quickstart)
* [Examples](./examples.md)
* [Importing models](./import.md)
* [MacOS Documentation](./macos.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)
* [Docker Documentation](./docker.md)
* [Importing models](https://docs.ollama.com/import)
* [MacOS Documentation](https://docs.ollama.com/macos)
* [Linux Documentation](https://docs.ollama.com/linux)
* [Windows Documentation](https://docs.ollama.com/windows)
* [Docker Documentation](https://docs.ollama.com/docker)
### Reference
* [API Reference](./api.md)
* [API Reference](https://docs.ollama.com/api)
* [Modelfile Reference](./modelfile.md)
* [OpenAI Compatibility](./openai.md)
* [OpenAI Compatibility](https://docs.ollama.com/api/openai-compatibility)
### Resources
* [Troubleshooting Guide](./troubleshooting.md)
* [FAQ](./faq.md)
* [Troubleshooting Guide](https://docs.ollama.com/troubleshooting)
* [FAQ](https://docs.ollama.com/faq#faq)
* [Development guide](./development.md)

View File

@@ -1,5 +1,7 @@
# API
> Note: Ollama's API docs are moving to https://docs.ollama.com/api
## Endpoints
- [Generate a completion](#generate-a-completion)
@@ -104,7 +106,7 @@ The final response in the stream also includes additional data about the generat
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration` * `10^9`.
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration` \* `10^9`.
```json
{
@@ -617,25 +619,26 @@ curl http://localhost:11434/api/chat -d '{
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.184789Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
},
}
]
},
"done": false
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.184789Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
}
}
]
},
"done": false
}
```
@@ -643,8 +646,8 @@ Final response:
```json
{
"model":"llama3.2",
"created_at":"2025-07-07T20:22:19.19314Z",
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.19314Z",
"message": {
"role": "assistant",
"content": ""
@@ -701,7 +704,6 @@ curl http://localhost:11434/api/chat -d '{
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
@@ -750,7 +752,7 @@ curl http://localhost:11434/api/chat -d '{
"arguments": {
"city": "Tokyo"
}
},
}
}
]
},
@@ -801,7 +803,10 @@ curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json"
{
"model": "llama3.1",
"created_at": "2024-12-06T00:46:58.265747Z",
"message": { "role": "assistant", "content": "{\"age\": 22, \"available\": false}" },
"message": {
"role": "assistant",
"content": "{\"age\": 22, \"available\": false}"
},
"done_reason": "stop",
"done": true,
"total_duration": 2254970291,
@@ -871,7 +876,6 @@ Final response:
}
```
#### Chat request (With history, with tools)
##### Request
@@ -948,10 +952,8 @@ curl http://localhost:11434/api/chat -d '{
"eval_count": 11,
"eval_duration": 90282125
}
```
#### Chat request (with images)
##### Request
@@ -1123,7 +1125,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "llama3.2",
"created_at":"2024-09-12T21:17:29.110811Z",
"created_at": "2024-09-12T21:17:29.110811Z",
"message": {
"role": "assistant",
"content": ""
@@ -1154,7 +1156,7 @@ A single JSON object is returned:
```json
{
"model": "llama3.2",
"created_at":"2024-09-12T21:33:17.547535Z",
"created_at": "2024-09-12T21:33:17.547535Z",
"message": {
"role": "assistant",
"content": ""
@@ -1171,9 +1173,10 @@ POST /api/create
```
Create a model from:
* another model;
* a safetensors directory; or
* a GGUF file.
- another model;
- a safetensors directory; or
- a GGUF file.
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
@@ -1193,11 +1196,11 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
#### Quantization types
| Type | Recommended |
| --- | :-: |
| q4_K_M | * |
| q4_K_S | |
| q8_0 | * |
| Type | Recommended |
| ------ | :---------: |
| q4_K_M | \* |
| q4_K_S | |
| q8_0 | \* |
### Examples
@@ -1268,7 +1271,6 @@ A stream of JSON objects is returned:
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
##### Request
```shell
@@ -1291,7 +1293,6 @@ A stream of JSON objects is returned:
{"status":"success"}
```
#### Create a model from a Safetensors directory
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
@@ -1406,9 +1407,7 @@ A single JSON object will be returned.
"parent_model": "",
"format": "gguf",
"family": "qwen2",
"families": [
"qwen2"
],
"families": ["qwen2"],
"parameter_size": "7.6B",
"quantization_level": "Q4_K_M"
}
@@ -1423,9 +1422,7 @@ A single JSON object will be returned.
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"families": ["llama"],
"parameter_size": "3.2B",
"quantization_level": "Q4_K_M"
}
@@ -1461,20 +1458,18 @@ curl http://localhost:11434/api/show -d '{
```json5
{
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
"template": "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"parameter_size": "8.0B",
"quantization_level": "Q4_0"
modelfile: '# Modelfile generated by "ollama show"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE """{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: """\nPARAMETER num_ctx 4096\nPARAMETER stop "\u003c/s\u003e"\nPARAMETER stop "USER:"\nPARAMETER stop "ASSISTANT:"',
parameters: 'num_keep 24\nstop "<|start_header_id|>"\nstop "<|end_header_id|>"\nstop "<|eot_id|>"',
template: "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
details: {
parent_model: "",
format: "gguf",
family: "llama",
families: ["llama"],
parameter_size: "8.0B",
quantization_level: "Q4_0",
},
"model_info": {
model_info: {
"general.architecture": "llama",
"general.file_type": 2,
"general.parameter_count": 8030261248,
@@ -1491,16 +1486,13 @@ curl http://localhost:11434/api/show -d '{
"llama.vocab_size": 128256,
"tokenizer.ggml.bos_token_id": 128000,
"tokenizer.ggml.eos_token_id": 128009,
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [], // populates if `verbose=true`
},
"capabilities": [
"completion",
"vision"
],
capabilities: ["completion", "vision"],
}
```
@@ -1726,10 +1718,12 @@ curl http://localhost:11434/api/embed -d '{
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]],
"embeddings": [
[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]
],
"total_duration": 14143917,
"load_duration": 1019500,
"prompt_eval_count": 8
@@ -1750,17 +1744,21 @@ curl http://localhost:11434/api/embed -d '{
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
"embeddings": [
[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],
[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]
]
}
```
## List Running Models
```
GET /api/ps
```
@@ -1791,9 +1789,7 @@ A single JSON object will be returned.
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"families": ["llama"],
"parameter_size": "7.2B",
"quantization_level": "Q4_0"
},
@@ -1840,8 +1836,10 @@ curl http://localhost:11434/api/embeddings -d '{
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
0.5670403838157654, 0.009260174818336964, 0.23178744316101074,
-0.2916173040866852, -0.8924556970596313, 0.8785552978515625,
-0.34576427936553955, 0.5742510557174683, -0.04222835972905159,
-0.137906014919281
]
}
```
@@ -1869,5 +1867,3 @@ curl http://localhost:11434/api/version
"version": "0.5.1"
}
```

View File

@@ -0,0 +1,63 @@
---
title: Authentication
---
No authentication is required when accessing Ollama's API locally via `http://localhost:11434`.
Authentication is required for the following:
* Running cloud models via ollama.com
* Publishing models
* Downloading private models
Ollama supports two authentication methods:
* **Signing in**: sign in from your local installation, and Ollama will automatically take care of authenticating requests to ollama.com when running commands
* **API keys**: API keys for programmatic access to ollama.com's API
## Signing in
To sign in to ollama.com from your local installation of Ollama, run:
```
ollama signin
```
Once signed in, Ollama will automatically authenticate commands as required:
```
ollama run gpt-oss:120b-cloud
```
Similarly, when accessing a local API endpoint that requires cloud access, Ollama will automatically authenticate the request:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "gpt-oss:120b-cloud",
"prompt": "Why is the sky blue?"
}'
```
## API keys
For direct access to ollama.com's API served at `https://ollama.com/api`, authentication via API keys is required.
First, create an [API key](https://ollama.com/settings/keys), then set the `OLLAMA_API_KEY` environment variable:
```shell
export OLLAMA_API_KEY=your_api_key
```
Then use the API key in the Authorization header:
```shell
curl https://ollama.com/api/generate \
-H "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"model": "gpt-oss:120b",
"prompt": "Why is the sky blue?",
"stream": false
}'
```
API keys don't currently expire, however you can revoke them at any time in your [API keys settings](https://ollama.com/settings/keys).

36
docs/api/errors.mdx Normal file
View File

@@ -0,0 +1,36 @@
---
title: Errors
---
## Status codes
Endpoints return appropriate HTTP status codes based on the success or failure of the request in the HTTP status line (e.g. `HTTP/1.1 200 OK` or `HTTP/1.1 400 Bad Request`). Common status codes are:
- `200`: Success
- `400`: Bad Request (missing parameters, invalid JSON, etc.)
- `404`: Not Found (model doesn't exist, etc.)
- `429`: Too Many Requests (e.g. when a rate limit is exceeded)
- `500`: Internal Server Error
- `502`: Bad Gateway (e.g. when a cloud model cannot be reached)
## Error messages
Errors are returned in the `application/json` format with the following structure, with the error message in the `error` property:
```json
{
"error": "the model failed to generate a response"
}
```
## Errors that occur while streaming
If an error occurs mid-stream, the error will be returned as an object in the `application/x-ndjson` format with an `error` property. Since the response has already started, the status code of the response will not be changed.
```json
{"model":"gemma3","created_at":"2025-10-26T17:21:21.196249Z","response":" Yes","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.207235Z","response":".","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.219166Z","response":"I","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.231094Z","response":"can","done":false}
{"error":"an error was encountered while running the model"}
```

47
docs/api/index.mdx Normal file
View File

@@ -0,0 +1,47 @@
---
title: Introduction
---
Ollama's API allows you to run and interact with models programatically.
## Get started
If you're just getting started, follow the [quickstart](/quickstart) documentation to get up and running with Ollama's API.
## Base URL
After installation, Ollama's API is served by default at:
```
http://localhost:11434/api
```
For running cloud models on **ollama.com**, the same API is available with the following base URL:
```
https://ollama.com/api
```
## Example request
Once Ollama is running, its API is automatically available and can be accessed via `curl`:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "gemma3",
"prompt": "Why is the sky blue?"
}'
```
## Libraries
Ollama has official libraries for Python and JavaScript:
- [Python](https://github.com/ollama/ollama-python)
- [JavaScript](https://github.com/ollama/ollama-js)
Several community-maintained libraries are available for Ollama. For a full list, see the [Ollama GitHub repository](https://github.com/ollama/ollama?tab=readme-ov-file#libraries-1).
## Versioning
Ollama's API isn't strictly versioned, but the API is expected to be stable and backwards compatible. Deprecations are rare and will be announced in the [release notes](https://github.com/ollama/ollama/releases).

View File

@@ -1,9 +1,8 @@
# OpenAI compatibility
---
title: OpenAI compatibility
---
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
Ollama provides compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
## Usage
@@ -100,49 +99,50 @@ except Exception as e:
### OpenAI JavaScript library
```javascript
import OpenAI from 'openai'
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: 'http://localhost:11434/v1/',
baseURL: "http://localhost:11434/v1/",
// required but ignored
apiKey: 'ollama',
})
apiKey: "ollama",
});
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3.2',
})
messages: [{ role: "user", content: "Say this is a test" }],
model: "llama3.2",
});
const response = await openai.chat.completions.create({
model: "llava",
messages: [
model: "llava",
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: "",
},
],
type: "image_url",
image_url:
"",
},
],
})
],
},
],
});
const completion = await openai.completions.create({
model: "llama3.2",
prompt: "Say this is a test.",
})
model: "llama3.2",
prompt: "Say this is a test.",
});
const listCompletion = await openai.models.list()
const listCompletion = await openai.models.list();
const model = await openai.models.retrieve("llama3.2")
const model = await openai.models.retrieve("llama3.2");
const embedding = await openai.embeddings.create({
model: "all-minilm",
input: ["why is the sky blue?", "why is the grass green?"],
})
});
```
### `curl`
@@ -306,8 +306,8 @@ curl http://localhost:11434/v1/embeddings \
- [x] array of strings
- [ ] array of tokens
- [ ] array of token arrays
- [ ] `encoding format`
- [ ] `dimensions`
- [x] `encoding format`
- [x] `dimensions`
- [ ] `user`
## Models

35
docs/api/streaming.mdx Normal file
View File

@@ -0,0 +1,35 @@
---
title: Streaming
---
Certain API endpoints stream responses by default, such as `/api/generate`. These responses are provided in the newline-delimited JSON format (i.e. the `application/x-ndjson` content type). For example:
```json
{"model":"gemma3","created_at":"2025-10-26T17:15:24.097767Z","response":"That","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.109172Z","response":"'","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.121485Z","response":"s","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.132802Z","response":" a","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.143931Z","response":" fantastic","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.155176Z","response":" question","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.166576Z","response":"!","done":true, "done_reason": "stop"}
```
## Disabling streaming
Streaming can be disabled by providing `{"stream": false}` in the request body for any endpoint that support streaming. This will cause responses to be returned in the `application/json` format instead:
```json
{"model":"gemma3","created_at":"2025-10-26T17:15:24.166576Z","response":"That's a fantastic question!","done":true}
```
## When to use streaming vs non-streaming
**Streaming (default)**:
- Real-time response generation
- Lower perceived latency
- Better for long generations
**Non-streaming**:
- Simpler to process
- Better for short responses, or structured outputs
- Easier to handle in some applications

36
docs/api/usage.mdx Normal file
View File

@@ -0,0 +1,36 @@
---
title: Usage
---
Ollama's API responses include metrics that can be used for measuring performance and model usage:
* `total_duration`: How long the response took to generate
* `load_duration`: How long the model took to load
* `prompt_eval_count`: How many input tokens were processed
* `prompt_eval_duration`: How long it took to evaluate the prompt
* `eval_count`: How many output tokens were processes
* `eval_duration`: How long it took to generate the output tokens
All timing values are measured in nanoseconds.
## Example response
For endpoints that return usage metrics, the response body will include the usage fields. For example, a non-streaming call to `/api/generate` may return the following response:
```json
{
"model": "gemma3",
"created_at": "2025-10-17T23:14:07.414671Z",
"response": "Hello! How can I help you today?",
"done": true,
"done_reason": "stop",
"total_duration": 174560334,
"load_duration": 101397084,
"prompt_eval_count": 11,
"prompt_eval_duration": 13074791,
"eval_count": 18,
"eval_duration": 52479709
}
```
For endpoints that return **streaming responses**, usage fields are included as part of the final chunk, where `done` is `true`.

View File

@@ -0,0 +1,113 @@
---
title: Embeddings
description: Generate text embeddings for semantic search, retrieval, and RAG.
---
Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 3841024 dimensions).
## Recommended models
- [embeddinggemma](https://ollama.com/library/embeddinggemma)
- [qwen3-embedding](https://ollama.com/library/qwen3-embedding)
- [all-minilm](https://ollama.com/library/all-minilm)
## Generate embeddings
Use `/api/embed` with a single string.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": "The quick brown fox jumps over the lazy dog."
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
single = ollama.embed(
model='embeddinggemma',
input='The quick brown fox jumps over the lazy dog.'
)
print(len(single['embeddings'][0])) # vector length
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const single = await ollama.embed({
model: 'embeddinggemma',
input: 'The quick brown fox jumps over the lazy dog.',
})
console.log(single.embeddings[0].length) // vector length
```
</Tab>
</Tabs>
<Note>
The `/api/embed` endpoint returns L2normalized (unitlength) vectors.
</Note>
## Generate a batch of embeddings
Pass an array of strings to `input`.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": [
"First sentence",
"Second sentence",
"Third sentence"
]
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
batch = ollama.embed(
model='embeddinggemma',
input=[
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
]
)
print(len(batch['embeddings'])) # number of vectors
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const batch = await ollama.embed({
model: 'embeddinggemma',
input: [
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
],
})
console.log(batch.embeddings.length) // number of vectors
```
</Tab>
</Tabs>
## Tips
- Use cosine similarity for most semantic search use cases.
- Use the same embedding model for both indexing and querying.

View File

@@ -0,0 +1,99 @@
---
title: Streaming
---
Streaming allows you to render text as it is produced by the model.
Streaming is enabled by default through the REST API, but disabled by default in the SDKs.
To enable streaming in the SDKs, set the `stream` parameter to `True`.
## Key streaming concepts
1. Chatting: Stream partial assistant messages. Each chunk includes the `content` so you can render messages as they arrive.
1. Thinking: Thinking-capable models emit a `thinking` field alongside regular content in each chunk. Detect this field in streaming chunks to show or hide reasoning traces before the final answer arrives.
1. Tool calling: Watch for streamed `tool_calls` in each chunk, execute the requested tool, and append tool outputs back into the conversation.
## Handling streamed chunks
<Note> It is necessary to accumulate the partial fields in order to maintain the history of the conversation. This is particularly important for tool calling where the thinking, tool call from the model, and the executed tool result must be passed back to the model in the next request. </Note>
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
stream=True,
)
in_thinking = False
content = ''
thinking = ''
for chunk in stream:
if chunk.message.thinking:
if not in_thinking:
in_thinking = True
print('Thinking:\n', end='', flush=True)
print(chunk.message.thinking, end='', flush=True)
# accumulate the partial thinking
thinking += chunk.message.thinking
elif chunk.message.content:
if in_thinking:
in_thinking = False
print('\n\nAnswer:\n', end='', flush=True)
print(chunk.message.content, end='', flush=True)
# accumulate the partial content
content += chunk.message.content
# append the accumulated fields to the messages for the next request
new_messages = [{ role: 'assistant', thinking: thinking, content: content }]
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
stream: true,
})
let inThinking = false
let content = ''
let thinking = ''
for await (const chunk of stream) {
if (chunk.message.thinking) {
if (!inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
process.stdout.write(chunk.message.thinking)
// accumulate the partial thinking
thinking += chunk.message.thinking
} else if (chunk.message.content) {
if (inThinking) {
inThinking = false
process.stdout.write('\n\nAnswer:\n')
}
process.stdout.write(chunk.message.content)
// accumulate the partial content
content += chunk.message.content
}
}
// append the accumulated fields to the messages for the next request
new_messages = [{ role: 'assistant', thinking: thinking, content: content }]
}
main().catch(console.error)
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,194 @@
---
title: Structured Outputs
---
Structured outputs let you enforce a JSON schema on model responses so you can reliably extract structured data, describe images, or keep every reply consistent.
## Generating structured JSON
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "gpt-oss",
"messages": [{"role": "user", "content": "Tell me about Canada in one line"}],
"stream": false,
"format": "json"
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
format='json'
)
print(response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'gpt-oss',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: 'json'
})
console.log(response.message.content)
```
</Tab>
</Tabs>
## Generating structured JSON with a schema
Provide a JSON schema to the `format` field.
<Note>
It is ideal to also pass the JSON schema as a string in the prompt to ground the model's response.
</Note>
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "gpt-oss",
"messages": [{"role": "user", "content": "Tell me about Canada."}],
"stream": false,
"format": {
"type": "object",
"properties": {
"name": {"type": "string"},
"capital": {"type": "string"},
"languages": {
"type": "array",
"items": {"type": "string"}
}
},
"required": ["name", "capital", "languages"]
}
}'
```
</Tab>
<Tab title="Python">
Use Pydantic models and pass `model_json_schema()` to `format`, then validate the response:
```python
from ollama import chat
from pydantic import BaseModel
class Country(BaseModel):
name: str
capital: str
languages: list[str]
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
format=Country.model_json_schema(),
)
country = Country.model_validate_json(response.message.content)
print(country)
```
</Tab>
<Tab title="JavaScript">
Serialize a Zod schema with `zodToJsonSchema()` and parse the structured response:
```javascript
import ollama from 'ollama'
import { z } from 'zod'
import { zodToJsonSchema } from 'zod-to-json-schema'
const Country = z.object({
name: z.string(),
capital: z.string(),
languages: z.array(z.string()),
})
const response = await ollama.chat({
model: 'gpt-oss',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: zodToJsonSchema(Country),
})
const country = Country.parse(JSON.parse(response.message.content))
console.log(country)
```
</Tab>
</Tabs>
## Example: Extract structured data
Define the objects you want returned and let the model populate the fields:
```python
from ollama import chat
from pydantic import BaseModel
class Pet(BaseModel):
name: str
animal: str
age: int
color: str | None
favorite_toy: str | None
class PetList(BaseModel):
pets: list[Pet]
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'I have two cats named Luna and Loki...'}],
format=PetList.model_json_schema(),
)
pets = PetList.model_validate_json(response.message.content)
print(pets)
```
## Example: Vision with structured outputs
Vision models accept the same `format` parameter, enabling deterministic descriptions of images:
```python
from ollama import chat
from pydantic import BaseModel
from typing import Literal, Optional
class Object(BaseModel):
name: str
confidence: float
attributes: str
class ImageDescription(BaseModel):
summary: str
objects: list[Object]
scene: str
colors: list[str]
time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
setting: Literal['Indoor', 'Outdoor', 'Unknown']
text_content: Optional[str] = None
response = chat(
model='gemma3',
messages=[{
'role': 'user',
'content': 'Describe this photo and list the objects you detect.',
'images': ['path/to/image.jpg'],
}],
format=ImageDescription.model_json_schema(),
options={'temperature': 0},
)
image_description = ImageDescription.model_validate_json(response.message.content)
print(image_description)
```
## Tips for reliable structured outputs
- Define schemas with Pydantic (Python) or Zod (JavaScript) so they can be reused for validation.
- Lower the temperature (e.g., set it to `0`) for more deterministic completions.
- Structured outputs work through the OpenAI-compatible API via `response_format`

View File

@@ -0,0 +1,153 @@
---
title: Thinking
---
Thinking-capable models emit a `thinking` field that separates their reasoning trace from the final answer.
Use this capability to audit model steps, animate the model *thinking* in a UI, or hide the trace entirely when you only need the final response.
## Supported models
- [Qwen 3](https://ollama.com/library/qwen3)
- [GPT-OSS](https://ollama.com/library/gpt-oss) *(use `think` levels: `low`, `medium`, `high` — the trace cannot be fully disabled)*
- [DeepSeek-v3.1](https://ollama.com/library/deepseek-v3.1)
- [DeepSeek R1](https://ollama.com/library/deepseek-r1)
- Browse the latest additions under [thinking models](https://ollama.com/search?c=thinking)
## Enable thinking in API calls
Set the `think` field on chat or generate requests. Most models accept booleans (`true`/`false`).
GPT-OSS instead expects one of `low`, `medium`, or `high` to tune the trace length.
The `message.thinking` (chat endpoint) or `thinking` (generate endpoint) field contains the reasoning trace while `message.content` / `response` holds the final answer.
<Tabs>
<Tab title="cURL">
```shell
curl http://localhost:11434/api/chat -d '{
"model": "qwen3",
"messages": [{
"role": "user",
"content": "How many letter r are in strawberry?"
}],
"think": true,
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'How many letter r are in strawberry?'}],
think=True,
stream=False,
)
print('Thinking:\n', response.message.thinking)
print('Answer:\n', response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'deepseek-r1',
messages: [{ role: 'user', content: 'How many letter r are in strawberry?' }],
think: true,
stream: false,
})
console.log('Thinking:\n', response.message.thinking)
console.log('Answer:\n', response.message.content)
```
</Tab>
</Tabs>
<Note>
GPT-OSS requires `think` to be set to `"low"`, `"medium"`, or `"high"`. Passing `true`/`false` is ignored for that model.
</Note>
## Stream the reasoning trace
Thinking streams interleave reasoning tokens before answer tokens. Detect the first `thinking` chunk to render a "thinking" section, then switch to the final reply once `message.content` arrives.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
think=True,
stream=True,
)
in_thinking = False
for chunk in stream:
if chunk.message.thinking and not in_thinking:
in_thinking = True
print('Thinking:\n', end='')
if chunk.message.thinking:
print(chunk.message.thinking, end='')
elif chunk.message.content:
if in_thinking:
print('\n\nAnswer:\n', end='')
in_thinking = False
print(chunk.message.content, end='')
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
think: true,
stream: true,
})
let inThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking && !inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
if (chunk.message.thinking) {
process.stdout.write(chunk.message.thinking)
} else if (chunk.message.content) {
if (inThinking) {
process.stdout.write('\n\nAnswer:\n')
inThinking = false
}
process.stdout.write(chunk.message.content)
}
}
}
main()
```
</Tab>
</Tabs>
## CLI quick reference
- Enable thinking for a single run: `ollama run deepseek-r1 --think "Where should I visit in Lisbon?"`
- Disable thinking: `ollama run deepseek-r1 --think=false "Summarize this article"`
- Hide the trace while still using a thinking model: `ollama run deepseek-r1 --hidethinking "Is 9.9 bigger or 9.11?"`
- Inside interactive sessions, toggle with `/set think` or `/set nothink`.
- GPT-OSS only accepts levels: `ollama run gpt-oss --think=low "Draft a headline"` (replace `low` with `medium` or `high` as needed).
<Note>Thinking is enabled by default in the CLI and API for supported models.</Note>

View File

@@ -0,0 +1,777 @@
---
title: Tool calling
---
Ollama supports tool calling (also known as function calling) which allows a model to invoke tools and incorporate their results into its replies.
## Calling a single tool
Invoke a single tool and include its response in a follow-up request.
Also known as "single-shot" tool calling.
<Tabs>
<Tab title="cURL">
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with a single tool result**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
Install the Ollama Python SDK:
```bash
# with pip
pip install ollama -U
# with uv
uv add ollama
```
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C",
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
messages.append(response.message)
if response.message.tool_calls:
# only recommended for models which only return a single tool call
call = response.message.tool_calls[0]
result = get_temperature(**call.function.arguments)
# add the tool result to the messages
messages.append({"role": "tool", "tool_name": call.function.name, "content": str(result)})
final_response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
Install the Ollama JavaScript library:
```bash
# with npm
npm i ollama
# with bun
bun i ollama
```
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
'Tokyo': '18°C',
}
return temperatures[city] ?? 'Unknown'
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
if (response.message.tool_calls?.length) {
// only recommended for models which only return a single tool call
const call = response.message.tool_calls[0]
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Parallel tool calling
<Tabs>
<Tab title="cURL">
Request multiple tool calls in parallel, then send all tool responses back to the model.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
},
{
"type": "function",
"function": {
"name": "get_conditions",
"description": "Get the current weather conditions for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with multiple tool results**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 1,
"name": "get_conditions",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 2,
"name": "get_temperature",
"arguments": {"city": "London"}
}
},
{
"type": "function",
"function": {
"index": 3,
"name": "get_conditions",
"arguments": {"city": "London"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Partly cloudy"},
{"role": "tool", "tool_name": "get_temperature", "content": "15°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Rainy"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures.get(city, "Unknown")
def get_conditions(city: str) -> str:
"""Get the current weather conditions for a city
Args:
city: The name of the city
Returns:
The current weather conditions for the city
"""
conditions = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions.get(city, "Unknown")
messages = [{'role': 'user', 'content': 'What are the current weather conditions and temperature in New York and London?'}]
# The python client automatically parses functions as a tool schema so we can pass them directly
# Schemas can be passed directly in the tools list as well
response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
# add the assistant message to the messages
messages.append(response.message)
if response.message.tool_calls:
# process each tool call
for call in response.message.tool_calls:
# execute the appropriate tool
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
elif call.function.name == 'get_conditions':
result = get_conditions(**call.function.arguments)
else:
result = 'Unknown tool'
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': str(result)})
# generate the final response
final_response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: { [key: string]: string } = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures[city] || "Unknown"
}
function getConditions(city: string): string {
const conditions: { [key: string]: string } = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions[city] || "Unknown"
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
{
type: 'function',
function: {
name: 'get_conditions',
description: 'Get the current weather conditions for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
]
const messages = [{ role: 'user', content: 'What are the current weather conditions and temperature in New York and London?' }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true
})
// add the assistant message to the messages
messages.push(response.message)
if (response.message.tool_calls) {
// process each tool call
for (const call of response.message.tool_calls) {
// execute the appropriate tool
let result: string
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
result = getTemperature(args.city)
} else if (call.function.name === 'get_conditions') {
const args = call.function.arguments as { city: string }
result = getConditions(args.city)
} else {
result = 'Unknown tool'
}
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
}
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Multi-turn tool calling (Agent loop)
An agent loop allows the model to decide when to invoke tools and incorporate their results into its replies.
It also might help to tell the model that it is in a loop and can make multiple tool calls.
<Tabs>
<Tab title="Python">
```python
from ollama import chat, ChatResponse
def add(a: int, b: int) -> int:
"""Add two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The sum of the two numbers
"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiply two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The product of the two numbers
"""
return a * b
available_functions = {
'add': add,
'multiply': multiply,
}
messages = [{'role': 'user', 'content': 'What is (11434+12341)*412?'}]
while True:
response: ChatResponse = chat(
model='qwen3',
messages=messages,
tools=[add, multiply],
think=True,
)
messages.append(response.message)
print("Thinking: ", response.message.thinking)
print("Content: ", response.message.content)
if response.message.tool_calls:
for tc in response.message.tool_calls:
if tc.function.name in available_functions:
print(f"Calling {tc.function.name} with arguments {tc.function.arguments}")
result = available_functions[tc.function.name](**tc.function.arguments)
print(f"Result: {result}")
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': tc.function.name, 'content': str(result)})
else:
# end the loop when there are no more tool calls
break
# continue the loop with the updated messages
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
type ToolName = 'add' | 'multiply'
function add(a: number, b: number): number {
return a + b
}
function multiply(a: number, b: number): number {
return a * b
}
const availableFunctions: Record<ToolName, (a: number, b: number) => number> = {
add,
multiply,
}
const tools = [
{
type: 'function',
function: {
name: 'add',
description: 'Add two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
{
type: 'function',
function: {
name: 'multiply',
description: 'Multiply two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
]
async function agentLoop() {
const messages = [{ role: 'user', content: 'What is (11434+12341)*412?' }]
while (true) {
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
console.log('Thinking:', response.message.thinking)
console.log('Content:', response.message.content)
const toolCalls = response.message.tool_calls ?? []
if (toolCalls.length) {
for (const call of toolCalls) {
const fn = availableFunctions[call.function.name as ToolName]
if (!fn) {
continue
}
const args = call.function.arguments as { a: number; b: number }
console.log(`Calling ${call.function.name} with arguments`, args)
const result = fn(args.a, args.b)
console.log(`Result: ${result}`)
messages.push({ role: 'tool', tool_name: call.function.name, content: String(result) })
}
} else {
break
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
## Tool calling with streaming
When streaming, gather every chunk of `thinking`, `content`, and `tool_calls`, then return those fields together with any tool results in the follow-up request.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
while True:
stream = chat(
model='qwen3',
messages=messages,
tools=[get_temperature],
stream=True,
think=True,
)
thinking = ''
content = ''
tool_calls = []
done_thinking = False
# accumulate the partial fields
for chunk in stream:
if chunk.message.thinking:
thinking += chunk.message.thinking
print(chunk.message.thinking, end='', flush=True)
if chunk.message.content:
if not done_thinking:
done_thinking = True
print('\n')
content += chunk.message.content
print(chunk.message.content, end='', flush=True)
if chunk.message.tool_calls:
tool_calls.extend(chunk.message.tool_calls)
print(chunk.message.tool_calls)
# append accumulated fields to the messages
if thinking or content or tool_calls:
messages.append({'role': 'assistant', 'thinking': thinking, 'content': content, 'tool_calls': tool_calls})
if not tool_calls:
break
for call in tool_calls:
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
else:
result = 'Unknown tool'
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': result})
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
}
return temperatures[city] ?? 'Unknown'
}
const getTemperatureTool = {
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({
model: 'qwen3',
messages,
tools: [getTemperatureTool],
stream: true,
think: true,
})
let thinking = ''
let content = ''
const toolCalls: any[] = []
let doneThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking) {
thinking += chunk.message.thinking
process.stdout.write(chunk.message.thinking)
}
if (chunk.message.content) {
if (!doneThinking) {
doneThinking = true
process.stdout.write('\n')
}
content += chunk.message.content
process.stdout.write(chunk.message.content)
}
if (chunk.message.tool_calls?.length) {
toolCalls.push(...chunk.message.tool_calls)
console.log(chunk.message.tool_calls)
}
}
if (thinking || content || toolCalls.length) {
messages.push({ role: 'assistant', thinking, content, tool_calls: toolCalls } as any)
}
if (!toolCalls.length) {
break
}
for (const call of toolCalls) {
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
messages.push({ role: 'tool', tool_name: call.function.name, content: result } )
} else {
messages.push({ role: 'tool', tool_name: call.function.name, content: 'Unknown tool' } )
}
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
This loop streams the assistant response, accumulates partial fields, passes them back together, and appends the tool results so the model can complete its answer.
## Using functions as tools with Ollama Python SDK
The Python SDK automatically parses functions as a tool schema so we can pass them directly.
Schemas can still be passed if needed.
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
available_functions = {
'get_temperature': get_temperature,
}
# directly pass the function as part of the tools list
response = chat(model='qwen3', messages=messages, tools=available_functions.values(), think=True)
```

View File

@@ -0,0 +1,85 @@
---
title: Vision
---
Vision models accept images alongside text so the model can describe, classify, and answer questions about what it sees.
## Quick start
```shell
ollama run gemma3 ./image.png whats in this image?
```
## Usage with Ollama's API
Provide an `images` array. SDKs accept file paths, URLs or raw bytes while the REST API expects base64-encoded image data.
<Tabs>
<Tab title="cURL">
```shell
# 1. Download a sample image
curl -L -o test.jpg "https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg"
# 2. Encode the image
IMG=$(base64 < test.jpg | tr -d '\n')
# 3. Send it to Ollama
curl -X POST http://localhost:11434/api/chat \
-H "Content-Type: application/json" \
-d '{
"model": "gemma3",
"messages": [{
"role": "user",
"content": "What is in this image?",
"images": ["'"$IMG"'"]
}],
"stream": false
}'
"
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
# from pathlib import Path
# Pass in the path to the image
path = input('Please enter the path to the image: ')
# You can also pass in base64 encoded image data
# img = base64.b64encode(Path(path).read_bytes()).decode()
# or the raw bytes
# img = Path(path).read_bytes()
response = chat(
model='gemma3',
messages=[
{
'role': 'user',
'content': 'What is in this image? Be concise.',
'images': [path],
}
],
)
print(response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const imagePath = '/absolute/path/to/image.jpg'
const response = await ollama.chat({
model: 'gemma3',
messages: [
{ role: 'user', content: 'What is in this image?', images: [imagePath] }
],
stream: false,
})
console.log(response.message.content)
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,360 @@
---
title: Web search
---
Ollama's web search API can be used to augment models with the latest information to reduce hallucinations and improve accuracy.
Web search is provided as a REST API with deeper tool integrations in the Python and JavaScript libraries. This also enables models like OpenAIs gpt-oss models to conduct long-running research tasks.
## Authentication
For access to Ollama's web search API, create an [API key](https://ollama.com/settings/keys). A free Ollama account is required.
## Web search API
Performs a web search for a single query and returns relevant results.
### Request
`POST https://ollama.com/api/web_search`
- `query` (string, required): the search query string
- `max_results` (integer, optional): maximum results to return (default 5, max 10)
### Response
Returns an object containing:
- `results` (array): array of search result objects, each containing:
- `title` (string): the title of the web page
- `url` (string): the URL of the web page
- `content` (string): relevant content snippet from the web page
### Examples
<Note>
Ensure OLLAMA_API_KEY is set or it must be passed in the Authorization header.
</Note>
#### cURL Request
```bash
curl https://ollama.com/api/web_search \
--header "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"query":"what is ollama?"
}'
```
**Response**
```json
{
"results": [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available..."
},
{
"title": "What is Ollama? Introduction to the AI model management tool",
"url": "https://www.hostinger.com/tutorials/what-is-ollama",
"content": "Ariffud M. 6min Read..."
},
{
"title": "Ollama Explained: Transforming AI Accessibility and Language ...",
"url": "https://www.geeksforgeeks.org/artificial-intelligence/ollama-explained-transforming-ai-accessibility-and-language-processing/",
"content": "Data Science Data Science Projects Data Analysis..."
}
]
}
```
#### Python library
```python
import ollama
response = ollama.web_search("What is Ollama?")
print(response)
```
**Example output**
```python
results = [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available in Ollama..."
},
{
"title": "What is Ollama? Features, Pricing, and Use Cases - Walturn",
"url": "https://www.walturn.com/insights/what-is-ollama-features-pricing-and-use-cases",
"content": "Our services..."
},
{
"title": "Complete Ollama Guide: Installation, Usage & Code Examples",
"url": "https://collabnix.com/complete-ollama-guide-installation-usage-code-examples",
"content": "Join our Discord Server..."
}
]
```
More Ollama [Python example](https://github.com/ollama/ollama-python/blob/main/examples/web-search.py)
#### JavaScript Library
```tsx
import { Ollama } from "ollama";
const client = new Ollama();
const results = await client.webSearch({ query: "what is ollama?" });
console.log(JSON.stringify(results, null, 2));
```
**Example output**
```json
{
"results": [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available..."
},
{
"title": "What is Ollama? Introduction to the AI model management tool",
"url": "https://www.hostinger.com/tutorials/what-is-ollama",
"content": "Ollama is an open-source tool..."
},
{
"title": "Ollama Explained: Transforming AI Accessibility and Language Processing",
"url": "https://www.geeksforgeeks.org/artificial-intelligence/ollama-explained-transforming-ai-accessibility-and-language-processing/",
"content": "Ollama is a groundbreaking..."
}
]
}
```
More Ollama [JavaScript example](https://github.com/ollama/ollama-js/blob/main/examples/websearch/websearch-tools.ts)
## Web fetch API
Fetches a single web page by URL and returns its content.
### Request
`POST https://ollama.com/api/web_fetch`
- `url` (string, required): the URL to fetch
### Response
Returns an object containing:
- `title` (string): the title of the web page
- `content` (string): the main content of the web page
- `links` (array): array of links found on the page
### Examples
#### cURL Request
```python
curl --request POST \
--url https://ollama.com/api/web_fetch \
--header "Authorization: Bearer $OLLAMA_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"url": "ollama.com"
}'
```
**Response**
```json
{
"title": "Ollama",
"content": "[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama...",
"links": [
"http://ollama.com/",
"http://ollama.com/models",
"https://github.com/ollama/ollama"
]
```
#### Python SDK
```python
from ollama import web_fetch
result = web_fetch('https://ollama.com')
print(result)
```
**Result**
```python
WebFetchResponse(
title='Ollama',
content='[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama\n\n**Chat & build
with open models**\n\n[Download](https://ollama.com/download) [Explore
models](https://ollama.com/models)\n\nAvailable for macOS, Windows, and Linux',
links=['https://ollama.com/', 'https://ollama.com/models', 'https://github.com/ollama/ollama']
)
```
#### JavaScript SDK
```tsx
import { Ollama } from "ollama";
const client = new Ollama();
const fetchResult = await client.webFetch({ url: "https://ollama.com" });
console.log(JSON.stringify(fetchResult, null, 2));
```
**Result**
```json
{
"title": "Ollama",
"content": "[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama...",
"links": [
"https://ollama.com/",
"https://ollama.com/models",
"https://github.com/ollama/ollama"
]
}
```
## Building a search agent
Use Ollamas web search API as a tool to build a mini search agent.
This example uses Alibabas Qwen 3 model with 4B parameters.
```bash
ollama pull qwen3:4b
```
```python
from ollama import chat, web_fetch, web_search
available_tools = {'web_search': web_search, 'web_fetch': web_fetch}
messages = [{'role': 'user', 'content': "what is ollama's new engine"}]
while True:
response = chat(
model='qwen3:4b',
messages=messages,
tools=[web_search, web_fetch],
think=True
)
if response.message.thinking:
print('Thinking: ', response.message.thinking)
if response.message.content:
print('Content: ', response.message.content)
messages.append(response.message)
if response.message.tool_calls:
print('Tool calls: ', response.message.tool_calls)
for tool_call in response.message.tool_calls:
function_to_call = available_tools.get(tool_call.function.name)
if function_to_call:
args = tool_call.function.arguments
result = function_to_call(**args)
print('Result: ', str(result)[:200]+'...')
# Result is truncated for limited context lengths
messages.append({'role': 'tool', 'content': str(result)[:2000 * 4], 'tool_name': tool_call.function.name})
else:
messages.append({'role': 'tool', 'content': f'Tool {tool_call.function.name} not found', 'tool_name': tool_call.function.name})
else:
break
```
**Result**
```
Thinking: Okay, the user is asking about Ollama's new engine. I need to figure out what they're referring to. Ollama is a company that develops large language models, so maybe they've released a new model or an updated version of their existing engine....
Tool calls: [ToolCall(function=Function(name='web_search', arguments={'max_results': 3, 'query': 'Ollama new engine'}))]
Result: results=[WebSearchResult(content='# New model scheduling\n\n## September 23, 2025\n\nOllama now includes a significantly improved model scheduling system. Ahead of running a model, Ollamas new engine
Thinking: Okay, the user asked about Ollama's new engine. Let me look at the search results.
First result is from September 23, 2025, talking about new model scheduling. It mentions improved memory management, reduced crashes, better GPU utilization, and multi-GPU performance. Examples show speed improvements and accurate memory reporting. Supported models include gemma3, llama4, qwen3, etc...
Content: Ollama has introduced two key updates to its engine, both released in 2025:
1. **Enhanced Model Scheduling (September 23, 2025)**
- **Precision Memory Management**: Exact memory allocation reduces out-of-memory crashes and optimizes GPU utilization.
- **Performance Gains**: Examples show significant speed improvements (e.g., 85.54 tokens/s vs 52.02 tokens/s) and full GPU layer utilization.
- **Multi-GPU Support**: Improved efficiency across multiple GPUs, with accurate memory reporting via tools like `nvidia-smi`.
- **Supported Models**: Includes `gemma3`, `llama4`, `qwen3`, `mistral-small3.2`, and more.
2. **Multimodal Engine (May 15, 2025)**
- **Vision Support**: First-class support for vision models, including `llama4:scout` (109B parameters), `gemma3`, `qwen2.5vl`, and `mistral-small3.1`.
- **Multimodal Tasks**: Examples include identifying animals in multiple images, answering location-based questions from videos, and document scanning.
These updates highlight Ollama's focus on efficiency, performance, and expanded capabilities for both text and vision tasks.
```
### Context length and agents
Web search results can return thousands of tokens. It is recommended to increase the context length of the model to at least ~32000 tokens. Search agents work best with full context length. [Ollama's cloud models](https://docs.ollama.com/cloud) run at the full context length.
## MCP Server
You can enable web search in any MCP client through the [Python MCP server](https://github.com/ollama/ollama-python/blob/main/examples/web-search-mcp.py).
### Cline
Ollama's web search can be integrated with Cline easily using the MCP server configuration.
`Manage MCP Servers` > `Configure MCP Servers` > Add the following configuration:
```json
{
"mcpServers": {
"web_search_and_fetch": {
"type": "stdio",
"command": "uv",
"args": ["run", "path/to/web-search-mcp.py"],
"env": { "OLLAMA_API_KEY": "your_api_key_here" }
}
}
}
```
![Cline MCP Configuration](/images/cline-mcp.png)
### Codex
Ollama works well with OpenAI's Codex tool.
Add the following configuration to `~/.codex/config.toml`
```python
[mcp_servers.web_search]
command = "uv"
args = ["run", "path/to/web-search-mcp.py"]
env = { "OLLAMA_API_KEY" = "your_api_key_here" }
```
![Codex MCP Configuration](/images/codex-mcp.png)
### Goose
Ollama can integrate with Goose via its MCP feature.
![Goose MCP Configuration 1](/images/goose-mcp-1.png)
![Goose MCP Configuration 2](/images/goose-mcp-2.png)
### Other integrations
Ollama can be integrated into most of the tools available either through direct integration of Ollama's API, Python / JavaScript libraries, OpenAI compatible API, and MCP server integration.

91
docs/cli.mdx Normal file
View File

@@ -0,0 +1,91 @@
---
title: CLI Reference
---
### Run a model
```
ollama run gemma3
```
#### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
#### Multimodal models
```
ollama run gemma3 "What's in this image? /Users/jmorgan/Desktop/smile.png"
```
### Download a model
```
ollama pull gemma3
```
### Remove a model
```
ollama rm gemma3
```
### List models
```
ollama ls
```
### Sign in to Ollama
```
ollama signin
```
### Sign out of Ollama
```
ollama signout
```
### Create a customized model
First, create a `Modelfile`
```
FROM gemma3
SYSTEM """You are a happy cat."""
```
Then run `ollama create`:
```
ollama create -f Modelfile
```
### List running models
```
ollama ps
```
### Stop a running model
```
ollama stop gemma3
```
### Start Ollama
```
ollama serve
```
To view a list of environment variables that can be set run `ollama serve --help`

View File

@@ -1,40 +0,0 @@
# Cloud
| Ollama's cloud is currently in preview. For full documentation, see [Ollama's documentation](https://docs.ollama.com/cloud).
## Cloud Models
[Cloud models](https://ollama.com/cloud) are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldnt fit on a personal computer.
Ollama currently supports the following cloud models, with more coming soon:
- `gpt-oss:20b-cloud`
- `gpt-oss:120b-cloud`
- `deepseek-v3.1:671b-cloud`
- `qwen3-coder:480b-cloud`
### Get started
To run a cloud model, open the terminal and run:
```
ollama run gpt-oss:120b-cloud
```
To run cloud models with integrations that work with Ollama, first download the cloud model:
```
ollama pull qwen3-coder:480b-cloud
```
Then sign in to Ollama:
```
ollama signin
```
Finally, access the model using the model name `qwen3-coder:480b-cloud` via Ollama's local API or tooling.
## Cloud API access
Cloud models can also be accessed directly on ollama.com's API. For more information, see the [docs](https://docs.ollama.com/cloud).

236
docs/cloud.mdx Normal file
View File

@@ -0,0 +1,236 @@
---
title: Cloud
sidebarTitle: Cloud
---
<Info>Ollama's cloud is currently in preview.</Info>
## Cloud Models
Ollama's cloud models are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud service while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn't fit on a personal computer.
Ollama currently supports the following cloud models, with more coming soon:
- `deepseek-v3.1:671b-cloud`
- `gpt-oss:20b-cloud`
- `gpt-oss:120b-cloud`
- `kimi-k2:1t-cloud`
- `qwen3-coder:480b-cloud`
- `glm-4.6:cloud`
- `minimax-m2:cloud`
### Running Cloud models
Ollama's cloud models require an account on [ollama.com](https://ollama.com). To sign in or create an account, run:
```
ollama signin
```
<Tabs>
<Tab title="CLI">
To run a cloud model, open the terminal and run:
```
ollama run gpt-oss:120b-cloud
```
</Tab>
<Tab title="Python">
First, pull a cloud model so it can be accessed:
```
ollama pull gpt-oss:120b-cloud
```
Next, install [Ollama's Python library](https://github.com/ollama/ollama-python):
```
pip install ollama
```
Next, create and run a simple Python script:
```python
from ollama import Client
client = Client()
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b-cloud', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
</Tab>
<Tab title="JavaScript">
First, pull a cloud model so it can be accessed:
```
ollama pull gpt-oss:120b-cloud
```
Next, install [Ollama's JavaScript library](https://github.com/ollama/ollama-js):
```
npm i ollama
```
Then use the library to run a cloud model:
```typescript
import { Ollama } from "ollama";
const ollama = new Ollama();
const response = await ollama.chat({
model: "gpt-oss:120b-cloud",
messages: [{ role: "user", content: "Explain quantum computing" }],
stream: true,
});
for await (const part of response) {
process.stdout.write(part.message.content);
}
```
</Tab>
<Tab title="cURL">
First, pull a cloud model so it can be accessed:
```
ollama pull gpt-oss:120b-cloud
```
Run the following cURL command to run the command via Ollama's API:
```
curl http://localhost:11434/api/chat -d '{
"model": "gpt-oss:120b-cloud",
"messages": [{
"role": "user",
"content": "Why is the sky blue?"
}],
"stream": false
}'
```
</Tab>
</Tabs>
## Cloud API access
Cloud models can also be accessed directly on ollama.com's API. In this mode, ollama.com acts as a remote Ollama host.
### Authentication
For direct access to ollama.com's API, first create an [API key](https://ollama.com/settings/keys).
Then, set the `OLLAMA_API_KEY` environment variable to your API key.
```
export OLLAMA_API_KEY=your_api_key
```
### Listing models
For models available directly via Ollama's API, models can be listed via:
```
curl https://ollama.com/api/tags
```
### Generating a response
<Tabs>
<Tab title="Python">
First, install [Ollama's Python library](https://github.com/ollama/ollama-python)
```
pip install ollama
```
Then make a request
```python
import os
from ollama import Client
client = Client(
host="https://ollama.com",
headers={'Authorization': 'Bearer ' + os.environ.get('OLLAMA_API_KEY')}
)
messages = [
{
'role': 'user',
'content': 'Why is the sky blue?',
},
]
for part in client.chat('gpt-oss:120b', messages=messages, stream=True):
print(part['message']['content'], end='', flush=True)
```
</Tab>
<Tab title="JavaScript">
First, install [Ollama's JavaScript library](https://github.com/ollama/ollama-js):
```
npm i ollama
```
Next, make a request to the model:
```typescript
import { Ollama } from "ollama";
const ollama = new Ollama({
host: "https://ollama.com",
headers: {
Authorization: "Bearer " + process.env.OLLAMA_API_KEY,
},
});
const response = await ollama.chat({
model: "gpt-oss:120b",
messages: [{ role: "user", content: "Explain quantum computing" }],
stream: true,
});
for await (const part of response) {
process.stdout.write(part.message.content);
}
```
</Tab>
<Tab title="cURL">
Generate a response via Ollama's chat API:
```
curl https://ollama.com/api/chat \
-H "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"model": "gpt-oss:120b",
"messages": [{
"role": "user",
"content": "Why is the sky blue?"
}],
"stream": false
}'
```
</Tab>
</Tabs>

38
docs/context-length.mdx Normal file
View File

@@ -0,0 +1,38 @@
---
title: Context length
---
Context length is the maximum number of tokens that the model has access to in memory.
<Note>
The default context length in Ollama is 4096 tokens.
</Note>
Tasks which require large context like web search, agents, and coding tools should be set to at least 32000 tokens.
## Setting context length
Setting a larger context length will increase the amount of memory required to run a model. Ensure you have enough VRAM available to increase the context length.
Cloud models are set to their maximum context length by default.
### App
Change the slider in the Ollama app under settings to your desired context length.
![Context length in Ollama app](./images/ollama-settings.png)
### CLI
If editing the context length for Ollama is not possible, the context length can also be updated when serving Ollama.
```
OLLAMA_CONTEXT_LENGTH=32000 ollama serve
```
### Check allocated context length and model offloading
For best performance, use the maximum context length for a model, and avoid offloading the model to CPU. Verify the split under `PROCESSOR` using `ollama ps`.
```
ollama ps
```
```
NAME ID SIZE PROCESSOR CONTEXT UNTIL
gemma3:latest a2af6cc3eb7f 6.6 GB 100% GPU 65536 2 minutes from now
```

View File

@@ -1,21 +1,21 @@
# Ollama Docker image
### CPU only
## CPU only
```shell
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
### Nvidia GPU
## Nvidia GPU
Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
#### Install with Apt
### Install with Apt
1. Configure the repository
```shell
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
| sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
curl -fsSL https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
| sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
| sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
@@ -27,37 +27,40 @@ Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-
sudo apt-get install -y nvidia-container-toolkit
```
#### Install with Yum or Dnf
### Install with Yum or Dnf
1. Configure the repository
```shell
curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
curl -fsSL https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
| sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
```
2. Install the NVIDIA Container Toolkit packages
2. Install the NVIDIA Container Toolkit packages
```shell
sudo yum install -y nvidia-container-toolkit
```
#### Configure Docker to use Nvidia driver
### Configure Docker to use Nvidia driver
```shell
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
```
#### Start the container
### Start the container
```shell
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
```
> [!NOTE]
> If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version. Pass the environment variable JETSON_JETPACK=5 or JETSON_JETPACK=6 to the container to select version 5 or 6.
<Note>
If you're running on an NVIDIA JetPack system, Ollama can't automatically discover the correct JetPack version.
Pass the environment variable `JETSON_JETPACK=5` or `JETSON_JETPACK=6` to the container to select version 5 or 6.
</Note>
### AMD GPU
## AMD GPU
To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
@@ -65,7 +68,7 @@ To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following c
docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
```
### Run model locally
## Run model locally
Now you can run a model:
@@ -73,6 +76,6 @@ Now you can run a model:
docker exec -it ollama ollama run llama3.2
```
### Try different models
## Try different models
More models can be found on the [Ollama library](https://ollama.com/library).

162
docs/docs.json Normal file
View File

@@ -0,0 +1,162 @@
{
"$schema": "https://mintlify.com/docs.json",
"name": "Ollama",
"colors": {
"primary": "#000",
"light": "#b5b5b5",
"dark": "#000"
},
"favicon": "/images/favicon.png",
"logo": {
"light": "/images/logo.png",
"dark": "/images/logo-dark.png",
"href": "https://ollama.com"
},
"theme": "maple",
"background": {
"color": {
"light": "#ffffff",
"dark": "#000000"
}
},
"fonts": {
"family": "system-ui",
"heading": {
"family": "system-ui"
},
"body": {
"family": "system-ui"
}
},
"styling": {
"codeblocks": "system"
},
"contextual": {
"options": ["copy"]
},
"navbar": {
"links": [
{
"label": "Sign in",
"href": "https://ollama.com/signin"
}
],
"primary": {
"type": "button",
"label": "Download",
"href": "https://ollama.com/download"
}
},
"api": {
"playground": {
"display": "simple"
},
"examples": {
"languages": ["curl"]
}
},
"redirects": [
{
"source": "/openai",
"destination": "/api/openai-compatibility"
},
{
"source": "/api/openai",
"destination": "/api/openai-compatibility"
}
],
"navigation": {
"tabs": [
{
"tab": "Documentation",
"groups": [
{
"group": "Get started",
"pages": [
"index",
"quickstart",
"/cloud"
]
},
{
"group": "Capabilities",
"pages": [
"/capabilities/streaming",
"/capabilities/thinking",
"/capabilities/structured-outputs",
"/capabilities/vision",
"/capabilities/embeddings",
"/capabilities/tool-calling",
"/capabilities/web-search"
]
},
{
"group": "Integrations",
"pages": [
"/integrations/vscode",
"/integrations/jetbrains",
"/integrations/codex",
"/integrations/cline",
"/integrations/droid",
"/integrations/goose",
"/integrations/zed",
"/integrations/roo-code",
"/integrations/n8n",
"/integrations/xcode"
]
},
{
"group": "More information",
"pages": [
"/cli",
"/modelfile",
"/context-length",
"/linux",
"/macos",
"/windows",
"/docker",
"/import",
"/faq",
"/gpu",
"/troubleshooting"
]
}
]
},
{
"tab": "API Reference",
"openapi": "/openapi.yaml",
"groups": [
{
"group": "API Reference",
"pages": [
"/api/index",
"/api/authentication",
"/api/streaming",
"/api/usage",
"/api/errors",
"/api/openai-compatibility"
]
},
{
"group": "Endpoints",
"pages": [
"POST /api/generate",
"POST /api/chat",
"POST /api/embed",
"GET /api/tags",
"GET /api/ps",
"POST /api/show",
"POST /api/create",
"POST /api/copy",
"POST /api/pull",
"POST /api/push",
"DELETE /api/delete",
"GET /api/version"
]
}
]
}
]
}
}

View File

@@ -12,9 +12,3 @@ Ollama JavaScript examples at [ollama-js/examples](https://github.com/ollama/oll
## OpenAI compatibility examples
Ollama OpenAI compatibility examples at [ollama/examples/openai](../docs/openai.md)
## Community examples
- [LangChain Ollama Python](https://python.langchain.com/docs/integrations/chat/ollama/)
- [LangChain Ollama JS](https://js.langchain.com/docs/integrations/chat/ollama/)

View File

@@ -1,4 +1,6 @@
# FAQ
---
title: FAQ
---
## How can I upgrade Ollama?
@@ -20,9 +22,9 @@ Please refer to the [GPU docs](./gpu.md).
## How can I specify the context window size?
By default, Ollama uses a context window size of 4096 tokens for most models. The `gpt-oss` model has a default context window size of 8192 tokens.
By default, Ollama uses a context window size of 2048 tokens.
This can be overridden in Settings in the Windows and macOS App, or with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
This can be overridden with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
```shell
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
@@ -46,8 +48,6 @@ curl http://localhost:11434/api/generate -d '{
}'
```
Setting the context length higher may cause the model to not be able to fit onto the GPU which make the model run more slowly.
## How can I tell if my model was loaded onto the GPU?
Use the `ollama ps` command to see what models are currently loaded into memory.
@@ -56,17 +56,16 @@ Use the `ollama ps` command to see what models are currently loaded into memory.
ollama ps
```
> **Output**:
>
> ```
> NAME ID SIZE PROCESSOR CONTEXT UNTIL
> gpt-oss:20b 05afbac4bad6 16 GB 100% GPU 8192 4 minutes from now
> ```
<Info>
**Output**: ``` NAME ID SIZE PROCESSOR UNTIL llama3:70b bcfb190ca3a7 42 GB
100% GPU 4 minutes from now ```
</Info>
The `Processor` column will show which memory the model was loaded in to:
* `100% GPU` means the model was loaded entirely into the GPU
* `100% CPU` means the model was loaded entirely in system memory
* `48%/52% CPU/GPU` means the model was loaded partially onto both the GPU and into system memory
- `100% GPU` means the model was loaded entirely into the GPU
- `100% CPU` means the model was loaded entirely in system memory
- `48%/52% CPU/GPU` means the model was loaded partially onto both the GPU and into system memory
## How do I configure Ollama server?
@@ -78,9 +77,9 @@ If Ollama is run as a macOS application, environment variables should be set usi
1. For each environment variable, call `launchctl setenv`.
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
```
```bash
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
```
2. Restart Ollama application.
@@ -92,10 +91,10 @@ If Ollama is run as a systemd service, environment variables should be set using
2. For each environment variable, add a line `Environment` under section `[Service]`:
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
```
```ini
[Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
```
3. Save and exit.
@@ -126,8 +125,10 @@ On Windows, Ollama inherits your user and system environment variables.
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
> [!NOTE]
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
<Note>
Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only
HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
</Note>
### How do I use Ollama behind a proxy in Docker?
@@ -150,11 +151,9 @@ docker build -t ollama-with-ca .
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
```
## Does Ollama send my prompts and responses back to ollama.com?
## Does Ollama send my prompts and answers back to ollama.com?
If you're running a model locally, your prompts and responses will always stay on your machine. Ollama Turbo in the App allows you to run your queries on Ollama's servers if you don't have a powerful enough GPU. Web search lets a model query the web, giving you more accurate and up-to-date information. Both Turbo and web search require sending your prompts and responses to Ollama.com. This data is neither logged nor stored.
If you don't want to see the Turbo and web search options in the app, you can disable them in Settings by turning on Airplane mode. In Airplane mode, all models will run locally, and your prompts and responses will stay on your machine.
No. Ollama runs locally, and conversation data does not leave your machine.
## How can I expose Ollama on my network?
@@ -216,7 +215,9 @@ Refer to the section [above](#how-do-i-configure-ollama-server) for how to set e
If a different directory needs to be used, set the environment variable `OLLAMA_MODELS` to the chosen directory.
> Note: on Linux using the standard installer, the `ollama` user needs read and write access to the specified directory. To assign the directory to the `ollama` user run `sudo chown -R ollama:ollama <directory>`.
<Note>
On Linux using the standard installer, the `ollama` user needs read and write access to the specified directory. To assign the directory to the `ollama` user run `sudo chown -R ollama:ollama <directory>`.
</Note>
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
@@ -235,7 +236,7 @@ GPU acceleration is not available for Docker Desktop in macOS due to the lack of
This can impact both installing Ollama, as well as downloading models.
Open `Control Panel > Networking and Internet > View network status and tasks` and click on `Change adapter settings` on the left panel. Find the `vEthernel (WSL)` adapter, right click and select `Properties`.
Click on `Configure` and open the `Advanced` tab. Search through each of the properties until you find `Large Send Offload Version 2 (IPv4)` and `Large Send Offload Version 2 (IPv6)`. *Disable* both of these
Click on `Configure` and open the `Advanced` tab. Search through each of the properties until you find `Large Send Offload Version 2 (IPv4)` and `Large Send Offload Version 2 (IPv6)`. _Disable_ both of these
properties.
## How can I preload a model into Ollama to get faster response times?
@@ -269,10 +270,11 @@ ollama stop llama3.2
```
If you're using the API, use the `keep_alive` parameter with the `/api/generate` and `/api/chat` endpoints to set the amount of time that a model stays in memory. The `keep_alive` parameter can be set to:
* a duration string (such as "10m" or "24h")
* a number in seconds (such as 3600)
* any negative number which will keep the model loaded in memory (e.g. -1 or "-1m")
* '0' which will unload the model immediately after generating a response
- a duration string (such as "10m" or "24h")
- a number in seconds (such as 3600)
- any negative number which will keep the model loaded in memory (e.g. -1 or "-1m")
- '0' which will unload the model immediately after generating a response
For example, to preload a model and leave it in memory use:
@@ -292,31 +294,31 @@ The `keep_alive` API parameter with the `/api/generate` and `/api/chat` API endp
## How do I manage the maximum number of requests the Ollama server can queue?
If too many requests are sent to the server, it will respond with a 503 error indicating the server is overloaded. You can adjust how many requests may be queue by setting `OLLAMA_MAX_QUEUE`.
If too many requests are sent to the server, it will respond with a 503 error indicating the server is overloaded. You can adjust how many requests may be queue by setting `OLLAMA_MAX_QUEUE`.
## How does Ollama handle concurrent requests?
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it can be configured to allow parallel request processing.
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it is configured to allow parallel request processing.
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
Parallel request processing for a given model results in increasing the context size by the number of parallel requests. For example, a 2K context with 4 parallel requests will result in an 8K context and additional memory allocation.
Parallel request processing for a given model results in increasing the context size by the number of parallel requests. For example, a 2K context with 4 parallel requests will result in an 8K context and additional memory allocation.
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default is 1, and will handle 1 request per model at a time.
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 \* the number of GPUs or 3 for CPU inference.
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
## How does Ollama load models on multiple GPUs?
When loading a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transferring across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
When loading a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transferring across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
## How can I enable Flash Attention?
Flash Attention is a feature of most modern models that can significantly reduce memory usage as the context size grows. To enable Flash Attention, set the `OLLAMA_FLASH_ATTENTION` environment variable to `1` when starting the Ollama server.
Flash Attention is a feature of most modern models that can significantly reduce memory usage as the context size grows. To enable Flash Attention, set the `OLLAMA_FLASH_ATTENTION` environment variable to `1` when starting the Ollama server.
## How can I set the quantization type for the K/V cache?
@@ -324,9 +326,12 @@ The K/V context cache can be quantized to significantly reduce memory usage when
To use quantized K/V cache with Ollama you can set the following environment variable:
- `OLLAMA_KV_CACHE_TYPE` - The quantization type for the K/V cache. Default is `f16`.
- `OLLAMA_KV_CACHE_TYPE` - The quantization type for the K/V cache. Default is `f16`.
> Note: Currently this is a global option - meaning all models will run with the specified quantization type.
<Note>
Currently this is a global option - meaning all models will run with the
specified quantization type.
</Note>
The currently available K/V cache quantization types are:
@@ -334,19 +339,40 @@ The currently available K/V cache quantization types are:
- `q8_0` - 8-bit quantization, uses approximately 1/2 the memory of `f16` with a very small loss in precision, this usually has no noticeable impact on the model's quality (recommended if not using f16).
- `q4_0` - 4-bit quantization, uses approximately 1/4 the memory of `f16` with a small-medium loss in precision that may be more noticeable at higher context sizes.
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
You may need to experiment with different quantization types to find the best balance between memory usage and quality.
## How can I stop Ollama from starting when I login to my computer
## Where can I find my Ollama Public Key?
Ollama for Windows and macOS register as a login item during installation. You can disable this if you prefer not to have Ollama automatically start. Ollama will respect this setting across upgrades, unless you uninstall the application.
Your **Ollama Public Key** is the public part of the key pair that lets your local Ollama instance talk to [ollama.com](https://ollama.com).
**Windows**
- Remove `%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\Ollama.lnk`
You'll need it to:
* Push models to Ollama
* Pull private models from Ollama to your machine
* Run models hosted in [Ollama Cloud](https://ollama.com/cloud)
**MacOS Monterey (v12)**
- Open `Settings` -> `Users & Groups` -> `Login Items` and find the `Ollama` entry, then click the `-` (minus) to remove
### How to Add the Key
**MacOS Ventura (v13) and later**
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
* **Sign-in via the Settings page** in the **Mac** and **Windows App**
* **Signin via CLI**
```shell
ollama signin
```
* **Manually copy & paste** the key on the **Ollama Keys** page:
[https://ollama.com/settings/keys](https://ollama.com/settings/keys)
### Where the Ollama Public Key lives
| OS | Path to `id_ed25519.pub` |
| :- | :- |
| macOS | `~/.ollama/id_ed25519.pub` |
| Linux | `/usr/share/ollama/.ollama/id_ed25519.pub` |
| Windows | `C:\Users\<username>\.ollama\id_ed25519.pub` |
<Note>
Replace &lt;username&gt; with your actual Windows user name.
</Note>

3
docs/favicon-dark.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.7 KiB

3
docs/favicon.svg Normal file

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 6.5 KiB

View File

@@ -1,34 +1,36 @@
# GPU
---
title: Hardware support
---
## Nvidia
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
Ollama supports Nvidia GPUs with compute capability 5.0+.
Check your compute compatibility to see if your card is supported:
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
| | NVIDIA Professioal | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
| 9.0 | NVIDIA | `H200` `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
| 8.0 | NVIDIA | `A100` `A30` |
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |
| | NVIDIA Professional | `T4` `RTX 5000` `RTX 4000` `RTX 3000` `T2000` `T1200` `T1000` `T600` `T500` |
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` |
| | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` |
| | Tesla | `P40` `P4` |
| 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` |
| 5.2 | GeForce GTX | `GTX TITAN X` `GTX 980 Ti` `GTX 980` `GTX 970` `GTX 960` `GTX 950` |
| | Quadro | `M6000 24GB` `M6000` `M5000` `M5500M` `M4000` `M2200` `M2000` `M620` |
| | Tesla | `M60` `M40` |
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
| Compute Capability | Family | Cards |
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| 9.0 | NVIDIA | `H200` `H100` |
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
| 8.0 | NVIDIA | `A100` `A30` |
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |
| | NVIDIA Professional | `T4` `RTX 5000` `RTX 4000` `RTX 3000` `T2000` `T1200` `T1000` `T600` `T500` |
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` |
| | Quadro | `P6000` `P5200` `P4200` `P3200` `P5000` `P4000` `P3000` `P2200` `P2000` `P1000` `P620` `P600` `P500` `P520` |
| | Tesla | `P40` `P4` |
| 6.0 | NVIDIA | `Tesla P100` `Quadro GP100` |
| 5.2 | GeForce GTX | `GTX TITAN X` `GTX 980 Ti` `GTX 980` `GTX 970` `GTX 960` `GTX 950` |
| | Quadro | `M6000 24GB` `M6000` `M5000` `M5500M` `M4000` `M2200` `M2000` `M620` |
| | Tesla | `M60` `M40` |
| 5.0 | GeForce GTX | `GTX 750 Ti` `GTX 750` `NVS 810` |
| | Quadro | `K2200` `K1200` `K620` `M1200` `M520` `M5000M` `M4000M` `M3000M` `M2000M` `M1000M` `K620M` `M600M` `M500M` |
For building locally to support older GPUs, see [developer.md](./development.md#linux-cuda-nvidia)
@@ -43,43 +45,46 @@ ignore the GPUs and force CPU usage, use an invalid GPU ID (e.g., "-1")
### Linux Suspend Resume
On linux, after a suspend/resume cycle, sometimes Ollama will fail to discover
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
your NVIDIA GPU, and fallback to running on the CPU. You can workaround this
driver bug by reloading the NVIDIA UVM driver with `sudo rmmod nvidia_uvm &&
sudo modprobe nvidia_uvm`
## AMD Radeon
Ollama supports the following AMD GPUs:
### Linux Support
| Family | Cards and accelerators |
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
### Windows Support
With ROCm v6.1, the following GPUs are supported on Windows.
| Family | Cards and accelerators |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
| Family | Cards and accelerators |
| -------------- | ------------------------------------------------------------------------------------------------------------------- |
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
### Overrides on Linux
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
some cases you can force the system to try to use a similar LLVM target that is
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
close. For example The Radeon RX 5400 is `gfx1034` (also known as 10.3.4)
however, ROCm does not currently support this target. The closest support is
`gfx1030`. You can use the environment variable `HSA_OVERRIDE_GFX_VERSION` with
`x.y.z` syntax. So for example, to force the system to run on the RX 5400, you
`gfx1030`. You can use the environment variable `HSA_OVERRIDE_GFX_VERSION` with
`x.y.z` syntax. So for example, to force the system to run on the RX 5400, you
would set `HSA_OVERRIDE_GFX_VERSION="10.3.0"` as an environment variable for the
server. If you have an unsupported AMD GPU you can experiment using the list of
server. If you have an unsupported AMD GPU you can experiment using the list of
supported types below.
If you have multiple GPUs with different GFX versions, append the numeric device
number to the environment variable to set them individually. For example,
`HSA_OVERRIDE_GFX_VERSION_0=10.3.0` and `HSA_OVERRIDE_GFX_VERSION_1=11.0.0`
number to the environment variable to set them individually. For example,
`HSA_OVERRIDE_GFX_VERSION_0=10.3.0` and `HSA_OVERRIDE_GFX_VERSION_1=11.0.0`
At this time, the known supported GPU types on linux are the following LLVM Targets.
This table shows some example GPUs that map to these LLVM targets:
@@ -107,15 +112,16 @@ Reach out on [Discord](https://discord.gg/ollama) or file an
If you have multiple AMD GPUs in your system and want to limit Ollama to use a
subset, you can set `ROCR_VISIBLE_DEVICES` to a comma separated list of GPUs.
You can see the list of devices with `rocminfo`. If you want to ignore the GPUs
and force CPU usage, use an invalid GPU ID (e.g., "-1"). When available, use the
You can see the list of devices with `rocminfo`. If you want to ignore the GPUs
and force CPU usage, use an invalid GPU ID (e.g., "-1"). When available, use the
`Uuid` to uniquely identify the device instead of numeric value.
### Container Permission
In some Linux distributions, SELinux can prevent containers from
accessing the AMD GPU devices. On the host system you can run
accessing the AMD GPU devices. On the host system you can run
`sudo setsebool container_use_devices=1` to allow containers to use devices.
### Metal (Apple GPUs)
Ollama supports GPU acceleration on Apple devices via the Metal API.

BIN
docs/images/cline-mcp.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 556 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

BIN
docs/images/codex-mcp.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 948 KiB

BIN
docs/images/favicon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 890 B

BIN
docs/images/goose-cli.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 160 KiB

BIN
docs/images/goose-mcp-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 877 KiB

BIN
docs/images/goose-mcp-2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 911 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

BIN
docs/images/logo-dark.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

BIN
docs/images/logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

BIN
docs/images/n8n-models.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 130 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

BIN
docs/images/welcome.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 233 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 182 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 146 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

View File

@@ -1,11 +1,13 @@
# Importing a model
---
title: Importing a Model
---
## Table of Contents
* [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
* [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
* [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
* [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
- [Importing a Safetensors adapter](#Importing-a-fine-tuned-adapter-from-Safetensors-weights)
- [Importing a Safetensors model](#Importing-a-model-from-Safetensors-weights)
- [Importing a GGUF file](#Importing-a-GGUF-based-model-or-adapter)
- [Sharing models on ollama.com](#Sharing-your-model-on-ollamacom)
## Importing a fine tuned adapter from Safetensors weights
@@ -32,16 +34,15 @@ ollama run my-model
Ollama supports importing adapters based on several different model architectures including:
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral); and
* Gemma (including Gemma 1 and Gemma 2)
- Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
- Mistral (including Mistral 1, Mistral 2, and Mixtral); and
- Gemma (including Gemma 1 and Gemma 2)
You can create the adapter using a fine tuning framework or tool which can output adapters in the Safetensors format, such as:
* Hugging Face [fine tuning framework](https://huggingface.co/docs/transformers/en/training)
* [Unsloth](https://github.com/unslothai/unsloth)
* [MLX](https://github.com/ml-explore/mlx)
- Hugging Face [fine tuning framework](https://huggingface.co/docs/transformers/en/training)
- [Unsloth](https://github.com/unslothai/unsloth)
- [MLX](https://github.com/ml-explore/mlx)
## Importing a model from Safetensors weights
@@ -53,8 +54,6 @@ FROM /path/to/safetensors/directory
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
If you do not create the Modelfile, ollama will act as if there was a Modelfile with the command `FROM .`.
Now run the `ollama create` command from the directory where you created the `Modelfile`:
```shell
@@ -69,19 +68,20 @@ ollama run my-model
Ollama supports importing models for several different architectures including:
* Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
* Mistral (including Mistral 1, Mistral 2, and Mixtral);
* Gemma (including Gemma 1 and Gemma 2); and
* Phi3
- Llama (including Llama 2, Llama 3, Llama 3.1, and Llama 3.2);
- Mistral (including Mistral 1, Mistral 2, and Mixtral);
- Gemma (including Gemma 1 and Gemma 2); and
- Phi3
This includes importing foundation models as well as any fine tuned models which have been _fused_ with a foundation model.
## Importing a GGUF based model or adapter
If you have a GGUF based model or adapter it is possible to import it into Ollama. You can obtain a GGUF model or adapter by:
* converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
* converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
* downloading a model or adapter from a place such as HuggingFace
- converting a Safetensors model with the `convert_hf_to_gguf.py` from Llama.cpp;
- converting a Safetensors adapter with the `convert_lora_to_gguf.py` from Llama.cpp; or
- downloading a model or adapter from a place such as HuggingFace
To import a GGUF model, create a `Modelfile` containing:
@@ -98,9 +98,9 @@ ADAPTER /path/to/file.gguf
When importing a GGUF adapter, it's important to use the same base model as the base model that the adapter was created with. You can use:
* a model from Ollama
* a GGUF file
* a Safetensors based model
- a model from Ollama
- a GGUF file
- a Safetensors based model
Once you have created your `Modelfile`, use the `ollama create` command to build the model.
@@ -134,13 +134,22 @@ success
### Supported Quantizations
- `q4_0`
- `q4_1`
- `q5_0`
- `q5_1`
- `q8_0`
#### K-means Quantizations
- `q3_K_S`
- `q3_K_M`
- `q3_K_L`
- `q4_K_S`
- `q4_K_M`
- `q5_K_S`
- `q5_K_M`
- `q6_K`
## Sharing your model on ollama.com
@@ -148,7 +157,7 @@ You can share any model you have created by pushing it to [ollama.com](https://o
First, use your browser to go to the [Ollama Sign-Up](https://ollama.com/signup) page. If you already have an account, you can skip this step.
<img src="images/signup.png" alt="Sign-Up" width="40%">
<img src="images/signup.png" alt="Sign-Up" width="40%" />
The `Username` field will be used as part of your model's name (e.g. `jmorganca/mymodel`), so make sure you are comfortable with the username that you have selected.
@@ -156,7 +165,7 @@ Now that you have created an account and are signed-in, go to the [Ollama Keys S
Follow the directions on the page to determine where your Ollama Public Key is located.
<img src="images/ollama-keys.png" alt="Ollama Keys" width="80%">
<img src="images/ollama-keys.png" alt="Ollama Keys" width="80%" />
Click on the `Add Ollama Public Key` button, and copy and paste the contents of your Ollama Public Key into the text field.
@@ -173,4 +182,3 @@ Once your model has been pushed, other users can pull and run it by using the co
```shell
ollama run myuser/mymodel
```

58
docs/index.mdx Normal file
View File

@@ -0,0 +1,58 @@
---
title: Ollama's documentation
sidebarTitle: Welcome
---
<img src="/images/welcome.png" noZoom className="rounded-3xl" />
[Ollama](https://ollama.com) is the easiest way to get up and running with large language models such as gpt-oss, Gemma 3, DeepSeek-R1, Qwen3 and more.
<CardGroup cols={2}>
<Card title="Quickstart" icon="rocket" href="/quickstart">
Get up and running with your first model
</Card>
<Card
title="Download Ollama"
icon="download"
href="https://ollama.com/download"
>
Download Ollama on macOS, Windows or Linux
</Card>
<Card title="Cloud" icon="cloud" href="/cloud">
Ollama's cloud models offer larger models with better performance.
</Card>
<Card title="API reference" icon="terminal" href="/api">
View Ollama's API reference
</Card>
</CardGroup>
## Libraries
<CardGroup cols={2}>
<Card
title="Ollama's Python Library"
icon="python"
href="https://github.com/ollama/ollama-python"
>
The official library for using Ollama with Python
</Card>
<Card title="Ollama's JavaScript library" icon="js" href="https://github.com/ollama/ollama-js">
The official library for using Ollama with JavaScript or TypeScript.
</Card>
<Card title="Community libraries" icon="github" href="https://github.com/ollama/ollama?tab=readme-ov-file#libraries-1">
View a list of 20+ community-supported libraries for Ollama
</Card>
</CardGroup>
## Community
<CardGroup cols={2}>
<Card title="Discord" icon="discord" href="https://discord.gg/ollama">
Join our Discord community
</Card>
<Card title="Reddit" icon="reddit" href="https://reddit.com/r/ollama">
Join our Reddit community
</Card>
</CardGroup>

View File

@@ -0,0 +1,38 @@
---
title: Cline
---
## Install
Install [Cline](https://docs.cline.bot/getting-started/installing-cline) in your IDE.
## Usage with Ollama
1. Open Cline settings > `API Configuration` and set `API Provider` to `Ollama`
2. Select a model under `Model` or type one (e.g. `qwen3`)
3. Update the context window to at least 32K tokens under `Context Window`
<Note>Coding tools require a larger context window. It is recommended to use a context window of at least 32K tokens. See [Context length](/context-length) for more information.</Note>
<div style={{ display: 'flex', justifyContent: 'center' }}>
<img
src="/images/cline-settings.png"
alt="Cline settings configuration showing API Provider set to Ollama"
width="50%"
/>
</div>
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) from ollama.com
2. Click on `Use custom base URL` and set it to `https://ollama.com`
3. Enter your **Ollama API Key**
4. Select a model from the list
### Recommended Models
- `qwen3-coder:480b`
- `deepseek-v3.1:671b`

View File

@@ -0,0 +1,56 @@
---
title: Codex
---
## Install
Install the [Codex CLI](https://developers.openai.com/codex/cli/):
```
npm install -g @openai/codex
```
## Usage with Ollama
<Note>Codex requires a larger context window. It is recommended to use a context window of at least 32K tokens.</Note>
To use `codex` with Ollama, use the `--oss` flag:
```
codex --oss
```
### Changing Models
By default, codex will use the local `gpt-oss:20b` model. However, you can specify a different model with the `-m` flag:
```
codex --oss -m gpt-oss:120b
```
### Cloud Models
```
codex --oss -m gpt-oss:120b-cloud
```
## Connecting to ollama.com
Create an [API key](https://ollama.com/settings/keys) from ollama.com and export it as `OLLAMA_API_KEY`.
To use ollama.com directly, edit your `~/.codex/config.toml` file to point to ollama.com.
```toml
model = "gpt-oss:120b"
model_provider = "ollama"
[model_providers.ollama]
name = "Ollama"
base_url = "https://ollama.com/v1"
env_key = "OLLAMA_API_KEY"
```
Run `codex` in a new terminal to load the new settings.

View File

@@ -0,0 +1,76 @@
---
title: Droid
---
## Install
Install the [Droid CLI](https://factory.ai/):
```bash
curl -fsSL https://app.factory.ai/cli | sh
```
<Note>Droid requires a larger context window. It is recommended to use a context window of at least 32K tokens. See [Context length](/context-length) for more information.</Note>
## Usage with Ollama
Add a local configuration block to `~/.factory/config.json`:
```json
{
"custom_models": [
{
"model_display_name": "qwen3-coder [Ollama]",
"model": "qwen3-coder",
"base_url": "http://localhost:11434/v1/",
"api_key": "not-needed",
"provider": "generic-chat-completion-api",
"max_tokens": 32000
}
]
}
```
## Cloud Models
`qwen3-coder:480b-cloud` is the recommended model for use with Droid.
Add the cloud configuration block to `~/.factory/config.json`:
```json
{
"custom_models": [
{
"model_display_name": "qwen3-coder [Ollama Cloud]",
"model": "qwen3-coder:480b-cloud",
"base_url": "http://localhost:11434/v1/",
"api_key": "not-needed",
"provider": "generic-chat-completion-api",
"max_tokens": 128000
}
]
}
```
## Connecting to ollama.com
1. Create an [API key](https://ollama.com/settings/keys) from ollama.com and export it as `OLLAMA_API_KEY`.
2. Add the cloud configuration block to `~/.factory/config.json`:
```json
{
"custom_models": [
{
"model_display_name": "qwen3-coder [Ollama Cloud]",
"model": "qwen3-coder:480b",
"base_url": "https://ollama.com/v1/",
"api_key": "OLLAMA_API_KEY",
"provider": "generic-chat-completion-api",
"max_tokens": 128000
}
]
}
```
Run `droid` in a new terminal to load the new settings.

Some files were not shown because too many files have changed in this diff Show More