Compare commits

...

930 Commits

Author SHA1 Message Date
likelovewant
51e1480751 Merge branch 'ollama:main' into main 2025-10-30 10:15:05 +08:00
Grace
0a2d92081b Removing whitespace between Thinking and Content in Qwen3VL (#12838)
Eats extra whitespace at the end/beginning of content
2025-10-29 15:14:28 -07:00
Daniel Hiltgen
c88647104d int: harden server lifecycle (#12835)
this should reduce zombies during integration runs
2025-10-29 11:50:56 -07:00
Patrick Devine
05aff4a4f1 tests: fix embeddinggemma integration test (#12830) 2025-10-29 11:07:28 -07:00
Michael Yang
0d140bd1af fix: conv2d bias (#12834) 2025-10-29 11:03:43 -07:00
Jeffrey Morgan
93e45f0f0d docs: temporarily restore api.md and cleanup docs paths (#12818) 2025-10-28 23:25:48 -07:00
Jeffrey Morgan
a342160803 docs: fix root api documentation page (#12813) 2025-10-28 19:17:54 -07:00
Jeffrey Morgan
f6c29409dc docs: add new cloud model + fix openai redirect (#12812) 2025-10-28 19:09:07 -07:00
Michael Yang
7d25b9e194 feat(model): add qwen3vl (#12665) 2025-10-28 17:39:47 -07:00
Patrick Devine
36d64fb531 embed: add distance correlation test for library embed models (#12796) 2025-10-28 16:57:27 -07:00
Parth Sareen
d828517e78 docs: update readme and links (#12809) 2025-10-28 16:20:02 -07:00
Daniel Hiltgen
14977a9350 Fix vulkan PCI ID and ID handling (#12775)
* Fix vulkan PCI ID and ID handling

Intel GPUs may not report PCI IDs which was leading to incorrect overlap
detection.  Switch to using the existing PCI IDs, however AMD GPUs claim not to
report PCI IDs, but actually do, so try anyway, as this is required for ADLX to
find the GPUs on Windows. Numeric IDs lead to scheduling problems, so this also
switches Vulkan to use UUID based IDs. The GPU discovery patches have been
squashed into a single patch to simplify future rebases.

* review comments
2025-10-28 15:15:35 -07:00
Patrick Devine
29f63f37c8 Revert "server: Consolidate embedding truncation in runner (#12730)" (#12810)
This reverts commit 5d347f6d6f.
2025-10-28 14:49:14 -07:00
Parth Sareen
3d99d9779a docs: add docs for docs.ollama.com (#12805) 2025-10-28 13:18:48 -07:00
Parth Sareen
6d02a43a75 docs: rename to mdx to setup docs site (#12804) 2025-10-28 13:04:31 -07:00
Parth Sareen
5483497d7a Revert "docs: add reference to docs.ollama.com (#12800)" (#12803)
This reverts commit 934dd9e196.
2025-10-28 12:52:49 -07:00
Parth Sareen
934dd9e196 docs: add reference to docs.ollama.com (#12800) 2025-10-28 12:44:02 -07:00
Michael Yang
1188f408dd s/From*Slice/From*s/ (#12255) 2025-10-28 12:08:49 -07:00
nicole pardal
15c7d30d9a embedding tests: added check against exact base64 string (#12790) 2025-10-28 10:37:20 -07:00
Devon Rifkin
9862317174 Merge pull request #12793 from ollama/drifkin/12792_renderer-parser-from
create: inherit FROM model's renderer/parser
2025-10-28 00:15:46 -07:00
Michael Yang
ec9eb28f4c gemma3: make embedding non-causal (#12297) 2025-10-27 19:54:08 -07:00
Devon Rifkin
1bdd816910 create: inherit FROM model's renderer/parser
On main, the `RENDERER` and `PARSER` fields from the `Modelfile` don't
get propagated to a new model created with a `req.From` parameter. This
is easily triggered via `ollama run qwen3-coder`, then running some save
command like `/save qwen3-coder-custom`.

Added a regression test for this, and then open the config for the
"from" model in order to use its renderer/parser as a default for the
new model. This will fix the CLI and also API-based creates.

Fixes: https://github.com/ollama/ollama/issues/12792
2025-10-27 15:14:19 -07:00
nicole pardal
5d347f6d6f server: Consolidate embedding truncation in runner (#12730)
Currently, checking the length of prompts for embeddings to ensure
they fit in the context window (and possible truncation) occurs in
two places - the Ollama server and runner. This can lead to
inconsistencies in both the checks and reported number of tokens
processed. Since we have to do this processing in the runner, this
consolidates all of the logic there.
2025-10-27 11:59:12 -07:00
Patrick Devine
b97eb2b858 cloud: set the proxy content-type to the same as local models (#12759) 2025-10-25 10:57:10 -07:00
Jesse Gross
ad6f6a1d29 llm: Change memory allocation backoff from exponential to incremental
If we create a memory layout that should fit based on report free VRAM
but allocation still fails, we start applying a backoff. This reduces
free VRAM by an exponential percentage (1%, 2%, 4%...). However, the
points chosen tend to be too dense at the beginning and too sparse at
the end. Therefore, this switches to an incremental backoff (10%, 20%,
30%...).
2025-10-23 12:58:31 -07:00
Vinh Nguyen
6723a40be6 readme: add VT Code project to terminal community integrations (#12749) 2025-10-23 12:29:50 -07:00
Daniel Hiltgen
3258a89b6e DRY out the runner lifecycle code (#12540)
* DRY out the runner lifecycle code

Now that discovery uses the runners as well, this unifies the runner spawning code
into a single place.  This also unifies GPU discovery types with the newer ml.DeviceInfo

* win: make incremental builds better

Place build artifacts in discrete directories so incremental builds don't have to start fresh

* Adjust sort order to consider iGPUs

* handle cpu inference oom scenarios

* review comments
2025-10-23 11:20:02 -07:00
Jesse Gross
1c093e97af kvcache: Remove special case for reservation mask
We currently short circuit generation of the cache mask and just
generate an empty tensor of the correct size. However, in some
cases, this can also skip a cast operation. This can result in the
worst case graph being not fully worst case.

We don't actually need the fast path for mask generation, so it's
better to just use the normal code path.
2025-10-22 17:38:04 -07:00
Jesse Gross
a8d9c2648e llamarunner: Record the time for all batches during prompt processing
Currently, we only record the time for the last batch when processing
the prompt. This results in unrealistically high numbers for the
old llama runner.

Before:
total duration:       31.273112939s
load duration:        4.97054657s
prompt eval count:    32768 token(s)
prompt eval duration: 235.137439ms
prompt eval rate:     139356.80 tokens/s
eval count:           1873 token(s)
eval duration:        18.173182374s
eval rate:            103.06 tokens/s

After:
total duration:       30.024798033s
load duration:        4.758588663s
prompt eval count:    32768 token(s)
prompt eval duration: 7.779621548s
prompt eval rate:     4212.03 tokens/s
eval count:           1769 token(s)
eval duration:        17.148014223s
eval rate:            103.16 tokens/s
2025-10-22 13:52:58 -07:00
frob
0334e67ffd tools: parse tool calls that don't conform to ("name": name, "arguments": args} (#12738) 2025-10-22 11:34:27 -07:00
nicole pardal
e0ead1adee embeddings: base64 encoding fix (#12715) 2025-10-22 11:27:44 -07:00
Patrick Devine
d515aed6c3 cloud: don't error sending empty messages (#12724) 2025-10-21 18:12:14 -07:00
likelovewant
7f551c41e7 Merge branch 'ollama:main' into main 2025-10-21 19:38:31 +08:00
Jeffrey Morgan
5fe7ba1b9b runner: always truncate embeddings requests (#12714) 2025-10-20 16:47:05 -07:00
Michael Yang
d2b63c19b3 fs(ggml): fill in arch prefix if necessary (#12646) 2025-10-20 16:42:18 -07:00
Jeffrey Morgan
94f110b35a model/parsers: remove warning for missing <think> tag for qwen3-vl (#12713) 2025-10-20 16:03:43 -07:00
Daniel Hiltgen
5d22953ba7 cuda: get driver version after props (#12707)
Users on Windows without GPUs are reporting errors relating to
cudaDriverGetVersion with the device set to -1.  This ensures we only grab the
driver once we're enumerating actual devices.
2025-10-20 10:57:27 -07:00
Daniel Hiltgen
d245dffed8 rocm: give it more time to bootstrap (#12681)
Some users are hitting timeouts.  We'd like to make this faster, but for now make sure we don't timeout too aggressively.
2025-10-20 09:43:05 -07:00
likelovewant
cb13784a11 merge update 2025-10-18 23:03:13 +08:00
Daniel Hiltgen
bc1a818fdc contiguous input per layer (#12686)
Co-authored-by: Michael Yang <git@mxy.ng>
2025-10-17 18:39:18 -07:00
Daniel Hiltgen
ba2253dc30 win: more verbose load failures (#12683)
When loading the dynamic libraries, if something goes wrong report some
details.  Unfortunately this wont explain which dependencies are missing,
but this breadcrumb in the logs should help us diagnose GPU discovery
failures.
2025-10-17 17:13:16 -07:00
Daniel Hiltgen
68e04c7ff8 test: harden scheduler tests (#12662)
* test: harden scheduler tests

This removes reschedDelay which was stale code, and adds
a new configurable timeout for the waitForVRAMRecovery so
tests can now set the timeout to be very short to avoid the
scheduler getting stuck and hitting a test timeout.

* test: tune tests for partial loads

Give stress tests more time when the model is split between CPU/GPU
2025-10-17 08:56:44 -07:00
Daniel Hiltgen
270679932f cuda: tidy up CC settings (#12668)
8.7 is Jetpack only, so no need on x86 builds
10.3 covers [G]B300
2025-10-16 16:39:30 -07:00
Jeffrey Morgan
65fb3ff49d renderers: add global flag for setting [img] tags (#12669)
Adds a temporary global flag to renderers that causes renderers to always
render images as [img]. In a follow up change, we will consider making this
the default, and this flag could eventually be removed
2025-10-16 16:37:32 -07:00
Grace
e2a0b24435 Grace/qwen3 thinking (#12647)
* changing initial status to take into consideration prefill

* Add seperate strings for content and thinking builder

* thinking tests

* remove white space from string before closing think tag
2025-10-16 15:29:41 -07:00
Daniel Hiltgen
1813ff85a0 cuda: bring back CC 5.2 (#12666)
Forward compat on the newer driver doesn't seem to be working.
This should get 5.2 working on newer drivers again.
2025-10-16 13:07:41 -07:00
Daniel Hiltgen
b531777a66 test: add a few missing embedding models (#12661) 2025-10-16 09:36:25 -07:00
Daniel Hiltgen
fe3ec8dbf0 Revert "Workaround broken NVIDIA iGPU free VRAM data (#12490)" (#12642)
The workaround has been moved into the underlying C++ code.

This reverts commit e4340667e3.
2025-10-16 09:09:48 -07:00
Thomas Stocker
c744134287 vulkan: Get FilterID from Backend for Vulkan (#12655)
* vulkan: Get FilterID from Backend for Vulkan

* Fixing patch
2025-10-16 09:07:35 -07:00
weedge
4be41d2d45 readme: add achatbot-go to community integrations (#12629) 2025-10-15 21:54:15 -07:00
zhetaicheleba
de670570c9 fs/ggml: fix function name in comment (#12630) 2025-10-15 21:53:38 -07:00
Devon Rifkin
201d93716e Merge pull request #12651 from ollama/drifkin/oai-conversion
openai: make tool call conversion fns public
2025-10-15 21:10:30 -07:00
Devon Rifkin
160cecc8e2 openai: make tool call conversion fns public 2025-10-15 20:54:58 -07:00
Daniel Hiltgen
8b6e5baee7 CI: Set up temporary opt-out Vulkan support (#12614)
Initially Vulkan support in Ollama will require building from source.  Once it is
more thoroughly tested and we have fixed any critical bugs, then we can
bundle Vulkan into the official binary releases.
2025-10-15 14:18:01 -07:00
Daniel Hiltgen
75d17fc6c2 perf: backport cuda iGPU sched spin (#12641) 2025-10-15 11:52:14 -07:00
Santosh Bhavani
8fafc8af77 ml/backend/ggml: NVML fallback for unified memory GPUs (#12619)
* Simplify NVML fallback for unified memory GPUs

Remove device-specific checks and environment variable dependency for
NVML_ERROR_NOT_SUPPORTED fallback. When NVML doesn't support memory
queries, unconditionally use /proc/meminfo instead of checking device
names or OLLAMA_UNIFIED_MEMORY environment variable.

This provides better memory reporting by using MemAvailable which
accounts for reclaimable memory, avoiding the underreporting issue
described in NVIDIA support article a_id/5728.

Tested on NVIDIA GB10 unified memory iGPU with consistent and accurate
memory reporting across multiple model load/unload cycles.

* Add NVML fallback patch for unified memory GPUs
2025-10-15 11:40:06 -07:00
Jesse Gross
c3c85aa06c llm: Enable flash attention by default for gemma3 2025-10-15 10:42:12 -07:00
Jeffrey Morgan
0d713051a2 envconfig: default to port 443 when connecting to ollama.com (#12617) 2025-10-14 23:38:24 -07:00
Parth Sareen
c4c5a4a01e types: send index for tool calls (#12625) 2025-10-14 19:35:15 -07:00
Jesse Gross
3dcfd5f69e llm: Perform eviction when num_gpu is set with new estimates
Currently, if you set num_gpu then this forces the model to
load with that number of layers in the current configuration.
This is done regardless of any other information, which means
that no eviction is performed even if another model is loaded.

This behavior is different from the old estimates (and still
happens for models that runs on the llama engine). In those
cases, models would be evicted if needed to load at the requested
number of layers. That behavior is more useful and less surprising,
so this changes the new estimates to match.

Fixes #12580
2025-10-14 17:46:36 -07:00
Devon Rifkin
53a969d509 Merge pull request #12621 from ollama/drifkin/any-of
qwen3-coder: support anyOf when parsing tool calls
2025-10-14 15:51:24 -07:00
Devon Rifkin
08fbb60bb2 qwen3-coder: support anyOf when parsing tool calls 2025-10-14 15:33:05 -07:00
Daniel Hiltgen
850da848c5 logs: fix bogus "0 MiB free" log line (#12590)
On the llama runner, after the recent GGML bump a new log line reports
incorrect 0 MiB free after our patch to remove memory from the props.  This
adjusts the llama.cpp code to fetch the actual free memory of the active device.
2025-10-14 11:26:28 -07:00
Thomas Stocker
2aba569a2a Vulkan based on #9650 (#11835)
* implement the vulkan C backend

* add support in gpu.go

* add support in gen_linux.sh

* it builds

* fix segfault

* fix compilation

* fix free memory monitor

* fix total memory monitor

* update gpu.go

* fix build

* fix check_perfmon len

* remove cap_get_bound check

* fix vulkan handle releasing

* fix build on federa 40

* fix vulkan on windows

* making amdgpu work on arm achitecutre with vulkan

* add x86_64 lines in VulkanGlobs and capLinuxGlobs

* add aarch64 lines in vulkanGlobs and capLinuxGlobs

* Fix variable name

* Add vulkan build patch from @jmorganca

* Sync vendored ggml to add Vulkan support

* Updated dockerfile

https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Installing rocm library

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* This version works well

built based on this: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Applied 00-fix-vulkan-building.patch

Work done by McBane87 here: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Fixed the "detached head" issues

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merged in the right direction

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merging the latest stable (#2)

* Applied 00-fix-vulkan-building.patch

* Implemented vulkan backend based on the work done by whyvl, Dts0, McBane87 and others

Tested on AMD Ryzen 7 8845HS w/ Radeon 780M Graphics with ROCm disabled

```
[GIN-debug] POST   /v1/chat/completions      --> github.com/ollama/ollama/server.(*Server).ChatHandler-fm (6 handlers)
[GIN-debug] POST   /v1/completions           --> github.com/ollama/ollama/server.(*Server).GenerateHandler-fm (6 handlers)
[GIN-debug] POST   /v1/embeddings            --> github.com/ollama/ollama/server.(*Server).EmbedHandler-fm (6 handlers)
[GIN-debug] GET    /v1/models                --> github.com/ollama/ollama/server.(*Server).ListHandler-fm (6 handlers)
[GIN-debug] GET    /v1/models/:model         --> github.com/ollama/ollama/server.(*Server).ShowHandler-fm (6 handlers)
time=2025-03-11T13:00:40.793Z level=INFO source=gpu.go:199 msg="vulkan: load libvulkan and libcap ok"
time=2025-03-11T13:00:40.877Z level=INFO source=gpu.go:421 msg="error looking up vulkan GPU memory" error="device is a CPU"
time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:443 msg="amdgpu detected, but no compatible rocm library found.  Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install"
time=2025-03-11T13:00:40.878Z level=WARN source=amd_linux.go:348 msg="unable to verify rocm library: no suitable rocm found, falling back to CPU"
time=2025-03-11T13:00:40.879Z level=INFO source=types.go:137 msg="inference compute" id=0 library=vulkan variant="" compute=1.3 driver=1.3 name="AMD Radeon Graphics (RADV GFX1103_R1)" total="15.6 GiB" available="15.6 GiB"
```

```
 # ollama run phi4:14b
>>> /set verbose
Set 'verbose' mode.
>>> how's it going?
Hello! I'm here to help you with any questions or tasks you have. How can I assist you today? 😊

total duration:       3.341959745s
load duration:        18.165612ms
prompt eval count:    15 token(s)
prompt eval duration: 475ms
prompt eval rate:     31.58 tokens/s
eval count:           26 token(s)
eval duration:        2.846s
eval rate:            9.14 tokens/s
>>>
```

* This is no longer needed

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Fixes SIGSEGV: segmentation violation running gemma3 models on ollama 0.6.0 #21

Patch provided by McBane87 on https://github.com/whyvl/ollama-vulkan/issues/21

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Applied 04-disable-mmap-vulkan.patch

From: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2660836871

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Pulled new upstream code for ggml-bulkan backend

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Merged latest ollama 0.6.2 and nasrally's Flash Attention patches (#5)

* readme: add Ellama to list of community integrations (#9800)

* readme: add screenpipe to community integrations (#9786)

* Add support for ROCm gfx1151 (#9773)

* conditionally enable parallel pipelines

* sample: make mutations in transforms explicit (#9743)

* updated minP to use early exit making use of sorted tokens

* ml/backend/ggml: allocate memory with malloc when loading model (#9822)

* runner: remove cache prompt flag from ollama runner (#9826)

We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.

* ollamarunner: Check for minBatch of context space when shifting

Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.

* Applied latest patches from McBane87

See this for details: https://github.com/whyvl/ollama-vulkan/issues/7#issuecomment-2708820861

Signed-off-by: Vadim Grinco <vadim@grinco.eu>

* Add ability to enable flash attention on vulkan (#4)

* discover: add flash attention handling for vulkan
* envconfig: fix typo in config.go

As part of the process some code was refactored and I added a new field
FlashAttention to GpuInfo since the previous solution didn't allow for a
granular check via vulkan extensions. As a side effect, this now allows
for granular per-device FA support checking in other places

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>

* Revert Readme changes

* Revert

* Revert changes in amd_linux.go

* Revert changes in amd_linux.go

* Remove flashattention setting gpu.go

* Revert whitespace changes in gpu.go

* Revert changes in transforms_test.go

* Revert changes in runner.go

* Revert changes in Makefile.sync

* Revert some unintented changes in Dockerfile

* Revert vulkan copy changes in Dockerfile

* Update Vulkan Code to de4c07f93783a1a96456a44dc16b9db538ee1618

* Fixed duplicate sync in ggml.go

* Revert changes in ggml.go

* Revert chnages in ggml.go

* enable falsh attention on vulkan

* revert remove parenthesis

* fixed flash attention logic enabling

* vk_check_flash_attention 0 means supported

* Update gpu.go

* Add vulkan to Windows Build script

* Remove commented out code

* Enable Vulkan Flash attention in FlashAttentionSupported

* Fix logging

* Update Vulkan backend to e54d41befcc1575f4c898c5ff4ef43970cead75f

* Removed libcap related code

libcap is not directly related to Vulkan and should be added by its own PR. It adds additional library dependencies for building and also requires users to run setcap or run ollama as root, which is not ideal for easy use

* Fix Unit Test (Add Vulkan Library)

* Add vulkan to TestHomogeneousGPUs
Test

* vulkan: get GPU ID (ollama v0.11.5)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* disable mmap for vulkan

* Reduce Changes remove TestHomogeneousGPUs (doesn't exist on master)

* Update vulkan version to the version used in llama.cpp

* rename gpu patch to correct number

* added Vulkan API to get correct Device UUID

current UUID from pipelineCacheUUID does not match CUDA

* Fix GPU ID Patch

* Remove Code not in llama.cpp

* modified UUID code inside ggml

* Fix Patch

* Copied minimal definition from vulkan header

* Fix compile error in Mac

Metal is preferred so we're disabling Vulkan for now

* Removed unused code

Fix linter error in CI

* Fix patches apply

* fixing lint error

* Removed unneeded function call

Somehow removing this call fixed the crashing when Vulkan header was removed

* added missing NL

* Fixed missing members in Vulkan header

also added zero clear for some structs

* Fixed wrong structure ID

* Fixed Vulkan header

More aligned with official header definition now

* buildvulkanAsSeperateFunction

* Vulkan on Windows Test

* temporarly comment out gate to run windows task

* use temporarly windows-latest for build

* Commenting out other presets to build vulkan

* reenable cpu

* commenting out error action stop

* temporarly commenting out rocm

* set vulkan path

* comment out cude for faster turnaround

* correct vulkan install

* correct vulkan silent install

* fixed install command

* revert debugging changes (vulkan builds on windows)

* revert windows-latest

* trying to build vulkan for linux

* temporarly disable cuda and rocm

* try again linux build

* fix version

* trying to fix

* trying again

* trying again

* fix version

* fixed vulkan-sdk name

* try again

* trying again

* try without version number

* try again

* add some more extra

* trying to use version 1.4.313

* revert debugging changes

* Filter out already supported gpus

* revert debug code

* Use runners for GPU discovery

This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.

* timing info for runner

* WIP - wire up Vulkan with the new engine based discovery

Not a complete implementation - free VRAM is better, but not accurate on
windows

* fix - trust the library paths from discovery when starting runner

* fix index bug

* fix vulkan ids to be underlying

* fix - give bootstrapping more time on slow systems

* Test if Vulkan device is supported

* vk_check_flash_attention is not needed (coompat2 coopmapt and scalar implementation exist)

* Handle GGML_VK_VISIBLE_DEVICES

* ask for supported first

* win: fix CPU query buffer handling

Try in a short loop until we get the size right.

* test: harden integration tests for slow start

If the server takes a while to start up, block
tests from starting until it's online to avoid
setting large timeouts in individual test cases.

* gofumpt fix

* fix build

* merge fixes

* merge fixes

* fixed build

* merge fixes

* fixing build

* fixed build

* fixed formatting

* fixed build

* fix vulkan gpu id patch

* sync llama.cpp vulkan code

* update build windows script

* merge fixes

* fix format

* fixed vulkan casing

* handle igpu as gpu

* improve case

* print out unknown library

* rturn Vulkan for vulkan library

* Revert "rturn Vulkan for vulkan library"

This reverts commit 690461a12fd5e93295d174c97edefb2bc33285b1.

* fixed patch number

* return Library Name

* remvoe debug code

* return integrated in vulkan backend

* Return pci Properties

* update patch

* directly get pci proeprties without parsing

* workaround for filtering devices. Correct way is to have a LibraryPosition Parameter in the deviceInfo

* Revert "directly get pci proeprties without parsing"

This reverts commit 8e0624851f5ed7d9f74518f574dfb422e4dd4dc2.

* Set FilteredID for Environment Filtering

* ROCm Library is named ROCm

* revert changes in patch

* Create 0028-vulkan-pci-and-memory.patch

* vulkan memory patch

* casing fix

* Add more pci properties

* Added better memory management

* Added better memory managament

* fixed patch

* Fixed patch

* FilterID creation group by library

* filter out vulkan supported by other gpu

* fixing deviceid compare

* Vulkan Fix FA coopmat1 invalid array indexing

* Use everywhere the same Vulkan Version 1.4.321.1

* Remove unneeded patch

* vulkan update

* sync vulkan glsl files

* only use for vulkan the filteredid (numeric device number)

* simplify code

---------

Signed-off-by: Vadim Grinco <vadim@grinco.eu>
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: pufferffish <github@bandersnatch.anonaddy.com>
Co-authored-by: KOISHI KOMEIJI FROM TOUHOU 11 <fuck>
Co-authored-by: DSLstandard <qgeneral35@gmail.com>
Co-authored-by: pufferffish <me@windtfw.com>
Co-authored-by: yeongbba <yeongmo.lee@logpresso.com>
Co-authored-by: tomaThomas <tomathomas@mailbox.org>
Co-authored-by: Antoine Viallon <antoine@lesviallon.fr>
Co-authored-by: Vadim Grinco <vadim@grinco.eu>
Co-authored-by: zeo <108888572+zeozeozeo@users.noreply.github.com>
Co-authored-by: Louis Beaumont <louis.beaumont@gmail.com>
Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Nikita <50599445+nasrally@users.noreply.github.com>
Co-authored-by: Masato Nakasaka <masato.nakasaka@intel.com>
Co-authored-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-10-14 10:59:58 -07:00
Devon Rifkin
fd8aa947f3 Merge pull request #12562 from ollama/drifkin/registries
add registries for parsers/renderers
2025-10-14 02:01:53 -07:00
Devon Rifkin
ddaca643d0 add registries for parsers/renderers 2025-10-14 01:13:54 -07:00
Grace
05982a95cb Qwen3VL Cloud Parser and Renderer (#12526)
* working (other than tool call is the incorrect order) for tool calls and tools

* Tests work, other than image tags (tests do not go through server) and tools (not in the correct order, but contents are the same)

* testing for qwen3vl parser - toolparser is working

* made changes to JSON tool parser, wraps the TollCallFunction with a TollCall object

* Working parser for thinking models - assumes state of thinking, emits unambiguous content in thinking, does not call tool call in thinking

* changed the parser to start with collecting content

* thinking prefill

* add hasThinkingSupport parameter to parser

* qwen3-vl -> qwen3-vl-instruct for renderer/parser

* Add hasThinkingSupport=false to QwenVLParser

---------

Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-10-13 16:52:33 -07:00
Gabe Goodhart
4987f13d34 Llama cpp bump (df1b612): granite docling / mamba2 optimizations / multimodal encoding fixes (#12552)
* feat: Bump llama.cpp to df1b612

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(mtmd): Correctly encode text chunks during mtmd tokenization

There can be text chunks that appear interspersed with the image embeddings
that contain template delimiter tokens for some models. These need to be
correctly translated to text tokens.

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Use MtmdChunk in image_test

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: Fix unnecessary conversion linting

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(ggml): Revert changes to ggml_hip.cpp

These changes were done largely by our code assistant and are likely wrong

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Revert changes in mem_nvml.cpp

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update sync point to 1deee0

This brings in several more optimization commits and model support for
EmbeddingGemma

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Update patches for 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: sync for bump to 1deee0

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Bad patch updates with errant `+`

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Bump llama.cpp/ggml to 7049736

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: format-patches after latest bump

Branch: LlamaCPPBump-GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-13 15:26:18 -07:00
Jeffrey Morgan
e638f2acb6 runner: fix shifting on llama runner (#12604) 2025-10-13 13:46:33 -07:00
Michael Yang
18087f2ec7 Revert "use llama runner for qwen3 (#12556)"
This reverts commit 3d32249c74.
2025-10-13 13:30:30 -07:00
Michael Yang
6c833d5f8d fix(qwen3): deepseek distill
deepseek's qwen3 distill uses a different rope scheme so support both
2025-10-13 13:30:30 -07:00
Jeffrey Morgan
6544e14735 Reapply "add truncate and shift parameters" (#12582) 2025-10-11 16:06:14 -07:00
Devon Rifkin
5db8a818a1 Merge pull request #12581 from ollama/drifkin/renderer-api-generate
routes: fix built-in renderers for `api/generate`
2025-10-11 14:10:23 -07:00
Devon Rifkin
6db8da9958 routes: fix built-in renderers for api/generate
Made it so when api/generate builds up a message array and generates the
prompt it now goes through the same function as `api/chat` for
consistency. This is where we hook the optional built-in renderers to
bypass templates, which was missing for `api/generate` before this
change.

Closes: #12578
2025-10-11 13:57:43 -07:00
frob
0c68ec8d6a discover: fix typo (#12565) 2025-10-11 12:06:02 -07:00
Daniel Hiltgen
70d9e363e1 doc: remove AMD EOL GPUs (#12567) 2025-10-10 17:16:29 -07:00
Michael Yang
1a2feb2a97 ollamarunner: fix deadlock
hardErrCh will deadlock since forwardBatch is blocked on
computeStartedCh which never gets sent. since the response to
hardErrCh is to panic, just panic instead
2025-10-10 16:49:57 -07:00
Daniel Hiltgen
aab2190420 implement nvml for linux (#12517)
* implement nvml for linux

* Improve scheduler logging when VRAM doesn't recover
2025-10-10 15:15:56 -07:00
Michael Yang
629db9dc43 comment split 2025-10-10 13:25:34 -07:00
Michael Yang
e0cd511661 fix test 2025-10-10 13:25:34 -07:00
Michael Yang
207332078f fix lint 2025-10-10 13:25:34 -07:00
Michael Yang
93085127f4 convert: slice gate_up weight 2025-10-10 13:25:34 -07:00
Michael Yang
c00fa9cc2b convert: split gate_up bias 2025-10-10 13:25:34 -07:00
yajianggroup
df411c4b02 refactor: using testing.B.Loop
Signed-off-by: yajianggroup <yajianggroup@outlook.com>
2025-10-10 13:25:29 -07:00
Jeffrey Morgan
3d32249c74 use llama runner for qwen3 (#12556) 2025-10-09 19:08:21 -07:00
Patrick Devine
d681cd7c29 thinking: allow "think": false for non-thinking models (#12555) 2025-10-09 18:46:00 -07:00
shengxinjing
47298fce39 refactor: use builtin max and min 2025-10-09 16:17:52 -07:00
shengxinjing
4a48937ef1 refactor: use builtin max and min 2025-10-09 16:17:52 -07:00
Michael Yang
967a82f52f ollamarunner: measure only active time 2025-10-09 15:44:04 -07:00
Michael Yang
bbbc73d637 llamarunner: update metrics
this change updates how metrics are collected. until now, performance
metrics, specifically initial input processing and subsequent generation
durations, were collected by taking the timestamp when creating a new
sequence, the first token generation, and completing generation. the
processing duration is taken as first token generation sub sequence
creation while generation is taken as completing generation sub first
token generation.

while this approach is an accurate end-to-end metric of processing and
generation, it's not comparable to other tools which only measure the
active, i.e. decode, duration.

this change updates the metrics to only capture decode duration so it
can be more directly compared to other tools
2025-10-09 15:44:04 -07:00
Daniel Hiltgen
15e3611d3d logs: quiet down context canceled on completion and scheduler noise (#12553)
* logs: quiet down context canceled on completion

If the client closes the connection before Completion finishes, we were
logging at error level implying the runner crashed which was misleading.

time=2025-10-08T22:59:20.566-07:00 level=ERROR source=server.go:1490 msg="post predict" error="Post \"http://127.0.0.1:57736/completion\": context canceled"

* quiet down scheduler log error on expected case

Since we don't hold the lock while performing memory load calculations, other
runners can unload in parallel, so finding no runner to unload is a valid scenario
which we shouldn't log at error level.
2025-10-09 10:37:47 -07:00
Parth Sareen
77060d462c routes: structured outputs for gpt-oss (#12460) 2025-10-08 19:13:38 -07:00
Patrick Devine
1b91d4dda1 openai: change the reasonin_effort field to also take none 2025-10-08 18:21:01 -07:00
Jeffrey Morgan
7d965258ce Revert "add truncate and shift parameters (#12519)" (#12545)
This reverts commit 6a62b894c7.
2025-10-08 17:57:57 -07:00
Jeffrey Morgan
6a62b894c7 add truncate and shift parameters (#12519) 2025-10-08 17:05:05 -07:00
Patrick Devine
90d429f5a8 thinking: turn on thinking mode for all reasoning models (#12533) 2025-10-08 16:50:13 -07:00
Jesse Gross
1fc35f1260 kvcache: Clean up sliding window state with independent batches
Sliding windows models (e.g. gpt-oss, gemma3) remove tokens that
are out of the cache's window each time we start a new forward pass.

The cache storage needs to handle the window size for each sequence
plus the batch size, since the batch needs to attend to the full
window size. This means that we have greater than a window size
stored while processing the batch.

When the next batch comes, we are currently only looking at the
sequences in the incoming batch to slide the window forward.
However, we also need to clean up the other sequences that might
be occupying space in the batch processing buffer to ensure each
sequence is only using its window size of storage. Failure to do
this can result in "no kv cache slot found" errors.

Fixes: #10127
2025-10-08 16:43:14 -07:00
Jesse Gross
aa45f7ce27 discover: Disable flash attention for Jetson Xavier (CC 7.2)
GGML picks the wrong kernel and these systems fail with:
Sep 28 22:25:39 xavier ollama[48999]: //ml/backend/ggml/ggml/src/ggml-cuda/fattn-wmma-f16.cu:437:
ERROR: CUDA kernel flash_attn_ext_f16 has no device code compatible with CUDA arch 720. ggml-cuda.cu
was compiled for: __CUDA_ARCH_LIST__

Fixes #12442
2025-10-08 09:56:15 -07:00
Daniel Hiltgen
4e5d862ec4 Integration test tuning (#12492)
Remove some flaky scenarios, and switch to chat for better reliability
2025-10-08 09:51:25 -07:00
Daniel Hiltgen
303be9304c docs: improve accuracy of LLM library docs (#12530) 2025-10-07 16:21:07 -07:00
Daniel Hiltgen
bd15eba4e4 Bring back escape valve for llm libraries and fix Jetpack6 crash (#12529)
* Bring back escape valve for llm libraries

If the new discovery logic picks the wrong library, this gives users the
ability to force a specific one using the same pattern as before. This
can also potentially speed up bootstrap discovery if one of the libraries
takes a long time to load and ultimately bind to no devices.  For example
unsupported AMD iGPUS can sometimes take a while to discover and rule out.

* Bypass extra discovery on jetpack systems

On at least Jetpack6, cuda_v12 appears to expose the iGPU, but crashes later on in
cublasInit so if we detect a Jetpack, short-circuit and use that variant.
2025-10-07 16:06:14 -07:00
Devon Rifkin
bc71278670 Merge pull request #12509 from ollama/drifkin/oai-compat-refactor
openai: refactor to split compat layer and middleware
2025-10-06 16:22:08 -07:00
Daniel Hiltgen
918231931c win: fix build script (#12513) 2025-10-06 14:46:45 -07:00
Daniel Hiltgen
04c1849878 discovery: prevent dup OLLAMA_LIBRARY_PATH (#12514)
This variable isn't currently documented or intended as something the user can
override, but if the user happens to set OLLAMA_LIBRARY_PATH we were doubling
this in the subprocess environment which will cause problems with the new
bootstrap discovery logic.
2025-10-06 14:36:44 -07:00
Devon Rifkin
2c2f4deaa9 openai: refactor to split compat layer and middleware
This makes the core openai compat layer independent of the middleware
that adapts it to our particular gin routes
2025-10-05 14:18:56 -07:00
Daniel Hiltgen
292767afb4 CI: fix win arm build (#12502)
Resolve subtle erroraction stickiness difference between x86 and arm builder setup
2025-10-04 11:46:45 -07:00
Daniel Hiltgen
ae5e0f0889 CI: replace clang compiler for windows (#12495) 2025-10-04 09:18:42 -07:00
Jesse Gross
19e6796eac llm: Support KV cache quantization with gpt-oss
With the new version of GGML in #12245, KV cache quantization
no longer causes a fallback to CPU.
2025-10-03 16:31:58 -07:00
Grace
33801c1597 Fixed Deepseek2 adding nil tensor error 2025-10-03 14:20:06 -07:00
Daniel Hiltgen
e4340667e3 Workaround broken NVIDIA iGPU free VRAM data (#12490)
The CUDA APIs for reporting free VRAM are useless on NVIDIA iGPU
systems as they only return the kernels actual free memory and ignore
buff/cache allocations which on a typical system will quickly fill up
most of the free system memory.  As a result, we incorrectly think
there's very little available for GPU allocations which is wrong.
2025-10-03 12:17:21 -07:00
Patrick Devine
2fa1e92a99 test: add template error test (#12489) 2025-10-03 12:05:34 -07:00
Daniel Hiltgen
07e36761c3 ci: place rocm windows in correct runner dir (#12487) 2025-10-03 07:28:40 -07:00
Daniel Hiltgen
c29fb007c0 CI: temporarily disable clang install (#12486)
This will likely yield builds that have problems with unicode characters
but at least we can start testing the release while we try to find an
alternate clang compiler for windows, or mingw ships a fixed version.
2025-10-02 20:31:18 -07:00
Daniel Hiltgen
730ed6e9e1 ci: fix windows build (#12485) 2025-10-02 19:16:01 -07:00
Daniel Hiltgen
dc06601677 ci: fix windows build (#12484) 2025-10-02 18:59:26 -07:00
Patrick Devine
1ed2881ef0 templates: fix crash in improperly defined templates (#12483) 2025-10-02 17:25:55 -07:00
Jesse Gross
0bda72892c llm: Enable flash attention by default for qwen3 and qwen3moe 2025-10-02 17:04:10 -07:00
Daniel Hiltgen
55ca827267 AMD: block running on unsupported gfx900/gfx906 (#12481) 2025-10-02 16:53:05 -07:00
Daniel Hiltgen
c68f367ef6 Update GGML to b6646 (#12245)
Notable EOLs with this change:
- MacOS v12 and v13 are no longer supported (v14+ required)
- AMD gfx900 and gfx906 are no longer supported
2025-10-02 14:47:10 -07:00
Jesse Gross
fdb109469f llm: Allow overriding flash attention setting
As we automatically enable flash attention for more models, there
are likely some cases where we get it wrong. This allows setting
OLLAMA_FLASH_ATTENTION=0 to disable it, even for models that usually
have flash attention.
2025-10-02 12:07:20 -07:00
Daniel Hiltgen
05a43e078a fix panic on bootstrapDevices (#12475)
Wrong index variable was used.
2025-10-01 17:39:29 -07:00
Daniel Hiltgen
bc8909fb38 Use runners for GPU discovery (#12090)
This revamps how we discover GPUs in the system by leveraging the Ollama
runner.  This should eliminate inconsistency between our GPU discovery and the
runners capabilities at runtime, particularly for cases where we try to filter
out unsupported GPUs.  Now the runner does that implicitly based on the actual
device list.  In some cases free VRAM reporting can be unreliable which can
leaad to scheduling mistakes, so this also includes a patch to leverage more
reliable VRAM reporting libraries if available.

Automatic workarounds have been removed as only one GPU leveraged this, which
is now documented. This GPU will soon fall off the support matrix with the next
ROCm bump.

Additional cleanup of the scheduler and discovery packages can be done in the
future once we have switched on the new memory management code, and removed
support for the llama runner.
2025-10-01 15:12:32 -07:00
Devon Rifkin
6b50f2b9cd Merge pull request #12461 from ollama/drifkin/qwen3-coder-tweaks
qwen3-coder: fix tool definition type rendering
2025-09-30 19:47:44 -07:00
Michael Yang
35ac4eb12c fix keep alive
this reference to keep alive was missed in #12041 so chat has a
diffferent behaviour than generate
2025-09-30 17:22:28 -07:00
Jesse Gross
3d0b1734c0 ggml: Preallocate CUDA pool memory
The GGML CUDA backend allocates additional memory for intermediate
results during calculation. This memory isn't currently allocated
during worst case graph reservation and therefore not included in
scheduling. This means that as these buffers potentially grow
with context length, we could crash.

This extends the memory allocation system down layer from the GGML
graph to the CUDA layer, preallocating the worst case memory there
as well.

Fixes #11753
2025-09-30 15:04:43 -07:00
Jesse Gross
efaee8c2d6 ggml: Backport scale kernel fixes
The GGML scale kernel uses signed 32-bit ints to represent
the number of elements in the tensor. For large images,
mistral-small3.2 overflows this, triggering CUDA errors due
to negative arguments.

Currently, this can happen when the user passes a large image
to mistral-small3.2. However, with upcoming changes to reserve
CUDA memory, it happens every time mistral-small is loaded as
we reserve using a worst case batch.

This patch is part of an upstream GGML commit and should be removed
after GGML is updated past 0a1b398 "ggml: add ops for WAN video model
(cuda && cpu) (#15669)".

Fixes #10388
2025-09-30 15:04:43 -07:00
Jesse Gross
734b57da0e ggml: Remove allocation status reporting
For each memory allocation we report the size of the (attempted)
allocation and whether it succeeded or failed. The latter status
reporting proved to be not that useful in practice as systems
such as Windows can automatically overflow from VRAM into RAM,
resultings in successful allocations even when there isn't
enough memory where we wanted.

As a result, this information is only used for debug logging,
which isn't worthwhile enough for the amount of code. It
also isn't fully accurate, as multiple allocations may result
in partial failures.
2025-09-30 15:04:43 -07:00
Devon Rifkin
83021fcf0f qwen3-coder: fix tool definition type rendering 2025-09-30 15:03:15 -07:00
Michael Yang
0469861d9d build: call find_package to instantiate library paths 2025-09-30 13:12:46 -07:00
likelovewant
04431b50fa fix 2025-09-28 12:37:28 +08:00
羊撅撅
c47154c08d fix: correct condition for AMDGPU_TARGETS filtering logic (#12412) 2025-09-26 11:38:47 -07:00
Patrick Devine
b04e46da3e bugfix: restore the current runOptions if loading fails in the CLI (#12402)
There are two bugs when using `/load <model>` for a model that doesn't exist, namely:
  1. it will not restore the current model settings if the current model is a thinking model; and
  2. it will crash is the current model is a non-thinking model

This bug fix saves the current runOptions and then restores them if the model load
doesn't happen. It also fixes the crash happening for non-thinking models.
2025-09-25 18:30:45 -07:00
Devon Rifkin
34efbbd3f0 Merge pull request #12417 from ollama/drifkin/qwen3-coder-unicode
parsers: fix unicode handling for qwen3-coder
2025-09-25 15:56:34 -07:00
Devon Rifkin
05ba4ca1f4 parsers: fix unicode handling for qwen3-coder
When trimming whitespace at the end of every chunk, we were iterating
backwards over the string byte-by-byte instead of rune-by-rune.

As an example of how this can cause corruption, suppose we have the
multi-byte character  (`"\u2705"`), which is represented in utf-8 as
the three bytes `0xE2 0x9C 0x85`. It happens that `0x85` is NEL, which
passes `unicode.IsSpace()`. Because we were iterating byte-by-byte, this
caused us to mistakenly slice in the middle of the rune, removing `0x85`
and leaving `0xE2 0x9C`, which beyond being the incorrect place to
slice, is not even a valid utf-8 character.

`trailingWhitespaceLen()` was modified to count from the end in a
rune-aware way. Tests with various multibyte unicode characters were
also added.


Fixes: #12414
2025-09-25 15:47:46 -07:00
Patrick Devine
5a56ff3cf0 cli: add device signin flow when doing ollama push (#12405) 2025-09-25 15:04:43 -07:00
Gabe Goodhart
2fba04b5fb tools: handle the case where a tool call sends "arguments" or "parameters" as a serialized json string (#12413) 2025-09-25 14:37:39 -07:00
Grace
fbd82ba5bb Grace/deepseek v3 migration (#12385)
* init deepseek model file

* temp removal of flash attention implementation

* shapes and proper, can make a pass

* query, key, value have good cosine similarity, but the max diff is a bit high

* Attention block is working! ** with eager for now, have not added the mask line

* Attention block is working! ** with eager for now, have not added the mask line

* working MoE at around 0.95 cosine sim

* added cosine similarity function

* Starting end to end structure

* Trying (and failing) to get rope to work, going to test full thing on tater

* running on tater36... just not the right outputs

* we have the right values for rope... but its still not working?

* chnage Extrapolation Factor to 1

* removed adding residuals twice, removed normalization from shared expert, refactored Norms (Attention, MLP) to be outside the (Attention, MLP) blocks and in the Transformer block instead, add cache setLayer

* Temporary modelfiles for cpu

* change kpass intermediate step to kv, two layer outputs [0,1] look fine

* this calls for 16 chicken nuggets

* whoops

* cleaning up code

* delete stuff we dont need

* getting rid of debug statements for llama cpp

* working with long contexts

* fix long context view error

* reverting some changes I made for files that are not apart of pr

* Added proper tokenizer for deeepseek3

* clean up model and go test

* remove Modelfile

* not passing the tests

* whoops

* how to pass the ci tests

* resolving some of the comments

* rename

* linted and renamed deepseek3 -> deepseek2

* remove name go

* addressed changes - main change was adopting qwen3 naming scheme

* I cannot with linters

* clean up logs

* clean up logs

---------

Co-authored-by: Grace Guo <graceguo@Graces-MBP.localdomain>
Co-authored-by: Grace Guo <graceguo@Graces-MacBook-Pro.local>
Co-authored-by: graceguo <graceguo@tater36.localdomain>
2025-09-24 15:19:47 -07:00
Michael Yang
2e742544bf prefer ollama engine for qwen3moe (#12374) 2025-09-24 11:21:32 -07:00
Devon Rifkin
bbb195a6ff Merge pull request #12393 from ollama/drifkin/fix-built-ins
harmony: don't sanitize built-ins
2025-09-23 23:45:31 -07:00
Devon Rifkin
fd88cd7cb0 harmony: don't sanitize built-ins
In #11910 we started sanitizing function names, but we accidentally were
modifying built-ins like `browser.open` to `browser_open`. This was
removing the special prompt rendering for built-ins, but this wasn't
immediately apparent since the models seem to be reasonably good at
remembering the built-ins even when presented with these slightly
renamed version. This fix prevents built-ins from ever being renamed.
2025-09-23 23:34:55 -07:00
Michael Yang
e1979c571a fix: leaf alt name (#12390)
a leaf node with an alternative name gets all its alternatives names
added into the same branch rather than creating branches themselves
2025-09-23 17:50:53 -07:00
Michael Yang
bf78ed6ee9 add pre:, suf: to tags (#12274) 2025-09-23 16:08:57 -07:00
Michael Yang
a40d427bce multi-regexp pretokenizer (#12325) 2025-09-23 13:21:47 -07:00
Patrick Devine
64883e3c4c auth: fix problems with the ollama keypairs (#12373)
* auth: fix problems with the ollama keypairs

This change adds several fixes including:
  - reading in the pubkey files correctly
  - fixing the push unit test to create a keypair file in a temp directory
  - not return 500 errors for normal status error
2025-09-22 23:20:20 -07:00
Devon Rifkin
41efdd4048 Merge pull request #12339 from ollama/drifkin/harmony-refactor-to-builtin
harmony: remove special casing in routes.go
2025-09-22 13:13:40 -07:00
Daniel Hiltgen
c23e6f4cae tests: add single threaded history test (#12295)
* tests: add single threaded history test

Also tidies up some existing tests to handle more model output variation

* test: add support for testing specific architectures
2025-09-22 11:23:14 -07:00
jmorganca
af060eb250 docs: update cloud.md for cloud models 2025-09-22 13:09:17 -03:00
jmorganca
ae5c33008e docs: move turbo.md to cloud.md 2025-09-22 13:09:17 -03:00
likelovewant
000a3ec8b9 Merge branch 'ollama:main' into main 2025-09-21 10:33:39 +08:00
Devon Rifkin
3677842ff1 Merge pull request #12358 from ollama/drifkin/qwen3-coder-ampersands
parsers: fix `&`s in qwen3coder parameter values
2025-09-20 12:40:33 -07:00
Devon Rifkin
242df70a75 parsers: fix &s in qwen3coder parameter values
In <https://github.com/ollama/ollama/issues/12357> we that the model
will output tool calls such as

```
<function=shell>
<parameter=command>
pwd && ls -la
</parameter>
</function>
```

We parse this using the approach of transforming into valid xml and then
using an xml parser. While we do transform the function and parameter
names, we weren't escaping the parameter values (which in this example
are invalid since `pwd && ls -la` contains unescaped ampersands).

This has been fixed by first transforming the tags in the same way, and
then walking the transformed string and escaping the text in between the
tags. This also fixes a case where `<` in the middle of a parameter
value would cause an xml parse failure.

Fixes: #12357
2025-09-20 12:11:38 -07:00
Patrick Devine
dba39b2eee gemma: fix rope scaling for qat models (#12348)
* gemma: fix rope scaling for qat models

* gofumpt yourself
2025-09-19 15:04:40 -07:00
Michael Yang
9f3a37fd36 fix: model load for unsupported embedding models (#12311)
with #12181, there's now support for embeddings in ollama engine.
this is done by mutating the architecture and adding _embed when it
detects an embedding model. however this introduced a bug where if
an embedding model was run based on an existing ollama engine model
without an embedding implementation, e.g. llama4, it will pass the
initial arch support check but fail when actually loaded.

there's currently two entrypoints to creating a model. previously this
second entrypoint was necessary because calling model.New would also
load the model. since #11818, this is no longer th case so merge them
to reduce complexity
2025-09-18 16:11:08 -07:00
Michael Yang
7460259eb3 feat: qwen3 embed (#12301)
* cleanup

* use pooling.TypeNone

* pooling test

* qwen3 embed
2025-09-18 15:50:32 -07:00
Jeffrey Morgan
22ccdd74c2 server: add unauthorized error to remote chat handler (#12338) 2025-09-18 15:40:31 -07:00
Daniel Hiltgen
0c3d0e7533 build: avoid unbounded parallel builds (#12319)
With the addition of cuda v13, on a clean setup, the level of parallelism
was causing docker desktop to become overwhelmed and compilers
were crashing.  This limits to 8 parallel per build stage, with the ability
to override if you have many more cores available.
2025-09-18 14:57:01 -07:00
Devon Rifkin
e7f56ef3d8 harmony: remove special casing in routes.go
Now that we have a built-in parser abstraction, which was introduced in
<https://github.com/ollama/ollama/pull/12248>, we can modify our harmony
parser to match this and then get rid of nearly all of the
harmony-specific logic in routes.go. We do have a small amount of
code that turns the parser on by default if the architecture matches and
no other built-in parser was provided.

The built-in parser interface was modified in order to handle harmony's
prefill and tool name translation requirements.
2025-09-18 14:55:59 -07:00
Patrick Devine
eb0a5d4459 auth: check the permissions on the private key to see if it's readable (#12336) 2025-09-18 14:34:34 -07:00
Michael Yang
ceac416ec2 fix(integration): check truncated length (#12337) 2025-09-18 14:00:21 -07:00
Patrick Devine
2717dce6fe convert: convert bf16 vision weights to fp16 (#12324)
This change moves back to converting bf16 vision weights to fp16,
specifically if they start with the name "v." (such as v.blk.0.attn_k.weight).

This fixes a bug where converted images are failing because they are trying
to call `im2col` which doesn't have a bf16 kernel in ggml.
2025-09-17 17:43:17 -07:00
frob
9b8187b487 server: skip parsing initial <think> if provided in the prompt for /api/generate (#12289) 2025-09-17 16:39:04 -07:00
Patrick Devine
8b894933a7 engine: add remote proxy (#12307) 2025-09-17 14:40:53 -07:00
Daniel Hiltgen
9c5bf342bc fix: multi-cuda version skew (#12318)
Ensure that in a version skewed multi-cuda setup we use the lowest version for all GPUs
2025-09-17 13:05:09 -07:00
Michael Yang
564b558c92 fix(llama): other llama flavours (#12308)
* fix(llama): rope scale

* spm llama

* skip moe models

* cleanup
2025-09-17 12:12:21 -07:00
Michael Yang
a417ac97ee prefer ollama engine for qwen3 (#12310) 2025-09-17 09:48:21 -07:00
russcoss
05d53457af refactor: use the built-in max/min to simplify the code (#12280)
Signed-off-by: russcoss <russcoss@outlook.com>
2025-09-16 17:14:21 -07:00
Michael Yang
b225508c9b logutil: fix source field (#12279) 2025-09-16 16:18:07 -07:00
Devon Rifkin
fa1c987a29 Merge pull request #12248 from ollama/drifkin/qwen3-coder-parsing
add qwen3-coder tool support
2025-09-16 10:21:43 -07:00
Michael Yang
ad95d5b30b use split activations when possible (#12293)
* use ggml_*_split activations when possible

* forward qkv
2025-09-16 09:51:19 -07:00
Michael Yang
c253433d68 embed: cleanup (#12299)
* cleanup

* use pooling.TypeNone

* pooling test
2025-09-16 09:48:42 -07:00
Beshoy Girgis
a1cff89b30 fix: fix CUDA detection for older GPUs (#12300)
Prioritize GPU compute capability over driver version to ensure
Pascal GPUs (CC 6.1) use compatible CUDA v12 libraries instead of v13.
2025-09-16 07:47:06 -07:00
Daniel Hiltgen
93c64ea1b1 doc: show how to clear the cgo cache (#12298) 2025-09-15 15:45:35 -07:00
Michael Yang
3f6642f6fc model: implement bert in ollama engine (#9080)
* fix truncate

* s/SentencePieceModel/SentencePiece/

* bert

* wordpiece

* refactor pooling

* more tokenizers

* normalize embeddings
2025-09-15 15:35:59 -07:00
Michael Yang
6f7117145f batch: use tensors for outputs (#12185)
this cleans up the model interface slightly without too much impact in
other areas
2025-09-15 14:33:06 -07:00
Devon Rifkin
472feec2ff address comments 2025-09-15 11:46:25 -07:00
Devon Rifkin
47991940d4 add qwen3-coder tool support
The format qwen3-coder uses is relatively unique, both in rendering and
in parsing. To implement parsing, I wrote a custom parser in similar
style to harmony. For the rendering, I found that the logic would be
much more difficult to follow in a template, so I introduced the concept
of a built-in renderer that uses go code, rather than a template to
generate prompts.

I set us up for future built-in parsers and renderers by making it so
they can be specified in a Modelfile like so:

```
RENDERER "qwen3-coder"
PARSER "qwen3-coder"
```

These need to be provided explicitly because the architecture alone is
not enough to understand what format the model expects to receive, and
what format we expect it to output (e.g., qwen3-coder is `qwen3moe`,
which includes other qwen3-family models as well)

I haven't converted harmony to be one of these "built-ins" yet, since
some of it is in flux with the changes @ParthSareen has been making to
move harmony to the runner. It is likely that many other built-ins will
need to move to the runner as well, but I'm able to slightly defer that
decision since qwen3-coder doesn't have thinking (and therefore doesn't
need to be in the runner to make structured outputs work). I expect to
unify harmony with this approach very soon.

Whether a particular model supports tools or thinking was previously
inferred from templates, but without a template we now also use the
parser itself to declare what it supports. If we have future models that
re-use the same parsing format, but have different capabilities, we'll
want to parameterize them and give them different names to be specified
as a `PARSER`.

Misc changes:

- I worked on the renderer by diffing outputs from the reference
  implementation and ours. To make it easier to do this, I extended
  <https://github.com/ollama/ollama/pull/11875> to also support
  returning the prompt via the openai compat layer
2025-09-15 11:33:47 -07:00
likelovewant
9f3f80891d Merge branch 'ollama:main' into main 2025-09-13 10:45:51 +08:00
jmorganca
92b96d54ef Revert "runner: move harmony to runner (#12052)"
This reverts commit 1a558f98e2.
2025-09-12 20:40:14 -03:00
jmorganca
9d56e63dbf Revert "runner: simplify parser entrypoints in runner (#12233)"
This reverts commit 8d6fffaead.
2025-09-12 20:40:14 -03:00
tc-mb
053092185e Fix image cannot be seen with slice image on llama engine
Ollama's recent engine update, llama.cpp, caused all models requiring a slice schema to not display images. As a result, the value of numTokens isn't always the length of the sliced ​​image embed, but rather the end length of the schema. This causes the image embed to not be correctly included during all slice processing.
2025-09-12 16:25:12 -07:00
Daniel Hiltgen
44a6792873 tests: tighten up a few flaky tests (#12271)
Sometimes the context test results are pure emoji's
Thanksgiving has too much variability, so swap for a more straight forward prompt.
2025-09-12 13:59:34 -07:00
Daniel Hiltgen
e4ce68311a cuda: remove compression for better compatibility (#12259)
This retains compatibility with driver 531 and up at the trade-off of space.
2025-09-12 07:59:14 -07:00
Jesse Gross
26214125e8 ollamarunner: Suppress stack trace during memory allocation
Allocation failures can be a normal part of new memory estimates, so
we shouldn't print a stack trace in this case.
2025-09-11 14:30:31 -07:00
Daniel Hiltgen
61fb912ca4 CI: fix windows cuda build (#12246)
* ci: adjust cuda component list

v13 has a different breakdown of the components required to build ollama

* review comments
2025-09-11 12:25:26 -07:00
Jesse Gross
aba1575315 llm: Don't try to load split vision models in the Ollama engine
If a model with a split vision projector is loaded in the Ollama
engine, the projector will be ignored and the model will hallucinate
a response. Instead, fallback and try to load the model in the llama
engine.
2025-09-11 11:41:55 -07:00
Jesse Gross
eb10390de9 llm: Enable new memory estimates by default
New memory estimates (see #11090 for more information) are now
enabled automatically for all models running on the Ollama engine,
improving both stability and performance through more accurate sizing
and allocation. Models running on the llama engine will continue to
use the original style of memory estimation.
2025-09-11 11:21:53 -07:00
Michael Yang
feb18cd710 feat: add dimensions field to embed requests (#12242)
* feat: add field to truncate embeddings

* add openai embeddings for dimensions
2025-09-11 10:36:10 -07:00
fengyuchuanshen
8a7e2055d2 cmd: use slices.Contains to simplify code (#12249) 2025-09-11 09:57:31 -07:00
Jesse Gross
29ddfc2cab ggml: Disable flash attention for gemma2
Our new engine implementation of gemma2 doesn't support flash
attention, which means that it also doesn't support KV cache
quantization. Currently, it is possible to turn these two on,
which will result in a crash.
2025-09-10 16:40:45 -07:00
Jesse Gross
71cb86af3e llm: Remove unneeded warning with flash attention enabled
If flash attention is enabled without KV cache quanitization, we will
currently always get this warning:
level=WARN source=server.go:226 msg="kv cache type not supported by model" type=""
2025-09-10 16:40:45 -07:00
CarbonatedWater.org
5198956372 docs: add ollama-co2 to community integrations (#12230) 2025-09-10 16:37:10 -07:00
Daniel Hiltgen
17a023f34b Add v12 + v13 cuda support (#12000)
* Add support for upcoming NVIDIA Jetsons

The latest Jetsons with JetPack 7 are moving to an SBSA compatible model and
will not require building a JetPack specific variant.

* cuda: bring back dual versions

This adds back dual CUDA versions for our releases,
with v11 and v13 to cover a broad set of GPUs and
driver versions.

* win: break up native builds in build_windows.ps1

* v11 build working on windows and linux

* switch to cuda v12.8 not JIT

* Set CUDA compression to size

* enhance manual install linux docs
2025-09-10 12:05:18 -07:00
Parth Sareen
8d6fffaead runner: simplify parser entrypoints in runner (#12233) 2025-09-10 11:24:42 -07:00
Parth Sareen
20b53eaa72 tests: add tool calling integration test (#12232) 2025-09-09 14:01:11 -07:00
Daniel Hiltgen
6745182885 tests: reduce stress on CPU to 2 models (#12161)
* tests: reduce stress on CPU to 2 models

This should avoid flakes due to systems getting overloaded with 3 (or more) models running concurrently

* tests: allow slow systems to pass on timeout

If a slow system is still streaming a response, and the response
will pass validation, don't fail just because the system is slow.

* test: unload embedding models more quickly
2025-09-09 09:32:15 -07:00
Kashyap Tanuku
f810ec741c readme: add Clueless to community integrations (#12188) 2025-09-08 21:31:29 -07:00
Jesse Gross
e119783e66 llm: Clamp batch size to context size
The context must always be able to store the current batch, so
if the user requests a small context then we should also shrink
the batch to match. This also fixes the TestLongInputContext
test on the new engine. (The old engine already has this behavior.)
2025-09-08 20:40:11 -07:00
Parth Sareen
1a558f98e2 runner: move harmony to runner (#12052) 2025-09-08 15:07:59 -07:00
Gabe Goodhart
7b91c9ce51 Hybrid and recurrent memory estimates (#12186)
This PR updates the memory size estimate logic to better handle recurrent and hybrid-recurrent models which are currently being badly overestimated because the default logic assumes full attention for all layers.

The logic for the sizing of the recurrent layers comes from the llama.cpp implementation

        ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
        ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-09-08 14:53:22 -07:00
Daniel Hiltgen
950d33aa30 docs: show how to debug nvidia init failures (#12216)
This debug setting can help troubleshoot obscure initialization failures.
2025-09-08 11:39:00 -07:00
Michael Yang
9714e38dd0 fix: nil pointer dereference if cache is nil (#12215) 2025-09-08 09:53:59 -07:00
frob
4378ae4ffa parser: don't check the file type of safetensors to prevent false negatives. (#12176)
* Don't check the file type of safetensor to prevent false negatives.

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-09-05 16:27:40 -07:00
likelovewant
501cb38b8c Merge branch 'ollama:main' into main 2025-09-05 17:58:44 +08:00
Michael Yang
5994e8e8fd embedding gemma model (#12181)
* ollama: add embeddings
2025-09-04 09:09:07 -07:00
likelovewant
59e3a35203 Merge branch 'ollama:main' into main 2025-09-04 19:34:11 +08:00
Michael Yang
b3e6120736 more logutil.Trace (#12177) 2025-09-03 17:24:39 -07:00
Michael Yang
fb92b61754 logutil: add Trace and TraceContext helpers (#12110) 2025-09-02 13:09:12 -07:00
Jesse Gross
8149a3c86e llm: Avoid underflow in free memory logging
If a GPU's free memory is less than the reserved amount, we might get
an underflow. Since it is an unsigned uint64, we print this as a large
number rather than the more correct 0. This only affects logging, the
actual layout code already handles this correctly.

Bug #12138
2025-09-02 12:30:26 -07:00
Daniel Hiltgen
0cc90a8186 harden uncaught exception registration (#12120) 2025-09-02 09:43:55 -07:00
pxwanglu
e42300f25b ml: fix struct field name in comment (#12123) 2025-08-31 16:26:11 -07:00
alpha-nerd-nomyo
66e73809a1 readme: add NOMYO Router to community integrations (#12129) 2025-08-31 13:49:10 -07:00
likelovewant
c632fdbad8 Merge branch 'ollama:main' into main 2025-08-31 19:44:41 +08:00
Daniel Hiltgen
517807cdf2 perf: build graph for next batch async to keep GPU busy (#11863)
* perf: build graph for next batch in parallel to keep GPU busy

This refactors the main run loop of the ollama runner to perform the main GPU
intensive tasks (Compute+Floats) in a go routine so we can prepare the next
batch in parallel to reduce the amount of time the GPU stalls waiting for the
next batch of work.

* tests: tune integration tests for ollama engine

This tunes the integration tests to focus more on models supported
by the new engine.
2025-08-29 14:20:28 -07:00
Daniel Hiltgen
ead4a9a1d0 Always filter devices (#12108)
* Always filter devices

Avoid crashing on unsupported AMD iGPUs

* Remove cuda device filtering

This interferes with mixed setups
2025-08-29 12:17:31 -07:00
ofrancon
4383a3ab7a readme: add Neuro SAN to community integrations (#12109) 2025-08-28 12:27:13 -07:00
Jesse Gross
9d97e6a9f1 ggml: Avoid allocating CUDA primary context on unused GPUs
The recent memory management changes caused all GPUs to be visible
to the runner, regardless of whether they are ultimately used. This
caused CUDA devices to allocate a primary context (~300 MB VRAM) on
each GPU, for each model. This is unnecessary, so we can both avoid
touching GPUs that we exclude in the early stage of allocation and
freeing the memory for any that we touch but don't use.

The issue will continue to exist for the old engine, since it touches
all devices during initialization.
2025-08-27 16:24:18 -07:00
Michael Yang
1081532430 fix keep alive (#12041) 2025-08-27 11:51:25 -07:00
Michael Yang
59412fbb43 convert(gptoss): mxfp4 to ggml layout to avoid jit conversion (#12018)
* convert: return bytes written

* ggml flavor mxfp4

* simplify jit conversion

* comment
2025-08-26 16:41:02 -07:00
Michael Yang
86834a2797 convert: fix tensor sorting (#12015)
there's two bugs here.

1. the check for a layer id is incorrect and should be >= 0 since layer
   0 is valid
2. if both tensors have an layer identifier, it will only compare the
   layer id which will return 0 if the tensors are in the same layer.
   instead it should fallback to comparing the full tensor name
2025-08-26 13:57:46 -07:00
Michael Yang
85ccf7354d gptoss: enable flash attention by default (#11996) 2025-08-26 13:34:45 -07:00
Michael Yang
30fb7e19f8 remove extra field attr (#11205) 2025-08-25 09:58:16 -07:00
Jeffrey Morgan
d3450dd52e api: implement stringer for ToolFunctionParameters (#12038) 2025-08-22 16:26:48 -07:00
Jeffrey Morgan
4bcb04ad88 tools: avoid matching braces that are part of tool content (#12039) 2025-08-22 15:22:14 -07:00
Devon Rifkin
e3d5708754 Merge pull request #12021 from ollama/drifkin/thinking-double-emit
thinking: fix double emit when no opening tag
2025-08-22 12:01:37 -07:00
Jeffrey Morgan
4be4dc8717 server: skip parsing initial <think> if provided in the prompt (#12024) 2025-08-22 12:00:16 -07:00
zoupingshi
109d4fc3b4 chore: remove redundant words in comment (#12028)
Signed-off-by: zoupingshi <hangfachang@outlook.com>
2025-08-22 11:00:27 -07:00
Devon Rifkin
2cb0a580f3 thinking: fix double emit when no opening tag
The thinking parser will automatically transition to being a
pass-through if non-whitespace is seen before an opening tag. However,
we weren't clearing the buffer after the first non-whitespace input, so
in practice the first token would be emitted twice.

Added a test that demonstrated this, and then fixed the bug.
2025-08-21 21:03:12 -07:00
Parth Sareen
7cce5aac76 harmony: move harmony parsing into a package (#12016) 2025-08-21 13:56:22 -07:00
likelovewant
131c496340 merge upstream and fix conflicts 2025-08-21 11:24:55 +08:00
Michael Yang
4ae4f47b16 gpt-oss: convert from hugging face format (#11907) 2025-08-20 15:39:18 -07:00
Jesse Gross
073fa31df5 llm: Don't always evict models in CPU-only mode
With old memory estimates, it's currently impossible to load more
than one model at a time when no GPUs are available. This is because
the check for whether we need to evict a model looks to see if all
layers of the new model can be loaded onto GPUs, which is never true
if there are no GPUs. Before the memory management changes, there
was a special code path for CPU-only systems.

This problem does not exist with new memory estimates.

Fixes #11974
2025-08-20 14:31:02 -07:00
Michael Yang
91fc3c48e3 openai: remove reasoning as an api.Options (#11993) 2025-08-20 12:21:42 -07:00
Devon Rifkin
6de62664d9 Merge pull request #11973 from ollama/drifkin/bpe
model: fix boundary in bpe
2025-08-19 22:58:33 -07:00
Devon Rifkin
463a6caad8 model: add bpe roundtripping tests 2025-08-19 22:05:48 -07:00
Devon Rifkin
fc5fb09f51 model: fix boundary in bpe
0x007e is a tilde and was getting adjusted (+0x00a2) to 0x0120 in the
encode, but then in the decode it was getting adjusted down (-0x0100) to
0x0020. The boundary for the +0x00a2 case has been adjusted to fix this

Fixes: #11966
2025-08-19 18:34:49 -07:00
Jesse Gross
05ccb17c6e kvcache: Use Cast instead of Copy for flash attention masks
Flash attention kernels require the mask of the KV cache be a F16
rather than an F32. We can use the GGML operation ggml_cast to do
this rather than doing it ourselves, which allows reuse of a
preallocated buffer in the graph rather than allocating a new one
for each batch. This improves token generation performance with
flash attention by 10-30% (with gpt-oss). This also makes performance
with flash attention better than without it, as expected.
2025-08-19 12:36:28 -07:00
Michael Yang
f804e8a460 disable output_all (#11959) 2025-08-18 17:45:40 -07:00
Kostis
9cfbffafc5 readme: add any-agent to community integrations (#11950) 2025-08-18 14:21:36 -07:00
Ruslan Suleymanov
470d580205 readme: add Andes to community integrations (#11952) 2025-08-18 14:20:28 -07:00
Devon Rifkin
b517bb1c19 Merge pull request #11910 from ollama/drifkin/harmony-fn-names
harmony: convert fn names to be valid ts identifiers
2025-08-18 14:17:47 -07:00
Jesse Gross
e3ade453a8 llm: Check for nil memory data before printing
We dump out our best memory estimate after we complete processing
for any reason, including errors. This is helpful for finding what
what stopped us in error conditions but in some cases we might not
have gotten even the first result yet.

Fixes #11957
2025-08-18 14:05:22 -07:00
Devon Rifkin
048bd4472a harmony: convert fn names to be valid ts identifiers
In <https://github.com/ollama/ollama/issues/11704#issuecomment-3177380197>
I noticed that hyphens in function names could possibly cause the model
to become confused. Later in that issue I found other explanations, but
at a minimum tool names with spaces in them are confusing to the model
because of the prompt format.

In this change I create a mapper that converts arbitrary tool names into
valid typescript identifiers. It's a little overly strict in that it
doesn't allow all unicode characters that might be valid in ts
identifiers, but it's still very permissive. Since mappings aren't
reversible, we must temporarily store this mapping in order to unmap it
if the model comes back with a call. We also handle the case where
multiple mappings collide into the same mapping and append a counter to
the end to make them unique
2025-08-18 14:05:16 -07:00
Devon Rifkin
ec8bf5e6c5 Merge pull request #11875 from ollama/drifkin/print-template
server: add debug option for printing out prompt instead of calling model
2025-08-18 14:03:14 -07:00
Kostis
709bbb0b6d readme: add any-llm to community integrations (#11956) 2025-08-18 13:13:26 -07:00
Jody Doolittle
abeec240f9 readme: add Serene Pub to community integrations (#11946) 2025-08-18 13:12:41 -07:00
Michael Yang
df335aac09 gpt-oss: disable quantized kv cache (#11929) 2025-08-15 15:01:05 -07:00
Patrick Devine
026bc29237 cli: show the default context length env setting in online help (#11928) 2025-08-15 14:59:52 -07:00
Thomas Pelster
883d031268 docs: added missing comma in 'Ollama's Javascript library'' (#11915) 2025-08-15 14:45:01 -07:00
Daniel Hiltgen
5271ff8559 handle cgo flags in docker build (#11909)
Docker build requires build-args to be defined.  This ensures the release.yaml settings will be used.
2025-08-15 14:39:35 -07:00
Daniel Hiltgen
d6f7233a1c test: improve scheduler/concurrency stress tests (#11906)
* test: improve scheduler/concurrency stress tests

The scheduler test used to use approximate memory figures and would often
over or under shoot a systems capcity leading to flaky test results.
This should improve the reliability of this scenario by leveraging
ps output to determinie exactly how many models it takes to
trigger thrashing.

The concurrency test is also refined to target num_parallel + 1 and handle
timeouts better.

With these refinements, TestMultiModelConcurrency was redundant

* test: add parallel generate with history

TestGenerateWithHistory will help verify caching and context
are properly handled while making requests

* test: focus embed tests on embedding models

remove non-embedding models from the embedding tests
2025-08-15 14:37:54 -07:00
Devon Rifkin
8de1da4767 server: add debug option for printing out prompt instead of calling model 2025-08-15 13:52:50 -07:00
Daniel Hiltgen
d925b5350c Revert "cuda: leverage JIT for smaller footprint (#11635)" (#11913)
This reverts commit dc5a645434.
2025-08-14 21:19:23 -07:00
Daniel Hiltgen
6eaf194b85 fix arm linux build when HWCAP2_SVE2 undefined (#11908) 2025-08-14 16:38:53 -07:00
Jesse Gross
d5a0d8d904 llm: New memory management
This changes the memory allocation strategy from upfront estimation to
tracking actual allocations done by the engine and reacting to that. The
goal is avoid issues caused by both under-estimation (crashing) and
over-estimation (low performance due to under-utilized GPUs).

It is currently opt-in and can be enabled for models running on the
Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other
cases is unchanged and will continue to use the existing estimates.
2025-08-14 15:24:01 -07:00
Michael Yang
ef7d26ba2c convert: skip reading into memory when possible (#11507)
if there's no transformation to the tensor and the input and output
types match, copy directly into the writer. also read from a bufio with
a 32K buffer
2025-08-14 15:03:57 -07:00
Michael Yang
1a19df1f3a update vendored llama.cpp and ggml (#11823)
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch

This will be redone once my branch is merged upstream in llama.cpp

* feat: Update all patches

There are a number that are no longer needed at all:

- 0003-embeddings: Embeddings entirely overhauled on master
- 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely
    overhauled on master
- 0019-metal-add-mean-kernel-14267: Merged upstream
- 0020-CUDA-add-mean-operation-14313: Merged upstream

* feat: Sync llama.cpp and ggml

* fix: Update rsync-filter for all moved/new/removed files

* fix: Add files missing from sync

* fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs

* fix: Add ggml files missing from sync

* fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files

* fix: Remove mtmd main cpp files

* fix: Add missing include in sampling_ext.cpp

* fix: Update llama.go to use mtmd instead of clip/llava

* fix: Add patch for mtmd_input_text

* chore: Ignore *.patched in the patch directory

* fix: Fix support for arch-specific ggml-cpu source files with new arrangement

In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific
implementations were split out into a nested tree structure under
ggml-cpu/arch. This conflicts with standard CGO layout where all
arch-specific source files are expected to live in the same directory as
the parent go module and use suffixes based on GOOS and GOARCH. As such,
there were really two options for getting this to work:

1. Add a patch on top of the GGML sync to rearrange the files to match the
GO layout convention
2. Use CGO directives to conditionally include the nested source files in
the compilation units

This commit does (2) in order to minimize the set of changes needed on top
of the upstream file layout. To get this to work, there are two key things
needed:

1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in
the preprocessor directives
2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to
explicitly include the .c|.cpp files for the given architecture from the
nested directory

* fix: Use mtmd_helper to correctly load the bitmap for the image

* fix: Apply patch for mtmd_text_input

* fix: Add missing stb to llama.cpp rsync-filter

* fix: Add sync'ed stb vendored header

* fix: Use c++17 and include vendor for go wrapper modules

* fix: Update patch 0015 for upstream implementation of uuid

* feat: Bump to the latest tip of the branch

* fix: Update patches for bump

* feat: Bump back to the cenral repo and point at the latest master

This includes granite 4 and a number of other model architectures!

* fix: Revert changes to ggml export GPU UUID patch

* fix: Add patch for GGML_VERSION and GGML_COMMIT constants

* feat: Sync all patched code

* build: Include cmake/common.cmake in ggml sync

* build: Add top-level include for GNUINstallDirs in CMakeLists.txt

This is used to populate CMAKE_INSTALL_BINDIR

* fix: Add a patch to avoid power throttling API on non-msvc windows builds

* fix: Sync patch changes for ggml-cpu.c

* feat: Bump llama.cpp to 4a4f42

This picks up support for Kimi K2 and PLaMO-2

* feat: Sync llama.cpp

* fix: Handle multi-chunk image encodings from mtmd

* fix: Re-number patches after merge with `main`

* feat: Bump to 41e78c in the makefile

* fix: Fix Solar and argsort/copy patches after bump

* fix: Remove Gemma3n CUDA Graphs patch

It was implemented upstream:
https://github.com/ggml-org/llama.cpp/pull/14741

* feat: Sync llama.cpp / ggml after latest bump

* build: Remove unnecessary CFLAGS definitions in cpu.go

* fix: Remove unnecessary additions in the rsync-filter

* fix: Remove unused vendored code for chat template parsing

* Revert "fix: Remove Gemma3n CUDA Graphs patch"

This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea.

* fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes

https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394

* fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n

* unwind mxfp4 patch

Prepare to bump ggml with their impl for mxfp4

* bump

* fix windows build error

* Convert tensors at load time

Repack the mxfp4 tensors as ggmls kernels expect them to be.

* convert mlp bf16 to f32

* buffer the conversion better

* reshape earlier

* openai swiglu

* add ids

* split qkv, gate_up

* fix nested alt tags

* fast attention

* remove debug messages

* fix lint

* remove redundant test

* remap values only if source/target are different

* add back i32->i32 copy

* refactor cpu quants

* clean up vendor

* update patch instructions

* clean up patches

* remove webgpu

* update mem

* also handle gpt-oss

* revert convert changes

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-08-14 14:42:58 -07:00
Daniel Hiltgen
7ccfd97a93 doc: clarify both rocm and main bundle necessary (#11900)
Some users expect the rocm bundles to be self-sufficient, but are designed to be additive.
2025-08-14 12:54:55 -07:00
Daniel Hiltgen
c385ca8672 test: add valid responses (#11902)
some of the new models need a few more valid responses to pass
2025-08-14 11:07:13 -07:00
Daniel Hiltgen
837379a94c discovery: fix cudart driver version (#11614)
We prefer the nvcuda library, which reports driver versions. When we
dropped cuda v11, we added a safety check for too-old drivers.  What
we missed was the cudart fallback discovery logic didn't have driver
version wired up.  This fixes cudart discovery to expose the driver
version as well so we no longer reject all GPUs if nvcuda didn't work.
2025-08-13 15:43:33 -07:00
Daniel Hiltgen
a24f90604f int: adjust a few models for integration tests (#11872) 2025-08-13 15:42:36 -07:00
Daniel Hiltgen
dc5a645434 cuda: leverage JIT for smaller footprint (#11635)
Prior to this change our official binaries contained both JIT PTX code and
the cubin binary code for our chosen compute capabilities. This change
switches to only compile the PTX code and rely on JIT at runtime for
generating the cubin specific to the users GPU.  The cubins are cached
on the users system, so they should only see a small lag on the very
first model load for a given Ollama release.  This also adds the first
generation of Blackwell GPUs so they aren't reliant on the Hopper PTX.

This change reduces the ggml-cuda.dll from 1.2G to 460M
2025-08-13 15:42:16 -07:00
youzichuan
bb71654ebe chore: fix some inconsistent function name in comment
Signed-off-by: youzichuan <youzichuan6@outlook.com>
2025-08-13 09:50:27 -07:00
likelovewant
d4af9f04f9 Merge branch 'ollama:main' into main 2025-08-13 12:36:50 +08:00
Jesse Gross
a343ae53a4 ggml: Use ordinal IDs for AMD GPUs on Linux when UUID is unavailable
Some AMD GPUs do not provide UUIDs and report only "XX". In these
cases, we should use the ordinal ID as an alternate identifier.
This is the same as we always need to do on Windows for AMD.

In addition, this prints out the ID for each GPU when enumerating
them for easier debugging in the future.
2025-08-12 16:56:14 -07:00
Michael Yang
d0cf6c8281 fix(openai): handle reasoning_effort (#11868) 2025-08-12 11:02:01 -07:00
Jesse Gross
8f4ec9ab28 discover: CPU supports flash attention
We already run flash attention on CPUs in cases where we have
partial offloading but were disabling it if running on pure CPU,
 which is unnecessary.
2025-08-11 15:00:34 -07:00
Devon Rifkin
dbfd7bd027 Merge pull request #11861 from ollama/drifkin/fix-parsing-error
server: fix error when parsing bad harmony tool calls
2025-08-11 14:59:57 -07:00
Devon Rifkin
ee04dbba51 server: fix error when parsing bad harmony tool calls
Thanks @moll for reporting!

Fixes: #11781
2025-08-11 14:09:13 -07:00
Daniel Andersen
ea7657b54a sched: Add support for grouping GPUs (#10678)
This patch modifies Ollama to allow grouping GPUs to memory-fit to the requested model, instead of the former algorithm of using one GPU distributing over all available GPUs.

Benefits:
 - Lower amount of (PCIe-)bus communication between GPUs - especially when they are not very high speed
 - Allowing unallocated GPUs to get into power-saving mode.
 - Significantly reduce VRAM allocation when using more than 2 GPUs in a system
 - Due to the reduced memory allocation, you can run more models simultaneously.
2025-08-11 13:59:38 -07:00
Michael Vorburger
2c776f0780 CONTRIBUTING: Explicitly note docs:... as a good example (#11755) 2025-08-09 18:12:30 -07:00
Jesse Gross
79f6376f5b ggml: No-alloc mode
Callers can set a backend buffer type to be no-alloc, meaning that
it does not allocate memory for tensors or operations. This can
be used for calculating memory requirements. Tensors and graphs
must be recreated with no-alloc set to false before loading data.

Defaults to false for newly created backend buffer types.
2025-08-08 14:57:13 -07:00
Jesse Gross
756c78cfc7 ggml: Support closing backends
In order to iteratively find the best memory allocation, we need to
be able to free backend memory so we can try again.
2025-08-08 14:57:13 -07:00
Jesse Gross
d7f4f788d1 ggml: Use GGML's typedef'ed pointer types
For many backend data structures, GGML defines a typedef of a pointer
type and returns these from functions. In most cases, CGo understands
that these are interchangable but some parts of Go (such as generics)
think they are two different types. We should prefer the form that
GGML uses.
2025-08-08 14:57:13 -07:00
Daniel Hiltgen
114c3f2265 tests: add integration coverage for oss-gpt (#11696)
Also wires up support to override the default "smol" model
2025-08-07 15:06:57 -07:00
Jesse Gross
f2e9c9aff5 server: Reduce gpt-oss context length for small VRAM GPUs
gpt-oss works best with a context length of at least 8k. However,
for GPUs with limited amount of VRAM, there is a significant
performance hit to this increased context. In these cases, we
switch to the Ollama default of 4k
2025-08-07 14:23:55 -07:00
Devon Rifkin
aa9d889522 Merge pull request #11765 from ollama/drifkin/thinking-without-content
openai: always provide reasoning
2025-08-06 19:02:23 -07:00
Devon Rifkin
735c41f9ca openai: always provide reasoning
We were missing passing along thinking if content was nil (as opposed
to empty string)

Also added a test for content not being passed, which was the real cause
of <https://github.com/ollama/ollama/issues/11704>, since with the way
`Content` is typed, not passing it and empty string are distinct
2025-08-06 18:54:20 -07:00
Devon Rifkin
223a619468 Merge pull request #11761 from ollama/drifkin/openai-tool-names
openai: when converting role=tool messages, propagate the tool name
2025-08-06 17:53:25 -07:00
Devon Rifkin
759dd78dd6 openai: when converting role=tool messages, propagate the tool name
Added support for converting both `name` and `tool_call_id` fields,
which different clients might provide. `name` is a legacy field from the
OpenAI completions API. For `tool_call_id` we inspect previous messages
and look for a matching tool call ID and grab its name

Issue: https://github.com/ollama/ollama/issues/11704
2025-08-06 17:00:24 -07:00
Patrick Devine
44bc36d063 docs: update the faq (#11760) 2025-08-06 16:55:57 -07:00
Devon Rifkin
8f14e1f5f6 Merge pull request #11759 from ollama/drifkin/oai-tool-calling
openai: allow for content _and_ tool calls in the same message
2025-08-06 16:11:31 -07:00
Devon Rifkin
203c137810 openai: allow for content _and_ tool calls in the same message
Previously our OpenAI chat completions compat layer assumed that tool
calls and content would never be provided together, but this is not a
correct assumption. Content is only optional when tool calls are
present, but tool calls and content can be provided together

Fixes: https://github.com/ollama/ollama/issues/11704
2025-08-06 15:50:30 -07:00
Daniel Hiltgen
fa8be9e35c clean up debugging (#11756) 2025-08-06 13:31:22 -07:00
Gao feng
8a75e9ee15 Update downloading to pulling in api.md (#11170)
update api.md to make it consist with code.
https://github.com/ollama/ollama/blob/main/server/download.go#L447
2025-08-06 11:33:09 -07:00
likelovewant
9231379bce remove gfx900 2025-08-06 09:46:23 +08:00
likelovewant
c7ba6128b4 remove gfx900 2025-08-06 09:43:21 +08:00
likelovewant
8970233a2b add 2025-08-06 09:36:32 +08:00
likelovewant
cde948f976 fix gfx1200 2025-08-06 09:29:22 +08:00
likelovewant
7c8aba0d83 Merge branch 'ollama:main' into main 2025-08-06 09:25:22 +08:00
Parth Sareen
4742e12c23 docs: update turbo model name (#11707) 2025-08-05 17:29:08 -07:00
Devon Rifkin
2d06977ade Merge pull request #11705 from ollama/drifkin/fn-schema
tools: support anyOf types
2025-08-05 17:02:42 -07:00
Devon Rifkin
30f8a68c4c tools: support anyOf types
afaik gpt-oss is the first model that meaningfully transforms tool
function definitions in its template. We found that relatively common
definitions that include `anyOf` were not working because the template
was assuming that types were always defined via a `type` field.

anyOf allows for fully recursive types, so I exposed a
`toTypeScriptType()` function to handle this recursive logic in go and
keep the templates cleaner. The gpt-oss templates will need to be
updated to use this.

We should keep building out our function definition support to more
fully support the parts of json schema that make sense for this use
case, but in the meantime this will unblock some users (e.g., zed's
ollama integration w/ gpt-oss). Probably the most urgent is proper array
support
2025-08-05 16:46:24 -07:00
Daniel Hiltgen
e378e33421 win: static link msvc libs (#11612)
This should help reduce the runtime dependencies on windows.
2025-08-05 16:10:42 -07:00
Michael Yang
fcec04bf42 gptoss: fix memory calc (#11700) 2025-08-05 15:56:12 -07:00
Jeffrey Morgan
ee92ca3e1d docs: add docs for Ollama Turbo (#11687) 2025-08-05 13:09:10 -07:00
Jesse Gross
8253ad4d2b ggml: Prevent kv cache quanitization on gpt-oss
KV cache quantization has a dependency on the flash attention kernel.
We currently cannot use flash attention with gpt-oss as it requires
additional operations.

The model definition does not call flash attention, so it works
regardless of the setting but the cache will pick up the
quantization type. This updates the flash attention setting earlier
in the loading flow so that all downstream settings are also set correctly.

Fixes: #11671
2025-08-05 13:04:03 -07:00
Michael Yang
fa7776fd24 gpt-oss (#11672)
* bf16

* tests

* gpt-oss

* enable gptoss for engine

* rough estimate

* convert to mxfp4

* handle safetensors U8

* clamp glu/linear

* update tokenizer

* MXFP4 support

This implements the Open Compute Microscaling (MX) FP4 format
as a tensor type with backend implementations focusing
on mulmat and mulmatid on CPU, CUDA, and Metal.

* Unit tests for MXFP4 support

This exercises various operations and shapes on both CPU and GPU (if detected
on the system)

* cuda graph

* unit test adjustments

* cuda: optimize memory access

Read 4 bytes at a time (8 elements) when performing mul_mat_vec_mxfp4

* mac: fix crash on old macos versions

cblas_sgemm is only supported on v13.3 and up, however bf16 is
only supported on v14+ so we were falling back to ggml-blas and
crashing on bf16 tensors.  Checking for the function being null
seems to be the simplest way to condittionally avoid registering the
backend.

* server: Minimum context length for gptoss

This model requires a minimum context length of 8192 to function
effectively. Users can set higher values through all normal mechanisms
but lower values will be silently reset.

* ggml: Multiply by numParallel for gptoss sliding window

When computing the graph size estimate, the context size is already
multiplied by numParallel so estimates reflect that. However, since
sliding window models use a smaller, fixed context size, they need
to manually take numParallel into account.

* gpt-oss integration

includes harmony parser and thinking levels, etc.

* fix sync

* fix tests

* fix lint

---------

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
Co-authored-by: Jesse Gross <jesse@ollama.com>
Co-authored-by: Devon Rifkin <drifkin@drifkin.net>
2025-08-05 12:21:16 -07:00
Jesse Gross
0d38b66502 kvcache: Log contents of cache when unable to find a slot
There is a bug when using sliding window attention where we run
out of KV cache slots. This is likely due to not correctly removing
all of the entries as they slide out of range. This adds additional
logging when this occurs to track down the source.

Bug #10127
2025-08-04 16:59:29 -07:00
likelovewant
e5e077b4b7 Merge branch 'ollama:main' into main 2025-08-03 08:22:07 +08:00
Jesse Gross
4183bb0574 kvcache: Enable SWA to retain additional entries
Models that use sliding window attention can only resume a sequence
from the cache if it falls within the saved windows. This works well
if the next message picks up where the old one left off. However, it
generally prevents a partial prefix match unless the entire conversation
falls within the sliding window.

This can be a problem with reasoning models where the traces are
supposed to be removed from future messages, forcing the entire
history to be re-evaluated.

This change allows models to specify that a larger amount of the
history be retained in memory, to allow more partial resumption.
It still respects the window that the model was trained on for
token generation.
2025-07-31 14:48:01 -07:00
Sajal Kulshreshtha
ff89ba90bc fixing broken AMD driver link (#11579) 2025-07-30 12:02:54 -07:00
Daniel Hiltgen
6dcc5dfb9c Revert "CI: switch back to x86 macos builder" (#11588)
This reverts commit 9d071e6089319b37acf62bb739e3430dcb2ac0c3.
2025-07-30 08:56:01 -07:00
Daniel Hiltgen
25911a6e6b mac: disable bf16 on unsupported OS versions (#11585)
Support for bf16 was added in MacOS v14+ and attempting to enable
on older versions causes runtime failures.
2025-07-30 08:50:54 -07:00
Daniel Hiltgen
8afa6e83f2 CI: switch back to x86 macos builder (#11572) 2025-07-29 16:41:25 -07:00
Oliver Simons
ea85e27bbd Increase performance for Gemma3n models on NVGPUs by enabling CUDA Graph execution (#11525)
* Enable CUDA Graphs for gemma3n.

Similar to
https://github.com/ggml-org/llama.cpp/pull/14741,
though ollama has a slightly different model graph
than llama.cpp which requires different workaround
checks.

* Remove residual check by reshaping differently in gemma3n model

This should make the heuristics more robust
2025-07-29 12:37:06 -07:00
Jesse Gross
c116a7523d kvcache: Don't shift empty batches
When we context shift, we delete half the context and apply RoPE
with an offset to the other half. We used to RoPE across the entire
context in a single pass with a zero offset for the deleted
section. With the change to shifting in batches, we can skip any
batches where all of the offsets would be zero. This typically
reduces the number of operations by half.
2025-07-29 12:32:22 -07:00
Yoshi
3515cc377c docs: fix typos and remove trailing whitespaces (#11554) 2025-07-28 11:19:13 -07:00
Mayan EDMS
bbf66c0b96 readme: add Mayan EDMS to community integrations (#11543) 2025-07-27 15:02:52 -07:00
Jesse Gross
764be7480f kvcache: Group shift operations into batches
Currently, when we need to do a shift on the cache, it is one
RoPE operation on the entire size of the cache (per layer). In
some cases, this can create a compute graph that is larger than
the forward pass since the forward pass is working in batches.
Since we don't consider shifting in our memory estimates, it's
possible for this to cause a crash if we run out of memory.

By limiting the size of the RoPE calls to batch size chunks, we
ensure that the shift will never exceed the size of the forward
pass, since the forward pass will also contain a RoPE of the same
size. This does not have a sigificant impact on performance since
RoPE is a math operation that is mostly proportional to the size
of its inputs.

In theory defrag could have the same issue since it also creates a
compute graph outside of the forward pass, however, since it is
only copies, it does not require any working space.
2025-07-25 16:50:27 -07:00
Ruyut
b72e5adb14 CONTRIBUTING: fix typo in commit message example (#11528) 2025-07-25 14:24:06 -07:00
Patrick Devine
80b538e312 cli: catch upstream errors gracefully (#11512) 2025-07-23 22:16:55 -07:00
Jeffrey Morgan
4f8a0166cc tools: loosen tool argument parsing (#11509) 2025-07-23 21:21:29 -07:00
minxinyi
1e6eab5c33 server: use slices.Equal to simplify code (#11502) 2025-07-23 14:25:39 -07:00
Michael Yang
6c733bf0a6 s#x/exp/maps#maps# (#11506) 2025-07-23 13:23:32 -07:00
Patrick Devine
3bac5cba60 Fix GetModelInfo (#11496)
---------

Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-07-22 13:40:47 -07:00
ycomiti
4151ef8cf7 Update linux.md (#11462) 2025-07-22 11:17:31 -07:00
likelovewant
e4ff6e6c0f Merge branch 'ollama:main' into main 2025-07-21 18:52:34 +08:00
Stefan Wärting
82da19c634 readme: add GMAI - Gradle Managed to community integrations (#11461) 2025-07-20 14:55:47 -07:00
Jeffrey Morgan
bdd9d22dfd tools: fix parsing issue when a tool name is a substring of another (#11456)
Co-authored-by: frob <rick+github@frob.com.au>
2025-07-20 14:55:14 -07:00
zmldndx
5fc38d042f readme: update argo description to support deep research (#11455) 2025-07-19 13:29:38 -07:00
likelovewant
475a11d08e Merge branch 'ollama:main' into main 2025-07-18 17:41:30 +08:00
Daniel Hiltgen
191d94289d ci: switch mac builder to arm64 (#11379)
The macos-13 is x86, while macos-13-xlarge is arm64
2025-07-17 07:33:44 -07:00
frob
802ad16ce4 docs: add the no-Modelfile function of ollama create (#9077) 2025-07-16 22:16:10 -07:00
frob
5e67f4f90e openai: allow openai endpoint to accept webp images (#11412)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-07-16 21:31:49 -07:00
Haiyue Wang
e840ccb523 readme: update the llama.cpp github link (#11427) 2025-07-16 21:20:28 -07:00
Michael Yang
b4fe3adc0a compile bf16 support into ggml-metal (#11430) 2025-07-16 17:32:57 -07:00
Parth Sareen
d73f8aa8c3 cmd: add default assistant role to message construction (#11431) 2025-07-16 11:18:16 -07:00
Bruce MacDonald
92c2e8a56c api: fix unreachable status err (#11423)
StatusError was unreachable, the client always checked for error messages in the response body first, and the server always includes error messages with HTTP error status codes.
2025-07-16 11:03:28 -07:00
Marcelo Fornet
2e3fd86d48 docs: fix typo in macos.md (#11425) 2025-07-16 10:50:46 -07:00
先知
4261a3b0b2 docs: update modelfile.md to reflect current default num_ctx (#11189)
As in the commit 44b466eeb2, the default context length has been increased to 4096.
2025-07-11 15:15:00 -07:00
Jesse Gross
acef9b4c1b ggml: Use assigned layers when reporting loading stats
Reporting params.NumGPULayers can be misleading because it is the
requested number of layers, not the actual number that is loaded.
While they are often the same, there are cases where they might mismatch,
such as if the GPU backend is missing.
2025-07-11 14:21:50 -07:00
Jesse Gross
9a43994c45 ggml: Disable unused pipeline parallelism
We're not currently using it, even in cases where we could. Disabling
it improves generation performance by 10-30% with multiple GPUs.
2025-07-11 13:30:05 -07:00
Daniel Hiltgen
f8a6e88819 Only load supported models on new engine (#11362)
* Only load supported models on new engine

Verify the model is supported before trying to load

* int: testcase for all library models
2025-07-11 12:21:54 -07:00
Jesse Gross
35fda7b4af ggml: Report ordinal IDs for AMD GPUs on Windows
We don't get valid UUIDs for AMD GPUs on Windows, so the best option
is to use the ordinal IDs. This brings us in line with what we currently
do on the Ollama server - the only exception is AMD GPUs on Linux, which
falls back to using ordinal IDs. The GGML implementation has no fallback
but it doesn't appear to occur for any of the GPUs that we support.

It's also possible that there are collisions between ordinal IDs for
different libraries - however the only places where we use them are
AMD on Windows and Metal on Mac, which can never occur on the same
system.
2025-07-09 10:35:31 -07:00
Daniel Hiltgen
66fb8575ce doc: add MacOS docs (#11334)
also removes stale model dir instructions for windows
2025-07-08 15:38:04 -07:00
Daniel Hiltgen
20c3266e94 Reduce default parallelism to 1 (#11330)
The current scheduler algorithm of picking the paralellism based on available
VRAM complicates the upcoming dynamic layer memory allocation algorithm.  This
changes the default to 1, with the intent going forward that parallelism is
explicit and will no longer be dynamically determined.  Removal of the dynamic
logic will come in a follow up.
2025-07-08 12:08:37 -07:00
Daniel Hiltgen
34088dbcfb API/CLI context enhancements (#11331)
* API: expose context size of loaded models

* CLI: add context UX

This adds a column in the ps output to show the models context size.
2025-07-08 11:59:06 -07:00
likelovewant
e41dd73705 Merge branch 'ollama:main' into main 2025-07-08 17:07:24 +08:00
Parth Sareen
43107b15b9 add tool_name to api.md (#11326) 2025-07-07 16:53:13 -07:00
Parth Sareen
1f91cb0c8c template: add tool result compatibility (#11294) 2025-07-07 15:53:42 -07:00
Daniel Hiltgen
12d8ad0d38 ci: modularization (#11324)
switch a few constants to variables
2025-07-07 14:07:43 -07:00
Jesse Gross
592d21e7db Revert "ggml: Temporarily disable reporting UUIDs"
The root cause was an unclean upgrade - this code is fine.

This reverts commit 45f216a9c7.
2025-07-07 11:31:02 -07:00
Jeffrey Morgan
5a08b01f5b readme: update Ollama icon size 2025-07-05 17:20:42 -07:00
Daniel Hiltgen
4f473e224c int: add performance integration tests (#11173)
usage example:
  go test --tags=integration,perf -count 1 ./integration -v -timeout 1h -run TestModelsPerf 2>&1 | tee int.log
  cat int.log | grep MODEL_PERF_HEADER | cut -f2- -d: > perf.csv
  cat int.log | grep MODEL_PERF_DATA | cut -f2- -d: >> perf.csv
2025-07-05 16:07:09 -07:00
Daniel Hiltgen
9d60bb44cf doc: add NVIDIA blackwell to supported list (#11307) 2025-07-05 16:06:30 -07:00
Vincent RAMPAL
f371260e75 Update base image to Ubuntu 24.04 LTS (#9681) 2025-07-05 16:02:33 -07:00
Daniel Hiltgen
c9e6d7719e doc: Update link for mac install (#11288)
Favor the dmg now.
2025-07-03 09:48:45 -07:00
Daniel Hiltgen
2c4ce40334 mimic logs for layers on new engine (#11278)
This adds some extra logs to make the new engine a bit more consistent
with the llama engine.
2025-07-02 16:38:36 -07:00
XuKecheng
5d8c173529 readme: add NativeMind to community integrations (#11242) 2025-07-01 09:46:15 -07:00
Jeffrey Morgan
44b17d2bfa tools: fix parsing tool calls with empty arguments, missing required fields (#11233) 2025-06-30 08:59:03 -07:00
likelovewant
4ad87b58bb fix conflicts 2025-06-30 13:32:17 +08:00
Attogram Project
3b8b692218 readme: add ollama-bash-toolshed to community integrations (#11224) 2025-06-29 14:59:54 -07:00
Michael Yang
4129af9205 chore: cleanup comments + unused vars (#11225) 2025-06-27 11:45:33 -07:00
Jesse Gross
45f216a9c7 ggml: Temporarily disable reporting UUIDs
This is causing segfaults, so disable it. Currently UUIDs are only
used for debugging purposes, although they planned to be used in
additional ways in the future.

Bug #11211
2025-06-27 11:27:22 -07:00
Michael Yang
d0b32def60 skip quantizing per_layer_token_embd (#11207)
this tensor isn't compatible with cuda when quantized to q4_K so skip it
2025-06-26 21:49:35 -07:00
Daniel Hiltgen
11ffc36157 ci: multi-stage release process (#11001) 2025-06-26 10:32:48 -07:00
Jeffrey Morgan
ba04902670 fs/ggml: add multiplier in graph estimates (#11208) 2025-06-26 00:19:44 -07:00
Jeffrey Morgan
3944602f51 fs/ggml: add missing architecture to OllamaEngineRequired() (#11206) 2025-06-26 00:11:23 -07:00
Michael Yang
73b642e6f3 add new gemma model (#11204)
* update patches

* cherry pick metal mean kernel

* cherry pick cuda mean kernel

* gemma3n
2025-06-25 21:47:09 -07:00
Daniel Hiltgen
ad118d8b13 ci: arm sbsa fixes (#11194) 2025-06-24 21:00:15 -07:00
Daniel Hiltgen
f08534137b ci: include dependencies 2025-06-24 20:27:43 -07:00
Daniel Hiltgen
4b4a90f233 ci: pick up arm sbsa cuda libs (#11192) 2025-06-24 18:59:22 -07:00
Daniel Hiltgen
03274a6b2f ci: recombine linux amd64 binaries (#11188)
Glue the rocm and archive builds back together.
2025-06-24 18:45:01 -07:00
Devon Rifkin
cc6463ebca Merge pull request #10238 from ollama/drifkin/array-head-count-simple
ggml: fix crash for array head counts
2025-06-24 17:50:02 -07:00
Daniel Hiltgen
405d2f628f ci: rocm parallel builds on windows (#11187)
The preset CMAKE_HIP_FLAGS isn't getting used on Windows.
This passes the parallel flag in through the C/CXX flags, along
with suppression for some log spew warnings to quiet down the build.
2025-06-24 15:27:09 -07:00
Devon Rifkin
a3f7dd3e98 Merge branch 'main' into drifkin/array-head-count-simple 2025-06-24 14:20:05 -07:00
Daniel Hiltgen
c85c0ebf89 CI: switch windows to vs 2022 (#11184)
* CI: switch windows to vs 2022

* ci: fix regex match
2025-06-24 13:26:55 -07:00
Daniel Hiltgen
10a8e04a8d avoid context overflow (#11175)
For smaller context models, make sure we do not exceed the training size.
2025-06-23 15:52:50 -07:00
Daniel Hiltgen
1c6669e64c Re-remove cuda v11 (#10694)
* Re-remove cuda v11

Revert the revert - drop v11 support requiring drivers newer than Feb 23

This reverts commit c6bcdc4223.

* Simplify layout

With only one version of the GPU libraries, we can simplify things down somewhat.  (Jetsons still require special handling)

* distinct sbsa variant for linux arm64

This avoids accidentally trying to load the sbsa cuda libraries on
a jetson system which results in crashes.

* temporary prevent rocm+cuda mixed loading
2025-06-23 14:07:00 -07:00
Devon Rifkin
b2b270ad5d Merge branch 'main' into drifkin/array-head-count-simple 2025-06-23 10:37:31 -07:00
AJ
2bb69b40c7 readme: add ai-hub to community integrations (#11169) 2025-06-23 09:21:12 -07:00
Daniel Hiltgen
65bff664cb build speedups (#11142)
Enable parallel building of the GPU architectures.
2025-06-20 12:32:51 -07:00
Michael Yang
c088ac0e79 convert: utility for merging tensors (#11069) 2025-06-20 11:12:01 -07:00
Michael Yang
0a066cfd91 Reapply "feat: incremental gguf parser (#10822)" (#11114) (#11119)
* Reapply "feat: incremental gguf parser (#10822)" (#11114)

This reverts commit a6e64fbdf2.

* fix older ggufs
2025-06-20 11:11:40 -07:00
Jesse Gross
87b7af6cee ggml: Check return status for computation.
We don't check the return status after computing the graph, which
can silently lead to bad outputs if we try to keep going and future
computation succeeds. This appears to happens in certain cases on
Apple M2 devices.

Fixes #11070
2025-06-19 17:12:49 -07:00
Daniel Hiltgen
f2527b08fb int: add coverage for older models (#11137)
Verified these fail on 0.9.1 and pass on HEAD.
2025-06-19 12:10:19 -07:00
likelovewant
71a4057fcf Merge branch 'ollama:main' into main 2025-06-19 21:11:00 +08:00
likelovewant
5ab7422508 add 2025-06-19 21:05:38 +08:00
Jeffrey Morgan
8bcb3125c1 benchmark: remove unused benchmark test (#11120)
Removes a test under benchmark/ that is unused
2025-06-18 12:58:50 -07:00
Jeffrey Morgan
6baf1e31e2 Revert "Revert "ggml: Export GPU UUIDs" (#11115)" (#11117)
Reverts PR #11115. The original change was mistakingly reverted instead of #10822
2025-06-18 07:30:49 -07:00
Jeffrey Morgan
ed567ef43b Revert "ggml: Export GPU UUIDs" (#11115)
This reverts commit aaa7818000.
2025-06-18 05:45:00 -07:00
Jeffrey Morgan
a6e64fbdf2 Revert "feat: incremental gguf parser (#10822)" (#11114)
This reverts commit 6b04cad7e8.
2025-06-18 05:42:44 -07:00
曹家巧
60cfa2a203 cache: fix comment function name in cache.go (#11110) 2025-06-18 05:21:45 -07:00
Jeffrey Morgan
55bbf3b4a1 tools: return empty arguments object instead of null (#11113) 2025-06-18 05:20:43 -07:00
Jeffrey Morgan
6bda1d2479 tools: fix parsing tool calls without any parameters (#11101)
Fixes issue where tool calls that don't expect any parameters were
not being parsed. This also fixes two additional issues: one where
2+ tool calls would not be correctly parsed, and cases where tool calls
with invalid parameters would still get parsed
2025-06-17 10:51:43 -07:00
likelovewant
50f2219dd6 Merge branch 'ollama:main' into main 2025-06-18 00:20:43 +08:00
Jeffrey Morgan
9e125d884c model: treat 'user defined' tokens as special tokens (#11077) 2025-06-16 16:03:16 -07:00
Michael Yang
a6fbfc880c gguf: fix write order (#11068)
* ggml: test write gguf order
* ggml: fix write tensor order
2025-06-16 10:42:32 -07:00
NGC13009
502028968d readme: add ollama-launcher to community integrations (#11080) 2025-06-15 21:27:49 -07:00
Phil
5a8eb0e151 readme: add GPTranslate to community integrations (#11071) 2025-06-14 08:54:03 -07:00
Jeffrey Morgan
9f8a18ec05 tools: loosen tool parsing to allow for more formats (#11030) 2025-06-12 14:18:54 -07:00
Michael Yang
6b04cad7e8 feat: incremental gguf parser (#10822)
* incremental gguf parser
* gguf: update test to not rely on gguf on disc
* re-use existing create gguf
* read capabilities from gguf kv
* kv exists
* update tests
* s/doneFunc/successFunc/g
* new buffered reader

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-06-12 11:04:11 -07:00
Michael Yang
45f56355d5 feat: uneven splits (#11048)
The current splitDim function only operates on tensors that are split evenly which isn't always the case, e.g. a QKV tensor. This change allows the function to be used for arbitrary splits
2025-06-11 12:10:54 -07:00
Michael Yang
0dabb4ef6a skip tokenizer.model if possible (#11050)
if tokenizer.json is already copied, skip tokenizer.model
2025-06-11 12:10:35 -07:00
Michael Yang
2e77aa1ae7 use nn.Linear in place of ml.Tensor (#11049)
while nn.Linear.Forward isn't applicable for sparse MLP, it's still
a nice container for the tensors
2025-06-11 12:10:15 -07:00
Attogram Project
deaabe292d readme: add ollama-multirun to community integrations (#11038) 2025-06-10 14:14:51 -07:00
Jeffrey Morgan
af21a5ac39 readme: update quickstart link text to Gemma 3 2025-06-10 09:34:23 -07:00
Jeffrey Morgan
f63d7f68eb readme: update quickstart example to Gemma 3 2025-06-10 09:33:54 -07:00
Daniel Hiltgen
82ad1dbc07 mac: handle "keep" named apps (#11031)
When a user elects to keep the existing app, the
new Ollama is named `Ollama 2.app`
This fixes the app startup flow to handle this naming pattern.
2025-06-09 16:29:57 -07:00
Daniel Hiltgen
feeabdadd2 spawn desktop quickly (#11011)
Give the desktop app a hint to start fast.
2025-06-08 09:34:52 -07:00
Krzysztof Jeziorny
fc0309615e docs: update link to AMD drivers in linux.md (#10973) 2025-06-06 23:30:04 -04:00
Jeffrey Morgan
09d308d6b6 Revert "server: add model capabilities to the list endpoint (#10174)" (#11004)
This reverts commit 0943001193.
2025-06-06 23:29:14 -04:00
Daniel Hiltgen
a8ed68bd93 launch app hidden (#10962)
When starting the app in the background, start it hidden.
2025-06-06 14:06:29 -07:00
Daniel Hiltgen
2ae65ae471 win: handle more than 2048 processes (#10997)
Fix an array out of bounds crash
2025-06-06 14:06:09 -07:00
Devon Rifkin
a3b6886b7d move thinking logic into its own package (#10990)
move thinking logic into its own package
2025-06-06 12:02:20 -07:00
Hunter Wittenborn
c6a6d7294d docs: fix typo in development.md (#10998) 2025-06-06 12:07:29 -04:00
Devon Rifkin
2cf007c9d1 Merge pull request #10987 from ollama/drifkin/export-thinking-parser
export ThinkingParser
2025-06-05 12:19:14 -07:00
Devon Rifkin
0683efa637 export ThinkingParser 2025-06-05 10:22:32 -07:00
JasonHonKL
0943001193 server: add model capabilities to the list endpoint (#10174) 2025-06-04 11:39:48 -07:00
HardCodeDev
5c42800fca readme: add SimpleOllamaUnity to community integrations (#10817) 2025-05-30 19:50:16 -07:00
Parth Sareen
65f10c2823 tools: resiliency upgrade to name and arg extraction from template (#10917) 2025-05-30 15:18:09 -07:00
Jesse Gross
aaa7818000 ggml: Export GPU UUIDs
This enables matching up devices and information reported by the backend
with system management libraries such as nvml to get accurate free
memory reporting.
2025-05-29 14:01:26 -07:00
Jesse Gross
f15ffc4320 llm: Make "POST predict" error message more informative
"POST predict" basically means that the runner has crashed, which
can have many reasons. However, many people think this is a specific
error and either report only this message or group together unrelated
bugs. This replaces it with a more friendly and helpful message.
2025-05-29 09:41:19 -07:00
likelovewant
d008f108cc Merge branch 'ollama:main' into main 2025-05-29 20:58:26 +08:00
Devon Rifkin
5f57b0ef42 add thinking support to the api and cli (#10584)
- Both `/api/generate` and `/api/chat` now accept a `"think"`
  option that allows specifying whether thinking mode should be on or
  not
- Templates get passed this new option so, e.g., qwen3's template can
  put `/think` or `/no_think` in the system prompt depending on the
  value of the setting
- Models' thinking support is inferred by inspecting model templates.
  The prefix and suffix the parser uses to identify thinking support is
  also automatically inferred from templates
- Thinking control & parsing is opt-in via the API to prevent breaking
  existing API consumers. If the `"think"` option is not specified, the
  behavior is unchanged from previous versions of ollama
- Add parsing for thinking blocks in both streaming/non-streaming mode
  in both `/generate` and `/chat`
- Update the CLI to make use of these changes. Users can pass `--think`
  or `--think=false` to control thinking, or during an interactive
  session they can use the commands `/set think` or `/set nothink`
- A `--hidethinking` option has also been added to the CLI. This makes
  it easy to use thinking in scripting scenarios like
  `ollama run qwen3 --think --hidethinking "my question here"` where you
  just want to see the answer but still want the benefits of thinking
  models
2025-05-28 19:38:52 -07:00
Patrick Devine
aa25aff10d client: add request signing to the client (#10881)
If OLLAMA_AUTH is set, sign each request w/ a timestamp and pass the signature in the token header
2025-05-27 16:50:57 -07:00
Jesse Gross
ea79003180 kvcache: Skip computing causal mask for worst case graph reservation
Computing an attention mask for a large context and max batch is
expensive - over 100ms. Models like Gemma3 that have multiple types
of caches and custom attention masks need to do this 4 times, so this
adds approximately 500ms to startup time when using 128k context

When we are reserving the worst case graph, we don't need the mask,
only its shape, so we can skip this.
2025-05-27 14:25:15 -07:00
Kyle Steere
9239a254e0 server: abort download on empty digest
Signed-off-by: Kyle Steere <kyle.steere@chainguard.dev>
2025-05-27 11:28:48 -07:00
Parth Sareen
066d0f4746 tools: relax JSON parse constraints for tool calling (#10872) 2025-05-26 18:59:06 -07:00
Parth Sareen
aea6fb9b58 tools: remove newline stripping (#10869) 2025-05-26 17:16:00 -07:00
RAPID ARCHITECT
012cf65340 readme: add AWS Strands Agents SDK example to community integrations (#10865) 2025-05-26 12:05:03 -07:00
Min Yoo
a45231af47 readme: Add macLlama to community integrations (#10790)
This commit updates the README to include macLlama within the community integrations section.

macLlama is a native macOS application built for lightweight and efficient LLM interaction.  Key features include:

*   **Lightweight & Native:** Designed to be resource-friendly and perform optimally on macOS.
*   **Chat-like Interface:** Provides a user-friendly, conversational interface.
*   **Multiple Window Support:** Allows users to manage multiple conversations simultaneously.

The primary goal of macLlama is to offer a simple and easy-to-run LLM experience on macOS.
2025-05-24 13:18:32 -07:00
Daniel Hiltgen
2307fc2bcd tests: drop llama3.2-vision embedding tests (#10837) 2025-05-24 13:17:53 -07:00
frob
6623898198 docs: remove unsupported quantizations (#10842) 2025-05-24 13:17:26 -07:00
frob
eda472df1b server: add hint to the error message when model path access fails (#10843) 2025-05-24 13:17:04 -07:00
Jesse Gross
f18e0cb550 ml: Improve slog formatting for BackendMemory 2025-05-23 20:08:23 -07:00
likelovewant
68b58c5cb8 Merge branch 'ollama:main' into main 2025-05-24 09:28:53 +08:00
Parth Sareen
e8b981fa5d tools: refactor tool call parsing and enable streaming (#10415) 2025-05-23 14:19:31 -07:00
Parth Sareen
884d26093c llama: add minimum memory for grammar (#10820) 2025-05-22 18:53:31 -07:00
Jesse Gross
1f371ea92f ml: Panic rather than return error on tensor allocation failure
FromFloatSlice and FromIntSlice return an error if the shape doesn't
match the passed data or if memory can't be allocated. Since these
are inputs, the memory being allocated is system memory rather than VRAM.

In many cases, the caller can't really handle the error and panics.

Empty and Zeros directly panic if they can't allocate memory.

This makes things consistent by panicing for the first two cases,
removing a fair amount of error handling code. This is also consistent
with how Go typically handles these situations.
2025-05-22 14:38:09 -07:00
Jesse Gross
73d6a82cce ollamarunner: Memory usage reporting
This provides granular information about the backend memory allocations
required by the runner:
 - Per backend
 - Per layer
 - Weights, cache and graph
 - Allocation status

This can be used for debugging and validating memory estimates.
2025-05-22 14:38:09 -07:00
Jesse Gross
6db8a3771c ggml: Report graph memory for failed allocations
GGML has a function to report the allocated size of a backend buffer.
However, this returns 0 if we tried to allocate a buffer and it failed.
For memory management purposes, it's important to know how much we were
trying to allocate. This extends the API to report attempted sizes for
all buffers and whether it succeeeded.
2025-05-22 14:38:09 -07:00
Daniel Hiltgen
d950ff12c0 sched: fix runner leak during reloading unload (#10819)
When the same model is being reloaded rapidly with client connections
being canceled before the model finishes loading, the queued unload
event could cause a leak of runners by deleting a different runner from
the loaded list.
2025-05-22 14:31:36 -07:00
Michael Yang
adff143bcd fix: mllama quality (#10807)
* fix mllama convert

- transform attn_gate and ffn_gate
- swap attention heads for vision models

* fix mllama

the mlp gate which was applied in the wrong place
2025-05-22 11:30:49 -07:00
Bruce MacDonald
fbe6ae285a server: improve tensor quantization fallback logic (#10806)
Fall back to alternative quantization types when a tensor's dimensions aren't divisible by the block size required for the original desired quantization type. If retried quantization types fail, the system ultimately falls back to F16 (half-precision floating point) which has a block size of 1 and can handle any tensor dimension.
2025-05-22 10:48:08 -07:00
Daniel Hiltgen
fdd4d479a3 integration: add qwen2.5-vl (#10815)
Replace the older llava model with qwen2.5 for vision tests
Skip split-batch test on small VRAM systems to avoid excessive test time
2025-05-22 09:12:32 -07:00
Michael Yang
61aeaf7e81 remove support for multiple ggufs in a single file (#10722)
* remove support for multiple ggufs in a single file

this was an attempt to make it easier to import multimodal models into
ollama. this was rarely used and error prone so remove it

* fix: create fused model from blob
2025-05-21 13:55:31 -07:00
Daniel Hiltgen
7359b02707 win: detect background upgrade in progress (#10785)
Give the user a helpful error instead of showing
connection refused errors.
2025-05-21 10:46:56 -07:00
Michael Yang
c890011322 feat: port qwen2 model (#10782) 2025-05-21 10:21:24 -07:00
Michael Yang
e0ed984cde feat: qwen3 dense and sparse models (#10708)
* feat: qwen3 dense
* feat: qwen3moe
* fix llama4 moe
2025-05-21 10:21:07 -07:00
Michael Yang
139f84cf21 fix cmakelists (#10804)
this fixes an issue introduced in #10788
2025-05-21 09:52:52 -07:00
Michael Yang
375839ea2d chore: disable debug in binary libraries (#10788) 2025-05-21 09:39:38 -07:00
Michael Yang
69b2fe9282 fix: qwen25vl assign samebatch in multimodal input (#10789)
setting samebatch on the vision start token is problematic because it
will be shared with other inputs that also use images. this will cause
the input to be cached and the runner will not see SameBatch. SameBatch
will also be incorrect since it may be for a different image.

assigning samebatch to the input tokens resolves this by ensure it's
assigned correctly to inputs corresponding to the image.

not setting same batch correctly may cause panics during inference since
images are no longer guaranteed to be in the same batch.
2025-05-21 09:39:20 -07:00
Michael Yang
9ed8bf14cb ml: add more rope options (#10775) 2025-05-20 15:51:08 -07:00
DarkCaster
e6a800ca11 llama: fix incorrect initialization of C.struct_common_sampler_cparams.penalty_present (#10779) 2025-05-20 10:41:15 -07:00
Michael Yang
ff180c3466 fix llama and mistral3 models (#10774)
* fix llama model

* fix mistral3.1 model

do not set default vision layers
2025-05-19 15:06:35 -07:00
Jesse Gross
3fe74fba42 llm: Use first layer as memory buffer in estimation
This is a partial revert of 0478d44 "Fixed over vram allcation dure to
small initial layer sizes."

Previously we used the size of the first layer as an extra reserved
amount of space to buffer our memory estimates. The above commit
changed this to use the largest layer. However, this had performance
impacts on more models than the original commit was trying to fix.

There is just a heuristic without an ideal solution so this goes back
to the historic behavior.

Fixes: #10765, #10756, #10752, #10726
2025-05-19 14:03:34 -07:00
Daniel Hiltgen
1a0cfd080a avoid kv truncation during create (#10761) 2025-05-19 13:54:54 -07:00
Jesse Gross
94ab428e3f ggml: Seperate tensor load from backend creation
Currently, when the backend is created, the tensors are loaded at the
same time, which is a slow operation. This separates them to be two
steps:
 - Create backend, including enumerating tensors and memory allocation
 - Loading tensor data

This allows more flexibility in managing model loading.
2025-05-19 09:54:22 -07:00
Jesse Gross
d755577473 llm: Estimate projector memory correctly for Ollama engine
The Llama engine always places vision projectors on the first GPU
if one exists. However, the Ollama engine groups it with the output
layer, which means the projector is only offloaded if all other layers
are offloaded. The memory estimation code always assumes the former
layout - this changes it to use the correct layout based on the engine.

This addresses two impacts of the current behavior:
 - In multi-GPU setups, we can crash with OOM errors when we try to
   allocate memory on a full GPU while another still has space.
 - If the vision projector is large, it may prevent us from offloading
   anything when we could have fit some of the text layers.
2025-05-19 09:52:48 -07:00
Jesse Gross
a2cc8571c5 llm: Consistently track unassigned model data
In some cases, if we fail to assign a piece of the model to a GPU then
we lose track of this data. Although it doesn't change the memory
allocation, it does affect the total size of the model reported by
tools such as ollama ps (and also the percent offloaded).

This makes it look like setting num_gpu isn't reflected in ollama ps,
which isn't true but the offloading percent may appear to not change.

Spreading the model across more GPUs will continue to impact the
reported total size of the model.
2025-05-19 09:52:48 -07:00
Ronald Wilson
7edfdd2f5f readme: add TinyNotepad to community integrations (#10763)
This PR adds Tiny Notepad, a lightweight, notepad-like interface to chat with local LLMs via Ollama. 

- It’s designed as a simple, distraction-free alternative. 
- The app supports basic note-taking, timestamped logs, and model parameter controls. 
- Built with Tkinter, it runs entirely offline and available via PyPI.

Aims to provide a lightweight easy to run and install interface for ollama.
2025-05-18 12:43:22 -07:00
Michael Yang
333e360422 model: handle multiple eos tokens (#10577)
* get eos_token_id from generation_config.json

* refactor

* include both ids and strings in trace

* comments

* remove special case for gemma3 special vocab (#10743)
2025-05-16 13:40:23 -07:00
likelovewant
cb104a2082 Merge branch 'ollama:main' into main 2025-05-16 08:52:17 +08:00
Daniel Hiltgen
27da2cddc5 Fix lingering Q4_0 help reference (#10720) 2025-05-15 16:33:23 -07:00
Bruce MacDonald
feb8923ada cmd: add ellipses to truncated show metadata (#10717)
When a piece of information has been truncated in the show output an ellipses to indicate that more data has not been displayed
2025-05-15 15:45:52 -07:00
Jesse Gross
fe623c2cf4 ollamarunner: Multi-modal worst case graph
We currently preallocate compute graph memory for the worst case
batch of text tokens. This adds support for doing the same for
images.

Note that image models are more complicated than text models in
how they process their inputs so there may be cases where this
approach isn't completely generic for all models. It covers all
currently supported models though.
2025-05-15 13:46:20 -07:00
Jesse Gross
3c14461d5d ollamarunner: Separate text and multimodal graphs
For some multimodal models (such as gemma3), we create a single
graph that generates the image embedding and then use this in the
text model. The embedding tensor is completely opaque to the runner.

However, this doesn't work if we need to use the embedding in multiple
batches. This can arise if the embedding is larger than the batch size.
In these cases (as with llama4), we would like to create views that
are more appropriately sized. However, if we do this then the original
source tensor is used in multiple graphs, which isn't allowed. To
avoid that problem, models with this pattern compute the embedding
tensor on first use and recreate the individual views. There is no
longer a single vision and text graph.

This codifies the pattern of separating vision and text graphs. The
logic of computing tensors on demand is moved to the runner, so models
no longer have to worry about this. It also gives the runner visibility
into the multimodal tensors, which is important for memory management.
2025-05-15 13:46:20 -07:00
Jesse Gross
499ae7311f ollamarunner: Base cached tokens on current prompt
When we restore a sequence from the cache, we split the prompt into
the already used tokens (stored in the cache) and new tokens that
need to be processed. Currently, the references to the used tokens
are coming from the stored previous sequence.

However, even though we know that the used tokens are semantically
equivalent to the prefix of the prompt, tokens can contain pointers
which are no longer valid. As a result, it is better to get the
used tokens from the prompt, which has currently valid pointers.

This doesn't currently have any impact because it isn't possible
to reuse the pointers (which are tensors) anyways. However, it
becomes an issue once we can.
2025-05-15 13:46:20 -07:00
Michael Yang
ef202789fa fix pixel values padding (#10718)
* panic if trying to pad 4d

* fix pixel values padding
2025-05-15 13:44:44 -07:00
Michael Yang
55760195e6 fix mllama conversion (#10716)
cross attention Q and K projections needs to have their heads swapped, similar to non-cross attention Q and K tensors
2025-05-15 12:15:01 -07:00
Bruce MacDonald
bd68d3ae50 ggml: update qwen25vl vision size estimate (#10711) 2025-05-14 16:42:30 -07:00
Daniel Hiltgen
ff80718e9c fix crash in old clients with quantization progress (#10710)
Older clients assumed the digest was at least 19 characters long so increase the size
of the dummy digest to avoid array out of bounds crashes.
2025-05-14 14:54:18 -07:00
Bruce MacDonald
0aa8b371dd model: add Qwen2.5-VL support (#10385) 2025-05-13 20:58:02 -07:00
Michael Yang
23125648b8 chore: update mllama to use ollama engine (#10637) 2025-05-13 17:36:02 -07:00
tej
0478d440f0 Fixed over vram allcation dure to small initial layer sizes.
Co-authored-by: Tej Kiran <kiran.tej@amd.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Tej Kiran <itej89@gmailcom>
2025-05-13 16:42:39 -07:00
Parth Sareen
8cc33f4c2b llama: fix memory leak for grammar (#10696) 2025-05-13 15:39:27 -07:00
Jeffrey Morgan
f46df4e5d2 llama: fix defrag patch to defragment when no slots are available (#10695) 2025-05-13 14:02:08 -07:00
Daniel Hiltgen
c6bcdc4223 Revert "remove cuda v11 (#10569)" (#10692)
Bring back v11 until we can better warn users that their driver
is too old.

This reverts commit fa393554b9.
2025-05-13 13:12:54 -07:00
Jeffrey Morgan
4b903f088a llama: fix crash on snowflake embedding model (#10690) 2025-05-13 13:11:11 -07:00
Jeffrey Morgan
c7f4ae7b9c server: add webp image input support (#10653) 2025-05-12 20:41:42 -07:00
Michael Yang
526b2ed102 fix vocabulary (#10679) 2025-05-12 17:29:46 -07:00
Bruce MacDonald
a7240c6d63 models: remove unused qwen2vl processing (#10677) 2025-05-12 16:08:42 -07:00
Daniel Hiltgen
9d6df90805 Follow up to #10363 (#10647)
The quantization PR didn't block all unsupported file types,
which this PR fixes.  It also updates the API docs to reflect
the now reduced set of supported types.
2025-05-12 15:23:31 -07:00
Jeffrey Morgan
0cefd46f23 llama: update to commit de4c07f93 (#10655) 2025-05-12 12:17:26 -07:00
Bruce MacDonald
ad035ad595 convert: quantize from safetensors needs kv (#10675)
When creating a quantized model from safetensors we
need the array KV values to be loaded.Changing this
value to -1 loads the KV values on the returned
layer to be used and saved during quantization.
2025-05-12 12:04:20 -07:00
Michael Yang
f95a1f2bef feat: add trace log level (#10650)
reduce prompt log to trace level
2025-05-12 11:43:00 -07:00
HardCodeDev
82a9e9462a readme: add UnityCodeLama to community integrations (#10665) 2025-05-11 13:44:51 -07:00
HardCodeDev
76724e2f29 readme: add OllamaPlusPlus C++ library to community integrations (#10664) 2025-05-11 13:40:41 -07:00
frob
ecf14a220f llama: allocate grammar buffer based on schema length (#10649) 2025-05-10 11:57:30 -07:00
frob
69ce44b33c envconfig: Remove no longer supported max vram var (#10623)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-05-10 11:31:04 -07:00
Michael Yang
5969674cf1 feat: add threshold to dump options (#10639)
ml.Dump will preserve default values if not specified
2025-05-10 11:27:15 -07:00
AliAhmedNada
867d75b21e readme: add ojira to community integrations (#10648) 2025-05-10 10:36:40 -07:00
Bruce MacDonald
3fa78598a1 cmd: strip single quotes from image page (#10636) 2025-05-09 18:05:43 -07:00
Michael Yang
0d6e35d3c6 fix: stream accumulator exits early (#10593)
the stream accumulator exits as soon as it sees `api.ProgressResponse(status="success")` which isn't strictly correctly
since some requests may have multiple successes, e.g. `/api/create` when the source model needs to be pulled.
2025-05-08 13:17:30 -07:00
Devon Rifkin
20c5fd39c8 Merge branch 'main' into drifkin/array-head-count-simple 2025-05-08 11:46:52 -07:00
Michael Yang
6e9a7a2568 lint: enable usetesting, disable tenv (#10594) 2025-05-08 11:42:14 -07:00
Michael Yang
b585a58121 chore: remove unused ZipReader type (#10621) 2025-05-08 11:17:41 -07:00
Jeffrey Morgan
fa9973cd7f api: remove unused sampling parameters (#10581) 2025-05-08 08:31:08 -07:00
Jesse Gross
3d9498a425 ollamarunner: Use correct constant to remove cache entries
The correct constant to remove all entries to the end of the sequence
for the Ollama engine is math.MaxInt32. -1 is used by the old engine.

The impact of this is currently minimal because it would only occur
in situations that are not supported by the implemented models or
rarely used options.
2025-05-07 17:26:15 -07:00
Daniel Hiltgen
3098c8b29b CI: trigger downstream release process (#10508) 2025-05-07 10:35:12 -07:00
Daniel Hiltgen
5e380c3b42 sched: fix race leading to orphaned runners (#10599)
If a model is loading, and the request context is canceled during the load
by a client closing the connection, and another request is inbound for the
same model with a different configuration (context size, etc.) thus requiring
a reload, two unload events can be in flight.  The first shuts down the
original model load, but the second one caused the loss of the new
reloading runner reference, thus triggering the leak.

The primary fix is detecting the duplicate unload and ignoring the second
instance.  The load routine is also hardened to ensure we detect
clobbering an already present runner and unload it with a warning.
2025-05-07 09:38:17 -07:00
Jeffrey Morgan
392de84031 api: remove unused RetrieveModelResponse type (#10603) 2025-05-06 23:08:03 -07:00
likelovewant
5d967d59b1 Merge branch 'ollama:main' into main 2025-05-07 10:52:15 +08:00
Daniel Hiltgen
af31ccefc0 fix data race in WriteGGUF (#10598)
err in the go routine should not be shared with the outer scope
2025-05-06 17:36:38 -07:00
Daniel Hiltgen
fa393554b9 remove cuda v11 (#10569)
This reduces the size of our Windows installer payloads by ~256M by dropping
support for nvidia drivers older than Feb 2023.  Hardware support is unchanged.

Linux default bundle sizes are reduced by ~600M to 1G.
2025-05-06 17:33:19 -07:00
Aharon Bensadoun
307e3b3e1d readme: add Flufy to community integrations (#9719) 2025-05-06 14:47:35 -07:00
Devon Rifkin
4090aca97b server: send 405 instead of 404 for unallowed methods (#10275)
Fixes: #5483
2025-05-06 14:45:37 -07:00
Michael Yang
92ce438de0 server: remove internal cmd (#10595) 2025-05-06 13:05:01 -07:00
Daniel Hiltgen
424810450f Move quantization to new backend (#10363)
* Move quantization logic to GGML via new backend

This moves the model aware logic to Go code and calls GGMLs quantization code for model creation.

* Remove "add model quantizations"

This is no longer needed now that quantization is implemented in Go+GGML code directly.
2025-05-06 11:20:48 -07:00
Michael Yang
95e744beeb discover: fix compiler warnings (#10572) 2025-05-06 10:49:22 -07:00
Jeffrey Morgan
3b2d2c8326 api: remove unused or unsupported api options (#10574)
Some options listed in api/types.go are not supported in
newer models, or have been deprecated in the past. This is
the first of a series of PRs to clean up the API options
2025-05-05 14:54:40 -07:00
Michael Yang
d931ee8f22 create blobs in parallel (#10135)
* default max term height
* error on out of tree files
2025-05-05 11:59:26 -07:00
Jesse Gross
7073600797 ggml: Reduce log level of "key not found"
Most of the time this is not an error.
2025-05-05 11:17:32 -07:00
Daniel Hiltgen
b1c40138da win: lint fix (#10571) 2025-05-05 11:08:12 -07:00
Ashok Gelal
17466217e5 Hide empty terminal window (#8668)
This hides the LlamaServer blank window when chatting outside of the terminal (say like with an app like Msty). This has no other side effects when invoking it the regular way.
2025-05-05 09:06:46 -07:00
Jeffrey Morgan
1703d1472e server: fix panic when runner.Options is nil (#10566) 2025-05-05 09:01:33 -07:00
Jeffrey Morgan
913905028b all: fix cgo compiler warnings on windows (#10563) 2025-05-05 08:02:39 -07:00
湛露先生
7e5c8eee5c file close check and close. (#10554)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-05-04 15:37:59 -07:00
Daniel Hiltgen
6a74bba7e7 win: ensure ollama paths come first (#10549)
For all search path env vars make sure our dirs are first
to avoid potentially finding other incompatible libraries
on the users system.

Also fixes a minor build script glitch for windows rocm
2025-05-03 13:11:48 -07:00
Daniel Hiltgen
76ea735aaf sched: logging improvements (#10550)
This enhances our logging in the scheduler.  The initial "waiting for server" log
no longer claims an initial error state (now "not responding" which better reflects
the actual state).  Runners now have slog wiring to report more details about the
runner, including PID.
2025-05-03 12:01:56 -07:00
aritra saha
dd1d4e99e7 readme: add llama 4 models (#10530) 2025-05-02 19:45:02 -07:00
Jesse Gross
a6ef73f4f2 ggml: Fix race that resulted in "context canceled" when loading
Successfully completing processing with an errgroup cancels the
associated context. However, we also have a goroutine that is checking
for cancelation of the context. As a result, there is a race where
the goroutine can pick up the cancelation and report an error,
replacing the sucessful error message.

To avoid that, this replaces the goroutine with a cancelation check
when we are reading files. This also has the advantage of stopping
all reads relatively quickly on error and also ensuring that there are
no outstanding I/O operations when we return in this case.

The downside is that if a file read blocks forever (for example, over
the network) then cancelation of the context effectively won't be
honored. However, this is also true for other smaller files we read
and the tensors are read in small chunks (128K), so it's consistent
and better on balance overall.
2025-05-02 13:43:25 -07:00
Jesse Gross
c2f5d6662b ollamarunner: Re-enable worst case graph preallocation.
Worst case graph preallocation was disabled by a27462b
"ollamarunner: Temporarily disable worst case graph preallocation"
since it caused crashes with large batches when not using the GPU.

This backports upstream llama.cpp commit f057808
"ggml: Don't assert fail when tensor data changes (#13222)", which
fixes the underlying bug and allows reverting the previous workaround.
2025-05-02 12:22:47 -07:00
Harsh Nevse
57fb759f3c readme: update link to langchain in community integrations (#10465) 2025-05-01 23:08:51 -07:00
Jeffrey Morgan
8dd12c873d llama: update to commit e1e8e099 (#10513) 2025-05-01 18:24:09 -07:00
frob
e6d2d04121 image: add vision capability for projector-based models (#10509)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-05-01 16:50:20 -07:00
Jesse Gross
074bac8447 kvcache: Log batch size if we can't find a slot
In some cases, we can't find a cache slot when using sliding window
attention. It would be helpful in this (and other cases) to know what
the batch size is.

Bug #10127
2025-05-01 16:26:36 -07:00
Jesse Gross
8e8f2c6d67 ollamarunner: Fix memory leak when processing images
The context (and therefore associated input tensors) was not being
properly closed when images were being processed. We were trying to
close them but in reality we were closing over an empty list, preventing
anything from actually being freed.

Fixes #10434
2025-05-01 15:15:24 -07:00
AliAhmedNada
938e8447e8 readme: add Jirapt project to community integrations (#10522) 2025-05-01 14:49:47 -07:00
aritra saha
d5d5f0c445 readme: change granite3.2 to granite3.3 (#10525)
Update the list for readme
2025-05-01 14:46:09 -07:00
likelovewant
5478571e92 Merge branch 'ollama:main' into main 2025-05-01 18:56:54 +08:00
Michael Yang
a7835c6716 fix: write gguf padding (#10510)
* add gguf_test

* fix padding

padding was being added to offset but not to the running count
2025-04-30 17:59:31 -07:00
Devon Rifkin
ad3c7c9bda strip out thinking tags in message history for qwen3 & r1 (#10490)
* strip out thinking tags in message history for qwen3 & r1

This is in advance of "proper" support where we'll make reasoning
configurable and we'll parse out thinking/reasoning tags and provide
them to the caller. These models expect there to be no thinking tags in
the message history, so this should improve quality

* parse model names instead of hacky prefix check
2025-04-30 13:57:45 -07:00
Daniel Hiltgen
415c8fcc3d Fix "Stopping..." scheduler hang (#10487)
* Adjust initial scheduler refCount

Ensure we only set the refCount on success

* sched: fix lock order inversion deadlock

Under certain race conditions, there was a scenario where the scheduler would
get into a deadlock while trying to update free space information while a model
was trying to unload.
2025-04-30 11:26:52 -07:00
Daniel Hiltgen
718eda1b3e Narrow set of paths we load GGML from (#10485)
Users may have other incompatible GGML installs on their systems.
This will prevent us from trying to load them from the path.
2025-04-30 11:25:22 -07:00
Shahin R
421b7edeb4 readme: add link to lumina, a lightweight React frontend client (#10378) 2025-04-30 09:50:47 -07:00
batuhankadioglu
7b68e254c2 all: update several golang.org/x packages (#10436) 2025-04-29 16:51:09 -07:00
Daniel Hiltgen
7bec2724a5 integration: fix embedding tests error handling (#10478)
The cleanup routine from InitServerconnection should run in the defer of the test case to properly detect failures and report the server logs
2025-04-29 11:57:54 -07:00
Jesse Gross
a27462b708 ollamarunner: Temporarily disable worst case graph preallocation
When we later have a large batch running purely on a CPU, this
results the error:
GGML_ASSERT(talloc->buffer_id >= 0)

Disabling this means that we will incrementally reallocate memory
as the graph grows.

Fixes #10410
2025-04-29 11:04:58 -07:00
crStiv
6bf0b8193a readme: fix typos (#10399) 2025-04-29 10:30:44 -07:00
Devon Rifkin
db428adbb8 Merge pull request #10468 from ollama/drifkin/num-parallel-1 2025-04-29 10:21:36 -07:00
Devon Rifkin
fe5b9bb21b lower default num parallel to 2
this is in part to "pay" for #10452, which doubled the default context length. The combination isn't fully neutral though, because even though the old 4x2k limit and the new 2x4k limit are memory equivalent, the 1x fallback is larger with 4k
2025-04-29 02:04:14 -07:00
Devon Rifkin
6ec71d8fb6 Merge pull request #10452 from ollama/drifkin/4096-context-length
config: update default context length to 4096
2025-04-28 17:13:51 -07:00
Devon Rifkin
44b466eeb2 config: update default context length to 4096 2025-04-28 17:03:27 -07:00
Devon Rifkin
a25f3f8260 Merge pull request #10451 from ollama/revert-10364-drifkin/context-length
Revert "increase default context length to 4096"
2025-04-28 17:02:10 -07:00
Devon Rifkin
dd93e1af85 Revert "increase default context length to 4096 (#10364)"
This reverts commit 424f648632.
2025-04-28 16:54:11 -07:00
Devon Rifkin
d2ee599dcf load arrays with up to 1024 elements when estimating
This mirrors the old behavior before #10382
2025-04-27 13:45:13 -07:00
Devon Rifkin
6ed8898590 ggml: fix crash for array head counts
If it's an array, it uses the max value in the array

If array values for head counts becomes more popular, we can consider a
more invasive change like #10225 to calculate more accurate estimates.

Fixes: #9984
2025-04-27 11:38:06 -07:00
Michael Yang
5cfc1c39f3 model: fix build (#10416) 2025-04-25 19:24:48 -07:00
Michael Yang
f0ad49ea17 memory 2025-04-25 16:59:20 -07:00
Michael Yang
7ba9fa9c7d fixes for maverick 2025-04-25 16:59:20 -07:00
Michael Yang
8bf11b84c1 chunked attention 2025-04-25 16:59:20 -07:00
Michael Yang
470af8ab89 connect vision to text 2025-04-25 16:59:20 -07:00
Michael Yang
178761aef3 image processing
Co-authored-by: Patrick Devine <patrick@infrahq.com>
2025-04-25 16:59:20 -07:00
Michael Yang
f0c66e6dea llama4 2025-04-25 16:59:20 -07:00
Michael Yang
54055a6dae fix test 2025-04-25 16:59:01 -07:00
Michael Yang
340448d2d1 explicitly decode maxarraysize 1024 2025-04-25 16:59:01 -07:00
Michael Yang
ced7d0e53d fix parameter count 2025-04-25 16:59:01 -07:00
Michael Yang
a0dba0f8ae default slice values 2025-04-25 16:59:01 -07:00
Michael Yang
5e20b170a7 update comment 2025-04-25 16:59:01 -07:00
Michael Yang
d26c18e25c fix token type 2025-04-25 16:59:01 -07:00
Michael Yang
8d376acc9b zero means zero
use a default of 1024 when asking for zero is confusing since most calls
seem to assume 0 means do not ready any data
2025-04-25 16:59:01 -07:00
Michael Yang
dc1e81f027 convert: use -1 for read all 2025-04-25 16:59:01 -07:00
Michael Yang
5d0279164c generic ggml.array 2025-04-25 16:59:01 -07:00
Michael Yang
214a7678ea fix superfluous call to WriteHeader
the first call to http.ResponseWriter.Write implicitly calls WriteHeader
with http.StatusOK if it hasn't already been called. once WriteHeader
has been called, subsequent calls has no effect. Write is called when
JSON encoding progressUpdateJSON{}. calls to
http.ResponseWriter.WriteHeader after the first encode is useless and
produces a warning:

http: superfluous response.WriteHeader call from github.com/ollama/ollama/server/internal/registry.(*statusCodeRecorder).WriteHeader (server.go:77)
2025-04-25 16:58:49 -07:00
Michael Yang
4892872c18 convert: change to colmajor 2025-04-25 15:27:39 -07:00
Michael Yang
0b9198bf47 ci: silence deprecated gpu targets warning 2025-04-25 13:37:54 -07:00
Jeffrey Morgan
e9e5f61c45 llama: update to commit 2016f07b (#10352) 2025-04-24 17:26:02 -07:00
Parth Sareen
11dde41824 server: improve spacing for JSON grammar (#10131) 2025-04-24 16:47:57 -07:00
Parth Sareen
a53d744b01 llama: remove model loading for grammar (#10096) 2025-04-24 11:51:19 -07:00
likelovewant
e82cdb5f24 Merge branch 'ollama:main' into main 2025-04-24 20:05:18 +08:00
Adrien Duermael
40b10eee6d api: fix ImageData struct comment to expect raw image bytes (#10386) 2025-04-24 12:13:51 +09:00
Devon Rifkin
424f648632 increase default context length to 4096 (#10364)
* increase default context length to 4096

We lower the default numParallel from 4 to 2 and use these "savings" to
double the default context length from 2048 to 4096.

We're memory neutral in cases when we previously would've used
numParallel == 4, but we add the following mitigation to handle some
cases where we would have previously fallen back to 1x2048 due to low
VRAM: we decide between 2048 and 4096 using a runtime check, choosing
2048 if we're on a one GPU system with total VRAM of <= 4 GB. We
purposefully don't check the available VRAM because we don't want the
context window size to change unexpectedly based on the available VRAM.

We plan on making the default even larger, but this is a relatively
low-risk change we can make to quickly double it.

* fix tests

add an explicit context length so they don't get truncated. The code
that converts -1 from being a signal for doing a runtime check isn't
running as part of these tests.

* tweak small gpu message

* clarify context length default

also make it actually show up in `ollama serve --help`
2025-04-22 16:33:24 -07:00
Richard Shiue
2eb1fb3231 readme: add AppFlowy to community integrations (#10335) 2025-04-20 15:38:06 -07:00
greengrass821
0806521642 cmd: add support for escaping ~ in filepath (#10339)
Co-authored-by: tooth paste <tooth_paste91@Poorneshwars-MacBook-Pro.local>
2025-04-20 15:21:48 -07:00
Michael Yang
88738b357b create tempdir in models directory
the models directory should have plenty of storage and also ensure
there's no cross-device copy
2025-04-18 18:13:05 -07:00
Blake Mizerany
4e535e6188 server/internal/registry: make pull send errors with Error field (#10326)
Previously, the pull handler would send an error message in the Status
field, this prevented the client from using the message as a signal to
stop. In the case of the "run" command, it would follow the pull with a
"show" which would print a nearly identical "not found" message for
unresolved models.

Fixes #10307
2025-04-18 18:12:28 -07:00
Michael Yang
40b8fdbdca arange 2025-04-18 11:45:44 -07:00
likelovewant
d9472e31b7 Merge branch 'ollama:main' into main 2025-04-18 19:17:10 +08:00
Blake Mizerany
1d99451ad7 server/internal/client/ollama: handle some network errors gracefully (#10317) 2025-04-17 12:43:09 -07:00
Jeffrey Morgan
09bb2e30f6 ml/backend/ggml: use default CUDA compression mode (#10314) 2025-04-16 19:54:20 -07:00
Jeffrey Morgan
dc264be6ff ml: add missing cmake property and remove additional CMakeLists.txt (#10310) 2025-04-16 18:56:29 -07:00
Devon Rifkin
fbe7039618 Merge pull request #10290 from ollama/drifkin/template-highlighting
docs: change more template blocks to have syntax highlighting
2025-04-16 15:15:08 -07:00
Jeffrey Morgan
943464ccb8 llama: update to commit 71e90e88 (#10192) 2025-04-16 15:14:01 -07:00
Blake Mizerany
369de832cd server/internal/registry: remove superfluous progress bar flush (#10303)
This removes the extra flushProgress() at the end of handlePull. It is
unnecessary because final progress updates are flushed in all cases of
the main select loop.
2025-04-16 14:43:07 -07:00
Blake Mizerany
3457a315b2 server/internal/client/ollama: cleanup use of multiple counters (#10304)
The completed and received counters must work in tandem and the code
should better reflect that. Previously, the act of updating them was 2-3
lines of code duplicated in multiple places. This consolidates them into
a single update closure for easy reading and maintenance.

This also simplifies error handling in places where we can use a return
parameter and defer to handle the error case for updates.

Also, remove the old Layer field from the trackingReader struct.
2025-04-16 14:33:40 -07:00
Daniel Hiltgen
ed4e139314 Integration test improvements (#9654)
Add some new test coverage for various model architectures,
and switch from orca-mini to the small llama model.
2025-04-16 14:25:55 -07:00
Daniel Hiltgen
56dc316a57 Give tests more time to run (#10306)
Fix flake failures on windows
2025-04-16 13:37:00 -07:00
Michael Yang
2fec73eef6 fix write gguf padding 2025-04-16 10:24:35 -07:00
Blake Mizerany
1e7f62cb42 cmd: add retry/backoff (#10069)
This commit adds retry/backoff to the registry client for pull requests.

Also, revert progress indication to match original client's until we can
"get it right."

Also, make WithTrace wrap existing traces instead of clobbering them.
This allows clients to compose traces.
2025-04-15 23:24:44 -07:00
Jesse Gross
ccb7eb8135 ggml: Free ggml_backend_buffer_t when releasing buffer
When ggml_backend_buffer_free() is called, the device memory
is released but not all backends consistently release the actual
ggml_backend_buffer_t in system RAM, causing a memory leak.

Bug #10040
2025-04-15 15:29:58 -07:00
Devon Rifkin
637fd21230 docs: change more template blocks to have syntax highlighting
In #8215 syntax highlighting was added to most of the blocks, but there were a couple that were still being rendered as plaintext
2025-04-15 12:08:11 -07:00
Devon Rifkin
0fe487e732 Merge pull request #10276 from ollama/drifkin/cors-headers
server: add `OpenAI-Beta` header to CORS safelist
2025-04-14 17:42:51 -07:00
Devon Rifkin
6bfaa6e282 Merge pull request #10277 from ollama/drifkin/docs-json-errors
docs: update some response code blocks to json5
2025-04-14 17:11:20 -07:00
Devon Rifkin
378d3210dc docs: update some response code blocks to json5
This is to prevent rendering bright red comments indicating invalid JSON when the comments are just supposed to be explanatory
2025-04-14 17:09:06 -07:00
Devon Rifkin
97fe45e36d server: add OpenAI-Beta header to CORS safelist
alphabetized the compat list and then added a single header

fixes: #9801
2025-04-14 15:36:10 -07:00
CYJiang
64a9cc8f05 cmd: add missing file close in tests (#10179) 2025-04-14 07:49:41 -04:00
Jesse Gross
f50d691254 ggml: Fix memory leak on input tensors
For every forward pass through the model, we need to allocate input
tensors: tokens, images, positions, outputs and masks. These get
allocated in system memory.

However, when we close the context that the tensors were allocated
through, the metadata gets freed but the actual backend memory does
not. This results in a significant memory leak.

This makes it so that all the memory allocated through a context
gets freed when it is closed.

Fixes #10040
2025-04-11 11:13:22 -07:00
Jesse Gross
34c3b68fc8 ggml: Don't allocate CPU buffers as CUDA Host buffers
Allocating (and in particular, freeing) memory from CUDA host buffers
is expensive and can cause a significant performance hit if we do
it for every token. Using normal system memory avoids this issue
and also gives the OS more flexibility to manage it.

There is no performance impact from this patch directly (either
positive or negative) but it makes a difference once we start
freeing memory correctly.
2025-04-11 11:13:22 -07:00
Jesse Gross
f33ccd5d27 ggml: Use pointer receivers for Context
Context is currently mixed between pointer and value receivers. Change
this to be all pointer receivers so don't have to reason about whether
the things we are updating in the struct will be retained.
2025-04-11 11:13:22 -07:00
Jesse Gross
bc108b9ad6 ggml: Log filesystem errors
Sometimes loading the GGUF file fails with:
panic: context canceled

This is probably a filesystem error but it doesn't provide any
information about what happened.
2025-04-11 11:13:06 -07:00
likelovewant
0c3d27ae42 Merge branch 'ollama:main' into main 2025-04-11 13:29:41 +08:00
Tom Sheffler
ef65174df2 types: include the 'items' and '$defs' fields to properly handle "array" types (#10091)
---------

Co-authored-by: Parth Sareen <parth.sareen@ollama.com>
2025-04-09 17:45:49 -07:00
Ire Gaddr
42ecb9f138 fix(scheduler): make model unload order deterministic (#10185) 2025-04-09 16:01:02 -07:00
湛露先生
5c0331fd83 Fix dockerfile. (#9855)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-04-09 13:24:56 -07:00
CYJiang
e7019c9455 fix(integration): move waitgroup Add(1) outside goroutine to avoid potential issue (#10070)
Signed-off-by: googs1025 <googs1025@gmail.com>
2025-04-08 15:17:40 -07:00
Michael Yang
d98bfe7e70 kvcache: stub out test structs 2025-04-08 15:08:29 -07:00
Parth Sareen
6747099d71 types: add any type and validation for ToolFunction enum (#10166) 2025-04-08 15:05:38 -07:00
frob
ccc8c6777b cleanup: remove OLLAMA_TMPDIR and references to temporary executables (#10182)
* cleanup: remove OLLAMA_TMPDIR
* cleanup: ollama doesn't use temporary executables anymore

---------

Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-04-08 15:01:39 -07:00
Jesse Gross
dbb149e6f7 ollamarunner: Preallocate worst case graph at startup
Currently, the KV cache and graph are lazily allocated as needed.
The cache is fully allocated on first use of the corresponding
layer whereas the graph grows with the size of the context.

This can be an issue if another application allocates more VRAM
after we do our calculations - Ollama will crash in the middle of
inference. If we instead allocate the maximum needed memory at
startup of the runner, we will either succeed or fail at that point
rather than at some surprising time in the future.

Currently, this only generates a worst case batch for text, which
means that vision models may get a partial allocation and continue
to lazily allocate the rest.
2025-04-08 10:01:28 -07:00
Jesse Gross
a807985e59 ggml: Check for OOM and return as Go errors
If there is a CUDA OOM, we currently don't check the return value
and will evetually segfault. This checks for the problem and generates
a Go error. At the moment, this will still result in a panic but having
the error is the first step to being able to handle it more gracefully.
2025-04-08 10:01:28 -07:00
qwerty108109
8643c4d5bf readme: fix url for big-AGI in community integrations (#10173) 2025-04-07 19:42:26 -07:00
likelovewant
76014b9ac7 Merge branch 'ollama:main' into main 2025-04-08 10:11:28 +08:00
Jonathan Hecl
b0c3aba590 readme: add GGUF-to-ollama to community integrations (#10156) 2025-04-07 16:31:45 -07:00
qwerty108109
19c0c25de8 readme: rename community integration from Claude Dev to Cline (#10168) 2025-04-07 16:27:20 -07:00
Alex Rozgo
2f723ac2d6 types: allow tool function parameters with a single type or an array of types (#9434) 2025-04-07 14:27:01 -07:00
Devon Rifkin
249fbbe52f Merge pull request #10169 from ollama/drifkin/fix-contributing-formatting
CONTRIBUTING: fix code block formatting
2025-04-07 14:02:35 -07:00
Devon Rifkin
c38680b8a1 CONTRIBUTING: fix code block formatting
There were only 3 spaces instead of 4, so the example was being considered to include html elements
2025-04-07 13:53:33 -07:00
Michael Yang
16fca86c4a digest files in parallel 2025-04-07 09:46:31 -07:00
Daniel Hipke
0f3f9e353d ml/backend/ggml: create a new file descriptor for tensor (#10133)
improves model loading times on network-based filesystems
such as GCS fuse by creating a dedicated file descriptor for each
section of the file being read, reducing seeking
2025-04-04 17:04:24 -07:00
likelovewant
eceb276901 Merge branch 'ollama:main' into main 2025-04-04 20:46:54 +08:00
Bruce MacDonald
6bd0a983cd model: support for mistral-small in the ollama runner
Mistral is a popular research lab making open source models. This updates
the forward pass of llama architecture models to support both llama models
and mistral models by accounting for additional metadata present in mistral
models, and finding the correct dimensions for the output projection.
2025-04-03 16:57:36 -07:00
Michael Yang
1861fbdeb5 Merge pull request #9873 from ollama/mxyng/fs-config
fs: move ml.Config to fs package
2025-04-03 14:05:21 -07:00
Michael Yang
3b96a93672 fs: move ml.Config to fs package 2025-04-03 13:12:24 -07:00
Bruce MacDonald
e53b3cbd0c llm: set done reason at server level (#9830)
No functional change. Many different done reasons can be set at the runner
level, so rather than obsuring them we should return them to the server
process and let it choose what to do with the done reason. This separates
the API concerns from the runner.
2025-04-03 10:19:24 -07:00
Jeffrey Morgan
b51e0f397c model: fix issues with spm tokenizer for Gemma 3 (#10081) 2025-04-02 13:22:56 -07:00
jmorganca
b42970063d kvcache: Add check for values that fall out of sliding window cache
The sliding window cache trims entries that are outside the window for
the latest token. This works when we are extending the cache, such as
when the conversation continues. However, if we have a partial overlap
in conversation (including the BOS tokens), then we resume from a past
point in the conversation and the needed tokens are no longer stored
in memory. This verifies that the new window overlaps with the old one
before reusing the cache.

Co-authored-by: Jesse Gross <jesse@ollama.com>
2025-04-02 11:55:48 -07:00
Jesse Gross
493385eb3e ollamarunner: Don't truncate a SameBatch
When truncating inputs to the the context window at the beginning of
a sequence, we remove the minimum amount possible. However, this
may cause us to truncate to the middle of a set of inputs that
the model specified should not be split up. To avoid this, we
need to remove the rest of the partial batch.
2025-04-02 10:40:38 -07:00
Bruce MacDonald
9876c9faa4 chore(all): replace instances of interface with any (#10067)
Both interface{} and any (which is just an alias for interface{} introduced in Go 1.18) represent the empty interface that all types satisfy.
2025-04-02 09:44:27 -07:00
IsAurora6
4e415029b3 readme: add Casibase to community integrations (#10057) 2025-04-02 01:27:16 -07:00
Bruce MacDonald
e172f095ba api: return model capabilities from the show endpoint (#10066)
With support for multimodal models becoming more varied and common it is important for clients to be able to easily see what capabilities a model has. Retuning these from the show endpoint will allow clients to easily see what a model can do.
2025-04-01 15:21:46 -07:00
Ilian
c001b98087 docs: add TagSpaces to community integrations (#9983) 2025-03-31 17:28:59 -07:00
Abyss-c0re
23fc8e92eb docs: add DeepShell to community projects (#9955)
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-31 17:23:04 -07:00
湛露先生
4059a297a6 discover: /proc/cpuinfo file open and close. (#9950)
Signed-off-by: zhanluxianshen <zhanluxianshen@163.com>
2025-03-31 17:07:42 -07:00
Bruce MacDonald
66b2539238 runner: clear cache when shift is not possible (#9433)
Clear KV cache when shift operation is not supported by model.
Added KvCacheCanShift() check to handle models that can't perform cache shifts,
falling back to full cache clear while preserving logical token history to
maintain expected behavior when context window fills up.
2025-03-31 12:54:45 -07:00
Blake Mizerany
ef27d52e79 server/internal/client/ollama: cache completed chunks (#9933)
This change adds tracking of download chunks during the pull process so
that subsequent pulls can skip downloading already completed chunks.
This works across restarts of ollama.

Currently, download state will be lost if a prune is triggered during a
pull (e.g. restart or remove). This issue should be addressed in a
follow-up PR.
2025-03-30 23:54:54 -07:00
Jesse Gross
b2a465296d runner: Release semaphore and improve error messages on failures
If we have an error after creating a new sequence but before
finding a slot for it, we return without releasing the semaphore.
This reduces our parallel sequences and eventually leads to deadlock.

In practice this should never happen because once we have acquired
the semaphore, we should always be able to find a slot. However, the
code is clearly not correct.
2025-03-30 19:21:54 -07:00
Jesse Gross
5d097277ef ollamarunner: Ensure batch size limits are not exceeded
With the llama runner, we can generate up to NUM_PARALLEL batches
at once, which will then get broken up to into individual batches
to get executed by llama.cpp (i.e. we add up to 2048 tokens and
this gets split into 4 batches of 512 tokens at default settings).

This splitting can improve parallelism on multi-GPU systems because
the individual batches can move though the pipeline without blocking
on the first one to fully complete. However, we don't yet support
this in the Ollama runner, partially because it makes it hard to
enforce model-specified batch constraints, which didn't exist
previously.

The result is that we will try to execute the full, unsplit batch.
This could result in out of memory or insufficient KV cache space
errors.

This triggers batch breaking when the total inputs from all sequences
exceeds the batch size, rather than per-sequence. In order to ensure
fairness, it also reintroduces round-robinning around sequences so
that we don't let one busy sequence starve the others.
2025-03-30 19:21:01 -07:00
Leandro Borges Ferreira
071a9872cb readme: add Writeopia to community integrations (#10042) 2025-03-30 17:28:06 -07:00
likelovewant
cc2978039c add gfx1201 support info 2025-03-30 14:48:18 +08:00
likelovewant
e9c7bade80 Merge branch 'ollama:main' into main 2025-03-30 11:23:25 +08:00
CYJiang
0bd0454ea7 server: organize error types (#9465)
Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-28 11:50:22 -07:00
likelovewant
6097b74894 Merge branch 'main' of github.com:likelovewant/ollama-for-amd 2025-03-28 10:17:12 +08:00
likelovewant
2c9f7a9e17 Merge remote-tracking branch 'upstream/main' 2025-03-28 10:16:00 +08:00
Jesse Gross
01aa788722 ml: Remove Output from Context interface
Model implementations should use Input for all of their tensors
supplied to the model. This includes tensors that relate to the
outputs, which is confusing since there is also an Output funciton.

Since Output is only used internally in GGML and not used by any
model implementations, we can remove it from the interface to
reduce confusion.
2025-03-27 12:19:43 -07:00
saman-amd
ead27aa9fe Add gfx1200 & gfx1201 support on linux (#9878) 2025-03-27 07:35:19 -07:00
Parth Sareen
b816ff86c9 docs: make context length faq readable (#10006) 2025-03-26 17:34:18 -07:00
molbal
e5d84fb90b docs: add molbal/orca-cli to community integrations (#9909) 2025-03-26 13:39:01 -07:00
Hengky Steen
dd66712e31 docs: add ollamb to community projects 2025-03-26 13:38:05 -07:00
Jesse Gross
f66216e399 ggml: Support heterogeneous KV cache layer sizes in memory estimation
Gemma3 uses sliding windows for its context on 5/6 layers, significantly
reducing memory usage but leading to uneven usage across layers,
which makes allocation to the correct GPU difficult. We currently
estimate very conservatively by assuming all layers are consistent
at the max size.

Llama3.2-vision is also inconsistent between self attention and cross
attention layers - at moment, we calculate the correct total size
and then average this across layers. In some cases, this may lead
to crashes if a large layer is placed on a GPU sized by the average.

This allows memory estimation to calculate per-layer KV cache size
and take this account when placing layers onto GPUs. We already do
this for weights that vary per-tensor, so this is a logical extension.

Fixes #9730
Fixes #9890
2025-03-26 13:16:03 -07:00
Jesse Gross
f4f0992b6e llm: Fix debug logging for memory estimates 2025-03-26 13:16:03 -07:00
Jesse Gross
1feff61977 kvcache: Sliding window cache only needs a single batch total
When computing the size of the cache for sliding window attention,
we don't need to multiple the batch size by the number of parallel
sequences - the batch size is constant.

This also simplifies the check for whether to allocate the cache
size based on capacity or window size as the batch size is already
incorporated into the capacity when handled by the runner.
2025-03-26 13:16:03 -07:00
copeland3300
5e0b904e88 docs: add flags to example linux log output command (#9852) 2025-03-25 09:52:23 -07:00
likelovewant
9bd1a6116c Merge branch 'ollama:main' into main 2025-03-25 21:01:48 +08:00
Matheus C. França
131f0355a5 readme: add ollama-d library (#9907) 2025-03-24 09:25:58 -07:00
likelovewant
17bb5ea679 Merge branch 'ollama:main' into main 2025-03-23 12:10:05 +08:00
Blake Mizerany
ce929984a3 server/internal/client/ollama: fix file descriptor management in Pull (#9931)
Close chunked writers as soon as downloads complete, rather than
deferring closure until Pull exits. This prevents exhausting file
descriptors when pulling many layers.

Instead of unbounded defers, use a WaitGroup and background goroutine
to close each chunked writer as soon as its downloads finish.

Also rename 'total' to 'received' for clarity.
2025-03-21 16:16:38 -07:00
Michael Yang
4b34930a31 Merge pull request #9897 from ollama/mxyng/chunk-load
ml/backend/ggml: load tensors in 128KiB chunks
2025-03-21 14:47:13 -07:00
Michael Yang
74bd09652d ml/backend/ggml: load tensors in 32KiB chunks 2025-03-21 14:43:52 -07:00
Bruce MacDonald
fb6252d786 benchmark: performance of running ollama server (#8643) 2025-03-21 13:08:20 -07:00
Blake Mizerany
c794fef2f2 server/internal/client/ollama: persist through chunk download errors (#9923) 2025-03-21 13:03:43 -07:00
Parth Sareen
00ebda8cc4 Revert "parser: remove role validation from Modelfile parser" (#9917)
This reverts commit ffbfe833da.
2025-03-21 12:38:09 -07:00
Parth Sareen
d14ce75b95 docs: update final response for /api/chat stream (#9919) 2025-03-21 12:35:47 -07:00
Jesse Gross
2d6eac9084 kvcache: Optimize sliding window attention
Currently sliding window attention allocates and uses the full
context size and just masks out any tokens that are outside of the
window. However, we really only need (roughly) the sliding window
size.

At large context sizes this improves two things:
 - Memory allocated - since the fully context size is allocated up front,
   memory requirements drop substantially. On Gemma3:4b with a 32k
   context window, total memory usage (including weights and non-sliding
   layers) drops from ~20GB to ~8GB.
 - Computation - ranges that are completely outside of the sliding
   window are now removed from the tensors that are returned from the
   cache rather than simply being masked out. This results in more
   efficient processing, scaling with the size of the context that
   has actually been used.

Notable, this does not update the scheduler for any model to be aware of
the smaller memory requirements. This is difficult for Gemma3 because
the layers are heterogeneous between sliding and non-sliding attention.
As a result, while actual memory consumption will be reduced, the
scheduler will over-estimate the requirements of the model. This means
that splitting between GPUs or GPUs and CPUs will still be suboptimal.

Bug #9730
2025-03-21 11:20:19 -07:00
Jesse Gross
3ed7ad3ab3 kvcache: Pass granular cache size into implementations
Currently the runner computes the kv size needed and creates a
cache of that size. This is the context size times number of
parallel sequences.

Cache implementations can make better decisions about their memory
usage, so instead pass in the required capacity, number of sequences
and maximum batch size. For now, the causal cache just uses this to
compute the size in the same way as before.
2025-03-21 11:20:19 -07:00
Patrick Devine
6d1103048e fix: show correct bool value for kv in verbose show information (#9928) 2025-03-21 11:13:54 -07:00
Jesse Gross
0ff28758b3 ollamarunner: Provide mechanism for backends to report loading progress
This enables the runner to report progress back to the Ollama server,
both for showing status to the user and also to prevent the server
from killing the runner if it thinks things have stalled.

Most of the infrastructure was already there, this extends it to
be available to the backends.
2025-03-21 10:44:26 -07:00
Jesse Gross
d3e9ca3eda kvcache: Account for source tensors in defrag operation count
Defragging the KV cache can generate a lot of operations, so we
need to be careful that we don't overflow the number that the graph
can support. We currently account for all of the nodes that we add
to the graph for each move but we also need to include the original
cache tensors as well.

Fixes #9904
2025-03-21 10:42:19 -07:00
Jesse Gross
0fbfcf3c9c model: Pass input tensor instead of raw data to models
Rather than directly giving the input data to models, we can
pass a tensor instead. In the short term, this saves some duplicated
code.

Longer term, we will want to overlap setting up the next batch with
processing of the current one. In this case, we will only have the
shape of tensor but it will not be loaded with data at the time of
graph generation. By passing only a tensor to models now, we set up
this possibility and prevent them from relying on data that they won't
have in the future.

Although the same could be done for Positions and Outputs, in some
cases we either need the raw input data or don't use them at all.
Therefore, for now we leave them as they are and allow models to
convert them to tensors as needed.
2025-03-20 13:28:13 -07:00
Jesse Gross
0c220935bd input: Rename Options to Batch
Options is no longer very descriptive of this struct.
2025-03-20 13:28:13 -07:00
rylativity
ffbfe833da parser: remove role validation from Modelfile parser (#9874)
* updates parser/parser.go to allow arbitrary roles in Modelfile MESSAGE blocks
2025-03-20 13:11:17 -07:00
Parth Sareen
42a14f7f63 sample: add error handling for empty logits (#9740) 2025-03-20 11:11:18 -07:00
Patrick Devine
f8c3dbe5b5 templates: add autotemplate for gemma3 (#9880)
This change allows the gemma3 template to be autodetected during `ollama
create`.
2025-03-20 00:15:30 -07:00
Jesse Gross
b078dd157c gemma2: Remove second call to Rows
Looks like a merge conflict that broke the model.
2025-03-19 17:28:49 -07:00
Blake Mizerany
2ddacd7516 server/internal/client/ollama: confirm all chunksums were received (#9893)
If the chunksums response is missing a chunk, the client should fail
the download. This changes the client to check that all bytes are
accounted for in the chunksums response.

It is possible there are overlaps or gaps in the chunksums response and
so the size is not the only thing left to check, but this provides
enough coverage for now. We may want to check that chunks are contiguous
later.
2025-03-19 14:59:57 -07:00
Jeffrey Morgan
da0e345200 ml: use input context for extracting outputs (#9875) 2025-03-18 18:08:19 -07:00
Bruce MacDonald
df94175a0f ggml: return error on failure to read tensor data (#9872)
When converting a ggml model if there is a failure to read tensor data a nil error value was being returned. It should be assigned to the actual error from reading.
2025-03-18 16:51:33 -07:00
Bruce MacDonald
61a8825216 convert: return name of unsupported architecture (#9862)
When a model's architecture cannot be converted return the name of the unsupported arch in the error message.
2025-03-18 10:38:28 -07:00
likelovewant
a69a1e6e63 Merge remote-tracking branch 'upstream/main' 2025-03-18 18:09:35 +08:00
Michael Yang
021dcf089d Merge pull request #9824 from ollama/mxyng/sched
conditionally enable parallel pipelines
2025-03-17 15:41:37 -07:00
Jesse Gross
bf24498b1e ollamarunner: Check for minBatch of context space when shifting
Models can specify that a group of inputs need to be handled a single
batch. However, context shifting didn't respect this and could trigger
a break anyways. In this case, we should instead trigger a context
shift earlier so that it occurs before the grouped batch.

Note that there still some corner cases:
 - A long prompt that exceeds the context window can get truncated
   in the middle of an image. With the current models, this will
   result in the model not recognizing the image at all, which is
   pretty much the expected result with truncation.
 - The context window is set less than the minimum batch size. The
   only solution to this is to refuse to load the model with these
   settings. However, this can never occur with current models and
   default settings.

Since users are unlikely to run into these scenarios, fixing them is
left as a follow up.
2025-03-17 15:33:16 -07:00
Bruce MacDonald
95e271d98f runner: remove cache prompt flag from ollama runner (#9826)
We do not need to bypass the prompt caching in the ollama runner yet, as
only embedding models needed to bypass the prompt caching. When embedding
models are implemented they can skip initializing this cache completely.
2025-03-17 15:11:15 -07:00
Jeffrey Morgan
364629b8d6 ml/backend/ggml: allocate memory with malloc when loading model (#9822) 2025-03-17 13:32:40 -07:00
Parth Sareen
108fe02165 sample: make mutations in transforms explicit (#9743)
* updated minP to use early exit making use of sorted tokens
2025-03-17 11:24:18 -07:00
Michael Yang
4561fff36e conditionally enable parallel pipelines 2025-03-17 09:46:07 -07:00
Daniel Hiltgen
50b5962042 Add support for ROCm gfx1151 (#9773) 2025-03-17 09:33:57 -07:00
likelovewant
457576739f Merge branch 'ollama:main' into main 2025-03-17 14:58:37 +08:00
Louis Beaumont
e27e4a3c1b readme: add screenpipe to community integrations (#9786) 2025-03-16 21:56:42 -04:00
zeo
088514bbd4 readme: add Ellama to list of community integrations (#9800) 2025-03-16 21:54:43 -04:00
Patrick Devine
2c8b484643 fix: correctly save in interactive mode (#9788)
This fixes the case where a FROM line in previous modelfile points to a
file which may/may not be present in a different ollama instance. We
shouldn't be relying on the filename though and instead just check if
the FROM line was instead a valid model name and point to that instead.
2025-03-15 12:09:02 -07:00
Blake Mizerany
8294676150 server/internal/client/ollama: set User-Agent for registry client (#9775)
This sets the agent header in DefaultRegistry to include the version of
the client, OS, and architecture in the previous format, with a minor
twist.

Note: The version is obtained from the build info, instead of the
version in version.Version, which should not longer be necessary, but we
can remove in a future commit. Using the build info is more accurate and
also provides extra build information if the build is not tagged, and if
it is "dirty". Previously, the version was just "0.0.0" with no other
helpful information. The ollama.com registry and others handle this
swimmingly.
2025-03-14 18:33:07 -07:00
Patrick Devine
ef378ad673 gemma3 quantization (#9776) 2025-03-14 17:41:07 -07:00
Daniel Hiltgen
2d2247e59e Align versions for local builds (#9635)
Darwin was using a different pattern for the version string
than linux or windows.
2025-03-14 15:44:08 -07:00
Jesse Gross
7bf793a600 gemma3: Allow multiple image in a single input
Previously processing multiple images in a batch would trigger
segfaults so sending images together was disabled as a way to
mitigate this. The trigger was processing one image on the CPU
and one on the GPU.

This can no longer happen:
 - The vision encoder is now on the GPU so both images would be
   processed on the GPU.
 - We require images to be fully contained in a batch and each
   image including its special tokens is over half the batch size.
   As a result, we will never get two images in the same batch.

Fixes #9731
2025-03-14 15:38:54 -07:00
Jesse Gross
282bfaaa95 ollamarunner: Use a separate context per multimodal input
Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.

This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
2025-03-14 15:38:54 -07:00
Jesse Gross
9679f40146 ml: Allow models to constrain inputs to a single batch
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.

Fixes #9697
2025-03-14 15:38:54 -07:00
Bruce MacDonald
3892c3a703 llm: remove internal subprocess req and resp types (#9324)
This commit refactors the LLM subsystem by removing internal subprocess
request and response types. It consolidates duplicate type definitions
across the codebase, moving them to centralized locations. The change also
standardizes interfaces between components, simplifies the ServerStatusResp
struct, and moves the ParseDurationMs function to a common package. This
cleanup reduces code duplication between different runner implementations
(llamarunner and ollamarunner).
2025-03-14 15:21:53 -07:00
Blake Mizerany
4e320b8b90 server/internal/chunks: remove chunks package (#9755) 2025-03-14 08:57:59 -07:00
likelovewant
4cd0c73408 Merge branch 'ollama:main' into main 2025-03-14 13:44:39 +08:00
Blake Mizerany
eb2b22b042 server/internal/client: use chunksums for concurrent blob verification (#9746)
Replace large-chunk blob downloads with parallel small-chunk
verification to solve timeout and performance issues. Registry users
experienced progressively slowing download speeds as large-chunk
transfers aged, often timing out completely.

The previous approach downloaded blobs in a few large chunks but
required a separate, single-threaded pass to read the entire blob back
from disk for verification after download completion.

This change uses the new chunksums API to fetch many smaller
chunk+digest pairs, allowing concurrent downloads and immediate
verification as each chunk arrives. Chunks are written directly to their
final positions, eliminating the entire separate verification pass.

The result is more reliable downloads that maintain speed throughout the
transfer process and significantly faster overall completion, especially
over unstable connections or with large blobs.
2025-03-13 22:18:29 -07:00
Michael Yang
4ea4d2b189 Merge pull request #9703 from ollama/mxyng/gemma3-memory
count gemma3 vision tensors
2025-03-13 16:56:34 -07:00
Michael Yang
8d76fa23ef count non-repeating vision layers 2025-03-13 16:53:29 -07:00
Bradley Erickson
74b44fdf8f docs: Add OLLAMA_ORIGINS for browser extension support (#9643) 2025-03-13 16:35:20 -07:00
Michael Yang
65b88c544f fix divide by zero 2025-03-13 16:35:00 -07:00
Michael Yang
a422ba39c9 roughly count gemma3 graph
the largest operation is by far (q @ k) so just count that for
simplicity
2025-03-13 16:35:00 -07:00
Michael Yang
d2ec22371e count all vision tensors 2025-03-13 16:35:00 -07:00
Michael Yang
033cec232a count gemma3 vision tensors 2025-03-13 16:34:42 -07:00
Michael Yang
543240fb5f Merge pull request #9741 from ollama/mxyng/visionless
fix: error if image requested without vision model
2025-03-13 15:03:25 -07:00
Patrick Devine
4bed739259 add verbose mode to the show command (#9640)
Add metadata and tensor information to the show command to be able to
see more information about a model. This outputs the same data as
shown on the model details page on ollama.com
2025-03-13 14:24:27 -07:00
Patrick Devine
80c7ce381b fix: change default context size for gemma3 (#9744) 2025-03-13 13:59:19 -07:00
Michael Yang
ccfd41c4f0 Merge pull request #9742 from ollama/mxyng/engine-error-embeddings
fix: error on models that don't support embeddings
2025-03-13 13:12:33 -07:00
Michael Yang
3e102b7dad Update model/model.go
Co-authored-by: Jeffrey Morgan <jmorganca@gmail.com>
2025-03-13 13:11:52 -07:00
Michael Yang
ec46f3286c engine: error on embeddings; not currently implemented 2025-03-13 11:40:55 -07:00
Michael Yang
5e2e0b46b1 fix: error if image requested without vision model 2025-03-13 10:52:09 -07:00
Michael Yang
45a13b1dec Merge pull request #9688 from Shane-XB-Qian/debug_mistype_lld
ollama-debug.c: correct mistype
2025-03-13 10:12:44 -07:00
Parth Sareen
5c0b663969 sample: separate softmax and temperature transforms (#9732) 2025-03-13 09:53:27 -07:00
shane.xb.qian
30d7a59ba8 ollama-debug.c: change 'ld' to 'PRIi64'
* macOS has different definition per info from @mxyng
2025-03-13 17:10:37 +08:00
ParthSareen
4aeb67ef4c sample: do all sorting in topK 2025-03-12 11:59:17 -07:00
ParthSareen
3ba91634c1 sample: simplify top_k=0 sorting 2025-03-12 11:59:17 -07:00
ParthSareen
1b7433b71e sample: use container/heap for top_k 2025-03-12 11:59:17 -07:00
Bruce MacDonald
a70820daa0 models/gemma3: remove final logit softcap (#9692)
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
2025-03-12 10:17:57 -07:00
Shane-XB-Qian
6b45b1d6b4 cli: adding support ctrl-n/p like general cli (#9136)
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 08:51:56 -07:00
shane.xb.qian
85ab552028 ollama-debug.c: correct mistype
Signed-off-by: shane.xb.qian <shane.qian@foxmail.com>
2025-03-12 22:32:30 +08:00
likelovewant
c3945aaa1d Merge branch 'ollama:main' into main 2025-03-12 15:00:44 +08:00
frob
b3af953a55 cli: don't exit for invalid model during /load. (#9576)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-03-11 23:42:53 -07:00
likelovewant
3a65093078 remove extra setting 2025-03-12 14:40:55 +08:00
Michael
ad4e0bf3be Adding Gemma 3 to readme (#9671) 2025-03-12 07:39:25 +01:00
likelovewant
88ab587807 Merge branch 'ollama:main' into main 2025-03-12 14:32:40 +08:00
Michael Yang
aee28501b5 Merge pull request #9661 from ollama/gemma
engine: add gemma support
2025-03-11 15:07:50 -07:00
jmorganca
83f0ec8269 all: address linter errors 2025-03-11 14:49:20 -07:00
jmorganca
c6b6938b3a kvcache: fix tests by adding AvgPool2D stub 2025-03-11 14:49:20 -07:00
jmorganca
fb4664fcec model: add more spm tokenizer tests 2025-03-11 14:49:20 -07:00
jmorganca
20e3593863 model: validate left and right pairs before merging them 2025-03-11 14:49:20 -07:00
Michael Yang
63a394068c use 2d pooling 2025-03-11 14:49:20 -07:00
Daniel Hiltgen
ab39e08eb9 llm: auto detect models that require Ollama Engine (#1) 2025-03-11 14:49:20 -07:00
jmorganca
11bfa62796 add trailing \n\n after <end_of_image> to match reference implementation 2025-03-11 14:49:20 -07:00
jmorganca
f63e62e546 reduce kernel size, add TODO for loading from config 2025-03-11 14:49:20 -07:00
jmorganca
65b0f329d1 Revert "Allow models to force a new batch"
This reverts commit c7eae586b899083acebcd9b3847b89ea78c2850c.
2025-03-11 14:49:20 -07:00
Jesse Gross
06007c0a18 Allow models to force a new batch
This is useful for a few things:
 - Work around bugs, such as having 2 images in one batch
 - Keep the image in a single batch for fully connected attention
 - Improve performance by not evaluating embeddings multiple times
2025-03-11 14:49:20 -07:00
Jesse Gross
a8e83a7654 Disable causal attention based on batch index
Currently we are using positions, which are relative to a
sequence and may not be unique.
2025-03-11 14:49:20 -07:00
Jesse Gross
475005504e Restrict Gemma to a single image per request 2025-03-11 14:49:20 -07:00
Jesse Gross
2c40c4d35e Fix follow up images and images split across batches 2025-03-11 14:49:19 -07:00
Michael Yang
e95278932b use non-causal mask only for image positions 2025-03-11 14:49:19 -07:00
Michael Yang
9d2a20a763 use non-causal mask for inputs with images 2025-03-11 14:49:19 -07:00
Patrick Devine
2e54d72fc3 fix gemma3 1b conversion 2025-03-11 14:49:19 -07:00
Michael Yang
6b32a2d549 compat with upstream gguf 2025-03-11 14:49:19 -07:00
Michael Yang
c5cbe4fc2a fallback to cpu 2025-03-11 14:49:19 -07:00
Michael Yang
f888912870 fix vision encoder 2025-03-11 14:49:19 -07:00
Michael Yang
9e4642e9b3 ollama debug tensor 2025-03-11 14:49:19 -07:00
Michael Yang
6b0486c216 duplicate token_embd to output 2025-03-11 14:49:19 -07:00
Michael Yang
d368c039f0 skip repacking vision tensors 2025-03-11 14:49:19 -07:00
Patrick Devine
9b54267e69 fix configs 2025-03-11 14:49:19 -07:00
Michael Yang
46bb0169c4 update model 2025-03-11 14:49:19 -07:00
Michael Yang
8934324b72 use fast attention 2025-03-11 14:49:18 -07:00
Jesse Gross
0e886595bf Fix tests and drift from main 2025-03-11 14:49:18 -07:00
Patrick Devine
c62861f4fa fix conversion 2025-03-11 14:49:18 -07:00
Michael Yang
0df1800436 set non-causal attention 2025-03-11 14:49:18 -07:00
Patrick Devine
631fecc6d9 temporary work around for converting spm 2025-03-11 14:49:18 -07:00
Jesse Gross
4346c2409d fix drift from main 2025-03-11 14:49:18 -07:00
Michael Yang
4b037a97dc add gemma vision encoder 2025-03-11 14:49:17 -07:00
Patrick Devine
5f74d1fd47 gemma2 impl 2025-03-11 14:35:08 -07:00
Daniel Hiltgen
4dcf80167a Build release for windows with local script (#9636) 2025-03-11 08:34:20 -07:00
Michael Yang
26a26998fb Merge pull request #9590 from ollama/mxyng/dump-pad
fix: pad tensor item if ge zero
2025-03-10 16:34:55 -07:00
Michael Yang
9926eae015 fix: pad tensor item if ge zero
this produces a nicer output since both positive and negative values
produces the same width
2025-03-10 16:18:12 -07:00
Vincent Koc
8585b7b151 docs: add opik to observability integrations (#9626) 2025-03-10 16:15:10 -07:00
Parth Sareen
7e34f4fbfa sample: add numerical stability to temperature/softmax transform (#9631) 2025-03-10 14:43:53 -07:00
Michael Yang
fe776293f7 Merge pull request #9569 from dwt/patch-1
Better WantedBy declaration
2025-03-10 14:09:37 -07:00
frob
d8a5d96b98 docs: Add OLLAMA_CONTEXT_LENGTH to FAQ. (#9545) 2025-03-10 11:02:54 -07:00
Xiaowei Zhu
757668c42f docs: add SwiftChat (#9540) 2025-03-10 11:01:09 -07:00
Sam
96ec8afd09 docs(tool): add mcp-llm (#9537) 2025-03-10 09:52:02 -07:00
Jeffrey Morgan
e093db92c4 sample: temporarily use grammars for constrained generation in new engine (#9586) 2025-03-10 16:17:39 +01:00
Jesse Gross
a1cda80bcb model: Update encoder cache to use multimodal input processing handler
The encoder cache needs to know the position of images in the input
stream so that it knows when to delete them. Previously images didn't
have a position, so we implied one by breaking batches before an
image and then assuming the image was in the first position. However,
multimodal objects are now given explicit positions in the input
stream, so we can use that instead.

Breaking batches was also a way to simulate a cross attention mask
for mllama. However, given that it only supports a single sequence
and a single image, this mask doesn't serve any real purpose.
Removing the batch break does not appear to affect the quality of
the output.

Most of this is simply moving the input data structures to a new
package to avoid import cycles.
2025-03-09 17:05:26 -07:00
likelovewant
642a2496fe Merge branch 'ollama:main' into main 2025-03-09 13:49:03 +08:00
Jesse Gross
4614fafae0 ollamarunner: Don't panic for unimplemented features at runtime.
It's ok to fail on startup but we shouldn't panic during runtime
based on user input. Downgrade the panic to a warning.
2025-03-08 18:58:18 -08:00
Jesse Gross
4100ed7bdd ml: Add support for quantized KV cache
Similar to the llama engine, quantizing the KV cache requires
flash attention to be enabled through the Ollama server.
2025-03-07 18:43:39 -08:00
Jesse Gross
f52b2615ef kvcache: Set context for shift offsets 2025-03-07 18:43:39 -08:00
Jesse Gross
25f9b152f9 ggml-backend: Ensure allocation meet backend requirements
Backends can impose additional alignment requirements on buffer sizes.
We should ensure that we meet these or allocations can fail.
2025-03-07 18:43:39 -08:00
Jesse Gross
6da8b6a879 kvcache: Support non-causal attention
Models can disable causality for all or part of their processing
while continuing to store data in the KV cache.
2025-03-07 18:39:27 -08:00
Jesse Gross
0daaaef8c9 ollamarunner: Quiet debug logging and panic on unimplemented features
Debug logging of every token has previously caused test timeouts
on slower machines.
2025-03-07 18:38:02 -08:00
Jesse Gross
98272fbd58 additional review comments 2025-03-07 14:08:21 -08:00
Michael Yang
b27e8f3f10 ml/backend/ggml: use backend buffer type
this ensures the tensor is created on the right buffer type for backends
such as cpu
2025-03-07 14:08:21 -08:00
Michael Yang
45df786f09 comments 2025-03-07 14:08:21 -08:00
Michael Yang
daaf42e4a4 ml/backend/ggml: clean up 2025-03-07 14:08:21 -08:00
Michael Yang
2dc60d4620 ml/backend/ggml: offload vision to cpu
temporary until tensor loading can accurately account for vision models
2025-03-07 14:08:21 -08:00
Michael Yang
b5312f30e8 ml/backend/ggml: handle tensor split 2025-03-07 14:08:21 -08:00
Michael Yang
26c2e0bd35 ml/backend/ggml: handle user specified cpu offloading 2025-03-07 14:08:21 -08:00
Michael Yang
bf920883d5 ml/backend/ggml: set cpu n_threads 2025-03-07 14:08:21 -08:00
Michael Yang
58b9ec1f6b kvcache: update tests 2025-03-07 14:08:21 -08:00
Michael Yang
7bae7fa5ce ml/backend/ggml: create tensor on specific backend
some tensors should be created on specific backends to reduce number of
copies and improve performance
2025-03-07 14:08:21 -08:00
Michael Yang
764e199d67 kvcache: create cache ctx per layer
each cache layer creates and maintains its own context instead of using
a large context for all layers
2025-03-07 14:08:21 -08:00
Michael Yang
bfce55db3d model: load non-repeated tensors into multiple backends
some tensors are expected to be used in repeating layers but are not
themselves repeated. this change copies these tensors into the same
backends as their repeating counterparts to minimize copying tensors
between backends
2025-03-07 14:08:21 -08:00
Michael Yang
bab6f34dc0 ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be
allocated. this will be improved later to be aware of usable memory
before assigning the tensor
2025-03-07 14:08:21 -08:00
Parth Sareen
0682dae027 sample: improve ollama engine sampler performance (#9374)
This change bring in various interface cleanups along with greatly improving the performance of the sampler.

Tested with llama3.2 on local machine.
Improves performance from ~ 70 tokens/s -> 135 tokens/s with topK(40) enabled.
Without topK performance is ~ 110 tokens/s
2025-03-07 12:37:48 -08:00
Breaker
1f6986e919 readme: add QwQ to the supported models list (#9565) 2025-03-07 09:30:07 -08:00
Jeffrey Morgan
4289c74359 llama: fix kv loading on snowflake-arctic-embed models (#9536) 2025-03-07 09:25:34 -08:00
‮rekcäH nitraM‮
25248f4bd5 Better WantedBy declaration
The problem with default.target is that it always points to the target that is currently started. So if you boot into single user mode or the rescue mode still Ollama tries to start.

I noticed this because either tried (and failed) to start all the time during a system update, where Ollama definitely is not wanted.
2025-03-07 10:26:31 +01:00
likelovewant
e82001c122 fix the min error 2025-03-07 12:22:51 +08:00
Jesse Gross
a7e63b82be ollamarunner: Improve multimodal input handling
Various vision models have different requirements for how they
receive their inputs. For example:
 - Mllama wants images together with text and the image embeddings
   don't themselves have positions or get stored in the main KV cache
 - Llava-style models feed in embeddings similar to tokens and
   images correspond to a varying number of tokens in the cache.

In addition, the strategy for providing inputs must support batching
and multiple sequences, which are managed by the runner. At the same
time, we want to keep data handling fully in the model so that new
architectures are not bottlenecked by runner code which does not
understand their particular requirements.

This provides a method for models to edit the input stream so that
it meets their needs while still being in a format that the runner
understands. This allows the runner to avoid special processing
for different models.

In addition, this fixes a regression where non-vision models may
try to incorrectly interpret images.
2025-03-06 16:54:16 -08:00
Jesse Gross
b70fc4d51e model: Don't unconditionally add special tokens
We sometimes tokenize partial strings. For example, with
multimodal inputs, we split the input string around the images
and then tokenize each piece. In these cases, we should only add
the special tokens on the first piece.
2025-03-06 16:54:16 -08:00
Blake Mizerany
e2252d0fc6 server/internal/registry: take over pulls from server package (#9485)
This commit replaces the old pull implementation in the server package
with the new, faster, more robust pull implementation in the registry
package.

The new endpoint, and now the remove endpoint too, are behind the
feature gate "client2" enabled only by setting the OLLAMA_EXPERIMENT
environment variable include "client2".

Currently, the progress indication is wired to perform the same as the
previous implementation to avoid making changes to the CLI, and because
the status reports happen at the start of the download, and the end of
the write to disk, the progress indication is not as smooth as it could
be. This is a known issue and will be addressed in a future change.

This implementation may be ~0.5-1.0% slower in rare cases, depending on
network and disk speed, but is generally MUCH faster and more robust
than the its predecessor in all other cases.
2025-03-05 14:48:18 -08:00
Daniel Hiltgen
cae5d4d4ea Win: doc new rocm zip file (#9367)
To stay under the 2G github artifact limit, we're splitting ROCm
out like we do on linux.
2025-03-05 14:11:21 -08:00
likelovewant
d80ea37d36 Merge branch 'ollama:main' into main 2025-03-05 13:40:11 +08:00
Michael Yang
05a01fdecb ml/backend/ggml: consolidate system info logging
- output backend system info when initializing the backend. this ensures
  this information is always present without needing to be called
  explicitly
- convert to structured logging
- enumerate devices rather than backends since devices are ordered
- track device indices grouped by device name
2025-03-04 15:14:31 -08:00
aritra saha
8fe6f69f28 docs: add granite-3.2 to the readme 2025-03-04 11:10:56 -08:00
Daniel Hiltgen
1fdb351c37 New engine: vision models and auto-fallback (#9113)
* Include unified vision layers in memory prediction

For newer vision models with a single gguf, include
the projection estimates.

* Adjust CLI to handle both styles of vision model metadata

* Wire up new tokenizers for new engine

If we're loading the new engine, utilize the new model
text processor instead of calling into cgo wrappers for
llama.cpp.  This also cleans up some tech debt from the
older tokenization flow for the C++ server which was
no longer used.

This also adjusts the grammar handling logic to pass
through to the new engine instead of utilizing the cgo
schema to grammar call.

* Lay foundation for auto selection of new engine
2025-03-04 09:03:46 -08:00
Blake Mizerany
7a01ad7614 server/internal/registry: reintroduce pruning on model deletion (#9489)
This reintroduces aggressive pruning on model deletion as a temporary
measure until a more controlled garbage collection (GC) mechanism is
implemented.

Issues with the current approach:

1. Users may accidentally delete a model (`ollama rm llama3.3` instead
   of `ollama rm llama3.2`), requiring a full re-download unless another
   model references the same blobs.

2. Users may assume a deleted model is still referenced elsewhere, but
   due to prior updates or deletions, the references no longer exist,
   leading to unnecessary re-downloads.

Soon, we should implement a structured GC mechanism to retain
unreferenced blobs for a configurable period before removal, which will
run on "ollama rm" and other commands we deem appropriate.

Users that want to immediately remove unreferenced blobs can use a new
prune command that will allow them to specify the age and class of blobs
to remove.

Example usage:

    # Run basic blob GC
    $ ollama prune

    # Remove unreferenced blobs older than 7 days
    $ ollama prune --age 7d

    # Remove all blobs, referenced or not, older than 7 days (and their manifests?)
    $ ollama prune --age 7d --all

    # Remove all unreferenced blobs immediately
    $ ollama prune --age 0 --all

    # Remove all blobs
    $ ollama prune --age 0 --all

This should provide a safer and more predictable cleanup process.
2025-03-03 19:11:16 -08:00
Blake Mizerany
55ab9f371a server/.../backoff,syncs: don't break builds without synctest (#9484)
Previously, developers without the synctest experiment enabled would see
build failures when running tests in some server/internal/internal
packages using the synctest package. This change makes the transition to
use of the package less painful but guards the use of the synctest
package with build tags.

synctest is enabled in CI. If a new change will break a synctest
package, it will break in CI, even if it does not break locally.

The developer docs have been updated to help with any confusion about
why package tests pass locally but fail in CI.
2025-03-03 16:45:40 -08:00
KindBrave
fefbf8f74b docs: add Ollama Android Chat community integration 2025-03-03 16:38:32 -08:00
Michael Yang
b428ddd796 docker: use go version from go.mod 2025-03-03 13:02:02 -08:00
Michael Yang
ba7d31240e fix: own lib/ollama directory
expand backend loading error handling to catch more problems and log
them instead of panicing
2025-03-03 13:01:18 -08:00
CYJiang
d25efe3954 cmd: add default err return for stop (#9458) 2025-03-03 12:13:41 -08:00
Mark
36dfb906bb docs: don't use self-closing tag for anchor element (#9456) 2025-03-03 11:56:34 -08:00
aritra saha
a6f0f908b9 docs: update phi3-mini to phi4-mini (#9424)
* Update README.md

removed phi 3 mini and added phi4-mini

* Update README.md

---------

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-03-03 11:09:21 -08:00
İbrahim Çetin
3b1ddb2b3a docs: add reins to community integrations (#9411) 2025-03-03 11:06:30 -08:00
Jeffrey Morgan
1579c4f06d build: install binutils alongside gcc in Dockerfile (#9475) 2025-03-03 01:20:49 -08:00
Blake Mizerany
3519dd1c6e server/internal/client/ollama: hold DiskCache on Registry (#9463)
Previously, using a Registry required a DiskCache to be passed in for
use in various methods. This was a bit cumbersome, as the DiskCache is
required for most operations, and the DefaultCache is used in most of
those cases. This change makes the DiskCache an optional field on the
Registry struct.

This also changes DefaultCache to initialize on first use. This is to
not burden clients with the cost of creating a new cache per use, or
having to hold onto a cache for the lifetime of the Registry.

Also, slip in some minor docs updates for Trace.
2025-03-02 20:55:44 -08:00
Jeffrey Morgan
e41c4cbea7 build: install ccache manually in Dockerfile (#9464)
Reverts ccache installation to be done manually via curl instead of
using the dnf package manager as this has side effects of prepending
ccache's install directory to the front of the PATH
2025-03-02 16:48:31 -08:00
Blake Mizerany
ee048b76d4 server/internal/client/ollama: handle extended names in client/ollama (#9454)
The extended name format is a superset of the name format that only the
client needs to know about, not the server or other dependents of the
name package, so move the split logic into the client package.

Also, take advantage of knowing about the extended name format to allow
the client to use the extended name format when unlinking to verify they
are unlinking the manifest with the content they intend.
2025-03-02 13:30:41 -08:00
Soulter
af68d60a58 readme: add AstrBot to community integrations (#9442) 2025-03-01 21:58:34 -08:00
likelovewant
92731dfc6f Merge branch 'ollama:main' into main 2025-03-02 13:45:52 +08:00
Jesse Gross
21aa666a1e ml: Enable support for flash attention
The GGML flash attention kernel has specific requirements for
padding and permutation. This adds support to the KV cache
for conforming to these requirements so that flash attention
can be enabled.

Flash attention can be used in the same situations as the llama
engine and is enabled by the user in the same way.
2025-03-01 20:53:23 -08:00
Jesse Gross
ee141cc821 ml: Empty tensor constructor for tensors
In cases where we allocate a tensor and then fully overwrite it with
copied data, it is wasteful to first zero out the memory.
2025-03-01 20:53:23 -08:00
Jesse Gross
55e5776c44 ggml-backend: Store parent backend as part of tensor
It can be important for a tensor to know what backend it came from -
for example, to know if flash attention is enabled.
2025-03-01 20:53:23 -08:00
Jesse Gross
854a9195f3 attention: Remove unnecessary contiguous operations
Prior to performing attention, we need to permute query, key
and value. Currently we call Contiguous after each of these
permutations, which is correct but expensive. Avoiding the
3 calls to Contiguous increases performance by over 20%.

The permutations of query and key do not violate the continuity
rules for mulmat and the Contiguous call can be simply removed.

Value requires a different permutation and does require Contiguous.
However, we can use the copy into the cache as a way to perform this
without further overhead.

To support this and avoid unexpected tensor shapes that are seen by
models, we need tighter integration between attention, cache
and backend. Future optimization will also likely need this structure
 - for example, flash attention has special padding requirements in
the cache and other backends may have their own needs.

This further contains the operations that go into attention so that
these and other optimizations can be handled transparently. Models
that have special requirements for attention can still implement
their own version of it.
2025-03-01 20:53:23 -08:00
Jeffrey Morgan
96a97adf9b build: use correct GGML_HIP_NO_VMM compiler definition for ggml-hip (#9451) 2025-03-01 17:00:31 -08:00
Jeffrey Morgan
e75c6126e9 build: set GGML_CUDA_NO_VMM for ggml-hip target (#9449) 2025-03-01 14:02:19 -08:00
Blake Mizerany
cda6f5c66c server/internal/internal/names: validate names (#9400)
This commit is a step towards a goal to make names less ceremonial
outside of the registry client. Clients of the registry package can
treat names as opaque strings, and the registry package will handle
parsing, validating, and normalizing names.

Ideally we end up with the names package tucked away in an internal
package for good. We'll see how things go.

Also, this package name is not permanent. This another step in the
on-going process of refactoring the server code, and at some point it
will most likely be renamed/moved.
2025-03-01 13:15:14 -08:00
likelovewant
1f7de23036 Merge branch 'ollama:main' into main 2025-03-01 15:42:15 +08:00
Bruce MacDonald
bebb6823c0 server: validate local path on safetensor create (#9379)
More validation during the safetensor creation process.
Properly handle relative paths (like ./model.safetensors) while rejecting absolute paths
Add comprehensive test coverage for various paths
No functionality changes for valid inputs - existing workflows remain unaffected
Leverages Go 1.24's new os.Root functionality for secure containment
2025-02-28 16:10:43 -08:00
Michael Yang
31e472baa4 runner: defer context cancel
defer the cancel to guarantee it runs
2025-02-28 22:27:28 +00:00
Michael Yang
657685e85d fix: replace deprecated functions 2025-02-28 21:29:34 +00:00
Jeffrey Morgan
a14912858e build: add compute capability 12.0 to CUDA 12 preset (#9426)
Focuses initial Blackwell support on compute capability 12.0
which includes the 50x series of GeForce cards. In the future
additional compute capabilities may be added
2025-02-28 13:12:31 -08:00
Blake Mizerany
eed11ded30 server/.../safetensors: fix offsets and include all model parts (#9427)
Also, require the -as flag to be set when importing a model. This
prevents the confusing error message "invalid name".

Also, allow short names to be used when importing a model and
auto-complete the name with the default mask.
2025-02-28 13:08:10 -08:00
Michael Yang
b42aba40ed cuda: enable flash attention
ggml added an option to disable flash attention so explicitly enable it
2025-02-28 19:40:34 +00:00
王贺
25885e5335 docs: Add 1Panel to Community Integrations (#9312) 2025-02-28 09:53:03 -08:00
likelovewant
8cc0064cf3 Merge branch 'ollama:main' into main 2025-02-28 19:04:16 +08:00
Jeffrey Morgan
98d44fa39d llama: add phi4 mini support (#9403) 2025-02-27 19:30:32 -08:00
Blake Mizerany
2099e2d267 CONTRIBUTING: provide clarity on good commit messages, and bad (#9405)
Also, our commit messages have been getting better, but we can do
better, and be more consistent. This adds more clarity on how to write
commit messages and provides examples of good and bad messages.

Also, our contributing guide was lacking helpful guidance on how to
start change proposals. This commit adds the start of that section.

Soon, we should add a proposal template to the issue tracker with a link
back to the proposal section, which should also be expanded upon.
2025-02-27 19:22:26 -08:00
Bruce MacDonald
0c1041ad85 runner: default to greedy sampler for performance (#9407)
As are adding support for weighted sampling we have seen some performance
regressions, bypassing the sampler logic for now and defaulting to greedy
until we can benchmark the new sampler logic.
2025-02-27 16:41:20 -08:00
Parth Sareen
c245b0406f sample: remove transforms from greedy sampling (#9377) 2025-02-27 15:44:53 -08:00
Michael Yang
8b194b7520 kvcache: update tests 2025-02-27 22:27:16 +00:00
Michael Yang
3e8b8a1933 ml: update Context.Forward interface
update Context.Forward to accept multiple tensors to match
Context.Compute signature

update Context.Forward to return Context such that it can be chained
with Context.Compute
2025-02-27 22:27:16 +00:00
Blake Mizerany
41dc280491 server/internal/registry: implement CloseNotify and Flush (for now) (#9402)
This fixes panics introduced in 2412adf42b
when Gin ungracefully assumes that the http.ResponseWriter implements
http.CloseNotifier and http.Flusher, which our new statusCodeRecorder
does not. This is a temporary fix until we can pour the rest of the Gin
out.
2025-02-27 14:00:37 -08:00
Michael Yang
53d2990d9b model: add bos token if configured 2025-02-27 21:04:59 +00:00
Jesse Gross
e185c08ad9 go.mod: Use full version for go 1.24.0
Otherwise on Linux I get:
go: download go1.24 for linux/amd64: toolchain not available
2025-02-27 13:01:32 -08:00
Blake Mizerany
2412adf42b server/internal: replace model delete API with new registry handler. (#9347)
This commit introduces a new API implementation for handling
interactions with the registry and the local model cache. The new API is
located in server/internal/registry. The package name is "registry" and
should be considered temporary; it is hidden and not bleeding outside of
the server package. As the commits roll in, we'll start consuming more
of the API and then let reverse osmosis take effect, at which point it
will surface closer to the root level packages as much as needed.
2025-02-27 12:04:53 -08:00
Steven Hartland
be2ac1ed93 docs: fix api examples link (#9360)
Fix the examples link in the go package documentation for the API.
2025-02-27 10:51:12 -08:00
Eries Trisnadi
dc13813a03 server: allow vscode-file origins (#9313) 2025-02-27 10:39:43 -08:00
Michael Yang
d6af13efed runner: simplify tensor split parsing 2025-02-27 18:36:46 +00:00
Michael Yang
a59f665235 ml/backend/ggml: fix debug logging 2025-02-27 18:30:57 +00:00
Daniel Hiltgen
688925aca9 Windows ARM build (#9120)
* Windows ARM build

Skip cmake, and note it's unused in the developer docs.

* Win: only check for ninja when we need it

On windows ARM, the cim lookup fails, but we don't need ninja anyway.
2025-02-27 09:02:25 -08:00
Blake Mizerany
76e903cf9d .github/workflows: swap order of go test and golangci-lint (#9389)
The linter is secondary to the tests, so it should run after the tests,
exposing test failures faster.
2025-02-26 23:03:48 -08:00
Jeffrey Morgan
a5272130c4 ml/backend/ggml: follow on fixes after updating vendored code (#9388)
Fixes sync filters and lowers CUDA version to 11.3 in test.yaml
2025-02-26 22:33:53 -08:00
Jeffrey Morgan
d7d7e99662 llama: update llama.cpp vendor code to commit d7cfe1ff (#9356) 2025-02-26 20:34:44 -08:00
Gordon Kamer
2db96c18e7 readme: add Nichey to community integrations (#9370) 2025-02-26 10:40:53 -08:00
Daniel Hiltgen
e12af460ed Add cuda Blackwell architecture for v12 (#9350)
* Add cuda Blackwell architecture for v12

* Win: Split rocm out to separate zip file

* Reduce CC matrix

The 6.2 and 7.2 architectures only appear on Jetsons, so they were wasting space.
The 5.0 should be forward compatible with 5.2 and 5.3.
2025-02-26 09:20:52 -08:00
likelovewant
88936d5c9a Merge branch 'ollama:main' into main 2025-02-26 13:46:00 +08:00
Jeffrey Morgan
3ad4bc8afe llama: removed unused 'vendoring' file (#9351) 2025-02-25 14:33:03 -08:00
Blake Mizerany
0d694793f2 .github: always run tests, and other helpful fixes (#9348)
During work on our new registry client, I ran into frustrations with CI
where a misspelling in a comment caused the linter to fail, which caused
the tests to not run, which caused the build to not be cached, which
caused the next run to be slow, which caused me to be sad.

This commit address these issues, and pulls in some helpful changes
we've had in CI on ollama.com for some time now.

They are:

* Always run tests, even if the other checks fail.

Tests are the most important part of CI, and should always run. Failures
in tests can be correlated with failures in other checks, and can help
surface the root cause of the failure sooner. This is especially
important when the failure is platform specific, and the tests are not
platform independent.

* Check that `go generate` is clean.

This prevents 'go generate' abuse regressions. This codebase used to use
it to generate platform specific binary build artifacts. Let's make sure
that does not happen again and this powerful tool is used correctly, and
the generated code is checked in.

Also, while adding `go generate` the check, it was revealed that the
generated metal code was putting dates in the comments, resulting in
non-deterministic builds. This is a bad practice, and this commit fixes
that. Git tells us the most important date: the commit date along with
other associated changes.

* Check that `go mod tidy` is clean.

A new job to check that `go mod tidy` is clean was added, to prevent
easily preventable merge conflicts or go.mod changes being deferred to a
future PR that is unrelated to the change that caused the go.mod to
change.

* More robust caching.

We now cache the go build cache, and the go mod download cache
independently. This is because the download cache contains zips that can
be unpacked in parallel faster than they can be fetched and extracted by
tar. This speeds up the build significantly.

The linter is hostile enough. It does not need to also punish us with
longer build times due to small failures like misspellings.
2025-02-25 14:28:07 -08:00
Daniel Hiltgen
e91ae3d47d Update ROCm (6.3 linux, 6.2 windows) and CUDA v12.8 (#9304)
* Bump cuda and rocm versions

Update ROCm to linux:6.3 win:6.2 and CUDA v12 to 12.8.
Yum has some silent failure modes, so largely switch to dnf.

* Fix windows build script
2025-02-25 13:47:36 -08:00
José Pekkarinen
6ecd7f64ba docker: upgrade rocm to 6.3.3 (#8211)
centos-7 images have been deprecated upstream and replaced with
almalinux-8 images instead, requiring some small extra work.

Signed-off-by: José Pekkarinen <jose.pekkarinen@foxhound.fi>
2025-02-25 13:38:08 -08:00
Chuanhui Liu
888855675e docs: rocm install link (#9346) 2025-02-25 13:15:47 -08:00
Michael Yang
b16367b4b2 fix: add back bf16 support
this was accidentally removed when moving fs/ggml from its previous
location
2025-02-25 19:26:14 +00:00
Pavol Rusnak
a499390648 build: support Compute Capability 5.0, 5.2 and 5.3 for CUDA 12.x (#8567)
CUDA 12.x still supports Compute Capability 5.0, 5.2 and 5.3,
so let's build for these architectures as well
2025-02-25 09:54:19 -08:00
frob
4df98f3eb5 Move cgroups fix out of AMD section. (#9072)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-02-25 08:52:50 -08:00
Blake Mizerany
348b3e0983 server/internal: copy bmizerany/ollama-go to internal package (#9294)
This commit copies (without history) the bmizerany/ollama-go repository
with the intention of integrating it into the ollama as a replacement
for the pushing, and pulling of models, and management of the cache they
are pushed and pulled from.

New homes for these packages will be determined as they are integrated
and we have a better understanding of proper package boundaries.
2025-02-24 22:39:44 -08:00
Parth Sareen
0b7e1676eb sample: add sampling package for new engine (#8410) 2025-02-24 17:19:01 -08:00
Parth Sareen
314573bfe8 config: allow setting context length through env var (#8938)
* envconfig: allow setting context length through env var
2025-02-24 13:26:35 -08:00
Blake Mizerany
4604b10306 go.mod: bump to go1.24 (#9242) 2025-02-24 13:11:46 -08:00
Jeffrey Morgan
8c13cfa4dd ml/backend/ggml: fix crash on windows paths with wide characters (#9305) 2025-02-23 19:13:53 -08:00
Jeffrey Morgan
7cfd4aee4d docs: add additional ROCm docs for building (#9066) 2025-02-22 11:22:59 -08:00
likelovewant
b026930aba fix typo 2025-02-22 13:36:15 +08:00
likelovewant
5eb640b20a robertrosenbusch patch for old cards in linux
https://github.com/likelovewant/ollama-for-amd/issues/51
2025-02-22 13:34:31 +08:00
likelovewant
f374747b0d disable old cards limits again 2025-02-22 13:25:56 +08:00
Blake Mizerany
68bac1e0a6 server: group routes by category and purpose (#9270)
The route assembly in Handler lacked clear organization making it
difficult scan for routes and their relationships to each other. This
commit aims to fix that by reordering the assembly of routes to group
them by category and purpose.

Also, be more specific about what "config" refers to (it is about CORS
if you were wondering... I was.)
2025-02-21 21:02:26 -08:00
Jesse Gross
f53f4198c3 ml: Abstract attention out of model definitions
There are two benefits to doing this:
 - Provide a library function that models can use, reducing code for
   each model implementation
 - Enables a single place to drop in optimized implementations of
   attention based on the backend or other factors. One is provided for
   GGML.

On CUDA this improves token generation rate by about 3%. It does not
have a significant effect on Metal.

Co-authored-by: Daniel Hiltgen <daniel@ollama.com>
2025-02-21 13:16:21 -08:00
Michael Yang
2192a28eed ml/backend/ggml: fix rms norm 2025-02-21 18:34:19 +00:00
Junyan Qin (Chin)
5d81c1a184 docs: add RockChinQ/LangBot to integrations list (#9272) 2025-02-21 09:36:55 -08:00
Jesse Gross
5c5535c064 models: Prune unused outputs earlier in the forward pass
Currently Rows is called as the last step in a model computation
to get the values for the output tokens. However, if we move it
earlier in the process then we can trim out computations that
never get used. This is similar to how models are defined in
llama.cpp.

Changing the model definition in this way improves token generation
performance by approximately 8%.
2025-02-20 14:49:47 -08:00
Jesse Gross
e5bcc51ae1 ggml-backend: Don't recreate the scheduler for each context
We don't need to create and destroy the GGML scheduler for every
context. This introduces extra CPU overhead for every forward
pass and extra memory for contexts that don't actually get scheduled
(for example, KV caches). We can instead just have one scheduler
for the backend and reset it each time we call Compute.

This improves token generation performance by 1-2% and removes
scheduler create/destroy from profile traces.
2025-02-20 14:49:47 -08:00
Jesse Gross
bd6a7d5e64 ollamarunner: Pass runner performance parameters to backends
Currently the following parameters are in the runner but not used:
 - numGPULayers
 - mainGPU
 - threads
 - tensorSplit

This passes them through to the backend, which is where they would
actually get used. However, the GGML backend does not yet do anything
with them.
2025-02-20 13:27:57 -08:00
Bruce MacDonald
14b5a9a150 api: document client stream behavior with a test (#8996)
Added unit tests to verify error handling behavior in the Client.stream and Client.do methods.
Tests cover various error scenarios including:
- Error responses with status codes >= 400
- Error messages with successful status codes
- Empty error messages
- Successful responses
2025-02-20 13:19:58 -08:00
Michael Yang
ba9ec3d05e ci: use clang for windows cpu builds
clang outputs are faster. we were previously building with clang via gcc
wrapper in cgo but this was missed during the build updates so there was
a drop in performance
2025-02-20 20:22:36 +00:00
frob
7c168b08c9 server: add missing function parens to debug log (#9255) 2025-02-20 12:10:15 -08:00
danielekp
3d4cc7833c docs: Add yla to community integrations 2025-02-20 11:34:24 -08:00
Lucas Hahn
351a85d9ea openai: add 'timeout' to allowable x-stainless headers (#9237) 2025-02-19 21:56:18 -08:00
Michael Yang
bda4ef6c56 reorder patches 2025-02-20 03:49:24 +00:00
Michael Yang
1e438b237c Merge pull request #9203 from ollama/mxyng/sapphirerapids
build: remove backend build for sapphirerapids
2025-02-19 21:42:00 +00:00
yuiseki
d721a02e7d test: add test cases for ListHandler (#9146) 2025-02-19 13:24:27 -08:00
zyxucp
778603a818 docs: Add AntSK to Community Integrations (#9214) 2025-02-19 13:22:48 -08:00
maninhill
3c874df46e docs: Add MaxKB to Community Integrations (#9212) 2025-02-19 13:20:09 -08:00
likelovewant
0d5897fadc Merge branch 'ollama:main' into main 2025-02-19 16:08:38 +08:00
Jeffrey Morgan
d2eb226c91 llama: add patch to fix ggml backend reg on Linux with utf-8 characters in the path (#9159) 2025-02-18 22:46:17 -05:00
Michael Yang
e13e7c8d94 Merge pull request #9079 from jeremyschlatter/main
cmd: fix flickering in progress bar
2025-02-18 22:59:29 +00:00
Jeremy Schlatter
78f403ff45 address code review comments 2025-02-18 14:50:09 -08:00
Michael Yang
5f8c03189e build: remove backend build for sapphirerapids
sapphire rapids has amx support but it ends up having a negative
performance impact.

emerald rapids also has amx support with a positive performance impact
however there's no reasonable way in ggml to differentiate between the
two. the impact is small (~6%) so disable amx entirely for simplicity
2025-02-18 14:47:58 -08:00
Michael Yang
08a299e1d0 cmake: avoid building intel backends on linux 2025-02-18 22:17:00 +00:00
Michael Yang
7b5d916a9a ci: set owner/group in tarball
set owner and group when building the linux tarball so extracted files
are consistent. this is the behaviour of release tarballs in version
0.5.7 and lower
2025-02-18 20:11:09 +00:00
benhaotang
33ad61b112 Add OpenDeepResearcher-via-searxng to Community Integrations (#9138) 2025-02-18 11:39:11 -08:00
L. Jiang
716e365615 test: add test cases for HumanNumber (#9108) 2025-02-18 11:35:26 -08:00
innightwolfsleep
3b4424ff98 readme: add LLM Telegram Bot to community integrations (#9150) 2025-02-18 10:04:30 -05:00
Jeremy Schlatter
f9c7ead160 cmd: eliminate flickering with synchronized output 2025-02-17 20:01:03 -08:00
Jeremy Schlatter
5930aaeb1a cmd: fix cursor flickering in progress bar
The previous commit fixed flickering in the progress bar itself. Cursor
flickering is harder to address.

Cursor flickering could be fixed by hiding the cursor altogether while
the progress bar is displayed. The downside of this is that if the
program is killed in such a way that it can't clean up its state, it
would leave the cursor invisible.

Instead, this commit introduces an output buffer. All of the escape
codes and content for a single progress update are written to a buffer,
which is then flushed to the terminal all at once. This significantly
decreases the time during which the terminal has seen the cursor-hiding
code but has not yet seen the cursor-showing code, thus minimizing (but
not 100% eliminating) cursor flickering.

For more context, see:
https://gitlab.gnome.org/GNOME/vte/-/issues/2837#note_2269501
2025-02-17 14:56:57 -08:00
Jeremy Schlatter
faf67db089 cmd: fix progress bar flickering
Previous code cleared the display before writing new content, creating a
window where the terminal could (and in some cases did) render empty lines.

Instead, we now write new content over the old content, only clearing
the trailing end of lines for cases where the new line is shorter.

Fixes #1664
2025-02-17 13:39:02 -08:00
James-William-Kincaid-III
0667baddc6 docs: fix incorrect shortcut key in windows.md (#9098) 2025-02-15 15:38:24 -05:00
Bruce MacDonald
d006e1e09b model: document high-level model interface (#9122) 2025-02-14 16:01:00 -08:00
Daniel Hiltgen
df2680b4b9 Wire up system info log for new engine (#9123) 2025-02-14 15:55:33 -08:00
Jesse Gross
010313bb63 llamarunner: Init GGML before printing system info
We currently print system info before the GGML backends are loaded.
This results in only getting information about the default lowest
common denominator runner. If we move up the GGML init then we can
see what we are actually running.

Before:
time=2025-02-14T11:15:07.606-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | cgo(gcc)" threads=24

After:
time=2025-02-14T11:16:02.936-08:00 level=INFO source=runner.go:935 msg=system info="CPU : LLAMAFILE = 1 | CPU : LLAMAFILE = 1 | CUDA : ARCHS = 890 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | LLAMAFILE = 1 | cgo(gcc)" threads=24
2025-02-14 11:41:53 -08:00
likelovewant
51a157d3d8 Merge branch 'ollama:main' into main 2025-02-14 14:54:11 +08:00
Jeffrey Morgan
5296f487a8 llm: attempt to evaluate symlinks, but do not fail (#9089)
provides a better approach to #9088 that will attempt to
evaluate symlinks (important for macOS where 'ollama' is
often a symlink), but use the result of os.Executable()
as a fallback in scenarios where filepath.EvalSymlinks
fails due to permission erorrs or other issues
2025-02-13 22:37:59 -08:00
Jeffrey Morgan
f05774b04c llm: do not evaluate symlink for exe path lookup (#9088)
In some cases, the directories in the executable path read by
filepath.EvalSymlinks are not accessible, resulting in permission
errors which results in an error when running models. It also
doesn't work well on long paths on windows, also resulting in
errors. This change removes filepath.EvalSymlinks when accessing
os.Executable() altogether
2025-02-13 22:13:00 -08:00
Jeffrey Morgan
6600bd7d91 ml/backend/ggml: stable sort devices by score (#9081) 2025-02-13 18:42:36 -08:00
Jesse Gross
ed443a0393 Runner for Ollama engine
This provides integration with the new Ollama engine
(5824541 next ollama runner (#7913)) and the rest of the Ollama
infrastructure such as the runner and Ollama server.

In addition, it also builds out the KV cache infrastructure to
support requirements of how Ollama runs models such as:
 - Parallel processing
 - Memory management for defragmentation and shifting
 - Multi-modal modals

Both old and new engines continue to be supported. By default, only
the old engine is used. To enable the new engine:

Start the server with the OLLAMA_NEW_ENGINE environment variable set:
OLLAMA_NEW_ENGINE=1 ./ollama serve

Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M:
./ollama run jessegross/llama3.1
2025-02-13 17:09:26 -08:00
Jesse Gross
6945617af5 models: Move model into their own directory
This allows there to be a file that is a list of models that is
not mixed into the runner code.
2025-02-13 17:09:26 -08:00
Jesse Gross
7916f55009 vocab: Use int32 for special tokens
Special tokens are currently read as uint32 from the model metadata.
However, all other parts of the system (including the tokenizer) use
int32 to represent tokens so it is impossible to represent the high
portion of the unsigned range. For consistency and to avoid casts,
we should just use int32 everywhere.
2025-02-13 17:09:26 -08:00
Jesse Gross
d650ad398f model: Load tensors behind an interface
Currently, if a model uses an interface for its data structures (as mllama
does) then the tensor data in the structs implementing that interface will
not get loaded.
2025-02-13 17:09:26 -08:00
Jesse Gross
d223f3b697 ggml-backend: Close on nil should be a no-op 2025-02-13 17:09:26 -08:00
Jesse Gross
60830695c2 ggml-backend: Ensure data is available after async computation
We need to sync before retrieving data after async computation.
It is also important to ensure that the Go buffer is not moved by
the GC across function calls so we do a synchronous copy.
2025-02-13 17:09:26 -08:00
Jesse Gross
01d9a46854 ggml-backend: Let GGML allocate context memory
Passing in a Go buffer is not safe because the garbage collector could
free or move the memory while the context is still open. However, if
we pass in the size and a nil pointer then GGML will allocate it from
the C side.
2025-02-13 17:09:26 -08:00
Jesse Gross
d773b7d671 backend: API to support full precision matmul
Most tensor backends try to optimize performance by using a lower
precision for matmuls. However, some operations (such as kq) on
some models are sensitive to this and require full precision.
2025-02-13 17:09:26 -08:00
Jesse Gross
4d4463b2bd backend: Support graph computation that does not return an output
There are two cases where we may not have an output after computing:
 - Prompt processing where the length of the input exceeds the batch
   size
 - Internal memory management operations such as cache defrag and shift
2025-02-13 17:09:26 -08:00
Jesse Gross
0e38297f87 backend: Consistently use int (vs. int64) for tensor shapes
Currently there is a mixture of int and int64 used when dealing with
tensor dimensions and shapes, which causes unnecessary conversions -
they all should be the same type.

In general, most interfaces (such as Pytorch) use int64 for
generality but most implementations (such as CUDA) use int32 for
performance. There isn't much benefit to us to being more flexible
than the implementations we are likely to run on.

In addition, as a practical matter, a model with a tensor with a single
dimension larger than 32 bits is unlikely to run on a 32-bit machine.
2025-02-13 17:09:26 -08:00
Jesse Gross
7e13f568dc backend: Don't return an error on Close
It is not common to return errors with close/free operations - most
people won't check it and even if they did there's probably not much
that can do. It's better to not give implementations false expectations.
2025-02-13 17:09:26 -08:00
Michael Yang
58245413f4 next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00
Bùi Đức Nhật
8cf16063a5 docs: add ollamazing to the README.md (#9075) 2025-02-13 10:47:09 -08:00
frob
3a4449e2f1 docs: add H200 as supported device. (#9076)
Co-authored-by: Richard Lyons <frob@cloudstaff.com>
2025-02-13 10:44:23 -08:00
Anuraag (Rag) Agrawal
10d59d5f90 openai: finish_reason as tool_calls for streaming with tools (#7963) 2025-02-13 10:20:12 -08:00
Jeffrey Morgan
a4f69a0191 build: add -DGGML_CUDA_NO_PEER_COPY=ON for rocm builds on windows (#9060) 2025-02-13 00:23:17 -08:00
Clinton
82658c3eec readme: add Homebrew to package managers section (#9052) 2025-02-12 11:17:39 -08:00
bloominstrong
378d6e1e6a docs: fix nix package link (#9045)
removing the channel tag from the url so it will always go to the current stable channel.
2025-02-12 09:16:26 -08:00
Hugues Chocart
afa55bc70c doc: fix link for Abso (#9043) 2025-02-12 09:15:08 -08:00
likelovewant
2629a7aca4 set amdgpu target 2025-02-12 15:28:02 +08:00
likelovewant
d89b2f0fe7 fix 2025-02-12 15:23:21 +08:00
likelovewant
a364232373 fix build on windows 2025-02-12 14:52:42 +08:00
likelovewant
0e9767093d Merge branch 'ollama:main' into main 2025-02-12 11:37:19 +08:00
Michael Yang
49df03da9a fix: harden backend loading (#9024)
* wrap ggml_backend_load_best in try/catch
* ignore non-ollama paths
2025-02-11 15:36:53 -08:00
Hugues Chocart
0189bdd0b7 readme: add Abso SDK to community integrations (#8973) 2025-02-11 00:14:45 -08:00
likelovewant
be3653df11 Merge branch 'ollama:main' into main 2025-02-11 12:42:27 +08:00
Jeffrey Morgan
f4711da7bd ml/backend/ggml: fix crash on dlopen for non-AVX systems (#8976) 2025-02-10 09:52:12 -08:00
1057 changed files with 917317 additions and 87004 deletions

View File

@@ -23,7 +23,7 @@ jobs:
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
darwin-build:
runs-on: macos-13
runs-on: macos-13-xlarge
environment: release
needs: setup-environment
strategy:
@@ -54,48 +54,6 @@ jobs:
name: build-${{ matrix.os }}-${{ matrix.arch }}
path: dist/*
darwin-sign:
runs-on: macos-13
environment: release
needs: darwin-build
steps:
- uses: actions/checkout@v4
- run: |
echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12
security create-keychain -p password build.keychain
security default-keychain -s build.keychain
security unlock-keychain -p password build.keychain
security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
security set-keychain-settings -lut 3600 build.keychain
env:
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
- uses: actions/download-artifact@v4
with:
name: build-darwin-amd64
path: dist/darwin-amd64
- uses: actions/download-artifact@v4
with:
name: build-darwin-arm64
path: dist/darwin-arm64
- run: |
export VERSION=${GITHUB_REF_NAME#v}
./scripts/build_darwin.sh sign macapp
env:
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
APPLE_ID: ${{ vars.APPLE_ID }}
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
- uses: actions/upload-artifact@v4
with:
name: dist-darwin
path: |
dist/Ollama-darwin.zip
dist/ollama-darwin.tgz
windows-depends:
strategy:
matrix:
@@ -105,19 +63,38 @@ jobs:
include:
- os: windows
arch: amd64
preset: 'CUDA 11'
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
cuda-version: '11.3'
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
cuda-version: '12.8'
flags: ''
runner_dir: 'cuda_v12'
- os: windows
arch: amd64
preset: 'CUDA 12'
install: https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe
cuda-version: '12.4'
preset: 'CUDA 13'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
flags: ''
runner_dir: 'cuda_v13'
- os: windows
arch: amd64
preset: 'ROCm 6'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
rocm-version: '6.1'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
rocm-version: '6.2'
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
runner_dir: 'rocm'
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
env:
@@ -141,7 +118,7 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
@@ -160,6 +137,13 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'CPU'
run: |
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -174,11 +158,12 @@ jobs:
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
- name: Build target "${{ matrix.preset }}"
run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}"
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
cmake --build --parallel --preset "${{ matrix.preset }}"
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
Remove-Item -Path dist\lib\ollama\rocm\rocblas\library\*gfx906* -ErrorAction SilentlyContinue
env:
CMAKE_GENERATOR: Ninja
- uses: actions/upload-artifact@v4
@@ -191,19 +176,19 @@ jobs:
matrix:
os: [windows]
arch: [amd64, arm64]
include:
- os: windows
arch: amd64
llvmarch: x86_64
- os: windows
arch: arm64
llvmarch: aarch64
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: [setup-environment]
env:
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
steps:
- name: Install AMD64 system dependencies
if: matrix.arch == 'amd64'
run: |
$ErrorActionPreference = "Stop"
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install ARM64 system dependencies
if: matrix.arch == 'arm64'
run: |
@@ -215,72 +200,36 @@ jobs:
choco install -y --no-progress git gzip
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- name: Install clang and gcc-compat
run: |
$ErrorActionPreference = "Stop"
Set-ExecutionPolicy Bypass -Scope Process -Force
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-${{ matrix.llvmarch }}.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt.zip"
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt.zip -DestinationPath "C:\Program Files\"
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt*").path
echo "$installPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
with:
go-version-file: go.mod
- name: Verify gcc is actually clang
run: |
$ErrorActionPreference='Continue'
$version=& gcc -v 2>&1
$version=$version -join "`n"
echo "gcc is $version"
if ($version -notmatch 'clang') {
echo "ERROR: GCC must be clang for proper utf16 handling"
exit 1
}
$ErrorActionPreference='Stop'
- run: |
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
- if: matrix.arch == 'arm64'
run: |
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
- run: |
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
& .\scripts\build_windows.ps1 buildApp
env:
VCToolsRedistDir: stub
- uses: actions/upload-artifact@v4
with:
name: build-${{ matrix.os }}-${{ matrix.arch }}
path: |
dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
windows-sign:
runs-on: windows-2022
environment: release
needs: [windows-depends, windows-build]
steps:
- uses: actions/checkout@v4
- uses: google-github-actions/auth@v2
with:
project_id: ollama
credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}
- run: |
$ErrorActionPreference = "Stop"
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe"
Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip"
Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\"
& "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
- uses: actions/download-artifact@v4
with:
pattern: build-windows-*
path: dist\
merge-multiple: true
- uses: actions/download-artifact@v4
with:
pattern: depends-windows-amd64-*
path: dist\windows-amd64\
merge-multiple: true
- run: |
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
- uses: actions/upload-artifact@v4
with:
name: dist-windows
path: |
dist\OllamaSetup.exe
dist\ollama-windows-*.zip
linux-build:
strategy:
@@ -288,13 +237,13 @@ jobs:
include:
- os: linux
arch: amd64
target: archive
target: archive_novulkan
- os: linux
arch: amd64
target: rocm
- os: linux
arch: arm64
target: archive
target: archive_novulkan
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
@@ -313,23 +262,30 @@ jobs:
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
cache-from: type=registry,ref=ollama/ollama:latest
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
cache-to: type=inline
- run: |
for COMPONENT in bin/* lib/ollama/*; do
case "$COMPONENT" in
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
esac
done
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz); done
echo "Manifests"
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in ; do
echo $ARCHIVE
cat $ARCHIVE
done
- run: |
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
done
- uses: actions/upload-artifact@v4
with:
name: dist-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.target }}
@@ -343,12 +299,14 @@ jobs:
include:
- os: linux
arch: arm64
target: novulkan
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
- os: linux
arch: amd64
target: novulkan
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
@@ -361,6 +319,14 @@ jobs:
CGO_CXXFLAGS
GOFLAGS
FLAVOR=rocm
- os: linux
arch: amd64
suffix: '-vulkan'
target: default
build-args: |
CGO_CFLAGS
CGO_CXXFLAGS
GOFLAGS
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
environment: release
needs: setup-environment
@@ -378,9 +344,10 @@ jobs:
with:
context: .
platforms: ${{ matrix.os }}/${{ matrix.arch }}
target: ${{ matrix.target }}
build-args: ${{ matrix.build-args }}
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=ollama/ollama:latest
outputs: type=image,name=${{ vars.DOCKER_REPO }},push-by-digest=true,name-canonical=true,push=true
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
cache-to: type=inline
- run: |
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
@@ -412,7 +379,7 @@ jobs:
latest=false
suffix=${{ matrix.suffix }}
images: |
ollama/ollama
${{ vars.DOCKER_REPO }}
tags: |
type=ref,enable=true,priority=600,prefix=pr-,event=pr
type=semver,pattern={{version}}
@@ -422,40 +389,24 @@ jobs:
path: ${{ runner.temp }}
merge-multiple: true
- run: |
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf '${{ vars.DOCKER_REPO }}@%s ')
docker buildx imagetools inspect ${{ vars.DOCKER_REPO }}:${{ steps.metadata.outputs.version }}
working-directory: ${{ runner.temp }}
# Aggregate all the assets and ship a release
release:
needs: [darwin-sign, windows-sign, linux-build]
runs-on: linux
# Trigger downstream release process
trigger:
runs-on: ubuntu-latest
environment: release
needs: [darwin-build, windows-build, windows-depends, linux-build]
permissions:
contents: write
env:
GH_TOKEN: ${{ github.token }}
steps:
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: dist-darwin
path: dist
- uses: actions/download-artifact@v4
with:
name: dist-windows
path: dist
- uses: actions/download-artifact@v4
with:
pattern: dist-linux-*
path: dist
merge-multiple: true
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
working-directory: dist
- name: Create or update Release
- name: Create or update Release for tag
run: |
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
echo "Looking for existing release for ${RELEASE_VERSION}"
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")
if [ -n "$OLD_TAG" ]; then
@@ -469,5 +420,12 @@ jobs:
--generate-notes \
--prerelease
fi
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
gh release upload ${GITHUB_REF_NAME} dist/* --clobber
- name: Trigger downstream release process
run: |
curl -L \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
-H "X-GitHub-Api-Version: 2022-11-28" \
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\", \"origin\": \"${GITHUB_REPOSITORY}\", \"publish\": \"1\"}}"

View File

@@ -36,7 +36,7 @@ jobs:
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
}
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
linux:
needs: [changes]
@@ -46,12 +46,18 @@ jobs:
include:
- preset: CPU
- preset: CUDA
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
- preset: ROCm
container: rocm/dev-ubuntu-22.04:6.1.2
extra-packages: rocm-libs
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
- preset: Vulkan
container: ubuntu:22.04
extra-packages: >
mesa-vulkan-drivers vulkan-tools
libvulkan1 libvulkan-dev
vulkan-sdk cmake ccache g++ make
runs-on: linux
container: ${{ matrix.container }}
steps:
@@ -59,7 +65,19 @@ jobs:
- run: |
[ -n "${{ matrix.container }}" ] || sudo=sudo
$sudo apt-get update
# Add LunarG Vulkan SDK apt repo for Ubuntu 22.04
if [ "${{ matrix.preset }}" = "Vulkan" ]; then
$sudo apt-get install -y --no-install-recommends wget gnupg ca-certificates software-properties-common
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | $sudo gpg --dearmor -o /usr/share/keyrings/lunarg-archive-keyring.gpg
# Use signed-by to bind the repo to the installed keyring to avoid NO_PUBKEY
echo "deb [signed-by=/usr/share/keyrings/lunarg-archive-keyring.gpg] https://packages.lunarg.com/vulkan/1.4.313 jammy main" | $sudo tee /etc/apt/sources.list.d/lunarg-vulkan-1.4.313-jammy.list > /dev/null
$sudo apt-get update
fi
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
# Export VULKAN_SDK if provided by LunarG package (defensive)
if [ -d "/usr/lib/x86_64-linux-gnu/vulkan" ] && [ "${{ matrix.preset }}" = "Vulkan" ]; then
echo "VULKAN_SDK=/usr" >> $GITHUB_ENV
fi
env:
DEBIAN_FRONTEND: noninteractive
- uses: actions/cache@v4
@@ -78,23 +96,35 @@ jobs:
include:
- preset: CPU
- preset: CUDA
install: https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_522.06_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
cuda-components:
- '"cudart"'
- '"nvcc"'
- '"cublas"'
- '"cublas_dev"'
- '"crt"'
- '"nvvm"'
- '"nvptxcompiler"'
cuda-version: '13.0'
- preset: ROCm
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010'
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
- preset: Vulkan
install: https://sdk.lunarg.com/sdk/download/1.4.321.1/windows/vulkansdk-windows-X64-1.4.321.1.exe
runs-on: windows
steps:
- run: |
choco install -y --no-progress ccache ninja
ccache -o cache_dir=${{ github.workspace }}\.ccache
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm' || matrix.preset == 'Vulkan'
id: cache-install
uses: actions/cache/restore@v4
with:
path: |
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
C:\Program Files\AMD\ROCm
C:\VulkanSDK
key: ${{ matrix.install }}
- if: matrix.preset == 'CUDA'
name: Install CUDA ${{ matrix.cuda-version }}
@@ -102,7 +132,8 @@ jobs:
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.8", "nvcc_11.8", "cublas_11.8", "cublas_dev_11.8")) -NoNewWindow -Wait
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
}
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
@@ -120,6 +151,21 @@ jobs:
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
- if: matrix.preset == 'Vulkan'
name: Install Vulkan ${{ matrix.rocm-version }}
run: |
$ErrorActionPreference = "Stop"
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
Start-Process -FilePath .\install.exe -ArgumentList "-c","--am","--al","in" -NoNewWindow -Wait
}
$vulkanPath = (Resolve-Path "C:\VulkanSDK\*").path
echo "$vulkanPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "VULKAN_SDK=$vulkanPath" >> $env:GITHUB_ENV
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
uses: actions/cache/save@v4
with:
@@ -133,13 +179,20 @@ jobs:
path: ${{ github.workspace }}\.ccache
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
- run: |
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
cmake --build --parallel --preset "${{ matrix.preset }}"
env:
CMAKE_GENERATOR: Ninja
go_mod_tidy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: check that 'go mod tidy' is clean
run: go mod tidy --diff || (echo "Please run 'go mod tidy'." && exit 1)
test:
strategy:
matrix:
@@ -147,15 +200,82 @@ jobs:
runs-on: ${{ matrix.os }}
env:
CGO_ENABLED: '1'
GOEXPERIMENT: 'synctest'
steps:
- uses: actions/checkout@v4
- uses: actions/setup-go@v5
- name: checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # 4.2.2
- name: cache restore
uses: actions/cache/restore@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
restore-keys: |
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}
${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-
- name: Setup Go
uses: actions/setup-go@v5
with:
# The caching strategy of setup-go is less than ideal, and wastes
# time by not saving artifacts due to small failures like the linter
# complaining, etc. This means subsequent have to rebuild their world
# again until all checks pass. For instance, if you mispell a word,
# you're punished until you fix it. This is more hostile than
# helpful.
cache: false
go-version-file: go.mod
# It is tempting to run this in a platform independent way, but the past
# shows this codebase will see introductions of platform specific code
# generation, and so we need to check this per platform to ensure we
# don't abuse go generate on specific platforms.
- name: check that 'go generate' is clean
if: always()
run: |
go generate ./...
git diff --name-only --exit-code || (echo "Please run 'go generate ./...'." && exit 1)
- name: go test
if: always()
run: go test -count=1 -benchtime=1x ./...
# TODO(bmizerany): replace this heavy tool with just the
# tools/checks/binaries we want and then make them all run in parallel
# across jobs, not on a single tiny vm on Github Actions.
- uses: golangci/golangci-lint-action@v6
with:
args: --timeout 10m0s -v
- run: go test ./...
- name: cache save
# Always save the cache, even if the job fails. The artifacts produced
# during the building of test binaries are not all for naught. They can
# be used to speed up subsequent runs.
if: always()
uses: actions/cache/save@1bd1e32a3bdc45362d1e726936510720a7c30a57 # v4.2.0
with:
# Note: unlike the other setups, this is only grabbing the mod download
# cache, rather than the whole mod directory, as the download cache
# contains zips that can be unpacked in parallel faster than they can be
# fetched and extracted by tar
path: |
~/.cache/go-build
~/go/pkg/mod/cache
~\AppData\Local\go-build
# NOTE: The -3- here should be incremented when the scheme of data to be
# cached changes (e.g. path above changes).
key: ${{ github.job }}-${{ runner.os }}-${{ matrix.goarch }}-${{ matrix.buildflags }}-go-3-${{ hashFiles('**/go.sum') }}-${{ github.run_id }}
patches:
runs-on: ubuntu-latest
@@ -163,5 +283,5 @@ jobs:
- uses: actions/checkout@v4
- name: Verify patches apply cleanly and do not change files
run: |
make -f Makefile.sync clean sync
git diff --compact-summary --exit-code
make -f Makefile.sync clean checkout apply-patches sync
git diff --compact-summary --exit-code

3
.gitignore vendored
View File

@@ -7,8 +7,8 @@
0
dist
build
ollama
.cache
.gocache
*.exe
.idea
test_data
@@ -16,3 +16,4 @@ test_data
__debug_bin*
llama/build
llama/vendor
/ollama

View File

@@ -6,8 +6,6 @@ linters:
- bidichk
- bodyclose
- containedctx
- contextcheck
- errcheck
- gocheckcompilerdirectives
- gofmt
- gofumpt
@@ -21,12 +19,13 @@ linters:
- nolintlint
- nosprintfhostport
- staticcheck
- tenv
- unconvert
- unused
- usestdlibvars
- usetesting
- wastedassign
- whitespace
disable:
- usestdlibvars
- errcheck
linters-settings:
staticcheck:
checks:
@@ -39,5 +38,4 @@ severity:
- gofmt
- goimports
- intrange
- usestdlibvars
severity: info

View File

@@ -3,6 +3,7 @@ cmake_minimum_required(VERSION 3.21)
project(Ollama C CXX)
include(CheckLanguage)
include(GNUInstallDirs)
find_package(Threads REQUIRED)
@@ -23,8 +24,10 @@ set(GGML_SCHED_MAX_COPIES 4)
set(GGML_LLAMAFILE ON)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
set(GGML_CUDA_GRAPHS ON)
set(GGML_CUDA_FA ON)
set(GGML_CUDA_COMPRESSION_MODE default)
if((NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
set(GGML_CPU_ALL_VARIANTS ON)
endif()
@@ -35,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
endif()
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
@@ -49,6 +52,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
set(GGML_CPU ON)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
@@ -74,52 +79,76 @@ if(CMAKE_CUDA_COMPILER)
find_package(CUDAToolkit)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
install(TARGETS ggml-cuda
RUNTIME_DEPENDENCIES
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
PRE_INCLUDE_REGEXES cublas cublasLt cudart
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
)
endif()
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX "^gfx(906|908|90a):xnack[+-]$"
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX ""
CACHE STRING
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(906|908|90a):xnack[+-]$\"."
"Regular expression describing AMDGPU_TARGETS not supported on Windows. Override to force building these targets. Default \"^gfx(908|90a):xnack[+-]$\"."
)
check_language(HIP)
if(CMAKE_HIP_COMPILER)
set(HIP_PLATFORM "amd")
find_package(hip REQUIRED)
if(NOT AMDGPU_TARGETS)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011|1012(:xnack-)|103[0-6]|110[0-3]|1150)$")
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
find_package(hip REQUIRED)
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|90[012]|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011(:xnack-)|1012(:xnack-)|103[0-6]|110[0-3]|115[0123]|120[01])$")
endif()
if(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
endif()
if(AMDGPU_TARGETS)
find_package(hip REQUIRED)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
if (WIN32)
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
endif()
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
install(TARGETS ggml-hip
RUNTIME_DEPENDENCIES
RUNTIME_DEPENDENCY_SET rocm
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
install(RUNTIME_DEPENDENCY_SET rocm
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
PRE_EXCLUDE_REGEXES ".*"
POST_EXCLUDE_REGEXES "system32"
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
)
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP)
break()
endif()
endforeach()
endif()
endif()
find_package(Vulkan)
if(Vulkan_FOUND)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-vulkan)
install(TARGETS ggml-vulkan
RUNTIME_DEPENDENCIES
PRE_INCLUDE_REGEXES vulkan
PRE_EXCLUDE_REGEXES ".*"
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
)
endif()

View File

@@ -6,7 +6,8 @@
"binaryDir": "${sourceDir}/build",
"installDir": "${sourceDir}/dist",
"cacheVariables": {
"CMAKE_BUILD_TYPE": "Release"
"CMAKE_BUILD_TYPE": "Release",
"CMAKE_MSVC_RUNTIME_LIBRARY": "MultiThreaded"
}
},
{
@@ -21,14 +22,24 @@
"name": "CUDA 11",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;62;70;72;75;80;86"
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 12",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "60;61;62;70;72;75;80;86;87;89;90;90a"
"CMAKE_CUDA_ARCHITECTURES": "50;52;60;61;70;75;80;86;89;90;90a;120",
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
}
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"cacheVariables": {
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;103-virtual;110-virtual;120-virtual;121-virtual",
"CMAKE_CUDA_FLAGS": "-t 2"
}
},
{
@@ -56,8 +67,13 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"cacheVariables": {
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1011;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1012:xnack-;"
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
"AMDGPU_TARGETS": "gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
}
},
{
"name": "Vulkan",
"inherits": [ "Default" ]
}
],
"buildPresets": [
@@ -86,6 +102,11 @@
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 12"
},
{
"name": "CUDA 13",
"inherits": [ "CUDA" ],
"configurePreset": "CUDA 13"
},
{
"name": "JetPack 5",
"inherits": [ "CUDA" ],
@@ -105,6 +126,11 @@
"name": "ROCm 6",
"inherits": [ "ROCm" ],
"configurePreset": "ROCm 6"
},
{
"name": "Vulkan",
"targets": [ "ggml-vulkan" ],
"configurePreset": "Vulkan"
}
]
}

View File

@@ -6,8 +6,6 @@ Thank you for your interest in contributing to Ollama! Here are a few guidelines
See the [development documentation](./docs/development.md) for instructions on how to build and run Ollama locally.
## Pull requests
### Ideal issues
* [Bugs](https://github.com/ollama/ollama/issues?q=is%3Aissue+is%3Aopen+label%3Abug): issues where Ollama stops working or where it results in an unexpected error.
@@ -26,11 +24,65 @@ See the [development documentation](./docs/development.md) for instructions on h
* Changes that add significant friction to the user experience
* Changes that create a large future maintenance burden for maintainers and contributors
### Best practices
## Proposing a (non-trivial) change
* Commit messages: please leave both a title and a description in your commit messages. The title should be a short summary of the changes, with a leading word that explains the section of the code being changed (e.g. `api: fix parsing of prompt field`) . In the description, leave a short 2-3 sentences that explain more about the change and its impact.
* Tests: please add test coverage to changes where possible.
* Minimize dependencies: avoid adding new dependencies unless absolutely necessary.
> By "non-trivial", we mean a change that is not a bug fix or small
> documentation update. If you are unsure, please ask us on our [Discord
> server](https://discord.gg/ollama).
Before opening a non-trivial Pull Request, please open an issue to discuss the change and
get feedback from the maintainers. This helps us understand the context of the
change and how it fits into Ollama's roadmap and prevents us from duplicating
work or you from spending time on a change that we may not be able to accept.
Tips for proposals:
* Explain the problem you are trying to solve, not what you are trying to do.
* Explain why the change is important.
* Explain how the change will be used.
* Explain how the change will be tested.
Additionally, for bonus points: Provide draft documentation you would expect to
see if the change were accepted.
## Pull requests
**Commit messages**
The title should look like:
<package>: <short description>
The package is the most affected Go package. If the change does not affect Go
code, then use the directory name instead. Changes to a single well-known
file in the root directory may use the file name.
The short description should start with a lowercase letter and be a
continuation of the sentence:
"This changes Ollama to..."
Examples:
llm/backend/mlx: support the llama architecture
CONTRIBUTING: provide clarity on good commit messages, and bad
docs: simplify manual installation with shorter curl commands
Bad Examples:
feat: add more emoji
fix: was not using famous web framework
chore: generify code
**Tests**
Please include tests. Strive to test behavior, not implementation.
**New dependencies**
Dependencies should be added sparingly. If you are adding a new dependency,
please explain why it is necessary and what other ways you attempted that
did not work without it.
## Need help?

View File

@@ -1,23 +1,38 @@
# vim: filetype=dockerfile
ARG FLAVOR=${TARGETARCH}
ARG PARALLEL=8
ARG ROCMVERSION=6.1.2
ARG ROCMVERSION=6.3.3
ARG JETPACK5VERSION=r35.4.1
ARG JETPACK6VERSION=r36.2.0
ARG JETPACK6VERSION=r36.4.0
ARG CMAKEVERSION=3.31.2
ARG VULKANVERSION=1.4.321.1
FROM --platform=linux/amd64 rocm/dev-centos-7:${ROCMVERSION}-complete AS base-amd64
RUN sed -i -e 's/mirror.centos.org/vault.centos.org/g' -e 's/^#.*baseurl=http/baseurl=http/g' -e 's/^mirrorlist=http/#mirrorlist=http/g' /etc/yum.repos.d/*.repo \
&& yum install -y yum-utils devtoolset-10-gcc devtoolset-10-gcc-c++ \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo \
&& curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /usr/local/bin --strip-components 1
ENV PATH=/opt/rh/devtoolset-10/root/usr/bin:/opt/rh/devtoolset-11/root/usr/bin:$PATH
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
RUN yum install -y yum-utils \
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
&& dnf install -y ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
ARG VULKANVERSION
RUN wget https://sdk.lunarg.com/sdk/download/${VULKANVERSION}/linux/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz -O /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
&& tar xvf /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
&& dnf -y install ninja-build \
&& ln -s /usr/bin/python3 /usr/bin/python \
&& /${VULKANVERSION}/vulkansdk -j 8 vulkan-headers \
&& /${VULKANVERSION}/vulkansdk -j 8 shaderc
RUN cp -r /${VULKANVERSION}/x86_64/include/* /usr/local/include/ \
&& cp -r /${VULKANVERSION}/x86_64/lib/* /usr/local/lib
ENV PATH=/${VULKANVERSION}/x86_64/bin:$PATH
FROM --platform=linux/arm64 rockylinux:8 AS base-arm64
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
# install epel-release for ccache
RUN yum install -y yum-utils epel-release \
&& yum install -y clang ccache \
&& dnf install -y clang ccache \
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/sbsa/cuda-rhel8.repo
ENV CC=clang CXX=clang++
@@ -29,37 +44,54 @@ COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ENV LDFLAGS=-s
FROM base AS cpu
# amd64 uses gcc which requires devtoolset-11 for AVX extensions while arm64 uses clang
RUN if [ "$(uname -m)" = "x86_64" ]; then yum install -y devtoolset-11-gcc devtoolset-11-gcc-c++; fi
ENV PATH=/opt/rh/devtoolset-11/root/usr/bin:$PATH
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CPU' \
&& cmake --build --parallel --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel 8
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
FROM base AS cuda-11
ARG CUDA11VERSION=11.3
RUN yum install -y cuda-toolkit-${CUDA11VERSION//./-}
ARG CUDA11VERSION=11.8
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
ENV PATH=/usr/local/cuda-11/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 11' \
&& cmake --build --parallel --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-12
ARG CUDA12VERSION=12.4
RUN yum install -y cuda-toolkit-${CUDA12VERSION//./-}
ARG CUDA12VERSION=12.8
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
ENV PATH=/usr/local/cuda-12/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 12' \
&& cmake --build --parallel --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS cuda-13
ARG CUDA13VERSION=13.0
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
ENV PATH=/usr/local/cuda-13/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS rocm-6
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'ROCm 6' \
&& cmake --build --parallel --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel 8
cmake --preset 'ROCm 6' -DOLLAMA_RUNNER_DIR="rocm" \
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
RUN rm -f dist/lib/ollama/rocm/rocblas/library/*gfx90[06]*
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
ARG CMAKEVERSION
@@ -67,10 +99,11 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 5' \
&& cmake --build --parallel --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 5' -DOLLAMA_RUNNER_DIR="cuda_jetpack5" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
ARG CMAKEVERSION
@@ -78,44 +111,84 @@ RUN apt-get update && apt-get install -y curl ccache \
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
COPY CMakeLists.txt CMakePresets.json .
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
ARG PARALLEL
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'JetPack 6' \
&& cmake --build --parallel --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel 8
cmake --preset 'JetPack 6' -DOLLAMA_RUNNER_DIR="cuda_jetpack6" \
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
FROM base AS vulkan
RUN --mount=type=cache,target=/root/.ccache \
cmake --preset 'Vulkan' -DOLLAMA_RUNNER_DIR="vulkan" \
&& cmake --build --parallel --preset 'Vulkan' \
&& cmake --install build --component Vulkan --strip --parallel 8
FROM base AS build
ARG GOVERSION=1.23.4
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
WORKDIR /go/src/github.com/ollama/ollama
COPY go.mod go.sum .
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
ENV PATH=/usr/local/go/bin:$PATH
RUN go mod download
COPY . .
ARG GOFLAGS="'-ldflags=-w -s'"
ENV CGO_ENABLED=1
ARG CGO_CFLAGS
ARG CGO_CXXFLAGS
RUN --mount=type=cache,target=/root/.cache/go-build \
go build -trimpath -buildmode=pie -o /bin/ollama .
FROM --platform=linux/amd64 scratch AS amd64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
COPY --from=vulkan dist/lib/ollama /lib/ollama/
FROM --platform=linux/arm64 scratch AS arm64
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-5 dist/lib/ollama/ /lib/ollama/
COPY --from=jetpack-6 dist/lib/ollama/ /lib/ollama/
FROM --platform=linux/arm64 scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
FROM scratch AS rocm
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
FROM ${FLAVOR} AS archive
ARG VULKANVERSION
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:20.04
# Temporary opt-out stages for Vulkan
FROM --platform=linux/amd64 scratch AS amd64_novulkan
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
FROM arm64 AS arm64_novulkan
FROM ${FLAVOR}_novulkan AS archive_novulkan
COPY --from=cpu dist/lib/ollama /lib/ollama
COPY --from=build /bin/ollama /bin/ollama
FROM ubuntu:24.04 AS novulkan
RUN apt-get update \
&& apt-get install -y ca-certificates \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive_novulkan /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive_novulkan /lib/ollama /usr/lib/ollama
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_VISIBLE_DEVICES=all
ENV OLLAMA_HOST=0.0.0.0:11434
EXPOSE 11434
ENTRYPOINT ["/bin/ollama"]
CMD ["serve"]
FROM ubuntu:24.04 AS default
RUN apt-get update \
&& apt-get install -y ca-certificates libvulkan1 \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
COPY --from=archive /bin /usr/bin
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
COPY --from=archive /lib/ollama /usr/lib/ollama

View File

@@ -1,6 +1,6 @@
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=46e3556e01b824e52395fb050b29804b6cff2a7c
FETCH_HEAD=7049736b2dd9011bf819e298b844ebbc4b5afdc9
.PHONY: help
help:
@@ -12,31 +12,42 @@ help:
@echo " clean Clean local repository"
@echo
@echo "Example:"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches sync"
.PHONY: sync
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
.PHONY: llama/build-info.cpp
llama/build-info.cpp: llama/build-info.cpp.in
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
go generate ./$(@D)
.PHONY: llama/llama.cpp
llama/llama.cpp: llama/vendor/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
llama/llama.cpp: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /) $@
.PHONY: ml/backend/ggml/ggml apply-patches
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
.PHONY: ml/backend/ggml/ggml
ml/backend/ggml/ggml: llama/vendor
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /ggml/) $@
PATCHES=$(wildcard llama/patches/*.patch)
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
.PHONY: apply-patches
.NOTPARALLEL:
apply-patches: $(addsuffix ed, $(PATCHES))
apply-patches: $(PATCHED)
%.patched: %.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
llama/patches/.%.patched: llama/patches/%.patch
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then \
touch $@; \
else \
echo "Patch failed. Resolve any conflicts then continue."; \
echo "1. Run 'git -C $(WORKDIR) am --continue'"; \
echo "2. Run 'make -f $(lastword $(MAKEFILE_LIST)) format-patches'"; \
echo "3. Run 'make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches'"; \
exit 1; \
fi
.PHONY: checkout
checkout: $(WORKDIR)
@@ -57,4 +68,5 @@ format-patches: llama/patches
.PHONE: clean
clean: checkout
$(RM) $(addsuffix ed, $(PATCHES))
@git -C $(WORKDIR) am --abort || true
$(RM) llama/patches/.*.patched

121
README.md
View File

@@ -1,6 +1,6 @@
<div align="center">
  <a href="https://ollama.com" />
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
  <a href="https://ollama.com">
<img alt="ollama" width="240" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
</a>
</div>
@@ -10,7 +10,7 @@ Get up and running with large language models.
### macOS
[Download](https://ollama.com/download/Ollama-darwin.zip)
[Download](https://ollama.com/download/Ollama.dmg)
### Windows
@@ -26,7 +26,7 @@ Please download from ollama [official](https://ollama.com/download/OllamaSetup.e
Example extra list add on this repo.
```
"gfx803" "gfx900:xnack-" "gfx902" gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150(expertimental)"...
(ROCm5) "gfx803" "gfx900:xnack-" "gfx902" (ROCm6) gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150" "gfx1201" (expertimental)"...
```
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
@@ -62,10 +62,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
```shell
ollama run llama3.2
ollama run gemma3
```
## Model library
@@ -76,8 +76,15 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | -------------------------------- |
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
| QwQ | 32B | 20GB | `ollama run qwq` |
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
@@ -86,10 +93,7 @@ Here are some example models that can be downloaded:
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
| Mistral | 7B | 4.1GB | `ollama run mistral` |
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
@@ -97,7 +101,7 @@ Here are some example models that can be downloaded:
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
| LLaVA | 7B | 4.5GB | `ollama run llava` |
| Solar | 10.7B | 6.1GB | `ollama run solar` |
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
> [!NOTE]
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
@@ -297,6 +301,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
### Web & Desktop
- [Open WebUI](https://github.com/open-webui/open-webui)
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
- [Hollama](https://github.com/fmaclen/hollama)
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
@@ -304,12 +309,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
- [Saddle](https://github.com/jikkuatwork/saddle)
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
- [big-AGI](https://github.com/enricoros/big-AGI)
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
- [Amica](https://github.com/semperai/amica)
- [chatd](https://github.com/BruceMacD/chatd)
@@ -330,6 +336,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
@@ -343,13 +351,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
@@ -358,22 +367,22 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG and deep research on Mac/Windows/Linux)
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
@@ -385,7 +394,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
@@ -402,6 +411,32 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Chipper](https://github.com/TilmanGriesel/chipper) AI interface for tinkerers (Ollama, Haystack RAG, Python)
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
### Cloud
@@ -441,10 +476,18 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
- [VT Code](https://github.com/vinhnx/vtcode) - VT Code is a Rust-based terminal coding agent with semantic code intelligence via Tree-sitter. Ollama integration for running local/cloud models with configurable endpoints.
### Apple Vision Pro
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
- [Enchanted](https://github.com/AugustDev/enchanted)
### Database
@@ -459,14 +502,15 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/)
- [Gentoo](https://github.com/gentoo/guru/tree/master/app-misc/ollama)
- [Homebrew](https://formulae.brew.sh/formula/ollama)
- [Helm Chart](https://artifacthub.io/packages/helm/ollama-helm/ollama)
- [Guix channel](https://codeberg.org/tusharhero/ollama-guix)
- [Nix package](https://search.nixos.org/packages?channel=24.05&show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Nix package](https://search.nixos.org/packages?show=ollama&from=0&size=50&sort=relevance&type=packages&query=ollama)
- [Flox](https://flox.dev/blog/ollama-part-one)
### Libraries
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
- [crewAI](https://github.com/crewAIInc/crewAI)
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
@@ -513,16 +557,27 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
- [GoLamify](https://github.com/prasad89/golamify)
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
- [Ollama for D](https://github.com/kassane/ollama-d)
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
- [achatbot-go](https://github.com/ai-bot-pro/achatbot-go) a multimodal(text/audio/image) chatbot.
### Mobile
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
- [Enchanted](https://github.com/AugustDev/enchanted)
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
### Extensions & Plugins
@@ -544,7 +599,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
@@ -554,8 +609,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
@@ -567,12 +622,20 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [Alfred Ollama](https://github.com/zeitlings/alfred-ollama) (Alfred Workflow)
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
### Supported backends
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
### Observability
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.

View File

@@ -10,7 +10,7 @@
// repository].
//
// [the API documentation]: https://github.com/ollama/ollama/blob/main/docs/api.md
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/examples
// [in the GitHub repository]: https://github.com/ollama/ollama/tree/main/api/examples
package api
import (
@@ -24,7 +24,10 @@ import (
"net/http"
"net/url"
"runtime"
"strconv"
"time"
"github.com/ollama/ollama/auth"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/version"
@@ -42,6 +45,12 @@ func checkError(resp *http.Response, body []byte) error {
return nil
}
if resp.StatusCode == http.StatusUnauthorized {
authError := AuthorizationError{StatusCode: resp.StatusCode}
json.Unmarshal(body, &authError)
return authError
}
apiError := StatusError{StatusCode: resp.StatusCode}
err := json.Unmarshal(body, &apiError)
@@ -76,6 +85,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
}
}
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
token, err := auth.Sign(ctx, []byte(challenge))
if err != nil {
return "", err
}
return token, nil
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
@@ -97,6 +114,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
if err != nil {
return err
@@ -106,6 +138,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
request.Header.Set("Accept", "application/json")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
respObj, err := c.http.Do(request)
if err != nil {
return err
@@ -132,7 +168,7 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
const maxBufferSize = 512 * format.KiloByte
func (c *Client) stream(ctx context.Context, method, path string, data any, fn func([]byte) error) error {
var buf *bytes.Buffer
var buf io.Reader
if data != nil {
bts, err := json.Marshal(data)
if err != nil {
@@ -143,6 +179,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
requestURL := c.base.JoinPath(path)
var token string
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
var err error
now := strconv.FormatInt(time.Now().Unix(), 10)
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
token, err = getAuthorizationToken(ctx, chal)
if err != nil {
return err
}
q := requestURL.Query()
q.Set("ts", now)
requestURL.RawQuery = q.Encode()
}
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
if err != nil {
return err
@@ -152,6 +204,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
request.Header.Set("Accept", "application/x-ndjson")
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
if token != "" {
request.Header.Set("Authorization", token)
}
response, err := c.http.Do(request)
if err != nil {
return err
@@ -164,7 +220,8 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
scanner.Buffer(scanBuf, maxBufferSize)
for scanner.Scan() {
var errorResponse struct {
Error string `json:"error,omitempty"`
Error string `json:"error,omitempty"`
SigninURL string `json:"signin_url,omitempty"`
}
bts := scanner.Bytes()
@@ -172,11 +229,13 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
return fmt.Errorf("unmarshal: %w", err)
}
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if response.StatusCode >= http.StatusBadRequest {
if response.StatusCode == http.StatusUnauthorized {
return AuthorizationError{
StatusCode: response.StatusCode,
Status: response.Status,
SigninURL: errorResponse.SigninURL,
}
} else if response.StatusCode >= http.StatusBadRequest {
return StatusError{
StatusCode: response.StatusCode,
Status: response.Status,
@@ -184,6 +243,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
}
}
if errorResponse.Error != "" {
return errors.New(errorResponse.Error)
}
if err := fn(bts); err != nil {
return err
}
@@ -378,3 +441,21 @@ func (c *Client) Version(ctx context.Context) (string, error) {
return version.Version, nil
}
// Signout will signout a client for a local ollama server.
func (c *Client) Signout(ctx context.Context) error {
return c.do(ctx, http.MethodPost, "/api/signout", nil, nil)
}
// Disconnect will disconnect an ollama instance from ollama.com.
func (c *Client) Disconnect(ctx context.Context, encodedKey string) error {
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
}
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
var resp UserResponse
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
return nil, err
}
return &resp, nil
}

View File

@@ -1,6 +1,12 @@
package api
import (
"encoding/json"
"fmt"
"net/http"
"net/http/httptest"
"net/url"
"strings"
"testing"
)
@@ -43,3 +49,216 @@ func TestClientFromEnvironment(t *testing.T) {
})
}
}
// testError represents an internal error type with status code and message
// this is used since the error response from the server is not a standard error struct
type testError struct {
message string
statusCode int
}
func (e testError) Error() string {
return e.message
}
func TestClientStream(t *testing.T) {
testCases := []struct {
name string
responses []any
wantErr string
}{
{
name: "immediate error response",
responses: []any{
testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
},
wantErr: "test error message",
},
{
name: "error after successful chunks, ok response",
responses: []any{
ChatResponse{Message: Message{Content: "partial response 1"}},
ChatResponse{Message: Message{Content: "partial response 2"}},
testError{
message: "mid-stream error",
statusCode: http.StatusOK,
},
},
wantErr: "mid-stream error",
},
{
name: "http status error takes precedence over general error",
responses: []any{
testError{
message: "custom error message",
statusCode: http.StatusInternalServerError,
},
},
wantErr: "500",
},
{
name: "successful stream completion",
responses: []any{
ChatResponse{Message: Message{Content: "chunk 1"}},
ChatResponse{Message: Message{Content: "chunk 2"}},
ChatResponse{
Message: Message{Content: "final chunk"},
Done: true,
DoneReason: "stop",
},
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
flusher, ok := w.(http.Flusher)
if !ok {
t.Fatal("expected http.Flusher")
}
w.Header().Set("Content-Type", "application/x-ndjson")
for _, resp := range tc.responses {
if errResp, ok := resp.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
flusher.Flush()
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var receivedChunks []ChatResponse
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
var resp ChatResponse
if err := json.Unmarshal(chunk, &resp); err != nil {
return fmt.Errorf("failed to unmarshal chunk: %w", err)
}
receivedChunks = append(receivedChunks, resp)
return nil
})
if tc.wantErr != "" {
if err == nil {
t.Fatal("expected error but got nil")
}
if !strings.Contains(err.Error(), tc.wantErr) {
t.Errorf("expected error containing %q, got %v", tc.wantErr, err)
}
return
}
if err != nil {
t.Errorf("unexpected error: %v", err)
}
})
}
}
func TestClientDo(t *testing.T) {
testCases := []struct {
name string
response any
wantErr string
}{
{
name: "immediate error response",
response: testError{
message: "test error message",
statusCode: http.StatusBadRequest,
},
wantErr: "test error message",
},
{
name: "server error response",
response: testError{
message: "internal error",
statusCode: http.StatusInternalServerError,
},
wantErr: "internal error",
},
{
name: "successful response",
response: struct {
ID string `json:"id"`
Success bool `json:"success"`
}{
ID: "msg_123",
Success: true,
},
},
}
for _, tc := range testCases {
t.Run(tc.name, func(t *testing.T) {
ts := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if errResp, ok := tc.response.(testError); ok {
w.WriteHeader(errResp.statusCode)
err := json.NewEncoder(w).Encode(map[string]string{
"error": errResp.message,
})
if err != nil {
t.Fatal("failed to encode error response:", err)
}
return
}
w.Header().Set("Content-Type", "application/json")
if err := json.NewEncoder(w).Encode(tc.response); err != nil {
t.Fatalf("failed to encode response: %v", err)
}
}))
defer ts.Close()
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
var resp struct {
ID string `json:"id"`
Success bool `json:"success"`
}
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
if tc.wantErr != "" {
if err == nil {
t.Fatalf("got nil, want error %q", tc.wantErr)
}
if err.Error() != tc.wantErr {
t.Errorf("error message mismatch: got %q, want %q", err.Error(), tc.wantErr)
}
return
}
if err != nil {
t.Fatalf("got error %q, want nil", err)
}
if expectedResp, ok := tc.response.(struct {
ID string `json:"id"`
Success bool `json:"success"`
}); ok {
if resp.ID != expectedResp.ID {
t.Errorf("response ID mismatch: got %q, want %q", resp.ID, expectedResp.ID)
}
if resp.Success != expectedResp.Success {
t.Errorf("response Success mismatch: got %v, want %v", resp.Success, expectedResp.Success)
}
}
})
}
}

View File

@@ -10,6 +10,11 @@ import (
"strconv"
"strings"
"time"
"github.com/google/uuid"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/types/model"
)
// StatusError is an error with an HTTP status code and message.
@@ -33,6 +38,19 @@ func (e StatusError) Error() string {
}
}
type AuthorizationError struct {
StatusCode int
Status string
SigninURL string `json:"signin_url"`
}
func (e AuthorizationError) Error() string {
if e.Status != "" {
return e.Status
}
return "something went wrong, please see the ollama server logs for details"
}
// ImageData represents the raw binary data of an image file.
type ImageData []byte
@@ -73,13 +91,32 @@ type GenerateRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Images is an optional list of base64-encoded images accompanying this
// Images is an optional list of raw image bytes accompanying this
// request, for multimodal models.
Images []ImageData `json:"images,omitempty"`
// Options lists model-specific options. For example, temperature can be
// set through this field, if the model supports it.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models. Needs to be a pointer so we can distinguish between false
// (request that thinking _not_ be used) and unset (use the old behavior
// before this option was introduced)
Think *ThinkValue `json:"think,omitempty"`
// Truncate is a boolean that, when set to true, truncates the chat history messages
// if the rendered prompt exceeds the context length limit.
Truncate *bool `json:"truncate,omitempty"`
// Shift is a boolean that, when set to true, shifts the chat history
// when hitting the context length limit instead of erroring.
Shift *bool `json:"shift,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
// ChatRequest describes a request sent by [Client.Chat].
@@ -104,7 +141,24 @@ type ChatRequest struct {
Tools `json:"tools,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
// Think controls whether thinking/reasoning models will think before
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
// for supported models.
Think *ThinkValue `json:"think,omitempty"`
// Truncate is a boolean that, when set to true, truncates the chat history messages
// if the rendered prompt exceeds the context length limit.
Truncate *bool `json:"truncate,omitempty"`
// Shift is a boolean that, when set to true, shifts the chat history
// when hitting the context length limit instead of erroring.
Shift *bool `json:"shift,omitempty"`
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
// template instead of calling the model.
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
}
type Tools []Tool
@@ -123,10 +177,14 @@ func (t Tool) String() string {
// role ("system", "user", or "assistant"), the content and an optional list
// of images.
type Message struct {
Role string `json:"role"`
Content string `json:"content"`
Role string `json:"role"`
Content string `json:"content"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
Images []ImageData `json:"images,omitempty"`
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
ToolName string `json:"tool_name,omitempty"`
}
func (m *Message) UnmarshalJSON(b []byte) error {
@@ -146,7 +204,7 @@ type ToolCall struct {
}
type ToolCallFunction struct {
Index int `json:"index,omitempty"`
Index int `json:"index"`
Name string `json:"name"`
Arguments ToolCallFunctionArguments `json:"arguments"`
}
@@ -160,21 +218,122 @@ func (t *ToolCallFunctionArguments) String() string {
type Tool struct {
Type string `json:"type"`
Items any `json:"items,omitempty"`
Function ToolFunction `json:"function"`
}
// PropertyType can be either a string or an array of strings
type PropertyType []string
// UnmarshalJSON implements the json.Unmarshaler interface
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
// Try to unmarshal as a string first
var s string
if err := json.Unmarshal(data, &s); err == nil {
*pt = []string{s}
return nil
}
// If that fails, try to unmarshal as an array of strings
var a []string
if err := json.Unmarshal(data, &a); err != nil {
return err
}
*pt = a
return nil
}
// MarshalJSON implements the json.Marshaler interface
func (pt PropertyType) MarshalJSON() ([]byte, error) {
if len(pt) == 1 {
// If there's only one type, marshal as a string
return json.Marshal(pt[0])
}
// Otherwise marshal as an array
return json.Marshal([]string(pt))
}
// String returns a string representation of the PropertyType
func (pt PropertyType) String() string {
if len(pt) == 0 {
return ""
}
if len(pt) == 1 {
return pt[0]
}
return fmt.Sprintf("%v", []string(pt))
}
type ToolProperty struct {
AnyOf []ToolProperty `json:"anyOf,omitempty"`
Type PropertyType `json:"type,omitempty"`
Items any `json:"items,omitempty"`
Description string `json:"description,omitempty"`
Enum []any `json:"enum,omitempty"`
}
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
func (tp ToolProperty) ToTypeScriptType() string {
if len(tp.AnyOf) > 0 {
var types []string
for _, anyOf := range tp.AnyOf {
types = append(types, anyOf.ToTypeScriptType())
}
return strings.Join(types, " | ")
}
if len(tp.Type) == 0 {
return "any"
}
if len(tp.Type) == 1 {
return mapToTypeScriptType(tp.Type[0])
}
var types []string
for _, t := range tp.Type {
types = append(types, mapToTypeScriptType(t))
}
return strings.Join(types, " | ")
}
// mapToTypeScriptType maps JSON Schema types to TypeScript types
func mapToTypeScriptType(jsonType string) string {
switch jsonType {
case "string":
return "string"
case "number", "integer":
return "number"
case "boolean":
return "boolean"
case "array":
return "any[]"
case "object":
return "Record<string, any>"
case "null":
return "null"
default:
return "any"
}
}
type ToolFunctionParameters struct {
Type string `json:"type"`
Defs any `json:"$defs,omitempty"`
Items any `json:"items,omitempty"`
Required []string `json:"required"`
Properties map[string]ToolProperty `json:"properties"`
}
func (t *ToolFunctionParameters) String() string {
bts, _ := json.Marshal(t)
return string(bts)
}
type ToolFunction struct {
Name string `json:"name"`
Description string `json:"description"`
Parameters struct {
Type string `json:"type"`
Required []string `json:"required"`
Properties map[string]struct {
Type string `json:"type"`
Description string `json:"description"`
Enum []string `json:"enum,omitempty"`
} `json:"properties"`
} `json:"parameters"`
Name string `json:"name"`
Description string `json:"description,omitempty"`
Parameters ToolFunctionParameters `json:"parameters"`
}
func (t *ToolFunction) String() string {
@@ -185,16 +344,38 @@ func (t *ToolFunction) String() string {
// ChatResponse is the response returned by [Client.Chat]. Its fields are
// similar to [GenerateResponse].
type ChatResponse struct {
Model string `json:"model"`
CreatedAt time.Time `json:"created_at"`
Message Message `json:"message"`
DoneReason string `json:"done_reason,omitempty"`
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Message contains the message or part of a message from the model.
Message Message `json:"message"`
// Done specifies if the response is complete.
Done bool `json:"done"`
// DoneReason is the reason the model stopped generating text.
DoneReason string `json:"done_reason,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
Metrics
}
// DebugInfo contains debug information for template rendering
type DebugInfo struct {
RenderedTemplate string `json:"rendered_template"`
ImageCount int `json:"image_count,omitempty"`
}
type Metrics struct {
TotalDuration time.Duration `json:"total_duration,omitempty"`
LoadDuration time.Duration `json:"load_duration,omitempty"`
@@ -222,9 +403,6 @@ type Options struct {
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
PresencePenalty float32 `json:"presence_penalty,omitempty"`
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
Mirostat int `json:"mirostat,omitempty"`
MirostatTau float32 `json:"mirostat_tau,omitempty"`
MirostatEta float32 `json:"mirostat_eta,omitempty"`
Stop []string `json:"stop,omitempty"`
}
@@ -234,12 +412,7 @@ type Runner struct {
NumBatch int `json:"num_batch,omitempty"`
NumGPU int `json:"num_gpu,omitempty"`
MainGPU int `json:"main_gpu,omitempty"`
LowVRAM bool `json:"low_vram,omitempty"`
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
LogitsAll bool `json:"logits_all,omitempty"`
VocabOnly bool `json:"vocab_only,omitempty"`
UseMMap *bool `json:"use_mmap,omitempty"`
UseMLock bool `json:"use_mlock,omitempty"`
NumThread int `json:"num_thread,omitempty"`
}
@@ -255,10 +428,14 @@ type EmbedRequest struct {
// this request.
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Truncate truncates the input to fit the model's max sequence length.
Truncate *bool `json:"truncate,omitempty"`
// Dimensions truncates the output embedding to the specified dimension.
Dimensions int `json:"dimensions,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
// EmbedResponse is the response from [Client.Embed].
@@ -284,7 +461,7 @@ type EmbeddingRequest struct {
KeepAlive *Duration `json:"keep_alive,omitempty"`
// Options lists model-specific options.
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
}
// EmbeddingResponse is the response from [Client.Embeddings].
@@ -294,18 +471,47 @@ type EmbeddingResponse struct {
// CreateRequest is the request passed to [Client.Create].
type CreateRequest struct {
Model string `json:"model"`
Stream *bool `json:"stream,omitempty"`
// Model is the model name to create.
Model string `json:"model"`
// Stream specifies whether the response is streaming; it is true by default.
Stream *bool `json:"stream,omitempty"`
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
Quantize string `json:"quantize,omitempty"`
From string `json:"from,omitempty"`
Files map[string]string `json:"files,omitempty"`
Adapters map[string]string `json:"adapters,omitempty"`
Template string `json:"template,omitempty"`
License any `json:"license,omitempty"`
System string `json:"system,omitempty"`
Parameters map[string]any `json:"parameters,omitempty"`
Messages []Message `json:"messages,omitempty"`
// From is the name of the model or file to use as the source.
From string `json:"from,omitempty"`
// RemoteHost is the URL of the upstream ollama API for the model (if any).
RemoteHost string `json:"remote_host,omitempty"`
// Files is a map of files include when creating the model.
Files map[string]string `json:"files,omitempty"`
// Adapters is a map of LoRA adapters to include when creating the model.
Adapters map[string]string `json:"adapters,omitempty"`
// Template is the template used when constructing a request to the model.
Template string `json:"template,omitempty"`
// License is a string or list of strings for licenses.
License any `json:"license,omitempty"`
// System is the system prompt for the model.
System string `json:"system,omitempty"`
// Parameters is a map of hyper-parameters which are applied to the model.
Parameters map[string]any `json:"parameters,omitempty"`
// Messages is a list of messages added to the model before chat and generation requests.
Messages []Message `json:"messages,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
// Info is a map of additional information for the model
Info map[string]any `json:"info,omitempty"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -330,7 +536,7 @@ type ShowRequest struct {
Template string `json:"template"`
Verbose bool `json:"verbose"`
Options map[string]interface{} `json:"options"`
Options map[string]any `json:"options"`
// Deprecated: set the model name with Model instead
Name string `json:"name"`
@@ -338,16 +544,22 @@ type ShowRequest struct {
// ShowResponse is the response returned from [Client.Show].
type ShowResponse struct {
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
License string `json:"license,omitempty"`
Modelfile string `json:"modelfile,omitempty"`
Parameters string `json:"parameters,omitempty"`
Template string `json:"template,omitempty"`
System string `json:"system,omitempty"`
Renderer string `json:"renderer,omitempty"`
Parser string `json:"parser,omitempty"`
Details ModelDetails `json:"details,omitempty"`
Messages []Message `json:"messages,omitempty"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModelInfo map[string]any `json:"model_info,omitempty"`
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
Tensors []Tensor `json:"tensors,omitempty"`
Capabilities []model.Capability `json:"capabilities,omitempty"`
ModifiedAt time.Time `json:"modified_at,omitempty"`
}
// CopyRequest is the request passed to [Client.Copy].
@@ -359,9 +571,9 @@ type CopyRequest struct {
// PullRequest is the request passed to [Client.Pull].
type PullRequest struct {
Model string `json:"model"`
Insecure bool `json:"insecure,omitempty"`
Username string `json:"username"`
Password string `json:"password"`
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
Username string `json:"username"` // Deprecated: ignored
Password string `json:"password"` // Deprecated: ignored
Stream *bool `json:"stream,omitempty"`
// Deprecated: set the model name with Model instead
@@ -401,30 +613,26 @@ type ProcessResponse struct {
// ListModelResponse is a single model description in [ListResponse].
type ListModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
Name string `json:"name"`
Model string `json:"model"`
RemoteModel string `json:"remote_model,omitempty"`
RemoteHost string `json:"remote_host,omitempty"`
ModifiedAt time.Time `json:"modified_at"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
}
// ProcessModelResponse is a single model description in [ProcessResponse].
type ProcessModelResponse struct {
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
}
type RetrieveModelResponse struct {
Id string `json:"id"`
Object string `json:"object"`
Created int64 `json:"created"`
OwnedBy string `json:"owned_by"`
Name string `json:"name"`
Model string `json:"model"`
Size int64 `json:"size"`
Digest string `json:"digest"`
Details ModelDetails `json:"details,omitempty"`
ExpiresAt time.Time `json:"expires_at"`
SizeVRAM int64 `json:"size_vram"`
ContextLength int `json:"context_length"`
}
type TokenResponse struct {
@@ -436,12 +644,22 @@ type GenerateResponse struct {
// Model is the model name that generated the response.
Model string `json:"model"`
// RemoteModel is the name of the upstream model that generated the response.
RemoteModel string `json:"remote_model,omitempty"`
// RemoteHost is the URL of the upstream Ollama host that generated the response.
RemoteHost string `json:"remote_host,omitempty"`
// CreatedAt is the timestamp of the response.
CreatedAt time.Time `json:"created_at"`
// Response is the textual response itself.
Response string `json:"response"`
// Thinking contains the text that was inside thinking tags in the
// original model output when ChatRequest.Think is enabled.
Thinking string `json:"thinking,omitempty"`
// Done specifies if the response is complete.
Done bool `json:"done"`
@@ -453,6 +671,10 @@ type GenerateResponse struct {
Context []int `json:"context,omitempty"`
Metrics
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
}
// ModelDetails provides details about a model.
@@ -465,6 +687,25 @@ type ModelDetails struct {
QuantizationLevel string `json:"quantization_level"`
}
// UserResponse provides information about a user.
type UserResponse struct {
ID uuid.UUID `json:"id"`
Email string `json:"email"`
Name string `json:"name"`
Bio string `json:"bio,omitempty"`
AvatarURL string `json:"avatarurl,omitempty"`
FirstName string `json:"firstname,omitempty"`
LastName string `json:"lastname,omitempty"`
Plan string `json:"plan,omitempty"`
}
// Tensor describes the metadata for a given tensor.
type Tensor struct {
Name string `json:"name"`
Type string `json:"type"`
Shape []uint64 `json:"shape"`
}
func (m *Metrics) Summary() {
if m.TotalDuration > 0 {
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
@@ -493,7 +734,7 @@ func (m *Metrics) Summary() {
}
}
func (opts *Options) FromMap(m map[string]interface{}) error {
func (opts *Options) FromMap(m map[string]any) error {
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
@@ -550,12 +791,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
}
field.SetString(val)
case reflect.Slice:
// JSON unmarshals to []interface{}, not []string
val, ok := val.([]interface{})
// JSON unmarshals to []any, not []string
val, ok := val.([]any)
if !ok {
return fmt.Errorf("option %q must be of type array", key)
}
// convert []interface{} to []string
// convert []any to []string
slice := make([]string, len(val))
for i, item := range val {
str, ok := item.(string)
@@ -602,24 +843,126 @@ func DefaultOptions() Options {
RepeatPenalty: 1.1,
PresencePenalty: 0.0,
FrequencyPenalty: 0.0,
Mirostat: 0,
MirostatTau: 5.0,
MirostatEta: 0.1,
Seed: -1,
Runner: Runner{
// options set when the model is loaded
NumCtx: 2048,
NumCtx: int(envconfig.ContextLength()),
NumBatch: 512,
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
NumThread: 0, // let the runtime decide
LowVRAM: false,
UseMLock: false,
UseMMap: nil,
},
}
}
// ThinkValue represents a value that can be a boolean or a string ("high", "medium", "low")
type ThinkValue struct {
// Value can be a bool or string
Value interface{}
}
// IsValid checks if the ThinkValue is valid
func (t *ThinkValue) IsValid() bool {
if t == nil || t.Value == nil {
return true // nil is valid (means not set)
}
switch v := t.Value.(type) {
case bool:
return true
case string:
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// IsBool returns true if the value is a boolean
func (t *ThinkValue) IsBool() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(bool)
return ok
}
// IsString returns true if the value is a string
func (t *ThinkValue) IsString() bool {
if t == nil || t.Value == nil {
return false
}
_, ok := t.Value.(string)
return ok
}
// Bool returns the value as a bool (true if enabled in any way)
func (t *ThinkValue) Bool() bool {
if t == nil || t.Value == nil {
return false
}
switch v := t.Value.(type) {
case bool:
return v
case string:
// Any string value ("high", "medium", "low") means thinking is enabled
return v == "high" || v == "medium" || v == "low"
default:
return false
}
}
// String returns the value as a string
func (t *ThinkValue) String() string {
if t == nil || t.Value == nil {
return ""
}
switch v := t.Value.(type) {
case string:
return v
case bool:
if v {
return "medium" // Default level when just true
}
return ""
default:
return ""
}
}
// UnmarshalJSON implements json.Unmarshaler
func (t *ThinkValue) UnmarshalJSON(data []byte) error {
// Try to unmarshal as bool first
var b bool
if err := json.Unmarshal(data, &b); err == nil {
t.Value = b
return nil
}
// Try to unmarshal as string
var s string
if err := json.Unmarshal(data, &s); err == nil {
// Validate string values
if s != "high" && s != "medium" && s != "low" {
return fmt.Errorf("invalid think value: %q (must be \"high\", \"medium\", \"low\", true, or false)", s)
}
t.Value = s
return nil
}
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\", true, or false)")
}
// MarshalJSON implements json.Marshaler
func (t *ThinkValue) MarshalJSON() ([]byte, error) {
if t == nil || t.Value == nil {
return []byte("null"), nil
}
return json.Marshal(t.Value)
}
type Duration struct {
time.Duration
}
@@ -644,7 +987,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
if t < 0 {
d.Duration = time.Duration(math.MaxInt64)
} else {
d.Duration = time.Duration(int(t) * int(time.Second))
d.Duration = time.Duration(t * float64(time.Second))
}
case string:
d.Duration, err = time.ParseDuration(t)
@@ -662,7 +1005,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
}
// FormatParams converts specified parameter options to their correct types
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
func FormatParams(params map[string][]string) (map[string]any, error) {
opts := Options{}
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
@@ -676,7 +1019,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
}
}
out := make(map[string]interface{})
out := make(map[string]any)
// iterate params and set values based on json struct tags
for key, vals := range params {
if opt, ok := jsonOpts[key]; !ok {

View File

@@ -17,6 +17,11 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
req string
exp *Duration
}{
{
name: "Unset",
req: `{ }`,
exp: nil,
},
{
name: "Positive Integer",
req: `{ "keep_alive": 42 }`,
@@ -25,7 +30,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
{
name: "Positive Float",
req: `{ "keep_alive": 42.5 }`,
exp: &Duration{42 * time.Second},
exp: &Duration{42500 * time.Millisecond},
},
{
name: "Positive Integer String",
@@ -134,7 +139,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var oMap map[string]interface{}
var oMap map[string]any
err := json.Unmarshal([]byte(test.req), &oMap)
require.NoError(t, err)
opts := DefaultOptions()
@@ -231,3 +236,279 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
}
}
}
func TestToolFunction_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
wantErr string
}{
{
name: "valid enum with same types",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": ["a", "b", "c"]
}
}
}
}`,
wantErr: "",
},
{
name: "empty enum array",
input: `{
"name": "test",
"description": "test function",
"parameters": {
"type": "object",
"required": ["test"],
"properties": {
"test": {
"type": "string",
"description": "test prop",
"enum": []
}
}
}
}`,
wantErr: "",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
var tf ToolFunction
err := json.Unmarshal([]byte(tt.input), &tf)
if tt.wantErr != "" {
require.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErr)
} else {
require.NoError(t, err)
}
})
}
}
func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) {
fn := ToolCallFunction{
Name: "echo",
Arguments: ToolCallFunctionArguments{"message": "hi"},
}
data, err := json.Marshal(fn)
require.NoError(t, err)
raw := map[string]any{}
require.NoError(t, json.Unmarshal(data, &raw))
require.Contains(t, raw, "index")
assert.Equal(t, float64(0), raw["index"])
fn.Index = 3
data, err = json.Marshal(fn)
require.NoError(t, err)
raw = map[string]any{}
require.NoError(t, json.Unmarshal(data, &raw))
require.Contains(t, raw, "index")
assert.Equal(t, float64(3), raw["index"])
}
func TestPropertyType_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expected PropertyType
}{
{
name: "string type",
input: `"string"`,
expected: PropertyType{"string"},
},
{
name: "array of types",
input: `["string", "number"]`,
expected: PropertyType{"string", "number"},
},
{
name: "array with single type",
input: `["string"]`,
expected: PropertyType{"string"},
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var pt PropertyType
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
t.Errorf("Unexpected error: %v", err)
}
if len(pt) != len(test.expected) {
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
}
for i, v := range pt {
if v != test.expected[i] {
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
}
}
})
}
}
func TestPropertyType_MarshalJSON(t *testing.T) {
tests := []struct {
name string
input PropertyType
expected string
}{
{
name: "single type",
input: PropertyType{"string"},
expected: `"string"`,
},
{
name: "multiple types",
input: PropertyType{"string", "number"},
expected: `["string","number"]`,
},
{
name: "empty type",
input: PropertyType{},
expected: `[]`,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
data, err := json.Marshal(test.input)
if err != nil {
t.Errorf("Unexpected error: %v", err)
}
if string(data) != test.expected {
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
}
})
}
}
func TestThinking_UnmarshalJSON(t *testing.T) {
tests := []struct {
name string
input string
expectedThinking *ThinkValue
expectedError bool
}{
{
name: "true",
input: `{ "think": true }`,
expectedThinking: &ThinkValue{Value: true},
},
{
name: "false",
input: `{ "think": false }`,
expectedThinking: &ThinkValue{Value: false},
},
{
name: "unset",
input: `{ }`,
expectedThinking: nil,
},
{
name: "string_high",
input: `{ "think": "high" }`,
expectedThinking: &ThinkValue{Value: "high"},
},
{
name: "string_medium",
input: `{ "think": "medium" }`,
expectedThinking: &ThinkValue{Value: "medium"},
},
{
name: "string_low",
input: `{ "think": "low" }`,
expectedThinking: &ThinkValue{Value: "low"},
},
{
name: "invalid_string",
input: `{ "think": "invalid" }`,
expectedThinking: nil,
expectedError: true,
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
var req GenerateRequest
err := json.Unmarshal([]byte(test.input), &req)
if test.expectedError {
require.Error(t, err)
} else {
require.NoError(t, err)
if test.expectedThinking == nil {
assert.Nil(t, req.Think)
} else {
require.NotNil(t, req.Think)
assert.Equal(t, test.expectedThinking.Value, req.Think.Value)
}
}
})
}
}
func TestToolFunctionParameters_String(t *testing.T) {
tests := []struct {
name string
params ToolFunctionParameters
expected string
}{
{
name: "simple object with string property",
params: ToolFunctionParameters{
Type: "object",
Required: []string{"name"},
Properties: map[string]ToolProperty{
"name": {
Type: PropertyType{"string"},
Description: "The name of the person",
},
},
},
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
},
{
name: "marshal failure returns empty string",
params: ToolFunctionParameters{
Type: "object",
Defs: func() any {
// Create a cycle that will cause json.Marshal to fail
type selfRef struct {
Self *selfRef
}
s := &selfRef{}
s.Self = s
return s
}(),
Properties: map[string]ToolProperty{},
},
expected: "",
},
}
for _, test := range tests {
t.Run(test.name, func(t *testing.T) {
result := test.params.String()
assert.Equal(t, test.expected, result)
})
}
}

View File

@@ -0,0 +1,142 @@
package api
import (
"testing"
)
func TestToolParameterToTypeScriptType(t *testing.T) {
tests := []struct {
name string
param ToolProperty
expected string
}{
{
name: "single string type",
param: ToolProperty{
Type: PropertyType{"string"},
},
expected: "string",
},
{
name: "single number type",
param: ToolProperty{
Type: PropertyType{"number"},
},
expected: "number",
},
{
name: "integer maps to number",
param: ToolProperty{
Type: PropertyType{"integer"},
},
expected: "number",
},
{
name: "boolean type",
param: ToolProperty{
Type: PropertyType{"boolean"},
},
expected: "boolean",
},
{
name: "array type",
param: ToolProperty{
Type: PropertyType{"array"},
},
expected: "any[]",
},
{
name: "object type",
param: ToolProperty{
Type: PropertyType{"object"},
},
expected: "Record<string, any>",
},
{
name: "null type",
param: ToolProperty{
Type: PropertyType{"null"},
},
expected: "null",
},
{
name: "multiple types as union",
param: ToolProperty{
Type: PropertyType{"string", "number"},
},
expected: "string | number",
},
{
name: "string or null union",
param: ToolProperty{
Type: PropertyType{"string", "null"},
},
expected: "string | null",
},
{
name: "anyOf with single types",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | number",
},
{
name: "anyOf with multiple types in each branch",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"string", "null"}},
{Type: PropertyType{"number"}},
},
},
expected: "string | null | number",
},
{
name: "nested anyOf",
param: ToolProperty{
AnyOf: []ToolProperty{
{Type: PropertyType{"boolean"}},
{
AnyOf: []ToolProperty{
{Type: PropertyType{"string"}},
{Type: PropertyType{"number"}},
},
},
},
},
expected: "boolean | string | number",
},
{
name: "empty type returns any",
param: ToolProperty{
Type: PropertyType{},
},
expected: "any",
},
{
name: "unknown type maps to any",
param: ToolProperty{
Type: PropertyType{"unknown_type"},
},
expected: "any",
},
{
name: "multiple types including array",
param: ToolProperty{
Type: PropertyType{"string", "array", "null"},
},
expected: "string | any[] | null",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.param.ToTypeScriptType()
if result != tt.expected {
t.Errorf("ToTypeScriptType() = %q, want %q", result, tt.expected)
}
})
}
}

View File

@@ -4,20 +4,14 @@ import (
"fmt"
"log/slog"
"os"
"path/filepath"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/logutil"
)
func InitLogging() {
level := slog.LevelInfo
if envconfig.Debug() {
level = slog.LevelDebug
}
var logFile *os.File
var err error
// Detect if we're a GUI app on windows, and if not, send logs to console
@@ -33,20 +27,8 @@ func InitLogging() {
return
}
}
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
Level: level,
AddSource: true,
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
if attr.Key == slog.SourceKey {
source := attr.Value.Any().(*slog.Source)
source.File = filepath.Base(source.File)
}
return attr
},
})
slog.SetDefault(slog.New(handler))
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
slog.Info("ollama app started")
}

View File

@@ -18,21 +18,13 @@ import (
const defaultPrivateKey = "id_ed25519"
func keyPath() (string, error) {
func GetPublicKey() (string, error) {
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
}
func GetPublicKey() (string, error) {
keyPath, err := keyPath()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
@@ -59,11 +51,12 @@ func NewNonce(r io.Reader, length int) (string, error) {
}
func Sign(ctx context.Context, bts []byte) (string, error) {
keyPath, err := keyPath()
home, err := os.UserHomeDir()
if err != nil {
return "", err
}
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
privateKeyFile, err := os.ReadFile(keyPath)
if err != nil {
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))

File diff suppressed because it is too large Load Diff

View File

@@ -2,19 +2,22 @@ package cmd
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"net/http/httptest"
"os"
"reflect"
"strings"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/spf13/cobra"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
func TestShowInfo(t *testing.T) {
@@ -26,7 +29,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -56,7 +59,7 @@ func TestShowInfo(t *testing.T) {
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -67,6 +70,60 @@ func TestShowInfo(t *testing.T) {
embedding length 0
quantization FP16
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("verbose model", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "8B",
QuantizationLevel: "FP16",
},
Parameters: `
stop up`,
ModelInfo: map[string]any{
"general.architecture": "test",
"general.parameter_count": float64(8_000_000_000),
"some.true_bool": true,
"some.false_bool": false,
"test.context_length": float64(1000),
"test.embedding_length": float64(11434),
},
Tensors: []api.Tensor{
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
},
}, true, &b); err != nil {
t.Fatal(err)
}
expect := ` Model
architecture test
parameters 8B
context length 1000
embedding length 11434
quantization FP16
Parameters
stop up
Metadata
general.architecture test
general.parameter_count 8e+09
some.false_bool false
some.true_bool true
test.context_length 1000
test.embedding_length 11434
Tensors
blk.0.attn_k.weight BF16 [42 3117]
blk.0.attn_q.weight FP16 [3117 42]
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
@@ -88,7 +145,7 @@ func TestShowInfo(t *testing.T) {
stop you
stop up
temperature 99`,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -125,7 +182,7 @@ func TestShowInfo(t *testing.T) {
"clip.vision.embedding_length": float64(0),
"clip.vision.projection_dim": float64(0),
},
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -158,7 +215,7 @@ func TestShowInfo(t *testing.T) {
Ahoy, matey!
Weigh anchor!
`,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -170,6 +227,7 @@ Weigh anchor!
System
You are a pirate!
Ahoy, matey!
...
`
if diff := cmp.Diff(expect, b.String()); diff != "" {
@@ -187,7 +245,7 @@ Weigh anchor!
QuantizationLevel: "FP16",
},
License: license,
}, &b); err != nil {
}, false, &b); err != nil {
t.Fatal(err)
}
@@ -205,6 +263,34 @@ Weigh anchor!
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
t.Run("capabilities", func(t *testing.T) {
var b bytes.Buffer
if err := showInfo(&api.ShowResponse{
Details: api.ModelDetails{
Family: "test",
ParameterSize: "7B",
QuantizationLevel: "FP16",
},
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
}, false, &b); err != nil {
t.Fatal(err)
}
expect := " Model\n" +
" architecture test \n" +
" parameters 7B \n" +
" quantization FP16 \n" +
"\n" +
" Capabilities\n" +
" vision \n" +
" tools \n" +
"\n"
if diff := cmp.Diff(expect, b.String()); diff != "" {
t.Errorf("unexpected output (-want +got):\n%s", diff)
}
})
}
func TestDeleteHandler(t *testing.T) {
@@ -220,6 +306,8 @@ func TestDeleteHandler(t *testing.T) {
w.WriteHeader(http.StatusOK)
} else {
w.WriteHeader(http.StatusNotFound)
errPayload := `{"error":"model '%s' not found"}`
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
}
return
}
@@ -253,7 +341,7 @@ func TestDeleteHandler(t *testing.T) {
t.Cleanup(mockServer.Close)
cmd := &cobra.Command{}
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
t.Fatalf("DeleteHandler failed: %v", err)
}
@@ -262,7 +350,7 @@ func TestDeleteHandler(t *testing.T) {
}
err := DeleteHandler(cmd, []string{"test-model-not-found"})
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
}
}
@@ -315,11 +403,6 @@ func TestGetModelfileName(t *testing.T) {
var expectedFilename string
if tt.fileExists {
tempDir, err := os.MkdirTemp("", "modelfiledir")
defer os.RemoveAll(tempDir)
if err != nil {
t.Fatalf("temp modelfile dir creation failed: %v", err)
}
var fn string
if tt.modelfileName != "" {
fn = tt.modelfileName
@@ -327,10 +410,11 @@ func TestGetModelfileName(t *testing.T) {
fn = "Modelfile"
}
tempFile, err := os.CreateTemp(tempDir, fn)
tempFile, err := os.CreateTemp(t.TempDir(), fn)
if err != nil {
t.Fatalf("temp modelfile creation failed: %v", err)
}
defer tempFile.Close()
expectedFilename = tempFile.Name()
err = cmd.Flags().Set("file", expectedFilename)
@@ -408,9 +492,35 @@ func TestPushHandler(t *testing.T) {
w.(http.Flusher).Flush()
}
},
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
},
},
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
},
{
name: "not signed in push",
modelName: "notsignedin-model",
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "unauthorized",
"signin_url": "https://somethingsomething",
})
if err != nil {
t.Fatal(err)
}
},
},
expectedOutput: "You need to be signed in to push",
},
{
name: "unauthorized push",
modelName: "unauthorized-model",
@@ -419,12 +529,17 @@ func TestPushHandler(t *testing.T) {
w.Header().Set("Content-Type", "application/json")
w.WriteHeader(http.StatusUnauthorized)
err := json.NewEncoder(w).Encode(map[string]string{
"error": "access denied",
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
})
if err != nil {
t.Fatal(err)
}
},
"/api/me": func(w http.ResponseWriter, r *http.Request) {
if r.Method != http.MethodPost {
t.Errorf("expected POST request, got %s", r.Method)
}
},
},
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
},
@@ -442,10 +557,14 @@ func TestPushHandler(t *testing.T) {
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
tmpDir := t.TempDir()
t.Setenv("HOME", tmpDir)
t.Setenv("USERPROFILE", tmpDir)
initializeKeypair()
cmd := &cobra.Command{}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
@@ -477,7 +596,7 @@ func TestPushHandler(t *testing.T) {
t.Errorf("expected no error, got %v", err)
}
if tt.expectedOutput != "" {
if got := string(stdout); got != tt.expectedOutput {
if got := string(stdout); !strings.Contains(got, tt.expectedOutput) {
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
}
}
@@ -490,6 +609,96 @@ func TestPushHandler(t *testing.T) {
}
}
func TestListHandler(t *testing.T) {
tests := []struct {
name string
args []string
serverResponse []api.ListModelResponse
expectedError string
expectedOutput string
}{
{
name: "list all models",
args: []string{},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-48 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n" +
"model2 sha256:def45 2.0 KB 2 days ago \n",
},
{
name: "filter models by prefix",
args: []string{"model1"},
serverResponse: []api.ListModelResponse{
{Name: "model1", Digest: "sha256:abc123", Size: 1024, ModifiedAt: time.Now().Add(-24 * time.Hour)},
{Name: "model2", Digest: "sha256:def456", Size: 2048, ModifiedAt: time.Now().Add(-24 * time.Hour)},
},
expectedOutput: "NAME ID SIZE MODIFIED \n" +
"model1 sha256:abc12 1.0 KB 24 hours ago \n",
},
{
name: "server error",
args: []string{},
expectedError: "server error",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
mockServer := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/tags" || r.Method != http.MethodGet {
t.Errorf("unexpected request to %s %s", r.Method, r.URL.Path)
http.Error(w, "not found", http.StatusNotFound)
return
}
if tt.expectedError != "" {
http.Error(w, tt.expectedError, http.StatusInternalServerError)
return
}
response := api.ListResponse{Models: tt.serverResponse}
if err := json.NewEncoder(w).Encode(response); err != nil {
t.Fatal(err)
}
}))
defer mockServer.Close()
t.Setenv("OLLAMA_HOST", mockServer.URL)
cmd := &cobra.Command{}
cmd.SetContext(t.Context())
// Capture stdout
oldStdout := os.Stdout
r, w, _ := os.Pipe()
os.Stdout = w
err := ListHandler(cmd, tt.args)
// Restore stdout and get output
w.Close()
os.Stdout = oldStdout
output, _ := io.ReadAll(r)
if tt.expectedError == "" {
if err != nil {
t.Errorf("expected no error, got %v", err)
}
if got := string(output); got != tt.expectedOutput {
t.Errorf("expected output:\n%s\ngot:\n%s", tt.expectedOutput, got)
}
} else {
if err == nil || !strings.Contains(err.Error(), tt.expectedError) {
t.Errorf("expected error containing %q, got %v", tt.expectedError, err)
}
}
})
}
}
func TestCreateHandler(t *testing.T) {
tests := []struct {
name string
@@ -515,7 +724,7 @@ func TestCreateHandler(t *testing.T) {
return
}
if req.Name != "test-model" {
if req.Model != "test-model" {
t.Errorf("expected model name 'test-model', got %s", req.Name)
}
@@ -555,7 +764,7 @@ func TestCreateHandler(t *testing.T) {
}))
t.Setenv("OLLAMA_HOST", mockServer.URL)
t.Cleanup(mockServer.Close)
tempFile, err := os.CreateTemp("", "modelfile")
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
if err != nil {
t.Fatal(err)
}
@@ -575,7 +784,7 @@ func TestCreateHandler(t *testing.T) {
}
cmd.Flags().Bool("insecure", false, "")
cmd.SetContext(context.TODO())
cmd.SetContext(t.Context())
// Redirect stderr to capture progress output
oldStderr := os.Stderr
@@ -616,3 +825,415 @@ func TestCreateHandler(t *testing.T) {
})
}
}
func TestNewCreateRequest(t *testing.T) {
tests := []struct {
name string
from string
opts runOptions
expected *api.CreateRequest
}{
{
"basic test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "",
Prompt: "You are a fun AI agent",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
},
},
{
"parent model as filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "/some/file/like/etc/passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"parent model as windows filepath test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
Messages: []api.Message{},
WordWrap: true,
},
&api.CreateRequest{
From: "mymodel",
Model: "newmodel",
},
},
{
"options test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
Options: map[string]any{
"temperature": 1.0,
},
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
Parameters: map[string]any{
"temperature": 1.0,
},
},
},
{
"messages test",
"newmodel",
runOptions{
Model: "mymodel",
ParentModel: "parentmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
WordWrap: true,
},
&api.CreateRequest{
From: "parentmodel",
Model: "newmodel",
System: "You are a fun AI agent",
Messages: []api.Message{
{
Role: "user",
Content: "hello there!",
},
{
Role: "assistant",
Content: "hello to you!",
},
},
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
actual := NewCreateRequest(tt.from, tt.opts)
if !cmp.Equal(actual, tt.expected) {
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
}
})
}
}
func TestRunOptions_Copy(t *testing.T) {
// Setup test data
originalKeepAlive := &api.Duration{Duration: 5 * time.Minute}
originalThink := &api.ThinkValue{Value: "test reasoning"}
original := runOptions{
Model: "test-model",
ParentModel: "parent-model",
Prompt: "test prompt",
Messages: []api.Message{
{Role: "user", Content: "hello"},
{Role: "assistant", Content: "hi there"},
},
WordWrap: true,
Format: "json",
System: "system prompt",
Images: []api.ImageData{
[]byte("image1"),
[]byte("image2"),
},
Options: map[string]any{
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 0.9,
},
MultiModal: true,
KeepAlive: originalKeepAlive,
Think: originalThink,
HideThinking: false,
ShowConnect: true,
}
// Test the copy
copied := original.Copy()
// Test 1: Verify the copy is not the same instance
if &copied == &original {
t.Error("Copy should return a different instance")
}
// Test 2: Verify all fields are copied correctly
tests := []struct {
name string
got interface{}
want interface{}
}{
{"Model", copied.Model, original.Model},
{"ParentModel", copied.ParentModel, original.ParentModel},
{"Prompt", copied.Prompt, original.Prompt},
{"WordWrap", copied.WordWrap, original.WordWrap},
{"Format", copied.Format, original.Format},
{"System", copied.System, original.System},
{"MultiModal", copied.MultiModal, original.MultiModal},
{"HideThinking", copied.HideThinking, original.HideThinking},
{"ShowConnect", copied.ShowConnect, original.ShowConnect},
}
for _, tt := range tests {
if !reflect.DeepEqual(tt.got, tt.want) {
t.Errorf("%s mismatch: got %v, want %v", tt.name, tt.got, tt.want)
}
}
// Test 3: Verify Messages slice is deeply copied
if len(copied.Messages) != len(original.Messages) {
t.Errorf("Messages length mismatch: got %d, want %d", len(copied.Messages), len(original.Messages))
}
if len(copied.Messages) > 0 && &copied.Messages[0] == &original.Messages[0] {
t.Error("Messages should be different instances")
}
// Modify original to verify independence
if len(original.Messages) > 0 {
originalContent := original.Messages[0].Content
original.Messages[0].Content = "modified"
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
t.Error("Messages should be independent after copy")
}
// Restore for other tests
original.Messages[0].Content = originalContent
}
// Test 4: Verify Images slice is deeply copied
if len(copied.Images) != len(original.Images) {
t.Errorf("Images length mismatch: got %d, want %d", len(copied.Images), len(original.Images))
}
if len(copied.Images) > 0 && &copied.Images[0] == &original.Images[0] {
t.Error("Images should be different instances")
}
// Modify original to verify independence
if len(original.Images) > 0 {
originalImage := original.Images[0]
original.Images[0] = []byte("modified")
if len(copied.Images) > 0 && string(copied.Images[0]) == "modified" {
t.Error("Images should be independent after copy")
}
// Restore for other tests
original.Images[0] = originalImage
}
// Test 5: Verify Options map is deeply copied
if len(copied.Options) != len(original.Options) {
t.Errorf("Options length mismatch: got %d, want %d", len(copied.Options), len(original.Options))
}
if len(copied.Options) > 0 && &copied.Options == &original.Options {
t.Error("Options map should be different instances")
}
// Modify original to verify independence
if len(original.Options) > 0 {
originalTemp := original.Options["temperature"]
original.Options["temperature"] = 0.9
if copied.Options["temperature"] == 0.9 {
t.Error("Options should be independent after copy")
}
// Restore for other tests
original.Options["temperature"] = originalTemp
}
// Test 6: Verify KeepAlive pointer is copied (shallow copy)
if copied.KeepAlive != original.KeepAlive {
t.Error("KeepAlive pointer should be the same (shallow copy)")
}
// Test 7: Verify Think pointer creates a new instance
if original.Think != nil && copied.Think == original.Think {
t.Error("Think should be a different instance")
}
if original.Think != nil && copied.Think != nil {
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
}
}
// Test 8: Test with zero values
zeroOriginal := runOptions{}
zeroCopy := zeroOriginal.Copy()
if !reflect.DeepEqual(zeroCopy, zeroOriginal) {
fmt.Printf("orig: %#v\ncopy: %#v\n", zeroOriginal, zeroCopy)
t.Error("Copy of zero value should equal original zero value")
}
}
func TestRunOptions_Copy_EmptySlicesAndMaps(t *testing.T) {
// Test with empty slices and maps
original := runOptions{
Messages: []api.Message{},
Images: []api.ImageData{},
Options: map[string]any{},
}
copied := original.Copy()
if copied.Messages == nil {
t.Error("Empty Messages slice should remain empty, not nil")
}
if copied.Images == nil {
t.Error("Empty Images slice should remain empty, not nil")
}
if copied.Options == nil {
t.Error("Empty Options map should remain empty, not nil")
}
if len(copied.Messages) != 0 {
t.Error("Empty Messages slice should remain empty")
}
if len(copied.Images) != 0 {
t.Error("Empty Images slice should remain empty")
}
if len(copied.Options) != 0 {
t.Error("Empty Options map should remain empty")
}
}
func TestRunOptions_Copy_NilPointers(t *testing.T) {
// Test with nil pointers
original := runOptions{
KeepAlive: nil,
Think: nil,
}
copied := original.Copy()
if copied.KeepAlive != nil {
t.Error("Nil KeepAlive should remain nil")
}
if copied.Think != nil {
t.Error("Nil Think should remain nil")
}
}
func TestRunOptions_Copy_ThinkValueVariants(t *testing.T) {
tests := []struct {
name string
think *api.ThinkValue
}{
{"nil Think", nil},
{"bool true", &api.ThinkValue{Value: true}},
{"bool false", &api.ThinkValue{Value: false}},
{"string value", &api.ThinkValue{Value: "reasoning text"}},
{"int value", &api.ThinkValue{Value: 42}},
{"nil value", &api.ThinkValue{Value: nil}},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
original := runOptions{Think: tt.think}
copied := original.Copy()
if tt.think == nil {
if copied.Think != nil {
t.Error("Nil Think should remain nil")
}
return
}
if copied.Think == nil {
t.Error("Non-nil Think should not become nil")
return
}
if copied.Think == original.Think {
t.Error("Think should be a different instance")
}
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
}
})
}
}
func TestRunOptions_Copy_Independence(t *testing.T) {
// Test that modifications to original don't affect copy
originalThink := &api.ThinkValue{Value: "original"}
original := runOptions{
Model: "original-model",
Messages: []api.Message{{Role: "user", Content: "original"}},
Options: map[string]any{"key": "value"},
Think: originalThink,
}
copied := original.Copy()
// Modify original
original.Model = "modified-model"
if len(original.Messages) > 0 {
original.Messages[0].Content = "modified"
}
original.Options["key"] = "modified"
if original.Think != nil {
original.Think.Value = "modified"
}
// Verify copy is unchanged
if copied.Model == "modified-model" {
t.Error("Copy Model should not be affected by original modification")
}
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
t.Error("Copy Messages should not be affected by original modification")
}
if copied.Options["key"] == "modified" {
t.Error("Copy Options should not be affected by original modification")
}
if copied.Think != nil && copied.Think.Value == "modified" {
t.Error("Copy Think should not be affected by original modification")
}
}

View File

@@ -18,6 +18,7 @@ import (
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/readline"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
)
type MultilineState int
@@ -43,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
if opts.MultiModal {
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
}
fmt.Fprintln(os.Stderr, "")
@@ -61,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
fmt.Fprintln(os.Stderr, "")
}
@@ -127,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
var sb strings.Builder
var multiline MultilineState
var thinkExplicitlySet bool = opts.Think != nil
for {
line, err := scanner.Readline()
@@ -191,10 +195,30 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
fmt.Println("Usage:\n /load <modelname>")
continue
}
origOpts := opts.Copy()
opts.Model = args[1]
opts.Messages = []api.Message{}
fmt.Printf("Loading model '%s'\n", opts.Model)
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
if err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
opts = origOpts.Copy()
continue
}
return err
}
if err := loadOrUnloadModel(cmd, &opts); err != nil {
if strings.Contains(err.Error(), "not found") {
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
opts = origOpts.Copy()
continue
}
if strings.Contains(err.Error(), "does not support thinking") {
fmt.Printf("error: %v\n", err)
continue
}
return err
}
continue
@@ -255,6 +279,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
return err
}
fmt.Println("Set 'quiet' mode.")
case "think":
thinkValue := api.ThinkValue{Value: true}
var maybeLevel string
if len(args) > 2 {
maybeLevel = args[2]
}
if maybeLevel != "" {
// TODO(drifkin): validate the level, could be model dependent
// though... It will also be validated on the server once a call is
// made.
thinkValue.Value = maybeLevel
}
opts.Think = &thinkValue
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
if maybeLevel != "" {
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
} else {
fmt.Println("Set 'think' mode.")
}
case "nothink":
opts.Think = &api.ThinkValue{Value: false}
thinkExplicitlySet = true
if client, err := api.ClientFromEnvironment(); err == nil {
ensureThinkingSupport(cmd.Context(), client, opts.Model)
}
fmt.Println("Set 'nothink' mode.")
case "format":
if len(args) < 3 || args[2] != "json" {
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
@@ -343,7 +396,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
switch args[1] {
case "info":
_ = showInfo(resp, os.Stderr)
_ = showInfo(resp, false, os.Stderr)
case "license":
if resp.License == "" {
fmt.Println("No license was specified for this model.")
@@ -353,18 +406,21 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
case "modelfile":
fmt.Println(resp.Modelfile)
case "parameters":
fmt.Println("Model defined parameters:")
if resp.Parameters == "" {
fmt.Println("No parameters were specified for this model.")
fmt.Println(" No additional parameters were specified for this model.")
} else {
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf("%-*s %v\n", 30, k, v)
}
fmt.Println()
for _, l := range strings.Split(resp.Parameters, "\n") {
fmt.Printf(" %s\n", l)
}
fmt.Println("Model defined parameters:")
fmt.Println(resp.Parameters)
}
fmt.Println()
if len(opts.Options) > 0 {
fmt.Println("User defined parameters:")
for k, v := range opts.Options {
fmt.Printf(" %-*s %v\n", 30, k, v)
}
fmt.Println()
}
case "system":
switch {
@@ -443,6 +499,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
assistant, err := chat(cmd, opts)
if err != nil {
if strings.Contains(err.Error(), "does not support thinking") ||
strings.Contains(err.Error(), "invalid think value") {
fmt.Printf("error: %v\n", err)
sb.Reset()
continue
}
return err
}
if assistant != nil {
@@ -455,9 +517,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
}
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
parentModel := opts.ParentModel
modelName := model.ParseName(parentModel)
if !modelName.IsValid() {
parentModel = ""
}
req := &api.CreateRequest{
Name: name,
From: cmp.Or(opts.ParentModel, opts.Model),
Model: name,
From: cmp.Or(parentModel, opts.Model),
}
if opts.System != "" {
@@ -491,6 +560,7 @@ func normalizeFilePath(fp string) string {
"\\\\", "\\", // Escaped backslash
"\\*", "*", // Escaped asterisk
"\\?", "?", // Escaped question mark
"\\~", "~", // Escaped tilde
).Replace(fp)
}
@@ -498,7 +568,7 @@ func extractFileNames(input string) []string {
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
// and followed by more characters and a file extension
// This will capture non filename strings, but we'll check for file existence to remove mismatches
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
re := regexp.MustCompile(regexPattern)
return re.FindAllString(input, -1)
@@ -518,6 +588,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
return "", imgs, err
}
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
input = strings.ReplaceAll(input, "'"+fp+"'", "")
input = strings.ReplaceAll(input, fp, "")
imgs = append(imgs, data)
}
@@ -538,7 +610,7 @@ func getImageData(filePath string) ([]byte, error) {
}
contentType := http.DetectContentType(buf)
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
if !slices.Contains(allowedTypes, contentType) {
return nil, fmt.Errorf("invalid image type: %s", contentType)
}

View File

@@ -1,6 +1,8 @@
package cmd
import (
"os"
"path/filepath"
"testing"
"github.com/stretchr/testify/assert"
@@ -10,14 +12,17 @@ func TestExtractFilenames(t *testing.T) {
// Unix style paths
input := ` some preamble
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
res := extractFileNames(input)
assert.Len(t, res, 5)
assert.Len(t, res, 7)
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[1], "two.jpg")
assert.Contains(t, res[2], "three.jpeg")
assert.Contains(t, res[3], "four.png")
assert.Contains(t, res[4], "five.JPG")
assert.Contains(t, res[5], "six.webp")
assert.Contains(t, res[6], "seven.WEBP")
assert.NotContains(t, res[4], '"')
assert.NotContains(t, res, "inbetween1")
assert.NotContains(t, res, "./1.svg")
@@ -28,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
d:\path with\spaces\thirteen.WEBP some ending
`
res = extractFileNames(input)
assert.Len(t, res, 10)
assert.Len(t, res, 13)
assert.NotContains(t, res, "inbetween2")
assert.Contains(t, res[0], "one.png")
assert.Contains(t, res[0], "c:")
@@ -49,4 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
assert.Contains(t, res[8], "d:")
assert.Contains(t, res[9], "ten.PNG")
assert.Contains(t, res[9], "E:")
assert.Contains(t, res[10], "eleven.webp")
assert.Contains(t, res[10], "c:")
assert.Contains(t, res[11], "twelve.WebP")
assert.Contains(t, res[11], "c:")
assert.Contains(t, res[12], "thirteen.WEBP")
assert.Contains(t, res[12], "d:")
}
// Ensure that file paths wrapped in single quotes are removed with the quotes.
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
dir := t.TempDir()
fp := filepath.Join(dir, "img.jpg")
data := make([]byte, 600)
copy(data, []byte{
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xd9,
})
if err := os.WriteFile(fp, data, 0o600); err != nil {
t.Fatalf("failed to write test image: %v", err)
}
input := "before '" + fp + "' after"
cleaned, imgs, err := extractFileData(input)
assert.NoError(t, err)
assert.Len(t, imgs, 1)
assert.Equal(t, cleaned, "before after")
}

View File

@@ -4,7 +4,7 @@ import (
"fmt"
"os"
"github.com/ollama/ollama/llama/runner"
"github.com/ollama/ollama/runner"
)
func main() {

View File

@@ -5,7 +5,7 @@ import (
"errors"
"os"
"os/exec"
"strings"
"regexp"
"github.com/ollama/ollama/api"
)
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
if err != nil {
return err
}
if !strings.Contains(link, "Ollama.app") {
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
m := r.FindStringSubmatch(link)
if len(m) != 1 {
return errors.New("could not find ollama app")
}
path := strings.Split(link, "Ollama.app")
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
return err
}
return waitForServer(ctx, client)

View File

@@ -4,17 +4,27 @@ import (
"context"
"errors"
"fmt"
"log/slog"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"syscall"
"unsafe"
"github.com/ollama/ollama/api"
"golang.org/x/sys/windows"
)
const (
Installer = "OllamaSetup.exe"
)
func startApp(ctx context.Context, client *api.Client) error {
// log.Printf("XXX Attempting to find and start ollama app")
if len(isProcRunning(Installer)) > 0 {
return fmt.Errorf("upgrade in progress...")
}
AppName := "ollama app.exe"
exe, err := os.Executable()
if err != nil {
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
}
}
}
// log.Printf("XXX attempting to start app %s", appExe)
cmd_path := "c:\\Windows\\system32\\cmd.exe"
cmd := exec.Command(cmd_path, "/c", appExe)
// TODO - these hide flags aren't working - still pops up a command window for some reason
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
// TODO this didn't help either...
cmd.Stdin = strings.NewReader("")
cmd.Stdout = os.Stdout
cmd.Stderr = os.Stderr
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
}
return waitForServer(ctx, client)
}
func isProcRunning(procName string) []uint32 {
pids := make([]uint32, 2048)
var ret uint32
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
if ret > uint32(len(pids)) {
pids = make([]uint32, ret+10)
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
slog.Debug("failed to check for running installers", "error", err)
return nil
}
}
if ret < uint32(len(pids)) {
pids = pids[:ret]
}
var matches []uint32
for _, pid := range pids {
if pid == 0 {
continue
}
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
if err != nil {
continue
}
defer windows.CloseHandle(hProcess)
var module windows.Handle
var cbNeeded uint32
cb := (uint32)(unsafe.Sizeof(module))
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
continue
}
var sz uint32 = 1024 * 8
moduleName := make([]uint16, sz)
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
continue
}
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
if strings.EqualFold(exeFile, procName) {
matches = append(matches, pid)
}
}
return matches
}

63
cmd/warn_thinking_test.go Normal file
View File

@@ -0,0 +1,63 @@
package cmd
import (
"encoding/json"
"io"
"net/http"
"net/http/httptest"
"os"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/types/model"
)
// Test that a warning is printed when thinking is requested but not supported.
func TestWarnMissingThinking(t *testing.T) {
cases := []struct {
capabilities []model.Capability
expectWarn bool
}{
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
{capabilities: []model.Capability{}, expectWarn: true},
}
for _, tc := range cases {
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
}
var req api.ShowRequest
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
t.Fatalf("decode request: %v", err)
}
resp := api.ShowResponse{Capabilities: tc.capabilities}
if err := json.NewEncoder(w).Encode(resp); err != nil {
t.Fatalf("encode response: %v", err)
}
}))
defer srv.Close()
t.Setenv("OLLAMA_HOST", srv.URL)
client, err := api.ClientFromEnvironment()
if err != nil {
t.Fatal(err)
}
oldStderr := os.Stderr
r, w, _ := os.Pipe()
os.Stderr = w
ensureThinkingSupport(t.Context(), client, "m")
w.Close()
os.Stderr = oldStderr
out, _ := io.ReadAll(r)
warned := strings.Contains(string(out), "warning:")
if tc.expectWarn && !warned {
t.Errorf("expected warning, got none")
}
if !tc.expectWarn && warned {
t.Errorf("did not expect warning, got: %s", string(out))
}
}
}

View File

@@ -1,20 +1,26 @@
package convert
import (
"cmp"
"encoding/json"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
TextModel struct {
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
}
type AdapterParameters struct {
@@ -27,8 +33,8 @@ type AdapterParameters struct {
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
func (ModelParameters) KV(t *Tokenizer) ggml.KV {
kv := ggml.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
"tokenizer.ggml.pre": t.Pre,
@@ -47,14 +53,17 @@ func (ModelParameters) KV(t *Tokenizer) llm.KV {
}
for _, sv := range t.SpecialVocabulary {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
if len(sv.IDs) > 0 {
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
}
}
return kv
}
func (p AdapterParameters) KV() llm.KV {
func (p AdapterParameters) KV() ggml.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
@@ -62,7 +71,7 @@ func (p AdapterParameters) KV() llm.KV {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
kv := ggml.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
@@ -79,27 +88,17 @@ func (ModelParameters) specialTokenTypes() []string {
}
}
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
KV(*Tokenizer) ggml.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
@@ -108,17 +107,15 @@ type moreParser interface {
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
KV(ggml.KV) ggml.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
Tensors([]Tensor) []*ggml.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
@@ -153,14 +150,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
func ConvertModel(fsys fs.FS, f *os.File) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
@@ -177,24 +174,40 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
case "LlamaForCausalLM":
conv = &llamaModel{}
case "MllamaForConditionalGeneration":
conv = &mllamaModel{}
case "Llama4ForConditionalGeneration":
conv = &llama4Model{}
case "Mistral3ForConditionalGeneration":
conv = &mistral3Model{}
case "MixtralForCausalLM":
conv = &mixtralModel{}
case "GemmaForCausalLM":
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
conv = &gemma3Model{Architecture: p.Architectures[0]}
case "Gemma3nForConditionalGeneration":
conv = &gemma3nModel{}
case "Phi3ForCausalLM":
conv = &phi3Model{}
case "Qwen2ForCausalLM":
conv = &qwen2Model{}
case "Qwen2_5_VLForConditionalGeneration":
conv = &qwen25VLModel{}
case "Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration":
conv = &qwen3VLModel{}
case "BertModel":
conv = &bertModel{}
case "CohereForCausalLM":
conv = &commandrModel{}
case "GptOssForCausalLM":
conv = &gptossModel{}
default:
return errors.New("unsupported architecture")
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
}
if err := json.Unmarshal(bts, conv); err != nil {
@@ -212,17 +225,22 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
vocabSize := int(p.VocabSize)
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
switch {
case vocabSize == 0:
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
case vocabSize > len(t.Vocabulary.Tokens):
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
for i := range vocabSize - len(t.Vocabulary.Tokens) {
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
}
case vocabSize < len(t.Vocabulary.Tokens):
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
default:
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
@@ -232,5 +250,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
return writeFile(f, conv.KV(t), conv.Tensors(ts))
}
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
for i := range ts {
ts[i].Shape = slices.Clone(ts[i].Shape)
slices.Reverse(ts[i].Shape)
}
return ggml.WriteGGUF(f, kv, ts)
}

View File

@@ -8,7 +8,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type bertModel struct {
@@ -28,6 +28,7 @@ type bertModel struct {
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
normalizeEmbeddings bool
PoolingType uint32
}
@@ -54,9 +55,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
switch m.Type {
case "sentence_transformers.models.Pooling":
pooling = m.Path
break
case "sentence_transformers.models.Normalize":
p.normalizeEmbeddings = true
}
}
@@ -85,11 +88,12 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
func (p *bertModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@@ -132,8 +136,8 @@ func (p *bertModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
@@ -143,7 +147,7 @@ func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
continue
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -3,7 +3,7 @@ package convert
import (
"cmp"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type commandrModel struct {
@@ -24,7 +24,7 @@ type commandrModel struct {
var _ ModelConverter = (*commandrModel)(nil)
func (p *commandrModel) KV(t *Tokenizer) llm.KV {
func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "command-r"
kv["general.name"] = "command-r"
@@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *commandrModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type gemmaModel struct {
@@ -23,7 +23,7 @@ type gemmaModel struct {
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.HasSuffix(t.Name(), "_norm.weight") {
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

View File

@@ -1,8 +1,6 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
import "github.com/ollama/ollama/fs/ggml"
type gemma2Model struct {
gemmaModel
@@ -11,7 +9,7 @@ type gemma2Model struct {
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
func (p *gemma2Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings

View File

@@ -6,7 +6,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type gemma2Adapter struct {
@@ -15,14 +15,14 @@ type gemma2Adapter struct {
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

142
convert/convert_gemma3.go Normal file
View File

@@ -0,0 +1,142 @@
package convert
import (
"cmp"
"github.com/ollama/ollama/fs/ggml"
)
type gemma3Model struct {
gemmaModel
Architecture string
TextModel struct {
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
SlidingWindow uint32 `json:"sliding_window"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
ImageSize uint32 `json:"image_size"` // image_size 560
NumChannels uint32 `json:"num_channels"` // num_channels 3
PatchSize uint32 `json:"patch_size"` // patch_size 14
} `json:"vision_config"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
RopeLocalTheta float32 `json:"rope_local_base_freq"`
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
SlidingWindow uint32 `json:"sliding_window"`
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
}
const (
gemma4BLayerCount = 34
gemma12BLayerCount = 48
gemma27BLayerCount = 62
)
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3"
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
kv["gemma3.block_count"] = numBlocks
var (
numHeads uint32
numKVHeads uint32
)
switch numBlocks {
case gemma4BLayerCount:
numHeads = 8
numKVHeads = 4
case gemma12BLayerCount:
numHeads = 16
numKVHeads = 8
case gemma27BLayerCount:
numHeads = 32
numKVHeads = 16
default:
numHeads = p.NumAttentionHeads
numKVHeads = p.NumKeyValueHeads
}
kv["gemma3.attention.head_count"] = numHeads
kv["gemma3.attention.head_count_kv"] = numKVHeads
switch p.Architecture {
case "Gemma3ForCausalLM":
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma3.attention.key_length"] = p.HeadDim
kv["gemma3.attention.value_length"] = p.HeadDim
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
kv["gemma3.embedding_length"] = p.HiddenSize
kv["gemma3.feed_forward_length"] = p.IntermediateSize
default:
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
}
if p.MultiModalTokensPerImage > 0 {
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
}
return kv
}
func (p *gemma3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"vision_tower.vision_model.embeddings", "v",
"vision_tower.vision_model", "v",
"vision_model.vision_model.embeddings", "v",
"vision_model.vision_model", "v",
"language_model.", "",
"model.layers", "blk",
"encoder.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"self_attn.out_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
"input_projection_weight", "input_projection.weight",
"multi_modal_projector", "mm",
}
}

165
convert/convert_gemma3n.go Normal file
View File

@@ -0,0 +1,165 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"gonum.org/v1/gonum/stat/distuv"
)
type gemma3nModel struct {
ModelParameters
TextModel struct {
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
AltupActiveIdx uint32 `json:"altup_active_idx"`
AltupCoefClip float32 `json:"altup_coef_clip"`
AltupCorrectScale bool `json:"altup_correct_scale"`
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
AltupNumInputs uint32 `json:"altup_num_inputs"`
HeadDim uint32 `json:"head_dim"`
HiddenSize uint32 `json:"hidden_size"`
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
IntermediateSize uint32 `json:"intermediate_size"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
RMSNormEPS float32 `json:"rms_norm_eps"`
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
RopeTheta float32 `json:"rope_theta"`
SlidingWindow uint32 `json:"sliding_window"`
LayerTypes []string `json:"layer_types"`
} `json:"text_config"`
VisionModel struct{} `json:"vision_config"`
}
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gemma3n"
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
norm := distuv.Normal{Mu: 0, Sigma: 1}
for _, v := range m.TextModel.ActivationSparsityPattern {
if !yield(float32(norm.Quantile(float64(v)))) {
break
}
}
})
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
for _, t := range m.TextModel.LayerTypes {
if !yield(t == "sliding_attention") {
break
}
}
})
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
return kv
}
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
out, ts := mergeTensors(ts,
merge{"altup_proj.*.weight", "altup_proj.weight"},
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
)
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "audio_tower"),
strings.Contains(t.Name(), "embed_audio"),
strings.Contains(t.Name(), "vision_tower"),
strings.Contains(t.Name(), "embed_vision"):
// TODO: handle audio and vision towers
continue
case strings.Contains(t.Name(), "altup_predict_coef"),
strings.Contains(t.Name(), "altup_correct_coef"):
if m.TextModel.AltupCoefClip > 0 {
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
if err != nil {
return nil, err
}
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
})
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (m *gemma3nModel) Replacements() []string {
return []string{
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
"model.language_model.embed_tokens", "token_embd",
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
"model.language_model.norm", "output_norm",
"model.language_model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.down_proj", "ffn_down",
"post_feedforward_layernorm", "post_ffw_norm",
"per_layer_input_gate", "inp_gate",
"per_layer_projection", "proj",
"post_per_layer_input_norm", "post_norm",
"altup.", "altup_",
"modality_router", "router",
"prediction_coefs", "predict_coef",
"correction_coefs", "correct_coef",
"correct_output_scale", "correct_scale.weight",
"laurel.", "laurel_",
"linear_left", "l",
"linear_right", "r",
"post_laurel_norm", "post_norm",
}
}

266
convert/convert_gptoss.go Normal file
View File

@@ -0,0 +1,266 @@
package convert
import (
"bytes"
"cmp"
"encoding/binary"
"io"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type gptossModel struct {
ModelParameters
HiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"num_attention_heads"`
KeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
Experts uint32 `json:"num_experts"`
LocalExperts uint32 `json:"num_local_experts"`
ExpertsPerToken uint32 `json:"experts_per_token"`
RMSNormEpsilon float32 `json:"rms_norm_eps"`
InitialContextLength uint32 `json:"initial_context_length"`
RopeTheta float32 `json:"rope_theta"`
RopeScalingFactor float32 `json:"rope_scaling_factor"`
RopeScaling struct {
Factor float32 `json:"factor"`
} `json:"rope_scaling"`
SlidingWindow uint32 `json:"sliding_window"`
}
var _ ModelConverter = (*gptossModel)(nil)
func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "gptoss"
kv["general.file_type"] = uint32(4)
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
kv["gptoss.block_count"] = m.HiddenLayers
kv["gptoss.embedding_length"] = m.HiddenSize
kv["gptoss.feed_forward_length"] = m.IntermediateSize
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
kv["gptoss.attention.head_count"] = m.AttentionHeads
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
kv["gptoss.attention.key_length"] = m.HeadDim
kv["gptoss.attention.value_length"] = m.HeadDim
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
kv["gptoss.rope.freq_base"] = m.RopeTheta
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
kv["tokenizer.ggml.add_bos_token"] = false
kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
kv["tokenizer.ggml.eos_token_ids"] = []int32{
199999, /* <|endoftext|> */
200002, /* <|return|> */
200012, /* <|call|> */
}
kv["tokenizer.ggml.add_eos_token"] = false
return kv
}
func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
mxfp4s := make(map[string]*mxfp4)
for _, t := range ts {
if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
dot := strings.LastIndex(t.Name(), ".")
name, suffix := t.Name()[:dot], t.Name()[dot+1:]
if _, ok := mxfp4s[name]; !ok {
mxfp4s[name] = &mxfp4{}
}
switch suffix {
case "blocks":
mxfp4s[name].blocks = t
case "scales":
mxfp4s[name].scales = t
}
} else if strings.HasSuffix(t.Name(), "gate_up_exps.bias") {
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
out = append(out, slices.Collect(splitDim(t, 1,
split{
Replacer: strings.NewReplacer("gate_up_exps", "gate_exps"),
slices: []tensor.Slice{nil, tensor.S(0, int(t.Shape()[1]), 2)},
},
split{
Replacer: strings.NewReplacer("gate_up_exps", "up_exps"),
slices: []tensor.Slice{nil, tensor.S(1, int(t.Shape()[1]), 2)},
},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
for name, mxfp4 := range mxfp4s {
dims := mxfp4.blocks.Shape()
if strings.Contains(name, "ffn_down_exps") {
out = append(out, &ggml.Tensor{
Name: name + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
WriterTo: mxfp4,
})
} else if strings.Contains(name, "ffn_gate_up_exps") {
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
out = append(out, &ggml.Tensor{
Name: strings.Replace(name, "gate_up", "gate", 1) + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
WriterTo: mxfp4.slice(1, 0, int(dims[1]), 2),
}, &ggml.Tensor{
Name: strings.Replace(name, "gate_up", "up", 1) + ".weight",
Kind: uint32(ggml.TensorTypeMXFP4),
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
WriterTo: mxfp4.slice(1, 1, int(dims[1]), 2),
})
}
}
return out
}
func (m *gptossModel) Replacements() []string {
var replacements []string
if m.MaxPositionEmbeddings > 0 {
// hf flavored model
replacements = []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_out",
"self_attn.sinks", "attn_sinks",
"post_attention_layernorm", "ffn_norm",
"mlp.router", "ffn_gate_inp",
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
"mlp.experts.down_proj_", "ffn_down_exps.",
"model.norm", "output_norm",
}
} else {
replacements = []string{
// noop replacements so other replacements will not be applied
".blocks", ".blocks",
".scales", ".scales",
// real replacements
"block", "blk",
"attn.norm", "attn_norm",
"attn.qkv", "attn_qkv",
"attn.sinks", "attn_sinks",
"attn.out", "attn_out",
"mlp.norm", "ffn_norm",
"mlp.gate", "ffn_gate_inp",
"mlp.mlp1_", "ffn_gate_up_exps.",
"mlp.mlp2_", "ffn_down_exps.",
"embedding", "token_embd",
"norm", "output_norm",
"unembedding", "output",
"scale", "weight",
}
}
return replacements
}
type mxfp4 struct {
slices []tensor.Slice
blocks, scales Tensor
}
func (m *mxfp4) slice(dim, start, end, step int) *mxfp4 {
slice := slices.Repeat([]tensor.Slice{nil}, len(m.blocks.Shape()))
slice[dim] = tensor.S(start, end, step)
return &mxfp4{
slices: slice,
blocks: m.blocks,
scales: m.scales,
}
}
func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
var b bytes.Buffer
if _, err := m.blocks.WriteTo(&b); err != nil {
return 0, err
}
blocksDims := make([]int, len(m.blocks.Shape()))
for i, d := range m.blocks.Shape() {
blocksDims[i] = int(d)
}
bts := b.Bytes()
var tmp [16]byte
for i := 0; i < b.Len(); i += 16 {
for j := range 8 {
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
a, b := bts[i+j], bts[i+j+8]
tmp[2*j+0] = (a & 0x0F) | (b << 4)
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
}
copy(bts[i:i+16], tmp[:])
}
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
var s bytes.Buffer
if _, err := m.scales.WriteTo(&s); err != nil {
return 0, err
}
scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
for i, d := range m.scales.Shape() {
scalesDims[i] = int(d)
}
var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))
out, err := tensor.Concat(3, scales, blocks)
if err != nil {
return 0, err
}
if len(m.slices) > 0 {
out, err = out.Slice(m.slices...)
if err != nil {
return 0, err
}
}
out = tensor.Materialize(out)
if err := out.Reshape(out.Shape().TotalSize()); err != nil {
return 0, err
}
u8s, err := native.VectorU8(out.(*tensor.Dense))
if err != nil {
return 0, err
}
if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
return 0, err
}
return int64(len(u8s)), nil
}

View File

@@ -9,7 +9,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type llamaModel struct {
@@ -28,12 +28,12 @@ type llamaModel struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
factors ropeFactor
} `json:"rope_scaling"`
@@ -42,11 +42,13 @@ type llamaModel struct {
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
HeadDim uint32 `json:"head_dim"`
skipRepack bool
}
var _ ModelConverter = (*llamaModel)(nil)
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
@@ -70,6 +72,10 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
}
if p.HeadDim > 0 {
kv["llama.attention.head_dim"] = p.HeadDim
}
if p.RopeTheta > 0 {
kv["llama.rope.freq_base"] = p.RopeTheta
}
@@ -84,7 +90,7 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
@@ -120,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
@@ -133,12 +139,14 @@ func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
}
for _, t := range ts {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
if !p.skipRepack {
t.SetRepacker(p.repack)
}
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@@ -174,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight") {
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

169
convert/convert_llama4.go Normal file
View File

@@ -0,0 +1,169 @@
package convert
import (
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type llama4Model struct {
ModelParameters
TextModel struct {
llamaModel
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NumLocalExperts uint32 `json:"num_local_experts"`
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
UseQKNorm bool `json:"use_qk_norm"`
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
AttentionChunkSize uint32 `json:"attention_chunk_size"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
RopeTheta float32 `json:"rope_theta"`
NormEpsilon float32 `json:"norm_eps"`
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
} `json:"vision_config"`
}
// KV implements ModelConverter.
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama4"
for k, v := range p.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
}
}
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
return kv
}
// Replacements implements ModelConverter.
func (p *llama4Model) Replacements() []string {
return append(
p.TextModel.Replacements(),
"language_model.", "",
"vision_model", "v",
"multi_modal_projector", "mm",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.", "ffn_",
"shared_expert.down_proj", "down_shexp",
"shared_expert.gate_proj", "gate_shexp",
"shared_expert.up_proj", "up_shexp",
"experts.down_proj", "down_exps.weight",
"experts.gate_up_proj", "gate_up_exps.weight",
"router", "gate_inp",
"patch_embedding.linear", "patch_embedding",
)
}
// Tensors implements ModelConverter.
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var textTensors []Tensor
for _, t := range ts {
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
// gate and up projectors are fused
// dims[1], dims[2] must be swapped
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
halfDim := int(t.Shape()[2]) / 2
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
// clone tensor since we need separate repackers
tt := t.Clone()
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
out = append(out, &ggml.Tensor{
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
Kind: tt.Kind(),
Shape: newShape,
WriterTo: tt,
})
}
} else if strings.Contains(t.Name(), "ffn_down_exps") {
// dims[1], dims[2] must be swapped
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
t.SetRepacker(p.repack())
newShape := slices.Clone(t.Shape())
newShape[1], newShape[2] = newShape[2], newShape[1]
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: newShape,
WriterTo: t,
})
} else {
textTensors = append(textTensors, t)
}
}
p.TextModel.skipRepack = true
out = append(out, p.TextModel.Tensors(textTensors)...)
return out
}
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
return func(name string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
t, err := t.Slice(slice...)
if err != nil {
return nil, err
}
if err := t.T(0, 2, 1); err != nil {
return nil, err
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@@ -7,7 +7,7 @@ import (
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type llamaAdapter struct {
@@ -18,7 +18,7 @@ type llamaAdapter struct {
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,

190
convert/convert_mistral.go Normal file
View File

@@ -0,0 +1,190 @@
package convert
import (
"cmp"
"fmt"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type mistral3Model struct {
ModelParameters
ImageTokenIndex uint32 `json:"image_token_index"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
VisionFeatureLayer int32 `json:"vision_feature_layer"`
TextModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RMSNormEPS float32 `json:"rms_norm_eps"`
HeadDim uint32 `json:"head_dim"`
SlidingWindow *uint32 `json:"sliding_window"`
HiddenAct string `json:"hidden_act"`
VocabSize uint32 `json:"vocab_size"`
} `json:"text_config"`
VisionModel struct {
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
ImageSize uint32 `json:"image_size"`
NumChannels uint32 `json:"num_channels"`
PatchSize uint32 `json:"patch_size"`
HeadDim uint32 `json:"head_dim"`
HiddenAct string `json:"hidden_act"`
RopeTheta float32 `json:"rope_theta"`
} `json:"vision_config"`
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
ProjectorHiddenAct string `json:"projector_hidden_act"`
}
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "mistral3"
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
// Text configuration
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
// Vision configuration
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
// Multimodal configuration
kv["mistral3.image_token_index"] = p.ImageTokenIndex
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
if p.ProjectorHiddenAct != "" {
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
}
return kv
}
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") {
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
t.SetRepacker(p.repack)
}
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *mistral3Model) Replacements() []string {
return []string{
"language_model.model.norm", "output_norm",
"language_model.model.", "",
"language_model.", "",
"layers", "blk",
"transformer.layers", "blk",
"vision_tower", "v",
"ln_pre", "encoder_norm",
"input_layernorm", "attn_norm",
"post_attention_layernorm", "ffn_norm",
"embed_tokens", "token_embd",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"attention.q_proj", "attn_q",
"attention.k_proj", "attn_k",
"attention.v_proj", "attn_v",
"attention.o_proj", "attn_output",
"attention_norm", "attn_norm",
"feed_forward.gate_proj", "ffn_gate",
"feed_forward.down_proj", "ffn_down",
"feed_forward.up_proj", "ffn_up",
"multi_modal_projector", "mm",
"ffn_norm", "ffn_norm",
"lm_head", "output",
}
}
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, ".attn_q.weight") {
heads = p.TextModel.NumAttentionHeads
} else if strings.HasSuffix(name, ".attn_k.weight") {
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View File

@@ -2,11 +2,8 @@ package convert
import (
"fmt"
"io"
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type mixtralModel struct {
@@ -15,7 +12,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@@ -29,66 +26,39 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
"w2", "ffn_down_exps",
"w3", "ffn_up_exps",
}
for i := range p.NumLocalExperts {
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
}
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
namer := strings.NewReplacer(oldnew...)
experts := make(map[string]experts)
// merge experts into a single tensor while removing them from ts
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
return false
}
name := namer.Replace(t.Name())
experts[name] = append(experts[name], t)
return true
})
var out []llm.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
WriterTo: e,
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
merges := make([]merge, 0, p.NumHiddenLayers*6)
for i := range p.NumHiddenLayers {
merges = append(merges, merge{
fmt.Sprintf("blk.%d.*.w1.weight", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w1.bias", i),
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.weight", i),
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w2.bias", i),
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.weight", i),
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
}, merge{
fmt.Sprintf("blk.%d.*.w3.bias", i),
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
})
}
out, ts := mergeTensors(ts, merges...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"model.layers", "blk",
"block_sparse_moe.gate", "ffn_gate_inp",
"block_sparse_moe.experts.", ".",
)
}
type experts []Tensor
func (e experts) WriteTo(w io.Writer) (int64, error) {
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
for _, t := range e {
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
// this accomplishes the same thing by writing each expert tensor in sequence
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

179
convert/convert_mllama.go Normal file
View File

@@ -0,0 +1,179 @@
package convert
import (
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type mllamaModel struct {
ModelParameters
TextModel struct {
llamaModel
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
} `json:"text_config"`
VisionModel struct {
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NumGlobalLayers uint32 `json:"num_global_layers"`
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
HiddenSize uint32 `json:"hidden_size"`
IntermediateSize uint32 `json:"intermediate_size"`
AttentionHeads uint32 `json:"attention_heads"`
ImageSize uint32 `json:"image_size"`
PatchSize uint32 `json:"patch_size"`
NumChannels uint32 `json:"num_channels"`
MaxNumTiles uint32 `json:"max_num_tiles"`
NormEpsilon float32 `json:"norm_eps"`
RopeTheta float32 `json:"rope.freq_base"`
} `json:"vision_config"`
}
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
kv := m.ModelParameters.KV(t)
kv["general.architecture"] = "mllama"
for k, v := range m.TextModel.KV(t) {
if strings.HasPrefix(k, "llama.") {
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
}
}
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
return kv
}
func (m *mllamaModel) Replacements() []string {
return append(
m.TextModel.Replacements(),
"language_model.", "",
"gate_attn", "attn_gate",
"gate_ffn", "ffn_gate",
"cross_attn.", "cross_attn_",
"vision_model", "v",
"class_embedding", "class_embd",
"patch_embedding", "patch_embd",
"gated_positional_embedding.tile_embedding", "tile_position_embd",
"gated_positional_embedding.embedding", "position_embd.weight",
"gated_positional_embedding", "position_embd",
"embedding.weight", "weight",
"pre_tile_positional_embedding", "pre_tile_position_embd",
"post_tile_positional_embedding", "post_tile_position_embd",
"layernorm_pre", "pre_ln",
"layernorm_post", "post_ln",
"global_transformer.layers", "global.blk",
"transformer.layers", "blk",
"mlp.fc1", "ffn_up",
"mlp.fc2", "ffn_down",
"multi_modal_projector", "mm.0",
)
}
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
var text []Tensor
for _, t := range ts {
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
text = append(text, t)
} else if t.Name() == "v.position_embd.gate" {
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
tt := t.Clone()
tt.SetRepacker(m.repack(name))
out = append(out, &ggml.Tensor{
Name: name,
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: tt,
})
}
} else {
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(m.repack(t.Name()))
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
t.SetRepacker(m.repack(t.Name()))
}
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return append(out, m.TextModel.Tensors(text)...)
}
func (m *mllamaModel) repack(name string) Repacker {
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
dims := make([]int, len(shape))
for i, dim := range shape {
dims[i] = int(dim)
}
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
heads := m.VisionModel.AttentionHeads
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := t.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := t.Reshape(dims...); err != nil {
return nil, err
}
if err := t.Transpose(); err != nil {
return nil, err
}
} else {
t, err = tensor.Tanh(t)
if err != nil {
return nil, err
}
if name == "v.position_embd.gate" {
t, err = tensor.Sub(float32(1), t)
if err != nil {
return nil, err
}
}
}
t = tensor.Materialize(t)
// flatten tensor so it can be return as a vector
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(t.(*tensor.Dense))
}
}

View File

@@ -8,7 +8,7 @@ import (
"strings"
"sync"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type phi3Model struct {
@@ -37,7 +37,7 @@ type phi3Model struct {
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
out := make([]*ggml.Tensor, 0, len(ts)+2)
for _, t := range ts {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: "rope_factors_long.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
WriterTo: p.RopeScaling.LongFactor,
}, llm.Tensor{
}, &ggml.Tensor{
Name: "rope_factors_short.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
})
}
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
@@ -118,6 +118,5 @@ func (p *phi3Model) Replacements() []string {
type ropeFactor []float32
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
err := binary.Write(w, binary.LittleEndian, r)
return 0, err
return 0, binary.Write(w, binary.LittleEndian, r)
}

View File

@@ -1,6 +1,6 @@
package convert
import "github.com/ollama/ollama/llm"
import "github.com/ollama/ollama/fs/ggml"
type qwen2Model struct {
ModelParameters
@@ -15,13 +15,14 @@ type qwen2Model struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
var _ ModelConverter = (*qwen2Model)(nil)
func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen2"
kv["qwen2.block_count"] = q.HiddenLayers
@@ -39,16 +40,18 @@ func (q *qwen2Model) KV(t *Tokenizer) llm.KV {
case "yarn":
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}
return kv
}
func (q *qwen2Model) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
out = append(out, llm.Tensor{
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),

102
convert/convert_qwen25vl.go Normal file
View File

@@ -0,0 +1,102 @@
package convert
import (
"cmp"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen25VLModel struct {
qwen2Model
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_chans"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
SpatialPatchSize uint32 `json:"spatial_patch_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
} `json:"vision_config"`
}
var _ ModelConverter = (*qwen25VLModel)(nil)
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = "qwen25vl"
for k, v := range q.qwen2Model.KV(t) {
if strings.HasPrefix(k, "qwen2.") {
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
}
}
if q.VisionModel.FullAttentionBlocks == nil {
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
}
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
return kv
}
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
for _, t := range ts {
if strings.Contains(t.Name(), "patch_embed.proj") {
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
) {
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
out = append(out, t)
}
} else if strings.Contains(t.Name(), "attn.qkv") {
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
))...)
} else {
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
func (p *qwen25VLModel) Replacements() []string {
return append(
p.qwen2Model.Replacements(),
"visual", "v",
"blocks", "blk",
"attn.proj", "attn_out",
"norm1", "ln1",
"norm2", "ln2",
)
}

157
convert/convert_qwen3.go Normal file
View File

@@ -0,0 +1,157 @@
package convert
import (
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
)
type qwen3Model struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
IntermediateSize uint32 `json:"intermediate_size"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
HeadDim uint32 `json:"head_dim"`
NumExperts uint32 `json:"num_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
NormTopkProb bool `json:"norm_topk_prob"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor ropeFactor `json:"factor"`
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
MropeSection []int32 `json:"mrope_section"`
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
}
// KV implements ModelConverter.
func (q *qwen3Model) KV(t *Tokenizer) ggml.KV {
arch := "qwen3"
if q.NumExperts > 0 {
arch += "moe"
}
kv := q.ModelParameters.KV(t)
kv["general.architecture"] = arch
kv["block_count"] = q.HiddenLayers
kv["context_length"] = q.MaxPositionEmbeddings
kv["embedding_length"] = q.HiddenSize
kv["feed_forward_length"] = q.IntermediateSize
kv["attention.head_count"] = q.NumAttentionHeads
kv["attention.head_count_kv"] = q.NumKeyValueHeads
kv["attention.key_length"] = q.HeadDim
kv["attention.value_length"] = q.HeadDim
if q.NumExperts > 0 {
kv["expert_count"] = q.NumExperts
kv["expert_used_count"] = q.NumExpertsPerToken
kv["norm_top_k_prob"] = q.NormTopkProb
}
kv["rope.freq_base"] = q.RopeTheta
kv["attention.layer_norm_rms_epsilon"] = q.RMSNormEPS
switch q.RopeScaling.Type {
case "":
// no scaling
case "yarn":
kv["rope.scaling.type"] = q.RopeScaling.Type
kv["rope.scaling.factor"] = q.RopeScaling.Factor
case "mrope", "default":
kv["rope.mrope_section"] = q.RopeScaling.MropeSection
default:
panic("unknown rope scaling type")
}
return kv
}
// Tensors implements ModelConverter.
func (q *qwen3Model) Tensors(ts []Tensor) []*ggml.Tensor {
var out []*ggml.Tensor
// TODO: handle split experts
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "ffn_gate_up_exps"):
afterFunc := func(t tensor.Tensor) (tensor.Tensor, error) { return tensor.Transpose(t, 0, 2, 1) }
for t := range splitDim(t, 2,
split{Replacer: strings.NewReplacer("gate_up", "gate"), afterFunc: afterFunc},
split{Replacer: strings.NewReplacer("gate_up", "up"), afterFunc: afterFunc},
) {
t.Shape[1], t.Shape[2] = t.Shape[2], t.Shape[1]
out = append(out, t)
}
case strings.Contains(t.Name(), "ffn_down_exps"):
shape := slices.Clone(t.Shape())
shape[1], shape[2] = shape[2], shape[1]
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tensor.Transpose(tt, 0, 2, 1)
if err != nil {
return nil, err
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
default:
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
}
return out
}
// Replacements implements ModelConverter.
func (q *qwen3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.layers", "blk",
"input_layernorm", "attn_norm",
"self_attn.k_proj", "attn_k",
"self_attn.k_norm", "attn_k_norm",
"self_attn.v_proj", "attn_v",
"self_attn.q_proj", "attn_q",
"self_attn.q_norm", "attn_q_norm",
"self_attn.o_proj", "attn_output",
"mlp.down_proj", "ffn_down",
"mlp.gate_proj", "ffn_gate",
"mlp.up_proj", "ffn_up",
"mlp.gate.weight", "ffn_gate_inp.weight",
"mlp.experts.down_proj", "ffn_down_exps.weight",
"mlp.experts.gate_up_proj", "ffn_gate_up_exps.weight",
"post_attention_layernorm", "ffn_norm",
"model.norm", "output_norm",
}
}
var _ ModelConverter = (*qwen3Model)(nil)

116
convert/convert_qwen3vl.go Normal file
View File

@@ -0,0 +1,116 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"slices"
"strings"
"github.com/ollama/ollama/fs/ggml"
)
type qwen3VLModel struct {
qwen3Model `json:"text_config"`
VisionModel struct {
Depth uint32 `json:"depth"`
HiddenSize uint32 `json:"hidden_size"`
NumHeads uint32 `json:"num_heads"`
InChannels uint32 `json:"in_channels"`
PatchSize uint32 `json:"patch_size"`
SpatialMergeSize uint32 `json:"spatial_merge_size"`
WindowSize uint32 `json:"window_size"`
RMSNormEps float32 `json:"layer_norm_epsilon"`
RopeTheta float32 `json:"rope_theta"`
TemporalPatchSize uint32 `json:"temporal_patch_size"`
DeepstackVisualIndexes []int32 `json:"deepstack_visual_indexes"`
Size struct {
ShortestEdge uint32 `json:"shortest_edge"`
LongestEdge uint32 `json:"longest_edge"`
} `json:"size"`
ImageMean []float32 `json:"image_mean"`
ImageStd []float32 `json:"image_std"`
} `json:"vision_config"`
}
func (m *qwen3VLModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "preprocessor_config.json")
if err != nil {
return err
}
return json.Unmarshal(bts, &m.VisionModel)
}
func (m *qwen3VLModel) KV(t *Tokenizer) ggml.KV {
kv := m.qwen3Model.KV(t)
arch := "qwen3vl"
if m.NumExperts > 0 {
arch += "moe"
}
// override architecture
kv["general.architecture"] = arch
kv["vision.block_count"] = cmp.Or(m.VisionModel.Depth, 32)
kv["vision.embedding_length"] = m.VisionModel.HiddenSize
kv["vision.attention.head_count"] = cmp.Or(m.VisionModel.NumHeads, 16)
kv["vision.num_channels"] = m.VisionModel.InChannels
kv["vision.patch_size"] = cmp.Or(m.VisionModel.PatchSize, 14)
kv["vision.spatial_merge_size"] = cmp.Or(m.VisionModel.SpatialMergeSize, 2)
kv["vision.attention.layer_norm_epsilon"] = cmp.Or(m.VisionModel.RMSNormEps, 1e-6)
kv["vision.rope.freq_base"] = cmp.Or(m.VisionModel.RopeTheta, 1e4)
kv["vision.temporal_patch_size"] = cmp.Or(m.VisionModel.TemporalPatchSize, 2)
kv["vision.deepstack_visual_indexes"] = m.VisionModel.DeepstackVisualIndexes
kv["vision.shortest_edge"] = m.VisionModel.Size.ShortestEdge
kv["vision.longest_edge"] = m.VisionModel.Size.LongestEdge
kv["vision.image_mean"] = m.VisionModel.ImageMean
kv["vision.image_std"] = m.VisionModel.ImageStd
return kv
}
func (m *qwen3VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
var rest []Tensor
var out []*ggml.Tensor
for _, t := range ts {
switch {
case strings.Contains(t.Name(), "attn_qkv"):
out = append(out, slices.Collect(splitDim(t, 0,
split{Replacer: strings.NewReplacer("attn_qkv", "attn_q")},
split{Replacer: strings.NewReplacer("attn_qkv", "attn_k")},
split{Replacer: strings.NewReplacer("attn_qkv", "attn_v")},
))...)
case strings.Contains(t.Name(), "patch_embed") && strings.HasSuffix(t.Name(), "weight"):
shape := t.Shape()
out = append(out, &ggml.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: append([]uint64{shape[0] * shape[1]}, shape[2:]...),
WriterTo: t,
})
default:
rest = append(rest, t)
}
}
return append(m.qwen3Model.Tensors(rest), out...)
}
func (m *qwen3VLModel) Replacements() []string {
return append(
m.qwen3Model.Replacements(),
"model.language_", "",
"model.visual", "v",
"patch_embed.proj", "patch_embed",
"blocks", "blk",
"attn.qkv", "attn_qkv",
"attn.proj", "attn_out",
"deepstack_merger_list", "deepstack_merger",
)
}

View File

@@ -11,16 +11,15 @@ import (
"io"
"io/fs"
"log/slog"
"math"
"maps"
"os"
"path/filepath"
"slices"
"strings"
"testing"
"golang.org/x/exp/maps"
"github.com/ollama/ollama/llm"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
)
type tensorData struct {
@@ -29,7 +28,7 @@ type tensorData struct {
Shape []int `json:"shape"`
}
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
t.Helper()
f, err := os.CreateTemp(t.TempDir(), "f16")
@@ -48,7 +47,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
}
t.Cleanup(func() { r.Close() })
m, _, err := llm.DecodeGGML(r, math.MaxInt)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -60,7 +59,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, *llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tensors) map[string]string {
func generateResultsJSON(t *testing.T, f *os.File, kv ggml.KV, tensors ggml.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
@@ -75,7 +74,7 @@ func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors *llm.Tenso
}
}
for _, tensor := range tensors.Items {
for _, tensor := range tensors.Items() {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
@@ -131,15 +130,14 @@ func TestConvertModel(t *testing.T) {
if err != nil {
t.Fatal(err)
}
defer expectFile.Close()
var expect map[string]string
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
t.Fatal(err)
}
keys := maps.Keys(expect)
slices.Sort(keys)
for _, k := range keys {
for _, k := range slices.Sorted(maps.Keys(expect)) {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != expect[k] {
@@ -332,7 +330,7 @@ func TestConvertAdapter(t *testing.T) {
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
m, err := ggml.Decode(r, -1)
if err != nil {
t.Fatal(err)
}
@@ -342,15 +340,8 @@ func TestConvertAdapter(t *testing.T) {
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
if diff := cmp.Diff(c.Expected, actual); diff != "" {
t.Errorf("mismatch (-want +got):\n%s", diff)
}
})
}

View File

@@ -1,58 +0,0 @@
package convert
import (
"archive/zip"
"errors"
"io"
"io/fs"
"os"
"path/filepath"
)
type ZipReader struct {
r *zip.Reader
p string
// limit is the maximum size of a file that can be read directly
// from the zip archive. Files larger than this size will be extracted
limit int64
}
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
return &ZipReader{r, p, limit}
}
func (z *ZipReader) Open(name string) (fs.File, error) {
r, err := z.r.Open(name)
if err != nil {
return nil, err
}
defer r.Close()
if fi, err := r.Stat(); err != nil {
return nil, err
} else if fi.Size() < z.limit {
return r, nil
}
if !filepath.IsLocal(name) {
return nil, zip.ErrInsecurePath
}
n := filepath.Join(z.p, name)
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
w, err := os.Create(n)
if err != nil {
return nil, err
}
defer w.Close()
if _, err := io.Copy(w, r); err != nil {
return nil, err
}
} else if err != nil {
return nil, err
}
return os.Open(n)
}

View File

@@ -11,14 +11,15 @@ type Tensor interface {
Name() string
Shape() []uint64
Kind() uint32
SetRepacker(repacker)
SetRepacker(Repacker)
WriteTo(io.Writer) (int64, error)
Clone() Tensor
}
type tensorBase struct {
name string
shape []uint64
repacker
name string
shape []uint64
repacker Repacker
}
func (t tensorBase) Name() string {
@@ -30,42 +31,46 @@ func (t tensorBase) Shape() []uint64 {
}
const (
tensorKindF32 uint32 = iota
tensorKindF16
tensorKindFP32 uint32 = iota
tensorKindFP16
tensorKindBF16 = 30
tensorKindMXFP4 = 39
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
strings.HasSuffix(t.name, ".bias") ||
t.name == "token_types.weight" ||
t.name == "v.positional_embedding_vlm" ||
t.name == "v.tile_position_embd.weight" ||
t.name == "v.pre_tile_position_embd.weight" ||
t.name == "v.post_tile_position_embd.weight" {
// these tensors are always F32
return 0
return tensorKindFP32
}
switch len(t.shape) {
case 0:
panic("invalid tensor shape")
case 1:
return tensorKindF32
return tensorKindFP32
default:
return tensorKindF16
return tensorKindFP16
}
}
func (t *tensorBase) SetRepacker(fn repacker) {
func (t *tensorBase) SetRepacker(fn Repacker) {
t.repacker = fn
}
type repacker func(string, []float32, []uint64) ([]float32, error)
type Repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"*.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},

View File

@@ -1,6 +1,7 @@
package convert
import (
"bufio"
"bytes"
"encoding/binary"
"encoding/json"
@@ -8,12 +9,12 @@ import (
"fmt"
"io"
"io/fs"
"maps"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
"golang.org/x/exp/maps"
)
type safetensorMetadata struct {
@@ -46,8 +47,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
return nil, err
}
keys := maps.Keys(headers)
slices.Sort(keys)
keys := slices.Sorted(maps.Keys(headers))
names := make(map[string]struct{}, len(keys))
@@ -94,6 +94,30 @@ type safetensor struct {
*tensorBase
}
func (st safetensor) Kind() uint32 {
kind := st.tensorBase.Kind()
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
kind = tensorKindBF16
}
return kind
}
func (st safetensor) Clone() Tensor {
return &safetensor{
fs: st.fs,
path: st.path,
dtype: st.dtype,
offset: st.offset,
size: st.size,
tensorBase: &tensorBase{
name: st.name,
repacker: st.repacker,
shape: slices.Clone(st.shape),
},
}
}
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
f, err := st.fs.Open(st.path)
if err != nil {
@@ -101,26 +125,41 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
defer f.Close()
if seeker, ok := f.(io.Seeker); ok {
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
return 0, err
}
} else {
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
return 0, err
r, err := func() (io.Reader, error) {
if readerAt, ok := f.(io.ReaderAt); ok {
return io.NewSectionReader(readerAt, st.offset, st.size), nil
} else if seeker, ok := f.(io.Seeker); ok {
_, err := seeker.Seek(st.offset, io.SeekStart)
return f, err
} else {
_, err := io.CopyN(io.Discard, f, st.offset)
return f, err
}
}()
if err != nil {
return 0, err
}
br := bufio.NewReaderSize(r, min(32<<10, int(st.size)))
// special case when input and output are same type and the
// tensor doesn't need repacking
if (st.repacker == nil) &&
((st.dtype == "F32" && st.Kind() == tensorKindFP32) ||
(st.dtype == "F16" && st.Kind() == tensorKindFP16) ||
(st.dtype == "U8")) {
return io.CopyN(w, br, st.size)
}
var f32s []float32
switch st.dtype {
case "F32":
f32s = make([]float32, st.size/4)
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
if err = binary.Read(br, binary.LittleEndian, f32s); err != nil {
return 0, err
}
case "F16":
u16s := make([]uint16, st.size/2)
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
if err = binary.Read(br, binary.LittleEndian, u16s); err != nil {
return 0, err
}
@@ -131,7 +170,7 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
case "BF16":
u8s := make([]uint8, st.size)
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
if err = binary.Read(br, binary.LittleEndian, u8s); err != nil {
return 0, err
}
@@ -148,15 +187,18 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
}
switch st.Kind() {
case tensorKindF32:
return 0, binary.Write(w, binary.LittleEndian, f32s)
case tensorKindF16:
case tensorKindFP32:
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
case tensorKindFP16:
f16s := make([]uint16, len(f32s))
for i := range f32s {
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
}
return 0, binary.Write(w, binary.LittleEndian, f16s)
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
case tensorKindBF16:
u8s := bfloat16.EncodeFloat32(f32s)
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
default:
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
}

294
convert/reader_test.go Normal file
View File

@@ -0,0 +1,294 @@
package convert
import (
"bytes"
"encoding/binary"
"os"
"path/filepath"
"testing"
"github.com/d4l3k/go-bfloat16"
"github.com/google/go-cmp/cmp"
"github.com/x448/float16"
)
func TestSafetensors(t *testing.T) {
t.Parallel()
root, err := os.OpenRoot(t.TempDir())
if err != nil {
t.Fatal(err)
}
defer root.Close()
cases := []struct {
name,
dtype string
offset,
size int64
shape []uint64
setup func(*testing.T, *os.File)
want []byte
}{
{
name: "fp32-fp32",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "fp32-fp16",
dtype: "F32",
size: 32 * 4, // 32 floats, each 4 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp16",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
},
},
{
name: "fp16-fp32",
dtype: "F16",
size: 32 * 2, // 32 floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u16s := make([]uint16, 32)
for i := range u16s {
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
}
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "bf16-bf16",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{16, 2},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x80, 0x3f, 0x00, 0x40, 0x40, 0x40, 0x80, 0x40, 0xa0, 0x40, 0xc0, 0x40, 0xe0, 0x40,
0x00, 0x41, 0x10, 0x41, 0x20, 0x41, 0x30, 0x41, 0x40, 0x41, 0x50, 0x41, 0x60, 0x41, 0x70, 0x41,
0x80, 0x41, 0x88, 0x41, 0x90, 0x41, 0x98, 0x41, 0xa0, 0x41, 0xa8, 0x41, 0xb0, 0x41, 0xb8, 0x41,
0xc0, 0x41, 0xc8, 0x41, 0xd0, 0x41, 0xd8, 0x41, 0xe0, 0x41, 0xe8, 0x41, 0xf0, 0x41, 0xf8, 0x41,
},
},
{
name: "bf16-fp32",
dtype: "BF16",
size: 32 * 2, // 32 brain floats, each 2 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
f32s := make([]float32, 32)
for i := range f32s {
f32s[i] = float32(i)
}
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
},
},
{
name: "u8-u8",
dtype: "U8",
size: 32, // 32 brain floats, each 1 bytes
shape: []uint64{32},
setup: func(t *testing.T, f *os.File) {
u8s := make([]uint8, 32)
for i := range u8s {
u8s[i] = uint8(i)
}
if err := binary.Write(f, binary.LittleEndian, u8s); err != nil {
t.Fatal(err)
}
},
want: []byte{
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
path := filepath.Base(t.Name())
st := safetensor{
fs: root.FS(),
path: path,
dtype: tt.dtype,
offset: tt.offset,
size: tt.size,
tensorBase: &tensorBase{
name: tt.name,
shape: tt.shape,
},
}
f, err := root.Create(path)
if err != nil {
t.Fatal(err)
}
defer f.Close()
tt.setup(t, f)
var b bytes.Buffer
if _, err := st.WriteTo(&b); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(tt.want, b.Bytes()); diff != "" {
t.Errorf("safetensor.WriteTo() mismatch (-want +got):\n%s", diff)
}
})
}
}
func TestSafetensorKind(t *testing.T) {
tests := []struct {
name string
st safetensor
expected uint32
}{
{
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindBF16,
},
{
name: "BF16 dtype with v. prefix should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "v.weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "BF16",
},
expected: tensorKindFP16,
},
{
name: "BF16 dtype with FP32 base kind should return FP32",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10}, // will default to FP32
},
dtype: "BF16",
},
expected: tensorKindFP32,
},
{
name: "Non-BF16 dtype should return base kind",
st: safetensor{
tensorBase: &tensorBase{
name: "weight.matrix",
shape: []uint64{10, 10}, // will default to FP16
},
dtype: "FP16",
},
expected: tensorKindFP16,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := tt.st.Kind()
if result != tt.expected {
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
}
})
}
}

View File

@@ -43,6 +43,17 @@ type torch struct {
*tensorBase
}
func (t torch) Clone() Tensor {
return torch{
storage: t.storage,
tensorBase: &tensorBase{
name: t.name,
shape: t.shape,
repacker: t.repacker,
},
}
}
func (pt torch) WriteTo(w io.Writer) (int64, error) {
return 0, nil
}

View File

@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
var file_sentencepiece_model_proto_goTypes = []interface{}{
var file_sentencepiece_model_proto_goTypes = []any{
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
return
}
if !protoimpl.UnsafeEnabled {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
switch v := v.(*TrainerSpec); i {
case 0:
return &v.state
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
switch v := v.(*NormalizerSpec); i {
case 0:
return &v.state
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
switch v := v.(*SelfTestData); i {
case 0:
return &v.state
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
switch v := v.(*ModelProto); i {
case 0:
return &v.state
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
switch v := v.(*SelfTestData_Sample); i {
case 0:
return &v.state
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
return nil
}
}
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
switch v := v.(*ModelProto_SentencePiece); i {
case 0:
return &v.state

133
convert/tensor.go Normal file
View File

@@ -0,0 +1,133 @@
package convert
import (
"cmp"
"io"
"iter"
"path"
"slices"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/fs/ggml"
)
type split struct {
*strings.Replacer
dim int
slices []tensor.Slice
// afterFunc is an optional function to apply to the tensor after slicing
afterFunc func(tensor.Tensor) (tensor.Tensor, error)
}
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
// is split evenly based on the number of replacers provided unless a specific count is given.
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
return func(yield func(*ggml.Tensor) bool) {
var offset int
for _, split := range splits {
t := t.Clone()
shape := slices.Clone(t.Shape())
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
slice := split.slices
if len(slice) == 0 {
slice = slices.Repeat([]tensor.Slice{nil}, len(shape))
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
offset += int(shape[dim])
}
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
dims := make([]int, len(shape))
for i := range shape {
dims[i] = int(shape[i])
}
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
tt, err := tt.Slice(slice...)
if err != nil {
return nil, err
}
tt = tensor.Materialize(tt)
if split.afterFunc != nil {
tt, err = split.afterFunc(tt)
if err != nil {
return nil, err
}
}
// flatten tensor so it can be written as a vector
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
return nil, err
}
return native.VectorF32(tt.(*tensor.Dense))
})
if !yield(&ggml.Tensor{
Name: split.Replace(t.Name()),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
}) {
break
}
}
}
}
type merge struct {
pattern, name string
}
// mergeTensors merges tensors that match a given pattern into a single tensor.
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
var matched []Tensor
for i := range merges {
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
matched, _ := path.Match(merges[i].pattern, t.Name())
return matched
})
if len(matched) > 0 {
out = append(out, &ggml.Tensor{
Name: merges[i].name,
Kind: matched[0].Kind(),
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
WriterTo: mergeGroup(matched),
})
}
}
return out, unmatched
}
// slicesSplitFunc splits a slice into two slices based on a predicate function.
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
for _, e := range s {
if fn(e) {
matched = append(matched, e)
} else {
unmatched = append(unmatched, e)
}
}
return matched, unmatched
}
type mergeGroup []Tensor
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
for _, t := range g {
if _, err := t.WriteTo(w); err != nil {
return 0, err
}
}
return 0, nil
}

953
convert/tensor_test.go Normal file
View File

@@ -0,0 +1,953 @@
package convert
import (
"bytes"
"encoding/binary"
"io"
"iter"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/fs/ggml"
"github.com/pdevine/tensor"
)
type fakeTensor struct {
name string
shape []uint64
data []float32
repacker Repacker
}
func (f fakeTensor) Name() string {
return f.name
}
func (f fakeTensor) Shape() []uint64 {
return f.shape
}
func (f fakeTensor) Kind() uint32 {
return 0
}
func (f *fakeTensor) SetRepacker(fn Repacker) {
f.repacker = fn
}
func (f fakeTensor) Clone() Tensor {
return &fakeTensor{
name: f.name,
shape: slices.Clone(f.shape),
data: slices.Clone(f.data),
repacker: f.repacker,
}
}
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
data := f.data
if f.repacker != nil {
data, err = f.repacker(f.name, data, f.shape)
if err != nil {
return 0, err
}
}
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
return 0, err
}
return int64(len(data) * 4), nil
}
func mul(shape []uint64) int {
n := 1
for _, dim := range shape {
n *= int(dim)
}
return n
}
func TestSplitDim(t *testing.T) {
t.Run("2d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 3, 6, 7, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("split with transpose", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y"), afterFunc: func(tt tensor.Tensor) (tensor.Tensor, error) {
return tensor.Transpose(tt, 1, 0)
}},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{2, 6, 10, 3, 7, 11}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
t.Run("3d", func(t *testing.T) {
r := fakeTensor{
name: "a.b",
shape: []uint64{3, 4, 2},
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
}
t.Run("no split", func(t *testing.T) {
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
if tt.Name != "x.b" {
t.Fatalf("expected name 'x', got '%s'", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("even split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x")},
split{Replacer: strings.NewReplacer("b", "y")},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{2, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'a.y', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 0,
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
t.Run("uneven three way split", func(t *testing.T) {
next, stop := iter.Pull(splitDim(&r, 1,
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
))
defer stop()
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "x.b" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.y" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{4, 5, 12, 13, 20, 21}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
{
tt, ok := next()
if !ok {
t.Fatal("expected at least one split")
}
if tt.Name != "a.z" {
t.Fatal("expected name 'x.b', got", tt.Name)
}
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
t.Errorf("unexpected shape (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := tt.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, mul(tt.Shape))
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
if diff := cmp.Diff(f32s, []float32{6, 7, 14, 15, 22, 23}); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
})
})
}
func TestMerge(t *testing.T) {
unmatched := []Tensor{
&fakeTensor{
name: "a.0.b",
shape: []uint64{5, 2},
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
},
&fakeTensor{
name: "a.1.b",
shape: []uint64{5, 2},
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
},
&fakeTensor{
name: "c.0.d",
shape: []uint64{5, 2},
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
},
&fakeTensor{
name: "c.1.d",
shape: []uint64{5, 2},
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
},
&fakeTensor{
name: "e.0.f",
shape: []uint64{5, 2},
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
},
}
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
for i := range n {
got := matched[i]
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
t.Errorf("unexpected (-want +got):\n%s", diff)
}
var b bytes.Buffer
if _, err := got.WriteTo(&b); err != nil {
t.Fatal(err)
}
f32s := make([]float32, 20)
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
t.Fatal(err)
}
offset := 10 + (i * 20)
want := make([]float32, 20)
for j := range 20 {
want[j] = float32(offset + j)
}
if diff := cmp.Diff(want, f32s); diff != "" {
t.Errorf("unexpected data (-want +got):\n%s", diff)
}
}
}
t.Run("single merge", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
if len(unmatched) != 3 {
t.Error("expected 3 remaining tensors, got", len(unmatched))
}
if len(matched) != 1 {
t.Error("expected 1 merged tensor, got", len(matched))
}
checkMatched(t, 1, matched)
})
t.Run("multiple merges", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
if len(unmatched) != 1 {
t.Error("expected 1 remaining tensors, got", len(unmatched))
}
if len(matched) != 2 {
t.Error("expected 2 merged tensor, got", len(matched))
}
checkMatched(t, 2, matched)
})
t.Run("no match", func(t *testing.T) {
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
if len(unmatched) != 5 {
t.Error("expected 5 remaining tensors, got", len(unmatched))
}
if len(matched) != 0 {
t.Error("expected no merged tensors, got", len(matched))
}
})
}

View File

@@ -8,11 +8,10 @@ import (
"fmt"
"io/fs"
"log/slog"
"maps"
"os"
"slices"
"strings"
"golang.org/x/exp/maps"
)
const (
@@ -110,6 +109,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil {
return nil, err
} else {
@@ -171,6 +171,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
}
}
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
} else if err != nil {
return nil, err
} else {
defer f.Close()
var p map[string]json.RawMessage
if err := json.NewDecoder(f).Decode(&p); err != nil {
return nil, err
}
for _, st := range specialTokenTypes {
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
var ids []int32
if err := json.Unmarshal(bts, &ids); err != nil {
// value is not a list so the existing ID is used
continue
}
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
return sv.Type == st
}); i >= 0 {
t.SpecialVocabulary[i].IDs = ids
}
}
}
}
return t, nil
}
@@ -231,11 +259,8 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
tokens[token.ID] = token
}
keys := maps.Keys(tokens)
slices.Sort(keys)
v := Vocabulary{Model: "gpt2"}
for _, k := range keys {
for _, k := range slices.Sorted(maps.Keys(tokens)) {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
@@ -280,6 +305,9 @@ type SpecialVocabulary struct {
ID int
Content string
AddToken bool
// IDs is populated by generation_config.json
IDs []int32
}
func (sv SpecialVocabulary) Key() string {

View File

@@ -6,7 +6,9 @@ import (
"errors"
"fmt"
"io/fs"
"log/slog"
"os"
"reflect"
"slices"
"google.golang.org/protobuf/proto"
@@ -15,6 +17,8 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
slog.Debug("using spm vocabulary")
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
v.Types = append(v.Types, int32(t))
default:
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
// temporary fix to handle gemma3 broken configs
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
for _, t := range ast {
if t.Content == piece.GetPiece() {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
break
}
}
v.Types = append(v.Types, tt)
}
}
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return cmp.Compare(i.id, j.id)
})
n := len(v.Tokens)
for i, t := range ts {
if t.id != i+n {
return nil, fmt.Errorf("invalid token id: %d", t.id)
for _, t := range ts {
if t.id < len(v.Tokens) {
if v.Tokens[t.id] == t.content {
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
continue
}
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
}
if t.id != len(v.Tokens) {
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
}
v.Tokens = append(v.Tokens, t.content)
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
type specialToken struct {
Content string `json:"content"`
Lstrip bool `json:"lstrip"`
Normalized bool `json:"normalized"`
Rstrip bool `json:"rstrip"`
SingleWord bool `json:"single_word"`
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
AdditionalSpecialTokens any `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
var ast []specialToken
switch st := m.AdditionalSpecialTokens.(type) {
case []string:
for _, s := range st {
ast = append(ast, specialToken{Content: s})
}
case []any:
for _, s := range st {
// marshal and unmarshal the object to get the special token
tMap := s.(map[string]any)
data, err := json.Marshal(tMap)
if err != nil {
return nil, err
}
var token specialToken
err = json.Unmarshal(data, &token)
if err != nil {
return nil, err
}
ast = append(ast, token)
}
default:
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
}
slog.Debug("spm tokenizer", "additional tokens", ast)
return ast, nil
}

View File

@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
Pre: "default",
},
},
{
name: "generation config eos token ids",
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
"tokenizer.json": strings.NewReader(`{
"added_tokens": [
{
"id": 0,
"content": "<bos>",
"special": true
},
{
"id": 1,
"content": "<eos>",
"special": true
},
{
"id": 2,
"content": "<eot>",
"special": true
},
{
"id": 3,
"content": "<eom>",
"special": true
}
],
"model": {
"vocab": {
"<bos>": 0,
"<eos>": 1,
"<eot>": 2,
"<eom>": 3
}
}
}`),
"tokenizer_config.json": strings.NewReader(`{
"add_bos_token": true,
"add_eos_token": false,
"bos_token": "<bos>",
"eos_token": "<eos>"
}`),
"generation_config.json": strings.NewReader(`{
"bos_token_id": 0,
"eos_token_id": [1, 2, 3]
}`),
}),
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
want: &Tokenizer{
Vocabulary: &Vocabulary{
Model: "gpt2",
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
Scores: []float32{0, 1, 2, 3},
Types: []int32{3, 3, 3, 3},
},
SpecialVocabulary: []*SpecialVocabulary{
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
},
Pre: "default",
},
},
}
for _, tt := range cases {

View File

@@ -1,83 +0,0 @@
//go:build linux || windows
package discover
import (
"errors"
"log/slog"
"os"
"path/filepath"
"runtime"
"strings"
)
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
func rocmLibUsable(libDir string) bool {
slog.Debug("evaluating potential rocm lib dir " + libDir)
for _, g := range ROCmLibGlobs {
res, _ := filepath.Glob(filepath.Join(libDir, g))
if len(res) == 0 {
return false
}
}
return true
}
func GetSupportedGFX(libDir string) ([]string, error) {
var ret []string
files, err := filepath.Glob(filepath.Join(libDir, "rocblas", "library", "TensileLibrary_lazy_gfx*.dat"))
if err != nil {
return nil, err
}
for _, file := range files {
ret = append(ret, strings.TrimSuffix(strings.TrimPrefix(filepath.Base(file), "TensileLibrary_lazy_"), ".dat"))
}
return ret, nil
}
func commonAMDValidateLibDir() (string, error) {
// Favor our bundled version
// Installer payload location if we're running the installed binary
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "bin")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return hipLibDir, nil
}
}
// Scan the LD_LIBRARY_PATH or PATH
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
paths := os.Getenv(pathEnv)
for _, path := range filepath.SplitList(paths) {
d, err := filepath.Abs(path)
if err != nil {
continue
}
if rocmLibUsable(d) {
return d, nil
}
}
// Well known location(s)
for _, path := range RocmStandardLocations {
if rocmLibUsable(path) {
return path, nil
}
}
return "", errors.New("no suitable rocm found, falling back to CPU")
}

View File

@@ -1,147 +0,0 @@
package discover
import (
"errors"
"fmt"
"log/slog"
"syscall"
"unsafe"
"golang.org/x/sys/windows"
)
const (
hipSuccess = 0
hipErrorNoDevice = 100
)
type hipDevicePropMinimal struct {
Name [256]byte
unused1 [140]byte
GcnArchName [256]byte // gfx####
iGPU int // Doesn't seem to actually report correctly
unused2 [128]byte
}
// Wrap the amdhip64.dll library for GPU discovery
type HipLib struct {
dll windows.Handle
hipGetDeviceCount uintptr
hipGetDeviceProperties uintptr
hipMemGetInfo uintptr
hipSetDevice uintptr
hipDriverGetVersion uintptr
}
func NewHipLib() (*HipLib, error) {
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
h, err := windows.LoadLibrary("amdhip64_6.dll")
if err != nil {
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
}
hl := &HipLib{}
hl.dll = h
hl.hipGetDeviceCount, err = windows.GetProcAddress(hl.dll, "hipGetDeviceCount")
if err != nil {
return nil, err
}
hl.hipGetDeviceProperties, err = windows.GetProcAddress(hl.dll, "hipGetDeviceProperties")
if err != nil {
return nil, err
}
hl.hipMemGetInfo, err = windows.GetProcAddress(hl.dll, "hipMemGetInfo")
if err != nil {
return nil, err
}
hl.hipSetDevice, err = windows.GetProcAddress(hl.dll, "hipSetDevice")
if err != nil {
return nil, err
}
hl.hipDriverGetVersion, err = windows.GetProcAddress(hl.dll, "hipDriverGetVersion")
if err != nil {
return nil, err
}
return hl, nil
}
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
// so we have to unload/reset the library after we do our initial discovery
// to make sure our updates to that variable are processed by llama.cpp
func (hl *HipLib) Release() {
err := windows.FreeLibrary(hl.dll)
if err != nil {
slog.Warn("failed to unload amdhip64.dll", "error", err)
}
hl.dll = 0
}
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var version int
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
}
slog.Debug("hipDriverGetVersion", "version", version)
driverMajor = version / 10000000
driverMinor = (version - (driverMajor * 10000000)) / 100000
return driverMajor, driverMinor, nil
}
func (hl *HipLib) HipGetDeviceCount() int {
if hl.dll == 0 {
slog.Error("dll has been unloaded")
return 0
}
var count int
status, _, err := syscall.SyscallN(hl.hipGetDeviceCount, uintptr(unsafe.Pointer(&count)))
if status == hipErrorNoDevice {
slog.Info("AMD ROCm reports no devices found")
return 0
}
if status != hipSuccess {
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
}
return count
}
func (hl *HipLib) HipSetDevice(device int) error {
if hl.dll == 0 {
return errors.New("dll has been unloaded")
}
status, _, err := syscall.SyscallN(hl.hipSetDevice, uintptr(device))
if status != hipSuccess {
return fmt.Errorf("failed call to hipSetDevice: %d %s", status, err)
}
return nil
}
func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, error) {
if hl.dll == 0 {
return nil, errors.New("dll has been unloaded")
}
var props hipDevicePropMinimal
status, _, err := syscall.SyscallN(hl.hipGetDeviceProperties, uintptr(unsafe.Pointer(&props)), uintptr(device))
if status != hipSuccess {
return nil, fmt.Errorf("failed call to hipGetDeviceProperties: %d %s", status, err)
}
return &props, nil
}
// free, total, err
func (hl *HipLib) HipMemGetInfo() (uint64, uint64, error) {
if hl.dll == 0 {
return 0, 0, errors.New("dll has been unloaded")
}
var totalMemory uint64
var freeMemory uint64
status, _, err := syscall.SyscallN(hl.hipMemGetInfo, uintptr(unsafe.Pointer(&freeMemory)), uintptr(unsafe.Pointer(&totalMemory)))
if status != hipSuccess {
return 0, 0, fmt.Errorf("failed call to hipMemGetInfo: %d %s", status, err)
}
return freeMemory, totalMemory, nil
}

View File

@@ -1,538 +0,0 @@
package discover
import (
"bufio"
"errors"
"fmt"
"io"
"io/fs"
"log/slog"
"os"
"path/filepath"
"regexp"
"slices"
"sort"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
// Discovery logic for AMD/ROCm GPUs
const (
DriverVersionFile = "/sys/module/amdgpu/version"
AMDNodesSysfsDir = "/sys/class/kfd/kfd/topology/nodes/"
GPUPropertiesFileGlob = AMDNodesSysfsDir + "*/properties"
// Prefix with the node dir
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
// Direct Rendering Manager sysfs location
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
DRMTotalMemoryFile = "mem_info_vram_total"
DRMUsedMemoryFile = "mem_info_vram_used"
// In hex; properties file is in decimal
DRMUniqueIDFile = "unique_id"
DRMVendorFile = "vendor"
DRMDeviceFile = "device"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"}
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
if !AMDDetected() {
return resp, fmt.Errorf("AMD GPUs not detected")
}
// Opportunistic logging of driver version to aid in troubleshooting
driverMajor, driverMinor, err := AMDDriverVersion()
if err != nil {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := envconfig.HipVisibleDevices() // zero based index only
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
switch {
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
gfxOverride := envconfig.HsaOverrideGfxVersion()
var supported []string
var libDir string
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
sort.Slice(matches, func(i, j int) bool {
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
if err != nil {
slog.Debug("parse err", "error", err, "match", matches[i])
return false
}
return a < b
})
gpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
if err != nil {
slog.Debug("failed to open sysfs node", "file", match, "error", err)
continue
}
defer fp.Close()
scanner := bufio.NewScanner(fp)
isCPU := false
var major, minor, patch uint64
var vendor, device, uniqueID uint64
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
if strings.HasPrefix(line, "gfx_target_version") {
ver := strings.Fields(line)
// Detect CPUs
if len(ver) == 2 && ver[1] == "0" {
slog.Debug("detected CPU " + match)
isCPU = true
break
}
if len(ver) != 2 || len(ver[1]) < 5 {
slog.Warn("malformed "+match, "gfx_target_version", line)
// If this winds up being a CPU, our offsets may be wrong
continue
}
l := len(ver[1])
var err1, err2, err3 error
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
if err1 != nil || err2 != nil || err3 != nil {
slog.Debug("malformed int " + line)
continue
}
} else if strings.HasPrefix(line, "vendor_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "vendor_id", line)
continue
}
vendor, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "vendor_id", line, "error", err)
}
} else if strings.HasPrefix(line, "device_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "device_id", line)
continue
}
device, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "device_id", line, "error", err)
}
} else if strings.HasPrefix(line, "unique_id") {
ver := strings.Fields(line)
if len(ver) != 2 {
slog.Debug("malformed", "unique_id", line)
continue
}
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
if err != nil {
slog.Debug("malformed", "unique_id", line, "error", err)
}
}
// TODO - any other properties we want to extract and record?
// vendor_id + device_id -> pci lookup for "Name"
// Other metrics that may help us understand relative performance between multiple GPUs
}
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
// do reliably report VRAM usage.
if isCPU {
continue
}
// Skip over any GPUs that are masked
if major == 0 && minor == 0 && patch == 0 {
slog.Debug("skipping gpu with gfx000")
continue
}
// Keep track of numeric IDs based on valid GPUs
gpuID := gpuCount
gpuCount += 1
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
var usedFile string
mapping := []struct {
id uint64
filename string
}{
{vendor, DRMVendorFile},
{device, DRMDeviceFile},
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
}
slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
// Map over to DRM location to find the total/free memory
drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
for _, devDir := range drmMatches {
matched := true
for _, m := range mapping {
if m.id == 0 {
// Null ID means it didn't populate, so we can't use it to match
continue
}
filename := filepath.Join(devDir, m.filename)
buf, err := os.ReadFile(filename)
if err != nil {
slog.Debug("failed to read sysfs node", "file", filename, "error", err)
matched = false
break
}
// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
matched = false
break
}
if cmp != m.id {
matched = false
break
}
}
if !matched {
continue
}
// Found the matching DRM directory
slog.Debug("matched", "amdgpu", match, "drm", devDir)
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
buf, err := os.ReadFile(totalFile)
if err != nil {
slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
break
}
totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
break
}
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
usedMemory, err = getFreeMemory(usedFile)
if err != nil {
slog.Debug("failed to update used memory", "error", err)
}
break
}
var name string
// TODO - PCI ID lookup
if vendor > 0 && device > 0 {
name = fmt.Sprintf("%04x:%04x", vendor, device)
}
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
var ID string
if uniqueID != 0 {
ID = fmt.Sprintf("GPU-%016x", uniqueID)
} else {
ID = strconv.Itoa(gpuID)
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: ID,
Name: name,
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
MinimumMemory: rocmMinimumMemory,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
usedFilepath: usedFile,
index: gpuID,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
minVer, err := strconv.Atoi(RocmComputeMajorMin)
if err != nil {
slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
}
if int(major) < minVer {
reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
slog.Warn(reason, "gpu", gpuID)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
include = true
break
}
}
if !include {
reason := "filtering out device per user request"
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
}
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
if libDir == "" {
libDir, err = AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
}
gpuInfo.DependencyPath = []string{libDir}
if gfxOverride == "" {
// Only load supported list once
if len(supported) == 0 {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: err.Error(),
})
return nil, err
}
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := gpuInfo.Compute
if !slices.Contains[[]string, string](supported, gfx) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
// Check for env var workarounds
if name == "1002:687f" { // Vega RX 56
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
}
// The GPU has passed all the verification steps and is supported
resp = append(resp, gpuInfo)
}
if len(resp) == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
if err := verifyKFDDriverAccess(); err != nil {
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
slog.Error(err.Error())
return nil, err
}
return resp, nil
}
// Quick check for AMD driver so we can skip amdgpu discovery if not present
func AMDDetected() bool {
// Some driver versions (older?) don't have a version file, so just lookup the parent dir
sysfsDir := filepath.Dir(DriverVersionFile)
_, err := os.Stat(sysfsDir)
if errors.Is(err, os.ErrNotExist) {
slog.Debug("amdgpu driver not detected " + sysfsDir)
return false
} else if err != nil {
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
return false
}
return true
}
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
// failing that, tell the user how to download it on their own
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Well known ollama installer path
installedRocmDir := "/usr/share/ollama/lib/rocm"
if rocmLibUsable(installedRocmDir) {
return installedRocmDir, nil
}
// If we still haven't found a usable rocm, the user will have to install it on their own
slog.Warn("amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
_, err = os.Stat(DriverVersionFile)
if err != nil {
return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
}
fp, err := os.Open(DriverVersionFile)
if err != nil {
return 0, 0, err
}
defer fp.Close()
verString, err := io.ReadAll(fp)
if err != nil {
return 0, 0, err
}
pattern := `\A(\d+)\.(\d+).*`
regex := regexp.MustCompile(pattern)
match := regex.FindStringSubmatch(string(verString))
if len(match) < 2 {
return 0, 0, fmt.Errorf("malformed version string %s", string(verString))
}
driverMajor, err = strconv.Atoi(match[1])
if err != nil {
return 0, 0, err
}
driverMinor, err = strconv.Atoi(match[2])
if err != nil {
return 0, 0, err
}
return driverMajor, driverMinor, nil
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
for i := range gpus {
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
if err != nil {
return err
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
}
return nil
}
func getFreeMemory(usedFile string) (uint64, error) {
buf, err := os.ReadFile(usedFile)
if err != nil {
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
}
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
if err != nil {
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
}
return usedMemory, nil
}
func verifyKFDDriverAccess() error {
// Verify we have permissions - either running as root, or we have group access to the driver
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
if err != nil {
if errors.Is(err, fs.ErrPermission) {
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
} else if errors.Is(err, fs.ErrNotExist) {
// Container runtime failure?
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
}
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
}
fd.Close()
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
// GPU_DEVICE_ORDINAL supports numeric IDs only
// HIP_VISIBLE_DEVICES supports numeric IDs only
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -1,218 +0,0 @@
package discover
import (
"bytes"
"errors"
"fmt"
"log/slog"
"path/filepath"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
)
const (
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
iGPUName = "AMD 2099 Graphics"
)
var (
// Used to validate if the given ROCm lib is usable
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
)
// Only called once during bootstrap
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
resp := []RocmGPUInfo{}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return nil, err
}
defer hl.Release()
driverMajor, driverMinor, err := hl.AMDDriverVersion()
if err != nil {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
err := fmt.Errorf("no compatible amdgpu devices detected")
slog.Info(err.Error())
return nil, err
}
libDir, err := AMDValidateLibDir()
if err != nil {
err = fmt.Errorf("unable to verify rocm library: %w", err)
slog.Warn(err.Error())
return nil, err
}
var supported []string
gfxOverride := envconfig.HsaOverrideGfxVersion()
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
slog.Warn(err.Error())
return nil, err
}
} else {
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
}
slog.Debug("detected hip devices", "count", count)
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
for i := range count {
err = hl.HipSetDevice(i)
if err != nil {
slog.Warn("set device", "id", i, "error", err)
continue
}
props, err := hl.HipGetDeviceProperties(i)
if err != nil {
slog.Warn("get properties", "id", i, "error", err)
continue
}
n := bytes.IndexByte(props.Name[:], 0)
name := string(props.Name[:n])
// TODO is UUID actually populated on windows?
// Can luid be used on windows for setting visible devices (and is it actually set?)
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
freeMemory, totalMemory, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
gpuInfo := RocmGPUInfo{
GpuInfo: GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: freeMemory,
},
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
UnreliableFreeMemory: true,
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
DependencyPath: []string{libDir},
MinimumMemory: rocmMinimumMemory,
Name: name,
Compute: gfx,
DriverMajor: driverMajor,
DriverMinor: driverMinor,
},
index: i,
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
reason := "unsupported Radeon iGPU detected skipping"
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
continue
}
// Strip off Target Features when comparing
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
Reason: reason,
})
// HSA_OVERRIDE_GFX_VERSION not supported on windows
continue
} else {
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
resp = append(resp, gpuInfo)
}
return resp, nil
}
func AMDValidateLibDir() (string, error) {
libDir, err := commonAMDValidateLibDir()
if err == nil {
return libDir, nil
}
// Installer payload (if we're running from some other location)
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil
}
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", errors.New("no suitable rocm found, falling back to CPU")
}
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
if len(gpus) == 0 {
return nil
}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return err
}
defer hl.Release()
for i := range gpus {
err := hl.HipSetDevice(gpus[i].index)
if err != nil {
return err
}
freeMemory, _, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn("get mem info", "id", i, "error", err)
continue
}
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
gpus[i].FreeMemory = freeMemory
}
return nil
}
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
// There are 3 potential env vars to use to select GPUs.
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
// HIP_VISIBLE_DEVICES supports numeric IDs only
// GPU_DEVICE_ORDINAL supports numeric IDs only
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}

View File

@@ -1,24 +0,0 @@
package discover
import (
"os"
"path/filepath"
"runtime"
"strings"
)
func IsNUMA() bool {
if runtime.GOOS != "linux" {
// numa support in llama.cpp is linux only
return false
}
ids := map[string]interface{}{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@@ -4,7 +4,9 @@ import (
"bufio"
"fmt"
"io"
"log/slog"
"os"
"path/filepath"
"reflect"
"regexp"
"sort"
@@ -13,47 +15,6 @@ import (
"github.com/ollama/ollama/format"
)
var CudartGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
"/usr/lib/wsl/lib/libcudart.so*",
"/usr/lib/wsl/drivers/*/libcudart.so*",
"/opt/cuda/lib64/libcudart.so*",
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
"/usr/local/cuda/lib*/libcudart.so*",
"/usr/lib*/libcudart.so*",
"/usr/local/lib*/libcudart.so*",
}
var NvmlGlobs = []string{}
var NvcudaGlobs = []string{
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
"/usr/lib/*-linux-gnu/libcuda.so*",
"/usr/lib/wsl/lib/libcuda.so*",
"/usr/lib/wsl/drivers/*/libcuda.so*",
"/opt/cuda/lib*/libcuda.so*",
"/usr/local/cuda/lib*/libcuda.so*",
"/usr/lib*/libcuda.so*",
"/usr/local/lib*/libcuda.so*",
}
var OneapiGlobs = []string{
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
"/usr/lib*/libze_intel_gpu.so*",
}
var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {
var mem memInfo
var total, available, free, buffers, cached, freeSwap uint64
@@ -106,15 +67,17 @@ type linuxCpuInfo struct {
CoreID string `cpuinfo:"core id"`
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
file, err := os.Open(CpuInfoFilename)
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
defer file.Close()
return linuxCPUDetails(file)
}
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
func linuxCPUDetails(file io.Reader) []CPU {
reColumns := regexp.MustCompile("\t+: ")
scanner := bufio.NewScanner(file)
cpuInfos := []linuxCpuInfo{}
@@ -168,13 +131,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for id, s := range socketByID {
s.CoreCount = len(coreBySocket[id])
s.ThreadCount = 0
for _, tc := range threadsByCoreBySocket[id] {
s.ThreadCount += tc
}
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
efficiencyCoreCount := 0
for _, threads := range threadsByCoreBySocket[id] {
s.ThreadCount += threads
if threads == 1 {
efficiencyCoreCount++
}
@@ -195,5 +156,17 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
for _, k := range keys {
result = append(result, *socketByID[k])
}
return result, nil
return result
}
func IsNUMA() bool {
ids := map[string]any{}
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
for _, packageId := range packageIds {
id, err := os.ReadFile(packageId)
if err == nil {
ids[strings.TrimSpace(string(id))] = struct{}{}
}
}
return len(ids) > 1
}

View File

@@ -2062,18 +2062,9 @@ power management:
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
buf := bytes.NewBufferString(v.input)
cpus, err := linuxCPUDetails(buf)
if err != nil {
t.Fatal(err)
}
cpus := linuxCPUDetails(buf)
slog.Info("example", "scenario", k, "cpus", cpus)
si := SystemInfo{
System: CPUInfo{
CPUs: cpus,
},
}
threadCount := si.GetOptimalThreadCount()
if len(v.expCPUs) != len(cpus) {
t.Fatalf("incorrect number of sockets: expected:%v got:%v", v.expCPUs, cpus)
}
@@ -2088,10 +2079,6 @@ power management:
t.Fatalf("incorrect number of threads: expected:%v got:%v", v.expCPUs[i], c)
}
}
if threadCount != v.expThreadCount {
t.Fatalf("incorrect thread count expected:%d got:%d", v.expThreadCount, threadCount)
}
})
}
}

View File

@@ -26,29 +26,6 @@ var (
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
)
var CudartGlobs = []string{
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
}
var NvmlGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
var NvcudaGlobs = []string{
"c:\\windows\\system*\\nvcuda.dll",
}
var OneapiGlobs = []string{
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
}
var (
CudartMgmtName = "cudart64_*.dll"
NvcudaMgmtName = "nvcuda.dll"
NvmlMgmtName = "nvml.dll"
OneapiMgmtName = "ze_intel_gpu64.dll"
)
func GetCPUMem() (memInfo, error) {
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
@@ -122,27 +99,22 @@ func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
}
func getLogicalProcessorInformationEx() ([]byte, error) {
buf := make([]byte, 1)
buf := make([]byte, 1024)
bufSize := len(buf)
ret, _, err := GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret != 0 {
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
var err error
for range 3 {
var ret uintptr
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 1 && bufSize <= len(buf) {
return buf, nil
}
buf = make([]byte, bufSize)
}
buf = make([]byte, bufSize)
ret, _, err = GetLogicalProcessorInformationEx.Call(
uintptr(RelationAll),
uintptr(unsafe.Pointer(&buf[0])),
uintptr(unsafe.Pointer(&bufSize)),
)
if ret == 0 {
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
}
return buf, nil
return nil, fmt.Errorf("unable to determine CPU details: %w", err)
}
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
@@ -217,10 +189,11 @@ func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
return packages
}
func GetCPUDetails() ([]CPU, error) {
func GetCPUDetails() []CPU {
buf, err := getLogicalProcessorInformationEx()
if err != nil {
return nil, err
slog.Warn("failed to get CPU details", "error", err)
return nil
}
packages := processSystemLogicalProcessorInforationList(buf)
cpus := make([]CPU, len(packages))
@@ -230,5 +203,10 @@ func GetCPUDetails() ([]CPU, error) {
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
cpus[i].ThreadCount = pkg.threadCount
}
return cpus, nil
return cpus
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@@ -1,64 +0,0 @@
//go:build linux || windows
package discover
import (
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
return "v11"
}
return "v12"
}

View File

@@ -1,718 +1,73 @@
//go:build linux || windows
package discover
/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread
#include "gpu_info.h"
*/
import "C"
import (
"fmt"
"log/slog"
"os"
"path/filepath"
"regexp"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type cudaHandles struct {
deviceCount int
cudart *C.cudart_handle_t
nvcuda *C.nvcuda_handle_t
nvml *C.nvml_handle_t
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// GetSystemInfo returns the last cached state of the GPUs on the system
func GetSystemInfo() ml.SystemInfo {
memInfo, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
var threadCount int
cpus := GetCPUDetails()
for _, c := range cpus {
threadCount += c.CoreCount - c.EfficiencyCoreCount
}
if threadCount == 0 {
// Fall back to Go's num CPU
threadCount = runtime.NumCPU()
}
return ml.SystemInfo{
ThreadCount: threadCount,
TotalMemory: memInfo.TotalMemory,
FreeMemory: memInfo.FreeMemory,
FreeSwap: memInfo.FreeSwap,
}
}
type oneapiHandles struct {
oneapi *C.oneapi_handle_t
deviceCount int
}
const (
cudaMinimumMemory = 457 * format.MebiByte
rocmMinimumMemory = 457 * format.MebiByte
// TODO OneAPI minimum memory
)
var (
gpuMutex sync.Mutex
bootstrapped bool
cpus []CPUInfo
cudaGPUs []CudaGPUInfo
nvcudaLibPath string
cudartLibPath string
oneapiLibPath string
nvmlLibPath string
rocmGPUs []RocmGPUInfo
oneapiGPUs []OneapiGPUInfo
// If any discovered GPUs are incompatible, report why
unsupportedGPUs []UnsupportedGPUInfo
// Keep track of errors during bootstrapping so that if GPUs are missing
// they expected to be present this may explain why
bootstrapErrors []error
)
// With our current CUDA compile flags, older than 5.0 will not work properly
// (string values used to allow ldflags overrides at build time)
var (
CudaComputeMajorMin = "5"
CudaComputeMinorMin = "0"
)
var RocmComputeMajorMin = "9"
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
cHandles := &cudaHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if nvmlLibPath != "" {
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
return cHandles
}
if nvcudaLibPath != "" {
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
return cHandles
}
if cudartLibPath != "" {
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
return cHandles
}
slog.Debug("searching for GPU discovery libraries for NVIDIA")
var cudartMgmtPatterns []string
// Aligned with driver, we can't carry as payloads
nvcudaMgmtPatterns := NvcudaGlobs
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
if len(NvmlGlobs) > 0 {
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
if len(nvmlLibPaths) > 0 {
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Debug("nvidia-ml loaded", "library", libPath)
cHandles.nvml = nvml
nvmlLibPath = libPath
func cudaJetpack() string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
}
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
if len(nvcudaLibPaths) > 0 {
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
if nvcuda != nil {
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
cHandles.nvcuda = nvcuda
cHandles.deviceCount = deviceCount
nvcudaLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
cHandles.cudart = cudart
cHandles.deviceCount = deviceCount
cudartLibPath = libPath
return cHandles
}
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return cHandles
}
// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
oHandles := &oneapiHandles{}
// Short Circuit if we already know which library to use
// ignore bootstrap errors in this case since we already recorded them
if oneapiLibPath != "" {
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
return oHandles
}
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
if len(oneapiLibPaths) > 0 {
var err error
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
}
return oHandles
}
func GetCPUInfo() GpuInfoList {
gpuMutex.Lock()
if !bootstrapped {
gpuMutex.Unlock()
GetGPUInfo()
} else {
gpuMutex.Unlock()
}
return GpuInfoList{cpus[0].GpuInfo}
}
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
defer gpuMutex.Unlock()
needRefresh := true
var cHandles *cudaHandles
var oHandles *oneapiHandles
defer func() {
if cHandles != nil {
if cHandles.cudart != nil {
C.cudart_release(*cHandles.cudart)
}
if cHandles.nvcuda != nil {
C.nvcuda_release(*cHandles.nvcuda)
}
if cHandles.nvml != nil {
C.nvml_release(*cHandles.nvml)
}
}
if oHandles != nil {
if oHandles.oneapi != nil {
// TODO - is this needed?
C.oneapi_release(*oHandles.oneapi)
}
}
}()
if !bootstrapped {
slog.Info("looking for compatible GPUs")
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
if err != nil {
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
}
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
if err != nil {
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
}
bootstrapErrors = []error{}
needRefresh = false
var memInfo C.mem_info_t
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
details, err := GetCPUDetails()
if err != nil {
slog.Warn("failed to lookup CPU details", "error", err)
}
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
ID: "0",
},
CPUs: details,
},
}
// Load ALL libraries
cHandles = initCudaHandles()
// NVIDIA
for i := range cHandles.deviceCount {
if cHandles.cudart != nil || cHandles.nvcuda != nil {
gpuInfo := CudaGPUInfo{
GpuInfo: GpuInfo{
Library: "cuda",
},
index: i,
}
var driverMajor int
var driverMinor int
if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
} else {
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
driverMajor = int(cHandles.nvcuda.driver_major)
driverMinor = int(cHandles.nvcuda.driver_minor)
}
if memInfo.err != nil {
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
// Start with our bundled libraries
if variant != "" {
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
if _, err := os.Stat(variantPath); err == nil {
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
unsupportedGPUs = append(unsupportedGPUs,
UnsupportedGPUInfo{
GpuInfo: gpuInfo.GpuInfo,
})
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
if cHandles.nvml != nil {
uuid := C.CString(gpuInfo.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else {
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
slog.Info("detected OS VRAM overhead",
"id", gpuInfo.ID,
"library", gpuInfo.Library,
"compute", gpuInfo.Compute,
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
"name", gpuInfo.Name,
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
)
}
}
}
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
cudaGPUs = append(cudaGPUs, gpuInfo)
}
}
// Intel
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
continue
}
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
for i := range devCount {
gpuInfo := OneapiGPUInfo{
GpuInfo: GpuInfo{
Library: "oneapi",
},
driverIndex: int(d),
gpuIndex: int(i),
}
// TODO - split bootstrapping from updating free memory
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DependencyPath = []string{LibOllamaPath}
oneapiGPUs = append(oneapiGPUs, gpuInfo)
}
}
}
}
rocmGPUs, err = AMDGetGPUInfo()
if err != nil {
bootstrapErrors = append(bootstrapErrors, err)
}
bootstrapped = true
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
slog.Info("no compatible GPUs were discovered")
}
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
}
// For detected GPUs, load library if not loaded
// Refresh free memory usage
if needRefresh {
mem, err := GetCPUMem()
if err != nil {
slog.Warn("error looking up system memory", "error", err)
} else {
slog.Debug("updating system memory data",
slog.Group(
"before",
"total", format.HumanBytes2(cpus[0].TotalMemory),
"free", format.HumanBytes2(cpus[0].FreeMemory),
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
),
slog.Group(
"now",
"total", format.HumanBytes2(mem.TotalMemory),
"free", format.HumanBytes2(mem.FreeMemory),
"free_swap", format.HumanBytes2(mem.FreeSwap),
),
)
cpus[0].FreeMemory = mem.FreeMemory
cpus[0].FreeSwap = mem.FreeSwap
}
var memInfo C.mem_info_t
if cHandles == nil && len(cudaGPUs) > 0 {
cHandles = initCudaHandles()
}
for i, gpu := range cudaGPUs {
if cHandles.nvml != nil {
uuid := C.CString(gpu.ID)
defer C.free(unsafe.Pointer(uuid))
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
} else if cHandles.cudart != nil {
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
} else if cHandles.nvcuda != nil {
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
memInfo.used = memInfo.total - memInfo.free
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
// shouldn't happen
slog.Warn("no valid cuda library loaded to refresh vram usage")
break
}
if memInfo.err != nil {
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
continue
}
if memInfo.free == 0 {
slog.Warn("error looking up nvidia GPU memory")
continue
}
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
// When using the management library update based on recorded overhead
memInfo.free -= C.uint64_t(gpu.OSOverhead)
}
slog.Debug("updating cuda memory data",
"gpu", gpu.ID,
"name", gpu.Name,
"overhead", format.HumanBytes2(gpu.OSOverhead),
slog.Group(
"before",
"total", format.HumanBytes2(gpu.TotalMemory),
"free", format.HumanBytes2(gpu.FreeMemory),
),
slog.Group(
"now",
"total", format.HumanBytes2(uint64(memInfo.total)),
"free", format.HumanBytes2(uint64(memInfo.free)),
"used", format.HumanBytes2(uint64(memInfo.used)),
),
)
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
}
if oHandles == nil && len(oneapiGPUs) > 0 {
oHandles = initOneAPIHandles()
}
for i, gpu := range oneapiGPUs {
if oHandles.oneapi == nil {
// shouldn't happen
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
continue
}
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
// TODO - convert this to MinimumMemory based on testing...
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
memInfo.free = C.uint64_t(totalFreeMem)
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
}
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
if err != nil {
slog.Debug("problem refreshing ROCm free memory", "error", err)
}
}
resp := []GpuInfo{}
for _, gpu := range cudaGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range rocmGPUs {
resp = append(resp, gpu.GpuInfo)
}
for _, gpu := range oneapiGPUs {
resp = append(resp, gpu.GpuInfo)
}
if len(resp) == 0 {
resp = append(resp, cpus[0].GpuInfo)
}
return resp
}
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// search our bundled libraries first
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
var ldPaths []string
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
case "linux":
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
}
// then search the system's LD_LIBRARY_PATH
for _, p := range ldPaths {
p, err := filepath.Abs(p)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(p, baseLibName))
}
// finally, search the default patterns provided by the caller
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Nvidia PhysX known to return bogus results
if strings.Contains(pattern, "PhysX") {
slog.Debug("skipping PhysX cuda library path", "path", pattern)
continue
}
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
for _, match := range matches {
// Resolve any links so we don't try the same lib multiple times
// and weed out any dups across globs
libPath := match
tmp := match
var err error
for ; err == nil; tmp, err = os.Readlink(libPath) {
if !filepath.IsAbs(tmp) {
tmp = filepath.Join(filepath.Dir(libPath), tmp)
}
libPath = tmp
}
new := true
for _, cmp := range gpuLibPaths {
if cmp == libPath {
new = false
break
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
// Newer Jetson systems use the SBSU runtime
slog.Debug("unrecognized L4T version", "nv_tegra_release", string(data))
}
}
}
if new {
gpuLibPaths = append(gpuLibPaths, libPath)
}
}
}
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
// Bootstrap the runtime library
// Returns: num devices, handle, libPath, error
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range cudartLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the driver library
// Returns: num devices, handle, libPath, error
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
var resp C.nvcuda_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvcudaLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvcuda_init(lib, &resp)
if resp.err != nil {
// Decide what log level based on the type of error message to help users understand why
switch resp.cudaErr {
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
slog.Warn(err.Error())
case C.CUDA_ERROR_NO_DEVICE:
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
slog.Info(err.Error())
case C.CUDA_ERROR_UNKNOWN:
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
slog.Warn(err.Error())
default:
msg := C.GoString(resp.err)
if strings.Contains(msg, "wrong ELF class") {
slog.Debug("skipping 32bit library", "library", libPath)
} else {
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
}
}
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return int(resp.num_devices), &resp.ch, libPath, err
}
}
return 0, nil, "", err
}
// Bootstrap the management library
// Returns: handle, libPath, error
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
var err error
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
slog.Info(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
return &resp.ch, libPath, err
}
}
return nil, "", err
}
// bootstrap the Intel GPU library
// Returns: num devices, handle, libPath, error
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
var resp C.oneapi_init_resp_t
num_devices := 0
resp.oh.verbose = getVerboseState()
var err error
for _, libPath := range oneapiLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.oneapi_init(lib, &resp)
if resp.err != nil {
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
slog.Debug(err.Error())
C.free(unsafe.Pointer(resp.err))
} else {
err = nil
for i := range resp.oh.num_drivers {
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
}
return num_devices, &resp.oh, libPath, err
}
}
return 0, nil, "", err
}
func getVerboseState() C.uint16_t {
if envconfig.Debug() {
return C.uint16_t(1)
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return "", ""
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
case "oneapi":
return oneapiGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
}
func GetSystemInfo() SystemInfo {
gpus := GetGPUInfo()
gpuMutex.Lock()
defer gpuMutex.Unlock()
discoveryErrors := []string{}
for _, err := range bootstrapErrors {
discoveryErrors = append(discoveryErrors, err.Error())
}
if len(gpus) == 1 && gpus[0].Library == "cpu" {
gpus = []GpuInfo{}
}
return SystemInfo{
System: cpus[0],
GPUs: gpus,
UnsupportedGPUs: unsupportedGPUs,
DiscoveryErrors: discoveryErrors,
}
return ""
}

View File

@@ -1,5 +1,3 @@
//go:build darwin
package discover
/*
@@ -11,7 +9,6 @@ import "C"
import (
"log/slog"
"runtime"
"syscall"
"github.com/ollama/ollama/format"
@@ -21,39 +18,6 @@ const (
metalMinimumMemory = 512 * format.MebiByte
)
func GetGPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
if runtime.GOARCH == "amd64" {
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
info := GpuInfo{
Library: "metal",
ID: "0",
}
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
info.FreeMemory = info.TotalMemory
info.MinimumMemory = metalMinimumMemory
return []GpuInfo{info}
}
func GetCPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
return []GpuInfo{
{
Library: "cpu",
memInfo: mem,
},
}
}
func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
@@ -62,13 +26,7 @@ func GetCPUMem() (memInfo, error) {
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
// No-op on darwin
return "", ""
}
func GetSystemInfo() SystemInfo {
mem, _ := GetCPUMem()
func GetCPUDetails() []CPU {
query := "hw.perflevel0.physicalcpu"
perfCores, err := syscall.SysctlUint32(query)
if err != nil {
@@ -81,19 +39,16 @@ func GetSystemInfo() SystemInfo {
query = "hw.logicalcpu"
logicalCores, _ := syscall.SysctlUint32(query)
return SystemInfo{
System: CPUInfo{
GpuInfo: GpuInfo{
memInfo: mem,
},
CPUs: []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
},
return []CPU{
{
CoreCount: int(perfCores + efficiencyCores),
EfficiencyCoreCount: int(efficiencyCores),
ThreadCount: int(logicalCores),
},
GPUs: GetGPUInfo(),
}
}
func IsNUMA() bool {
// numa support in ggml is linux only
return false
}

View File

@@ -1,70 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_H__
#define __GPU_INFO_H__
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#ifndef _WIN32
#include <dlfcn.h>
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
#define LOAD_ERR() strdup(dlerror())
#define UNLOAD_LIBRARY(handle) dlclose(handle)
#else
#include <windows.h>
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
#define LOAD_ERR() ({\
LPSTR messageBuffer = NULL; \
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
char *resp = strdup(messageBuffer); \
LocalFree(messageBuffer); \
resp; \
})
#endif
#define LOG(verbose, ...) \
do { \
if (verbose) { \
fprintf(stderr, __VA_ARGS__); \
} \
} while (0)
#ifdef __cplusplus
extern "C" {
#endif
#define GPU_ID_LEN 64
#define GPU_NAME_LEN 96
typedef struct mem_info {
char *err; // If non-nill, caller responsible for freeing
char gpu_id[GPU_ID_LEN];
char gpu_name[GPU_NAME_LEN];
uint64_t total;
uint64_t free;
uint64_t used;
// Compute Capability
int major;
int minor;
int patch;
} mem_info_t;
void cpu_check_ram(mem_info_t *resp);
#ifdef __cplusplus
}
#endif
#include "gpu_info_cudart.h"
#include "gpu_info_nvcuda.h"
#include "gpu_info_nvml.h"
#include "gpu_info_oneapi.h"
#endif // __GPU_INFO_H__
#endif // __APPLE__

View File

@@ -1,183 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_cudart.h"
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
cudartReturn_t ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cudaSetDevice", (void *)&resp->ch.cudaSetDevice},
{"cudaDeviceSynchronize", (void *)&resp->ch.cudaDeviceSynchronize},
{"cudaDeviceReset", (void *)&resp->ch.cudaDeviceReset},
{"cudaMemGetInfo", (void *)&resp->ch.cudaMemGetInfo},
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(cudart_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", cudart_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
cudart_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.cudaSetDevice)(0);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "cudart init failure: %d", ret);
resp->err = strdup(buf);
return;
}
int version = 0;
cudartDriverVersion_t driverVersion;
driverVersion.major = 0;
driverVersion.minor = 0;
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.cudaDriverGetVersion)(&version);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
} else {
driverVersion.major = version / 1000;
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
}
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
}
void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
if (h.handle == NULL) {
resp->err = strdup("cudart handle isn't initialized");
return;
}
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
cudaDeviceProp_t props;
ret = (*h.cudaGetDeviceProperties)(&props, i);
if (ret != CUDART_SUCCESS) {
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
resp->major = 0;
resp->minor = 0;
} else {
int allNull = 1;
for (int j = 0; j < 16; j++) {
if (props.uuid.bytes[j] != 0) {
allNull = 0;
break;
}
}
if (allNull != 0) {
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
props.uuid.bytes[0],
props.uuid.bytes[1],
props.uuid.bytes[2],
props.uuid.bytes[3],
props.uuid.bytes[4],
props.uuid.bytes[5],
props.uuid.bytes[6],
props.uuid.bytes[7],
props.uuid.bytes[8],
props.uuid.bytes[9],
props.uuid.bytes[10],
props.uuid.bytes[11],
props.uuid.bytes[12],
props.uuid.bytes[13],
props.uuid.bytes[14],
props.uuid.bytes[15]
);
}
resp->major = props.major;
resp->minor = props.minor;
// TODO add other useful properties from props
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
resp->used = memInfo.used;
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
void cudart_release(cudart_handle_t h) {
LOG(h.verbose, "releasing cudart library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,148 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_CUDART_H__
#define __GPU_INFO_CUDART_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_ERROR_INVALID_VALUE = 1,
CUDART_ERROR_MEMORY_ALLOCATION = 2,
CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;
typedef enum cudartDeviceAttr_enum {
cudartDevAttrComputeCapabilityMajor = 75,
cudartDevAttrComputeCapabilityMinor = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
cudaDevAttrIntegrated = 18
} cudartDeviceAttr_t;
typedef void *cudartDevice_t; // Opaque is sufficient
typedef struct cudartMemory_st {
size_t total;
size_t free;
size_t used;
} cudartMemory_t;
typedef struct cudartDriverVersion {
int major;
int minor;
} cudartDriverVersion_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
typedef struct cudaDeviceProp {
char name[256]; /**< ASCII string identifying device */
cudaUUID_t uuid; /**< 16-byte unique identifier */
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
size_t totalGlobalMem; /**< Global memory available on device in bytes */
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
int regsPerBlock; /**< 32-bit registers available per block */
int warpSize; /**< Warp size in threads */
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
int maxThreadsPerBlock; /**< Maximum number of threads per block */
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
int clockRate; /**< Clock frequency in kilohertz */
size_t totalConstMem; /**< Constant memory available on device in bytes */
int major; /**< Major compute capability */
int minor; /**< Minor compute capability */
size_t textureAlignment; /**< Alignment requirement for textures */
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
int multiProcessorCount; /**< Number of multiprocessors on device */
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
int integrated; /**< Device is integrated as opposed to discrete */
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
int maxTexture1D; /**< Maximum 1D texture size */
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
int maxSurface1D; /**< Maximum 1D surface size */
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
int ECCEnabled; /**< Device has ECC support enabled */
int pciBusID; /**< PCI bus ID of the device */
int pciDeviceID; /**< PCI device ID of the device */
int pciDomainID; /**< PCI domain ID of the device */
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
int asyncEngineCount; /**< Number of asynchronous engines */
int unifiedAddressing; /**< Device shares a unified address space with the host */
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
int memoryBusWidth; /**< Global memory bus width in bits */
int l2CacheSize; /**< Size of L2 cache in bytes */
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
int streamPrioritiesSupported; /**< Device supports stream priorities */
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
int localL1CacheSupported; /**< Device supports caching locals in L1 */
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
int managedMemory; /**< Device supports allocating managed memory on this system */
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
int computePreemptionSupported; /**< Device supports Compute Preemption */
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
} cudaDeviceProp_t;
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
cudartReturn_t (*cudaSetDevice)(int device);
cudartReturn_t (*cudaDeviceSynchronize)(void);
cudartReturn_t (*cudaDeviceReset)(void);
cudartReturn_t (*cudaMemGetInfo)(size_t *, size_t *);
cudartReturn_t (*cudaGetDeviceCount)(int *);
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
} cudart_handle_t;
typedef struct cudart_init_resp {
char *err; // If err is non-null handle is invalid
cudart_handle_t ch;
int num_devices;
} cudart_init_resp_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
// TODO - if we keep this library longer term, add cudart_get_free
void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__
#endif // __APPLE__

View File

@@ -1,250 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvcuda.h"
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
CUresult ret;
resp->err = NULL;
resp->num_devices = 0;
resp->cudaErr = CUDA_SUCCESS;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"cuInit", (void *)&resp->ch.cuInit},
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
{"cuDeviceGetName", (void *)&resp->ch.cuDeviceGetName},
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvcuda_lib_path, msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
for (i = 0; l[i].s != NULL; i++) {
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
resp->cudaErr = -1;
return;
}
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
}
LOG(resp->ch.verbose, "calling cuInit\n");
ret = (*resp->ch.cuInit)(0);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "cuda driver library init failure: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
int version = 0;
resp->ch.driver_major = 0;
resp->ch.driver_minor = 0;
// Report driver version if we're in verbose mode, ignore errors
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
ret = (*resp->ch.cuDriverGetVersion)(&version);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
resp->ch.driver_major = version / 1000;
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
}
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
if (ret != CUDA_SUCCESS) {
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
resp->cudaErr = ret;
return;
}
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
}
const int buflen = 256;
void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
nvcudaMemory_t memInfo = {0,0};
CUresult ret;
CUdevice device = -1;
CUcontext ctx = NULL;
char buf[buflen + 1];
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
if (h.handle == NULL) {
resp->err = strdup("cuda driver library handle isn't initialized");
return;
}
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device failed to initialize");
resp->err = strdup(buf);
return;
}
int major = 0;
int minor = 0;
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
} else {
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
} else {
resp->minor = minor;
resp->major = major;
}
}
ret = (*h.cuDeviceGetUuid)(&uuid, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
uuid.bytes[0],
uuid.bytes[1],
uuid.bytes[2],
uuid.bytes[3],
uuid.bytes[4],
uuid.bytes[5],
uuid.bytes[6],
uuid.bytes[7],
uuid.bytes[8],
uuid.bytes[9],
uuid.bytes[10],
uuid.bytes[11],
uuid.bytes[12],
uuid.bytes[13],
uuid.bytes[14],
uuid.bytes[15]
);
}
ret = (*h.cuDeviceGetName)(&resp->gpu_name[0], GPU_NAME_LEN, device);
if (ret != CUDA_SUCCESS) {
LOG(h.verbose, "[%d] device name lookup failure: %d\n", i, ret);
resp->gpu_name[0] = '\0';
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret);
resp->err = strdup(buf);
return;
}
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
if (ret != CUDA_SUCCESS) {
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret);
resp->err = strdup(buf);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
CUresult ret;
CUcontext ctx = NULL;
CUdevice device = -1;
*free = 0;
*total = 0;
ret = (*h.cuDeviceGet)(&device, i);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device failed to initialize");
return;
}
// To get memory we have to set (and release) a context
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to get device context %d", ret);
return;
}
ret = (*h.cuMemGetInfo_v2)(free, total);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library device memory info lookup failure %d", ret);
// Best effort on failure...
(*h.cuCtxDestroy)(ctx);
return;
}
ret = (*h.cuCtxDestroy)(ctx);
if (ret != CUDA_SUCCESS) {
LOG(1, "cuda driver library failed to release device context %d", ret);
}
}
void nvcuda_release(nvcuda_handle_t h) {
LOG(h.verbose, "releasing cuda driver library\n");
UNLOAD_LIBRARY(h.handle);
// TODO and other context release logic?
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,79 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVCUDA_H__
#define __GPU_INFO_NVCUDA_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudaError_enum {
CUDA_SUCCESS = 0,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_OUT_OF_MEMORY = 2,
CUDA_ERROR_NOT_INITIALIZED = 3,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
CUDA_ERROR_NO_DEVICE = 100,
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
CUDA_ERROR_UNKNOWN = 999,
// Other values omitted for now...
} CUresult;
typedef enum CUdevice_attribute_enum {
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
} CUdevice_attribute;
typedef void *nvcudaDevice_t; // Opaque is sufficient
typedef struct nvcudaMemory_st {
uint64_t total;
uint64_t free;
} nvcudaMemory_t;
typedef struct nvcudaDriverVersion {
int major;
int minor;
} nvcudaDriverVersion_t;
typedef struct CUuuid_st {
unsigned char bytes[16];
} CUuuid;
typedef int CUdevice;
typedef void* CUcontext;
typedef struct nvcuda_handle {
void *handle;
uint16_t verbose;
int driver_major;
int driver_minor;
CUresult (*cuInit)(unsigned int Flags);
CUresult (*cuDriverGetVersion)(int *driverVersion);
CUresult (*cuDeviceGetCount)(int *);
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
CUresult (*cuDeviceGetName)(char *name, int len, CUdevice dev);
// Context specific aspects
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
CUresult (*cuCtxDestroy)(CUcontext ctx);
} nvcuda_handle_t;
typedef struct nvcuda_init_resp {
char *err; // If err is non-null handle is invalid
nvcuda_handle_t ch;
int num_devices;
CUresult cudaErr;
} nvcuda_init_resp_t;
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
void nvcuda_release(nvcuda_handle_t ch);
#endif // __GPU_INFO_NVCUDA_H__
#endif // __APPLE__

View File

@@ -1,104 +0,0 @@
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!*(l[i].p)) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
}
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
if (ret != NVML_SUCCESS) {
LOG(1, "unable to get device handle %s: %d", uuid, ret);
*free = 0;
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
*free = 0;
return;
}
*free = memInfo.free;
*total = memInfo.total;
*used = memInfo.used;
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
nvmlReturn_t ret;
ret = (*h.nvmlShutdown)();
if (ret != NVML_SUCCESS) {
LOG(1, "error during nvmlShutdown %d", ret);
}
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__

View File

@@ -1,48 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__

View File

@@ -1,259 +0,0 @@
#ifndef __APPLE__
#include "gpu_info_oneapi.h"
#include <string.h>
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
ze_result_t ret;
resp->err = NULL;
resp->oh.devices = NULL;
resp->oh.num_devices = NULL;
resp->oh.drivers = NULL;
resp->oh.num_drivers = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d;
struct lookup {
char *s;
void **p;
} l[] = {
{"zesInit", (void *)&resp->oh.zesInit},
{"zesDriverGet", (void *)&resp->oh.zesDriverGet},
{"zesDeviceGet", (void *)&resp->oh.zesDeviceGet},
{"zesDeviceGetProperties", (void *)&resp->oh.zesDeviceGetProperties},
{"zesDeviceEnumMemoryModules",
(void *)&resp->oh.zesDeviceEnumMemoryModules},
{"zesMemoryGetProperties", (void *)&resp->oh.zesMemoryGetProperties},
{"zesMemoryGetState", (void *)&resp->oh.zesMemoryGetState},
{NULL, NULL},
};
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
if (!resp->oh.handle) {
char *msg = LOAD_ERR();
snprintf(buf, buflen,
"Unable to load %s library to query for Intel GPUs: %s\n",
oneapi_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose,
"wiring Level-Zero management library functions in %s\n",
oneapi_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
if (!*(l[i].p)) {
resp->oh.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->oh.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s, msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
LOG(resp->oh.verbose, "calling zesInit\n");
ret = (*resp->oh.zesInit)(0);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "calling zesDriverGet\n");
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
resp->oh.devices =
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get driver count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
for (d = 0; d < resp->oh.num_drivers; d++) {
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
&resp->oh.num_devices[d], NULL);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
resp->oh.devices[d] =
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
ret = (*resp->oh.zesDeviceGet)(
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
if (ret != ZE_RESULT_SUCCESS) {
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
snprintf(buf, buflen, "unable to get device count: %x", ret);
resp->err = strdup(buf);
oneapi_release(resp->oh);
return;
}
}
return;
}
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp) {
ze_result_t ret;
resp->err = NULL;
uint64_t totalMem = 0;
uint64_t usedMem = 0;
const int buflen = 256;
char buf[buflen + 1];
int i, d, m;
if (h.handle == NULL) {
resp->err = strdup("Level-Zero handle not initialized");
return;
}
if (driver > h.num_drivers || device > h.num_devices[driver]) {
resp->err = strdup("driver of device index out of bounds");
return;
}
resp->total = 0;
resp->free = 0;
zes_device_ext_properties_t ext_props;
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
ext_props.pNext = NULL;
zes_device_properties_t props;
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
props.pNext = &ext_props;
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get device properties: %d", ret);
resp->err = strdup(buf);
return;
}
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, "%s", props.modelName);
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
// (this is probably wrong...)
// TODO - the driver isn't included - what if there are multiple drivers?
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
if (h.verbose) {
// When in verbose mode, report more information about
// the card we discover.
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
props.modelName);
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
props.brandName);
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
props.vendorName);
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
props.serialNumber);
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
props.boardNumber);
}
// TODO
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
uint32_t memCount = 0;
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
NULL);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
for (m = 0; m < memCount; m++) {
zes_mem_state_t state;
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
state.pNext = NULL;
ret = (*h.zesMemoryGetState)(mems[m], &state);
if (ret != ZE_RESULT_SUCCESS) {
snprintf(buf, buflen, "unable to get memory state: %x", ret);
resp->err = strdup(buf);
free(mems);
return;
}
resp->total += state.size;
resp->free += state.free;
}
free(mems);
}
void oneapi_release(oneapi_handle_t h) {
int d;
LOG(h.verbose, "releasing oneapi library\n");
for (d = 0; d < h.num_drivers; d++) {
if (h.devices != NULL && h.devices[d] != NULL) {
free(h.devices[d]);
}
}
if (h.devices != NULL) {
free(h.devices);
h.devices = NULL;
}
if (h.num_devices != NULL) {
free(h.num_devices);
h.num_devices = NULL;
}
if (h.drivers != NULL) {
free(h.drivers);
h.drivers = NULL;
}
h.num_drivers = 0;
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
if (h.handle == NULL || h.num_devices == NULL) {
return 0;
}
if (driver > h.num_drivers) {
return 0;
}
return (int)h.num_devices[driver];
}
#endif // __APPLE__

View File

@@ -1,203 +0,0 @@
#ifndef __APPLE__
#ifndef __GPU_INFO_ONEAPI_H__
#define __GPU_INFO_ONEAPI_H__
#include "gpu_info.h"
#define ZE_MAX_DEVICE_NAME 256
#define ZE_MAX_DEVICE_UUID_SIZE 16
#define ZES_STRING_PROPERTY_SIZE 64
#define ZE_BIT(_i) (1 << _i)
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum ze_result_t {
ZE_RESULT_SUCCESS = 0,
// Other values omitted for now...
} ze_result_t;
typedef uint8_t ze_bool_t;
typedef struct _zes_driver_handle_t *zes_driver_handle_t;
typedef struct _zes_device_handle_t *zes_device_handle_t;
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
typedef enum _ze_structure_type_t {
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_structure_type_t;
typedef enum _zes_structure_type_t {
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES = 0x2d,
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_structure_type_t;
typedef enum _zes_mem_type_t {
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_mem_type_t;
typedef enum _zes_mem_loc_t {
ZES_MEM_LOC_SYSTEM = 0,
ZES_MEM_LOC_DEVICE = 1,
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
} zes_mem_loc_t;
typedef enum _zes_mem_health_t {
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
} zes_mem_health_t;
typedef struct _ze_device_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} ze_device_uuid_t;
typedef struct _zes_uuid_t {
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
} zes_uuid_t;
typedef enum _ze_device_type_t {
ZE_DEVICE_TYPE_GPU = 1,
ZE_DEVICE_TYPE_CPU = 2,
ZE_DEVICE_TYPE_FPGA = 3,
ZE_DEVICE_TYPE_MCA = 4,
ZE_DEVICE_TYPE_VPU = 5,
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} ze_device_type_t;
typedef enum _zes_device_type_t {
ZES_DEVICE_TYPE_GPU = 1,
ZES_DEVICE_TYPE_CPU = 2,
ZES_DEVICE_TYPE_FPGA = 3,
ZES_DEVICE_TYPE_MCA = 4,
ZES_DEVICE_TYPE_VPU = 5,
ZES_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
} zes_device_type_t;
typedef uint32_t ze_device_property_flags_t;
typedef enum _ze_device_property_flag_t {
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZE_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZE_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} ze_device_property_flag_t;
typedef uint32_t zes_device_property_flags_t;
typedef enum _zes_device_property_flag_t {
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
ZES_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
} zes_device_property_flag_t;
typedef struct _ze_device_properties_t {
ze_structure_type_t stype;
void *pNext;
ze_device_type_t type;
uint32_t vendorId;
uint32_t deviceId;
ze_device_property_flags_t flags;
uint32_t subdeviceId;
uint32_t coreClockRate;
uint64_t maxMemAllocSize;
uint32_t maxHardwareContexts;
uint32_t maxCommandQueuePriority;
uint32_t numThreadsPerEU;
uint32_t physicalEUSimdWidth;
uint32_t numEUsPerSubslice;
uint32_t numSubslicesPerSlice;
uint32_t numSlices;
uint64_t timerResolution;
uint32_t timestampValidBits;
uint32_t kernelTimestampValidBits;
ze_device_uuid_t uuid;
char name[ZE_MAX_DEVICE_NAME];
} ze_device_properties_t;
typedef struct _zes_device_properties_t {
zes_structure_type_t stype;
void *pNext;
ze_device_properties_t core;
uint32_t numSubdevices;
char serialNumber[ZES_STRING_PROPERTY_SIZE];
char boardNumber[ZES_STRING_PROPERTY_SIZE];
char brandName[ZES_STRING_PROPERTY_SIZE];
char modelName[ZES_STRING_PROPERTY_SIZE];
char vendorName[ZES_STRING_PROPERTY_SIZE];
char driverVersion[ZES_STRING_PROPERTY_SIZE];
} zes_device_properties_t;
typedef struct _zes_device_ext_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_uuid_t uuid;
zes_device_type_t type;
zes_device_property_flags_t flags;
} zes_device_ext_properties_t;
typedef struct _zes_mem_properties_t {
zes_structure_type_t stype;
void *pNext;
zes_mem_type_t type;
ze_bool_t onSubdevice;
uint32_t subdeviceId;
zes_mem_loc_t location;
uint64_t physicalSize;
int32_t busWidth;
int32_t numChannels;
} zes_mem_properties_t;
typedef struct _zes_mem_state_t {
zes_structure_type_t stype;
const void *pNext;
zes_mem_health_t health;
uint64_t free;
uint64_t size;
} zes_mem_state_t;
typedef struct oneapi_handle {
void *handle;
uint16_t verbose;
uint32_t num_drivers;
zes_driver_handle_t *drivers;
uint32_t *num_devices;
zes_device_handle_t **devices;
// TODO Driver major, minor information
// int driver_major;
// int driver_minor;
ze_result_t (*zesInit)(int);
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
zes_device_handle_t *phDevices);
ze_result_t (*zesDeviceGetProperties)(zes_device_handle_t hDevice,
zes_device_properties_t *pProperties);
ze_result_t (*zesDeviceEnumMemoryModules)(zes_device_handle_t hDevice,
uint32_t *pCount,
zes_mem_handle_t *phMemory);
ze_result_t (*zesMemoryGetProperties)(zes_mem_handle_t hMemory,
zes_mem_properties_t *pProperties);
ze_result_t (*zesMemoryGetState)(zes_mem_handle_t hMemory,
zes_mem_state_t *pState);
} oneapi_handle_t;
typedef struct oneapi_init_resp {
char *err; // If err is non-null handle is invalid
oneapi_handle_t oh;
} oneapi_init_resp_t;
typedef struct oneapi_version_resp {
ze_result_t status;
char *str; // Contains version or error string if status != 0
} oneapi_version_resp_t;
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
mem_info_t *resp);
void oneapi_release(oneapi_handle_t h);
int oneapi_get_device_count(oneapi_handle_t h, int driver);
#endif // __GPU_INFO_INTEL_H__
#endif // __APPLE__

View File

@@ -1,21 +0,0 @@
//go:build linux || windows
package discover
import (
"log/slog"
"strings"
)
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "oneapi" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
}

View File

@@ -1,60 +0,0 @@
package discover
import (
"runtime"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
func TestBasicGetGPUInfo(t *testing.T) {
info := GetGPUInfo()
assert.NotEmpty(t, len(info))
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
if info[0].Library != "cpu" {
assert.Greater(t, info[0].TotalMemory, uint64(0))
assert.Greater(t, info[0].FreeMemory, uint64(0))
}
}
func TestCPUMemInfo(t *testing.T) {
info, err := GetCPUMem()
require.NoError(t, err)
switch runtime.GOOS {
case "darwin":
t.Skip("CPU memory not populated on darwin")
case "linux", "windows":
assert.Greater(t, info.TotalMemory, uint64(0))
assert.Greater(t, info.FreeMemory, uint64(0))
default:
return
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

View File

@@ -12,16 +12,15 @@ import (
// '../lib/ollama' on Linux and the executable's directory on macOS
// note: distribution builds, additional GPU-specific libraries are
// found in subdirectories of the returned path, such as
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
// 'cuda_v12', 'rocm', etc.
var LibOllamaPath string = func() string {
exe, err := os.Executable()
if err != nil {
return ""
}
exe, err = filepath.EvalSymlinks(exe)
if err != nil {
return ""
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
var libPath string

501
discover/runner.go Normal file
View File

@@ -0,0 +1,501 @@
package discover
// Runner based GPU discovery
import (
"context"
"io"
"log/slog"
"os"
"os/exec"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/logutil"
"github.com/ollama/ollama/ml"
)
var (
deviceMu sync.Mutex
devices []ml.DeviceInfo
libDirs map[string]struct{}
rocmDir string
exe string
bootstrapped bool
)
func GPUDevices(ctx context.Context, runners []ml.FilteredRunnerDiscovery) []ml.DeviceInfo {
deviceMu.Lock()
defer deviceMu.Unlock()
startDiscovery := time.Now()
msg := "overall device VRAM discovery took"
defer func() {
slog.Debug(msg, "duration", time.Since(startDiscovery))
}()
if !bootstrapped {
msg = "GPU bootstrap discovery took"
libDirs = make(map[string]struct{})
var err error
exe, err = os.Executable()
if err != nil {
slog.Error("unable to lookup executable path", "error", err)
return nil
}
if eval, err := filepath.EvalSymlinks(exe); err == nil {
exe = eval
}
files, err := filepath.Glob(filepath.Join(LibOllamaPath, "*", "*ggml-*"))
if err != nil {
slog.Debug("unable to lookup runner library directories", "error", err)
}
for _, file := range files {
libDirs[filepath.Dir(file)] = struct{}{}
}
// Our current packaging model places ggml-hip in the main directory
// but keeps rocm in an isolated directory. We have to add it to
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
rocmDir = filepath.Join(LibOllamaPath, "rocm")
if _, err := os.Stat(rocmDir); err != nil {
rocmDir = ""
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
slog.Info("discovering available GPUs...")
requested := envconfig.LLMLibrary()
jetpack := cudaJetpack()
// For our initial discovery pass, we gather all the known GPUs through
// all the libraries that were detected. This pass may include GPUs that
// are enumerated, but not actually supported.
// We run this in serial to avoid potentially initializing a GPU multiple
// times concurrently leading to memory contention
// TODO refactor so we group the lib dirs and do serial per version, but parallel for different libs
for dir := range libDirs {
bootstrapTimeout := 30 * time.Second
var dirs []string
if dir != "" {
if requested != "" && filepath.Base(dir) != requested {
slog.Debug("skipping available library at users request", "requested", requested, "libDir", dir)
continue
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
continue
}
}
if dir == "" {
dirs = []string{LibOllamaPath}
} else {
dirs = []string{LibOllamaPath, dir}
}
// ROCm can take a long time on some systems, so give it more time before giving up
if dir != "" && strings.Contains(filepath.Base(dir), "rocm") {
bootstrapTimeout = 60 * time.Second
}
// Typically bootstrapping takes < 1s, but on some systems, with devices
// in low power/idle mode, initialization can take multiple seconds. We
// set a long timeout just for bootstrap discovery to reduce the chance
// of giving up too quickly
ctx1stPass, cancel := context.WithTimeout(ctx, bootstrapTimeout)
defer cancel()
// For this pass, we retain duplicates in case any are incompatible with some libraries
devices = append(devices, bootstrapDevices(ctx1stPass, dirs, nil)...)
}
// In the second pass, we more deeply initialize the GPUs to weed out devices that
// aren't supported by a given library. We run this phase in parallel to speed up discovery.
slog.Debug("evluating which if any devices to filter out", "initial_count", len(devices))
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
defer cancel()
var wg sync.WaitGroup
needsDelete := make([]bool, len(devices))
supportedMu := sync.Mutex{}
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
for i := range devices {
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
if devices[i].Library == "Metal" {
continue
}
slog.Debug("verifying GPU is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "id", devices[i].ID, "pci_id", devices[i].PCIID)
wg.Add(1)
go func(i int) {
defer wg.Done()
var envVar string
id := devices[i].ID
if devices[i].Library == "ROCm" {
if runtime.GOOS != "linux" {
envVar = "HIP_VISIBLE_DEVICES"
} else {
envVar = "ROCR_VISIBLE_DEVICES"
}
} else if devices[i].Library == "CUDA" {
envVar = "CUDA_VISIBLE_DEVICES"
} else if devices[i].Library == "Vulkan" {
id = devices[i].FilteredID
envVar = "GGML_VK_VISIBLE_DEVICES"
} else {
slog.Error("Unknown Library:" + devices[i].Library)
}
extraEnvs := map[string]string{
"GGML_CUDA_INIT": "1", // force deep initialization to trigger crash on unsupported GPUs
envVar: id, // Filter to just this one GPU
}
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
slog.Debug("filtering device which didn't fully initialize",
"id", devices[i].ID,
"libdir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1],
"pci_id", devices[i].PCIID,
"library", devices[i].Library,
)
needsDelete[i] = true
} else {
supportedMu.Lock()
if _, ok := supported[devices[i].Library]; !ok {
supported[devices[i].Library] = make(map[string]map[string]int)
}
if _, ok := supported[devices[i].Library][libDir]; !ok {
supported[devices[i].Library][libDir] = make(map[string]int)
}
supported[devices[i].Library][libDir][devices[i].ID] = i
supportedMu.Unlock()
}
}(i)
}
wg.Wait()
logutil.Trace("supported GPU library combinations before filtering", "supported", supported)
filterOutVulkanThatAreSupportedByOtherGPU(needsDelete)
// Mark for deletion any overlaps - favoring the library version that can cover all GPUs if possible
filterOverlapByLibrary(supported, needsDelete)
// TODO if we ever support multiple ROCm library versions this algorithm will need to be adjusted to keep the rocmID numeric value correct
rocmID := 0
for i := 0; i < len(needsDelete); i++ {
if needsDelete[i] {
logutil.Trace("removing unsupported or overlapping GPU combination", "libDir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1], "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
devices = append(devices[:i], devices[i+1:]...)
needsDelete = append(needsDelete[:i], needsDelete[i+1:]...)
i--
} else if devices[i].Library == "ROCm" {
if _, err := strconv.Atoi(devices[i].ID); err == nil {
// Replace the numeric ID with the post-filtered IDs
devices[i].FilteredID = devices[i].ID
devices[i].ID = strconv.Itoa(rocmID)
}
rocmID++
}
}
// Now filter out any overlap with different libraries (favor CUDA/HIP over others)
for i := 0; i < len(devices); i++ {
for j := i + 1; j < len(devices); j++ {
// For this pass, we only drop exact duplicates
switch devices[i].Compare(devices[j]) {
case ml.SameBackendDevice:
// Same library and device, skip it
devices = append(devices[:j], devices[j+1:]...)
j--
continue
case ml.DuplicateDevice:
// Different library, choose based on priority
var droppedDevice ml.DeviceInfo
if devices[i].Library == "CUDA" || devices[i].Library == "ROCm" {
droppedDevice = devices[j]
} else {
droppedDevice = devices[i]
devices[i] = devices[j]
}
devices = append(devices[:j], devices[j+1:]...)
j--
typeStr := "discrete"
if droppedDevice.Integrated {
typeStr = "iGPU"
}
slog.Debug("dropping duplicate device",
"id", droppedDevice.ID,
"library", droppedDevice.Library,
"compute", droppedDevice.Compute(),
"name", droppedDevice.Name,
"description", droppedDevice.Description,
"libdirs", strings.Join(droppedDevice.LibraryPath, ","),
"driver", droppedDevice.Driver(),
"pci_id", droppedDevice.PCIID,
"type", typeStr,
"total", format.HumanBytes2(droppedDevice.TotalMemory),
"available", format.HumanBytes2(droppedDevice.FreeMemory),
)
continue
}
}
}
// Reset the libDirs to what we actually wind up using for future refreshes
libDirs = make(map[string]struct{})
for _, dev := range devices {
dir := dev.LibraryPath[len(dev.LibraryPath)-1]
if dir != LibOllamaPath {
libDirs[dir] = struct{}{}
}
}
if len(libDirs) == 0 {
libDirs[""] = struct{}{}
}
bootstrapped = true
} else {
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
// metal never updates free VRAM
return devices
}
slog.Debug("refreshing free memory")
updated := make([]bool, len(devices))
allDone := func() bool {
allDone := true
for _, done := range updated {
if !done {
allDone = false
break
}
}
return allDone
}
// First try to use existing runners to refresh VRAM since they're already
// active on GPU(s)
for _, runner := range runners {
if runner == nil {
continue
}
deviceIDs := runner.GetActiveDeviceIDs()
if len(deviceIDs) == 0 {
// Skip this runner since it doesn't have active GPU devices
continue
}
// Check to see if this runner is active on any devices that need a refresh
skip := true
devCheck:
for _, dev := range deviceIDs {
for i := range devices {
if dev == devices[i].DeviceID {
if !updated[i] {
skip = false
break devCheck
}
}
}
}
if skip {
continue
}
// Typical refresh on existing runner is ~500ms but allow longer if the system
// is under stress before giving up and using stale data.
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
start := time.Now()
updatedDevices := runner.GetDeviceInfos(ctx)
slog.Debug("existing runner discovery took", "duration", time.Since(start))
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
}
// Short circuit if we've updated all the devices
if allDone() {
break
}
}
if !allDone() {
slog.Debug("unable to refresh all GPUs with existing runners, performing bootstrap discovery")
// Bootstrapping may take longer in some cases (AMD windows), but we
// would rather use stale free data to get the model running sooner
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
for dir := range libDirs {
updatedDevices := bootstrapDevices(ctx, []string{LibOllamaPath, dir}, nil)
for _, u := range updatedDevices {
for i := range devices {
if u.DeviceID == devices[i].DeviceID {
updated[i] = true
devices[i].FreeMemory = u.FreeMemory
break
}
}
// TODO - consider evaluating if new devices have appeared (e.g. hotplug)
}
if allDone() {
break
}
}
if !allDone() {
slog.Warn("unable to refresh free memory, using old values")
}
}
}
return devices
}
func filterOutVulkanThatAreSupportedByOtherGPU(needsDelete []bool) {
// Filter out Vulkan devices that share a PCI ID with a non-Vulkan device that is not marked for deletion
for i := range devices {
if devices[i].Library != "Vulkan" || needsDelete[i] {
continue
}
if devices[i].PCIID == "" {
continue
}
for j := range devices {
if i == j {
continue
}
if devices[j].PCIID == "" {
continue
}
if devices[j].PCIID == devices[i].PCIID && devices[j].Library != "Vulkan" && !needsDelete[j] {
needsDelete[i] = true
slog.Debug("filtering device with duplicate PCI ID",
"id", devices[i].ID,
"library", devices[i].Library,
"libdir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1],
"pci_id", devices[i].PCIID,
"kept_id", devices[j].ID,
"kept_library", devices[j].Library,
)
break
}
}
}
}
func filterOverlapByLibrary(supported map[string]map[string]map[string]int, needsDelete []bool) {
// For multi-GPU systems, use the newest version that supports all the GPUs
for _, byLibDirs := range supported {
libDirs := make([]string, 0, len(byLibDirs))
for libDir := range byLibDirs {
libDirs = append(libDirs, libDir)
}
sort.Sort(sort.Reverse(sort.StringSlice(libDirs)))
anyMissing := false
var newest string
for _, newest = range libDirs {
for _, libDir := range libDirs {
if libDir == newest {
continue
}
if len(byLibDirs[newest]) != len(byLibDirs[libDir]) {
anyMissing = true
break
}
for dev := range byLibDirs[newest] {
if _, found := byLibDirs[libDir][dev]; !found {
anyMissing = true
break
}
}
}
if !anyMissing {
break
}
}
// Now we can mark overlaps for deletion
for _, libDir := range libDirs {
if libDir == newest {
continue
}
for dev, i := range byLibDirs[libDir] {
if _, found := byLibDirs[newest][dev]; found {
slog.Debug("filtering device with overlapping libraries",
"id", dev,
"library", libDir,
"delete_index", i,
"kept_library", newest,
)
needsDelete[i] = true
}
}
}
}
}
type bootstrapRunner struct {
port int
cmd *exec.Cmd
}
func (r *bootstrapRunner) GetPort() int {
return r.port
}
func (r *bootstrapRunner) HasExited() bool {
if r.cmd != nil && r.cmd.ProcessState != nil {
return true
}
return false
}
func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs map[string]string) []ml.DeviceInfo {
var out io.Writer
if envconfig.LogLevel() == logutil.LevelTrace {
out = os.Stderr
}
start := time.Now()
defer func() {
slog.Debug("bootstrap discovery took", "duration", time.Since(start), "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
}()
logutil.Trace("starting runner for device discovery", "libDirs", ollamaLibDirs, "extraEnvs", extraEnvs)
cmd, port, err := llm.StartRunner(
true, // ollama engine
"", // no model
ollamaLibDirs,
out,
extraEnvs,
)
if err != nil {
slog.Debug("failed to start runner to discovery GPUs", "error", err)
return nil
}
go func() {
cmd.Wait() // exit status ignored
}()
defer cmd.Process.Kill()
devices, err := ml.GetDevicesFromRunner(ctx, &bootstrapRunner{port: port, cmd: cmd})
if err != nil {
if cmd.ProcessState != nil && cmd.ProcessState.ExitCode() >= 0 {
// Expected during bootstrapping while we filter out unsupported AMD GPUs
logutil.Trace("runner exited", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "code", cmd.ProcessState.ExitCode())
} else {
slog.Info("failure during GPU discovery", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "error", err)
}
}
logutil.Trace("runner enumerated devices", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "devices", devices)
return devices
}

108
discover/runner_test.go Normal file
View File

@@ -0,0 +1,108 @@
package discover
import (
"testing"
"github.com/ollama/ollama/app/lifecycle"
)
func init() {
lifecycle.InitLogging()
}
func TestFilterOverlapByLibrary(t *testing.T) {
type testcase struct {
name string
inp map[string]map[string]map[string]int
exp []bool
}
for _, tc := range []testcase{
{
name: "empty",
inp: map[string]map[string]map[string]int{},
exp: []bool{}, // needs deletion
},
{
name: "single no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
},
},
exp: []bool{false},
},
{
name: "100% overlap pick 2nd",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{true, true, false, false},
},
{
name: "100% overlap pick 1st",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
},
},
},
exp: []bool{false, false, true, true},
},
{
name: "partial overlap pick older",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 1,
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 2,
},
},
},
exp: []bool{true, false, false},
},
{
name: "no overlap",
inp: map[string]map[string]map[string]int{
"CUDA": {
"cuda_v13": {
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
},
"cuda_v12": {
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
},
},
},
exp: []bool{false, false},
},
} {
t.Run(tc.name, func(t *testing.T) {
needsDelete := make([]bool, len(tc.exp))
filterOverlapByLibrary(tc.inp, needsDelete)
for i, exp := range tc.exp {
if needsDelete[i] != exp {
t.Fatalf("expected: %v\ngot: %v", tc.exp, needsDelete)
}
}
})
}
}

View File

@@ -1,10 +1,13 @@
package discover
import (
"fmt"
"log/slog"
"path/filepath"
"sort"
"strings"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/ml"
)
type memInfo struct {
@@ -13,52 +16,6 @@ type memInfo struct {
FreeSwap uint64 `json:"free_swap,omitempty"` // TODO split this out for system only
}
// Beginning of an `ollama info` command
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
memInfo
Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags)
Variant string `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"`
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath []string `json:"lib_path,omitempty"`
// Extra environment variables specific to the GPU as list of [key,value]
EnvWorkarounds [][2]string `json:"envs,omitempty"`
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
// the FreeMemory is best effort, and may over or under report actual memory usage
// False indicates FreeMemory can generally be trusted on this GPU
UnreliableFreeMemory bool
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Compute string `json:"compute"` // Compute Capability or gfx
// Driver Information - TODO no need to put this on each GPU
DriverMajor int `json:"driver_major,omitempty"`
DriverMinor int `json:"driver_minor,omitempty"`
// TODO other performance capability info to help in scheduling decisions
}
func (gpu GpuInfo) RunnerName() string {
if gpu.Variant != "" {
return gpu.Library + "_" + gpu.Variant
}
return gpu.Library
}
type CPUInfo struct {
GpuInfo
CPUs []CPU
}
// CPU type represents a CPU Package occupying a socket
type CPU struct {
ID string `cpuinfo:"processor"`
@@ -69,115 +26,49 @@ type CPU struct {
ThreadCount int
}
type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
type RocmGPUInfo struct {
GpuInfo
usedFilepath string //nolint:unused,nolintlint
index int //nolint:unused,nolintlint
}
type RocmGPUInfoList []RocmGPUInfo
type OneapiGPUInfo struct {
GpuInfo
driverIndex int //nolint:unused,nolintlint
gpuIndex int //nolint:unused,nolintlint
}
type OneapiGPUInfoList []OneapiGPUInfo
type GpuInfoList []GpuInfo
type UnsupportedGPUInfo struct {
GpuInfo
Reason string `json:"reason"`
}
// Split up the set of gpu info's by Library and variant
func (l GpuInfoList) ByLibrary() []GpuInfoList {
resp := []GpuInfoList{}
libs := []string{}
for _, info := range l {
found := false
requested := info.Library
if info.Variant != "" {
requested += "_" + info.Variant
}
for i, lib := range libs {
if lib == requested {
resp[i] = append(resp[i], info)
found = true
break
func LogDetails(devices []ml.DeviceInfo) {
sort.Sort(sort.Reverse(ml.ByFreeMemory(devices))) // Report devices in order of scheduling preference
for _, dev := range devices {
var libs []string
for _, dir := range dev.LibraryPath {
if strings.Contains(dir, filepath.Join("lib", "ollama")) {
libs = append(libs, filepath.Base(dir))
}
}
if !found {
libs = append(libs, requested)
resp = append(resp, []GpuInfo{info})
typeStr := "discrete"
if dev.Integrated {
typeStr = "iGPU"
}
}
return resp
}
// Report the GPU information into the log an Info level
func (l GpuInfoList) LogDetails() {
for _, g := range l {
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"variant", g.Variant,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,
"total", format.HumanBytes2(g.TotalMemory),
"available", format.HumanBytes2(g.FreeMemory),
"id", dev.ID,
"filtered_id", dev.FilteredID,
"library", dev.Library,
"compute", dev.Compute(),
"name", dev.Name,
"description", dev.Description,
"libdirs", strings.Join(libs, ","),
"driver", dev.Driver(),
"pci_id", dev.PCIID,
"type", typeStr,
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
// CPU inference
if len(devices) == 0 {
dev, _ := GetCPUMem()
slog.Info("inference compute",
"id", "cpu",
"library", "cpu",
"compute", "",
"name", "cpu",
"description", "cpu",
"libdirs", "ollama",
"driver", "",
"pci_id", "",
"type", "",
"total", format.HumanBytes2(dev.TotalMemory),
"available", format.HumanBytes2(dev.FreeMemory),
)
}
}
// Sort by Free Space
type ByFreeMemory []GpuInfo
func (a ByFreeMemory) Len() int { return len(a) }
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
type SystemInfo struct {
System CPUInfo `json:"system"`
GPUs []GpuInfo `json:"gpus"`
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
DiscoveryErrors []string `json:"discovery_errors"`
}
// Return the optimal number of threads to use for inference
func (si SystemInfo) GetOptimalThreadCount() int {
if len(si.System.CPUs) == 0 {
return 0
}
coreCount := 0
for _, c := range si.System.CPUs {
coreCount += c.CoreCount - c.EfficiencyCoreCount
}
return coreCount
}
// For each GPU, check if it does NOT support flash attention
func (l GpuInfoList) FlashAttentionSupported() bool {
for _, gpu := range l {
supportsFA := gpu.Library == "metal" ||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
gpu.Library == "rocm"
if !supportsFA {
return false
}
}
return true
}

View File

@@ -1,21 +1,22 @@
# Documentation
### Getting Started
* [Quickstart](../README.md#quickstart)
* [Quickstart](https://docs.ollama.com/quickstart)
* [Examples](./examples.md)
* [Importing models](./import.md)
* [Linux Documentation](./linux.md)
* [Windows Documentation](./windows.md)
* [Docker Documentation](./docker.md)
* [Importing models](https://docs.ollama.com/import)
* [MacOS Documentation](https://docs.ollama.com/macos)
* [Linux Documentation](https://docs.ollama.com/linux)
* [Windows Documentation](https://docs.ollama.com/windows)
* [Docker Documentation](https://docs.ollama.com/docker)
### Reference
* [API Reference](./api.md)
* [API Reference](https://docs.ollama.com/api)
* [Modelfile Reference](./modelfile.md)
* [OpenAI Compatibility](./openai.md)
* [OpenAI Compatibility](https://docs.ollama.com/api/openai-compatibility)
### Resources
* [Troubleshooting Guide](./troubleshooting.md)
* [FAQ](./faq.md)
* [Troubleshooting Guide](https://docs.ollama.com/troubleshooting)
* [FAQ](https://docs.ollama.com/faq#faq)
* [Development guide](./development.md)

View File

@@ -1,5 +1,7 @@
# API
> Note: Ollama's API docs are moving to https://docs.ollama.com/api
## Endpoints
- [Generate a completion](#generate-a-completion)
@@ -19,7 +21,7 @@
### Model names
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
### Durations
@@ -43,6 +45,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
- `prompt`: the prompt to generate a response for
- `suffix`: the text after the model response
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
- `think`: (for thinking models) should the model think before responding?
Advanced parameters (optional):
@@ -103,7 +106,7 @@ The final response in the stream also includes additional data about the generat
- `context`: an encoding of the conversation used in this response, this can be sent in the next request to keep a conversational memory
- `response`: empty if the response was streamed, if not streamed, this will contain the full response
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration` * `10^9`.
To calculate how fast the response is generated in tokens per second (token/s), divide `eval_count` / `eval_duration` \* `10^9`.
```json
{
@@ -173,7 +176,7 @@ curl http://localhost:11434/api/generate -d '{
##### Response
```json
```json5
{
"model": "codellama:code",
"created_at": "2024-07-22T20:47:51.147561Z",
@@ -394,9 +397,6 @@ curl http://localhost:11434/api/generate -d '{
"repeat_penalty": 1.2,
"presence_penalty": 1.5,
"frequency_penalty": 1.0,
"mirostat": 1,
"mirostat_tau": 0.8,
"mirostat_eta": 0.6,
"penalize_newline": true,
"stop": ["\n", "user:"],
"numa": false,
@@ -404,10 +404,7 @@ curl http://localhost:11434/api/generate -d '{
"num_batch": 2,
"num_gpu": 1,
"main_gpu": 0,
"low_vram": false,
"vocab_only": false,
"use_mmap": true,
"use_mlock": false,
"num_thread": 8
}
}'
@@ -496,28 +493,39 @@ Generate the next message in a chat with a provided model. This is a streaming e
- `model`: (required) the [model name](#model-names)
- `messages`: the messages of the chat, this can be used to keep a chat memory
- `tools`: list of tools in JSON for the model to use if supported
- `think`: (for thinking models) should the model think before responding?
The `message` object has the following fields:
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
- `content`: the content of the message
- `thinking`: (for thinking models) the model's thinking process
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
- `tool_name` (optional): add the name of the tool that was executed to inform the model of the result
Advanced parameters (optional):
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `format`: the format to return a response in. Format can be `json` or a JSON schema.
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
### Tool calling
Tool calling is supported by providing a list of tools in the `tools` parameter. The model will generate a response that includes a list of tool calls. See the [Chat request (Streaming with tools)](#chat-request-streaming-with-tools) example below.
Models can also explain the result of the tool call in the response. See the [Chat request (With history, with tools)](#chat-request-with-history-with-tools) example below.
[See models with tool calling capabilities](https://ollama.com/search?c=tool).
### Structured outputs
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [Chat request (Structured outputs)](#chat-request-structured-outputs) example below.
### Examples
#### Chat Request (Streaming)
#### Chat request (Streaming)
##### Request
@@ -558,6 +566,10 @@ Final response:
{
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"message": {
"role": "assistant",
"content": ""
},
"done": true,
"total_duration": 4883583458,
"load_duration": 1334875,
@@ -568,6 +580,89 @@ Final response:
}
```
#### Chat request (Streaming with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": true
}'
```
##### Response
A stream of JSON objects is returned:
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.184789Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
}
}
]
},
"done": false
}
```
Final response:
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:22:19.19314Z",
"message": {
"role": "assistant",
"content": ""
},
"done_reason": "stop",
"done": true,
"total_duration": 182242375,
"load_duration": 41295167,
"prompt_eval_count": 169,
"prompt_eval_duration": 24573166,
"eval_count": 15,
"eval_duration": 115959084
}
```
#### Chat request (No streaming)
##### Request
@@ -605,6 +700,73 @@ curl http://localhost:11434/api/chat -d '{
}
```
#### Chat request (No streaming, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in tokyo?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
],
"stream": false
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:32:53.844124Z",
"message": {
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_weather",
"arguments": {
"city": "Tokyo"
}
}
}
]
},
"done_reason": "stop",
"done": true,
"total_duration": 3244883583,
"load_duration": 2969184542,
"prompt_eval_count": 169,
"prompt_eval_duration": 141656333,
"eval_count": 18,
"eval_duration": 133293625
}
```
#### Chat request (Structured outputs)
##### Request
@@ -641,7 +803,10 @@ curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json"
{
"model": "llama3.1",
"created_at": "2024-12-06T00:46:58.265747Z",
"message": { "role": "assistant", "content": "{\"age\": 22, \"available\": false}" },
"message": {
"role": "assistant",
"content": "{\"age\": 22, \"available\": false}"
},
"done_reason": "stop",
"done": true,
"total_duration": 2254970291,
@@ -711,6 +876,84 @@ Final response:
}
```
#### Chat request (With history, with tools)
##### Request
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.2",
"messages": [
{
"role": "user",
"content": "what is the weather in Toronto?"
},
// the message from the model appended to history
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"function": {
"name": "get_temperature",
"arguments": {
"city": "Toronto"
}
},
}
]
},
// the tool call result appended to history
{
"role": "tool",
"content": "11 degrees celsius",
"tool_name": "get_temperature",
}
],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for"
}
},
"required": ["city"]
}
}
}
]
}'
```
##### Response
```json
{
"model": "llama3.2",
"created_at": "2025-07-07T20:43:37.688511Z",
"message": {
"role": "assistant",
"content": "The current temperature in Toronto is 11°C."
},
"done_reason": "stop",
"done": true,
"total_duration": 890771750,
"load_duration": 707634750,
"prompt_eval_count": 94,
"prompt_eval_duration": 91703208,
"eval_count": 11,
"eval_duration": 90282125
}
```
#### Chat request (with images)
##### Request
@@ -882,7 +1125,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "llama3.2",
"created_at":"2024-09-12T21:17:29.110811Z",
"created_at": "2024-09-12T21:17:29.110811Z",
"message": {
"role": "assistant",
"content": ""
@@ -913,7 +1156,7 @@ A single JSON object is returned:
```json
{
"model": "llama3.2",
"created_at":"2024-09-12T21:33:17.547535Z",
"created_at": "2024-09-12T21:33:17.547535Z",
"message": {
"role": "assistant",
"content": ""
@@ -930,9 +1173,10 @@ POST /api/create
```
Create a model from:
* another model;
* a safetensors directory; or
* a GGUF file.
- another model;
- a safetensors directory; or
- a GGUF file.
If you are creating a model from a safetensors directory or from a GGUF file, you must [create a blob](#create-a-blob) for each of the files and then use the file name and SHA256 digest associated with each blob in the `files` field.
@@ -952,22 +1196,11 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
#### Quantization types
| Type | Recommended |
| --- | :-: |
| q2_K | |
| q3_K_L | |
| q3_K_M | |
| q3_K_S | |
| q4_0 | |
| q4_1 | |
| q4_K_M | * |
| q4_K_S | |
| q5_0 | |
| q5_1 | |
| q5_K_M | |
| q5_K_S | |
| q6_K | |
| q8_0 | * |
| Type | Recommended |
| ------ | :---------: |
| q4_K_M | \* |
| q4_K_S | |
| q8_0 | \* |
### Examples
@@ -1011,8 +1244,8 @@ Quantize a non-quantized model.
```shell
curl http://localhost:11434/api/create -d '{
"model": "llama3.1:quantized",
"from": "llama3.1:8b-instruct-fp16",
"model": "llama3.2:quantized",
"from": "llama3.2:3b-instruct-fp16",
"quantize": "q4_K_M"
}'
```
@@ -1022,12 +1255,14 @@ curl http://localhost:11434/api/create -d '{
A stream of JSON objects is returned:
```json
{"status":"quantizing F16 model to Q4_K_M"}
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
{"status":"verifying conversion"}
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
{"status":"writing manifest"}
{"status":"success"}
```
@@ -1036,7 +1271,6 @@ A stream of JSON objects is returned:
Create a model from a GGUF file. The `files` parameter should be filled out with the file name and SHA256 digest of the GGUF file you wish to use. Use [/api/blobs/:digest](#push-a-blob) to push the GGUF file to the server before calling this API.
##### Request
```shell
@@ -1059,7 +1293,6 @@ A stream of JSON objects is returned:
{"status":"success"}
```
#### Create a model from a Safetensors directory
The `files` parameter should include a dictionary of files for the safetensors model which includes the file names and SHA256 digest of each file. Use [/api/blobs/:digest](#push-a-blob) to first push each of the files to the server before calling this API. Files will remain in the cache until the Ollama server is restarted.
@@ -1165,29 +1398,33 @@ A single JSON object will be returned.
{
"models": [
{
"name": "codellama:13b",
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
"size": 7365960935,
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
"name": "deepseek-r1:latest",
"model": "deepseek-r1:latest",
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
"size": 4683075271,
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "13B",
"quantization_level": "Q4_0"
"family": "qwen2",
"families": ["qwen2"],
"parameter_size": "7.6B",
"quantization_level": "Q4_K_M"
}
},
{
"name": "llama3:latest",
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
"size": 3825819519,
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
"name": "llama3.2:latest",
"model": "llama3.2:latest",
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
"size": 2019393189,
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": null,
"parameter_size": "7B",
"quantization_level": "Q4_0"
"families": ["llama"],
"parameter_size": "3.2B",
"quantization_level": "Q4_K_M"
}
}
]
@@ -1213,28 +1450,26 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"model": "llama3.2"
"model": "llava"
}'
```
#### Response
```json
```json5
{
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
"template": "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
"details": {
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"parameter_size": "8.0B",
"quantization_level": "Q4_0"
modelfile: '# Modelfile generated by "ollama show"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE """{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: """\nPARAMETER num_ctx 4096\nPARAMETER stop "\u003c/s\u003e"\nPARAMETER stop "USER:"\nPARAMETER stop "ASSISTANT:"',
parameters: 'num_keep 24\nstop "<|start_header_id|>"\nstop "<|end_header_id|>"\nstop "<|eot_id|>"',
template: "{{ if .System }}<|start_header_id|>system<|end_header_id|>\n\n{{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>\n\n{{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>\n\n{{ .Response }}<|eot_id|>",
details: {
parent_model: "",
format: "gguf",
family: "llama",
families: ["llama"],
parameter_size: "8.0B",
quantization_level: "Q4_0",
},
"model_info": {
model_info: {
"general.architecture": "llama",
"general.file_type": 2,
"general.parameter_count": 8030261248,
@@ -1251,12 +1486,13 @@ curl http://localhost:11434/api/show -d '{
"llama.vocab_size": 128256,
"tokenizer.ggml.bos_token_id": 128000,
"tokenizer.ggml.eos_token_id": 128009,
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.merges": [], // populates if `verbose=true`
"tokenizer.ggml.model": "gpt2",
"tokenizer.ggml.pre": "llama-bpe",
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
}
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
"tokenizer.ggml.tokens": [], // populates if `verbose=true`
},
capabilities: ["completion", "vision"],
}
```
@@ -1349,7 +1585,7 @@ Then there is a series of downloading responses. Until any of the download is co
```json
{
"status": "downloading digestname",
"status": "pulling digestname",
"digest": "digestname",
"total": 2142590208,
"completed": 241970
@@ -1464,6 +1700,7 @@ Advanced parameters:
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
- `dimensions`: number of dimensions for the embedding
### Examples
@@ -1481,10 +1718,12 @@ curl http://localhost:11434/api/embed -d '{
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]],
"embeddings": [
[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
]
],
"total_duration": 14143917,
"load_duration": 1019500,
"prompt_eval_count": 8
@@ -1505,17 +1744,21 @@ curl http://localhost:11434/api/embed -d '{
```json
{
"model": "all-minilm",
"embeddings": [[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]]
"embeddings": [
[
0.010071029, -0.0017594862, 0.05007221, 0.04692972, 0.054916814,
0.008599704, 0.105441414, -0.025878139, 0.12958129, 0.031952348
],
[
-0.0098027075, 0.06042469, 0.025257962, -0.006364387, 0.07272725,
0.017194884, 0.09032035, -0.051705178, 0.09951512, 0.09072481
]
]
}
```
## List Running Models
```
GET /api/ps
```
@@ -1546,9 +1789,7 @@ A single JSON object will be returned.
"parent_model": "",
"format": "gguf",
"family": "llama",
"families": [
"llama"
],
"families": ["llama"],
"parameter_size": "7.2B",
"quantization_level": "Q4_0"
},
@@ -1595,8 +1836,10 @@ curl http://localhost:11434/api/embeddings -d '{
```json
{
"embedding": [
0.5670403838157654, 0.009260174818336964, 0.23178744316101074, -0.2916173040866852, -0.8924556970596313,
0.8785552978515625, -0.34576427936553955, 0.5742510557174683, -0.04222835972905159, -0.137906014919281
0.5670403838157654, 0.009260174818336964, 0.23178744316101074,
-0.2916173040866852, -0.8924556970596313, 0.8785552978515625,
-0.34576427936553955, 0.5742510557174683, -0.04222835972905159,
-0.137906014919281
]
}
```
@@ -1624,5 +1867,3 @@ curl http://localhost:11434/api/version
"version": "0.5.1"
}
```

View File

@@ -0,0 +1,63 @@
---
title: Authentication
---
No authentication is required when accessing Ollama's API locally via `http://localhost:11434`.
Authentication is required for the following:
* Running cloud models via ollama.com
* Publishing models
* Downloading private models
Ollama supports two authentication methods:
* **Signing in**: sign in from your local installation, and Ollama will automatically take care of authenticating requests to ollama.com when running commands
* **API keys**: API keys for programmatic access to ollama.com's API
## Signing in
To sign in to ollama.com from your local installation of Ollama, run:
```
ollama signin
```
Once signed in, Ollama will automatically authenticate commands as required:
```
ollama run gpt-oss:120b-cloud
```
Similarly, when accessing a local API endpoint that requires cloud access, Ollama will automatically authenticate the request:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "gpt-oss:120b-cloud",
"prompt": "Why is the sky blue?"
}'
```
## API keys
For direct access to ollama.com's API served at `https://ollama.com/api`, authentication via API keys is required.
First, create an [API key](https://ollama.com/settings/keys), then set the `OLLAMA_API_KEY` environment variable:
```shell
export OLLAMA_API_KEY=your_api_key
```
Then use the API key in the Authorization header:
```shell
curl https://ollama.com/api/generate \
-H "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"model": "gpt-oss:120b",
"prompt": "Why is the sky blue?",
"stream": false
}'
```
API keys don't currently expire, however you can revoke them at any time in your [API keys settings](https://ollama.com/settings/keys).

36
docs/api/errors.mdx Normal file
View File

@@ -0,0 +1,36 @@
---
title: Errors
---
## Status codes
Endpoints return appropriate HTTP status codes based on the success or failure of the request in the HTTP status line (e.g. `HTTP/1.1 200 OK` or `HTTP/1.1 400 Bad Request`). Common status codes are:
- `200`: Success
- `400`: Bad Request (missing parameters, invalid JSON, etc.)
- `404`: Not Found (model doesn't exist, etc.)
- `429`: Too Many Requests (e.g. when a rate limit is exceeded)
- `500`: Internal Server Error
- `502`: Bad Gateway (e.g. when a cloud model cannot be reached)
## Error messages
Errors are returned in the `application/json` format with the following structure, with the error message in the `error` property:
```json
{
"error": "the model failed to generate a response"
}
```
## Errors that occur while streaming
If an error occurs mid-stream, the error will be returned as an object in the `application/x-ndjson` format with an `error` property. Since the response has already started, the status code of the response will not be changed.
```json
{"model":"gemma3","created_at":"2025-10-26T17:21:21.196249Z","response":" Yes","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.207235Z","response":".","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.219166Z","response":"I","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:21:21.231094Z","response":"can","done":false}
{"error":"an error was encountered while running the model"}
```

47
docs/api/index.mdx Normal file
View File

@@ -0,0 +1,47 @@
---
title: Introduction
---
Ollama's API allows you to run and interact with models programatically.
## Get started
If you're just getting started, follow the [quickstart](/quickstart) documentation to get up and running with Ollama's API.
## Base URL
After installation, Ollama's API is served by default at:
```
http://localhost:11434/api
```
For running cloud models on **ollama.com**, the same API is available with the following base URL:
```
https://ollama.com/api
```
## Example request
Once Ollama is running, its API is automatically available and can be accessed via `curl`:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "gemma3",
"prompt": "Why is the sky blue?"
}'
```
## Libraries
Ollama has official libraries for Python and JavaScript:
- [Python](https://github.com/ollama/ollama-python)
- [JavaScript](https://github.com/ollama/ollama-js)
Several community-maintained libraries are available for Ollama. For a full list, see the [Ollama GitHub repository](https://github.com/ollama/ollama?tab=readme-ov-file#libraries-1).
## Versioning
Ollama's API isn't strictly versioned, but the API is expected to be stable and backwards compatible. Deprecations are rare and will be announced in the [release notes](https://github.com/ollama/ollama/releases).

View File

@@ -1,9 +1,8 @@
# OpenAI compatibility
---
title: OpenAI compatibility
---
> [!NOTE]
> OpenAI compatibility is experimental and is subject to major adjustments including breaking changes. For fully-featured access to the Ollama API, see the Ollama [Python library](https://github.com/ollama/ollama-python), [JavaScript library](https://github.com/ollama/ollama-js) and [REST API](https://github.com/ollama/ollama/blob/main/docs/api.md).
Ollama provides experimental compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
Ollama provides compatibility with parts of the [OpenAI API](https://platform.openai.com/docs/api-reference) to help connect existing applications to Ollama.
## Usage
@@ -72,7 +71,7 @@ client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
# Define the schema for the response
class FriendInfo(BaseModel):
name: str
age: int
age: int
is_available: bool
class FriendList(BaseModel):
@@ -100,49 +99,50 @@ except Exception as e:
### OpenAI JavaScript library
```javascript
import OpenAI from 'openai'
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: 'http://localhost:11434/v1/',
baseURL: "http://localhost:11434/v1/",
// required but ignored
apiKey: 'ollama',
})
apiKey: "ollama",
});
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3.2',
})
messages: [{ role: "user", content: "Say this is a test" }],
model: "llama3.2",
});
const response = await openai.chat.completions.create({
model: "llava",
messages: [
model: "llava",
messages: [
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
role: "user",
content: [
{ type: "text", text: "What's in this image?" },
{
type: "image_url",
image_url: "",
},
],
type: "image_url",
image_url:
"",
},
],
})
],
},
],
});
const completion = await openai.completions.create({
model: "llama3.2",
prompt: "Say this is a test.",
})
model: "llama3.2",
prompt: "Say this is a test.",
});
const listCompletion = await openai.models.list()
const listCompletion = await openai.models.list();
const model = await openai.models.retrieve("llama3.2")
const model = await openai.models.retrieve("llama3.2");
const embedding = await openai.embeddings.create({
model: "all-minilm",
input: ["why is the sky blue?", "why is the grass green?"],
})
});
```
### `curl`
@@ -306,8 +306,8 @@ curl http://localhost:11434/v1/embeddings \
- [x] array of strings
- [ ] array of tokens
- [ ] array of token arrays
- [ ] `encoding format`
- [ ] `dimensions`
- [x] `encoding format`
- [x] `dimensions`
- [ ] `user`
## Models
@@ -365,4 +365,4 @@ curl http://localhost:11434/v1/chat/completions \
}
]
}'
```
```

35
docs/api/streaming.mdx Normal file
View File

@@ -0,0 +1,35 @@
---
title: Streaming
---
Certain API endpoints stream responses by default, such as `/api/generate`. These responses are provided in the newline-delimited JSON format (i.e. the `application/x-ndjson` content type). For example:
```json
{"model":"gemma3","created_at":"2025-10-26T17:15:24.097767Z","response":"That","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.109172Z","response":"'","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.121485Z","response":"s","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.132802Z","response":" a","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.143931Z","response":" fantastic","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.155176Z","response":" question","done":false}
{"model":"gemma3","created_at":"2025-10-26T17:15:24.166576Z","response":"!","done":true, "done_reason": "stop"}
```
## Disabling streaming
Streaming can be disabled by providing `{"stream": false}` in the request body for any endpoint that support streaming. This will cause responses to be returned in the `application/json` format instead:
```json
{"model":"gemma3","created_at":"2025-10-26T17:15:24.166576Z","response":"That's a fantastic question!","done":true}
```
## When to use streaming vs non-streaming
**Streaming (default)**:
- Real-time response generation
- Lower perceived latency
- Better for long generations
**Non-streaming**:
- Simpler to process
- Better for short responses, or structured outputs
- Easier to handle in some applications

36
docs/api/usage.mdx Normal file
View File

@@ -0,0 +1,36 @@
---
title: Usage
---
Ollama's API responses include metrics that can be used for measuring performance and model usage:
* `total_duration`: How long the response took to generate
* `load_duration`: How long the model took to load
* `prompt_eval_count`: How many input tokens were processed
* `prompt_eval_duration`: How long it took to evaluate the prompt
* `eval_count`: How many output tokens were processes
* `eval_duration`: How long it took to generate the output tokens
All timing values are measured in nanoseconds.
## Example response
For endpoints that return usage metrics, the response body will include the usage fields. For example, a non-streaming call to `/api/generate` may return the following response:
```json
{
"model": "gemma3",
"created_at": "2025-10-17T23:14:07.414671Z",
"response": "Hello! How can I help you today?",
"done": true,
"done_reason": "stop",
"total_duration": 174560334,
"load_duration": 101397084,
"prompt_eval_count": 11,
"prompt_eval_duration": 13074791,
"eval_count": 18,
"eval_duration": 52479709
}
```
For endpoints that return **streaming responses**, usage fields are included as part of the final chunk, where `done` is `true`.

View File

@@ -0,0 +1,113 @@
---
title: Embeddings
description: Generate text embeddings for semantic search, retrieval, and RAG.
---
Embeddings turn text into numeric vectors you can store in a vector database, search with cosine similarity, or use in RAG pipelines. The vector length depends on the model (typically 3841024 dimensions).
## Recommended models
- [embeddinggemma](https://ollama.com/library/embeddinggemma)
- [qwen3-embedding](https://ollama.com/library/qwen3-embedding)
- [all-minilm](https://ollama.com/library/all-minilm)
## Generate embeddings
Use `/api/embed` with a single string.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": "The quick brown fox jumps over the lazy dog."
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
single = ollama.embed(
model='embeddinggemma',
input='The quick brown fox jumps over the lazy dog.'
)
print(len(single['embeddings'][0])) # vector length
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const single = await ollama.embed({
model: 'embeddinggemma',
input: 'The quick brown fox jumps over the lazy dog.',
})
console.log(single.embeddings[0].length) // vector length
```
</Tab>
</Tabs>
<Note>
The `/api/embed` endpoint returns L2normalized (unitlength) vectors.
</Note>
## Generate a batch of embeddings
Pass an array of strings to `input`.
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/embed \
-H "Content-Type: application/json" \
-d '{
"model": "embeddinggemma",
"input": [
"First sentence",
"Second sentence",
"Third sentence"
]
}'
```
</Tab>
<Tab title="Python">
```python
import ollama
batch = ollama.embed(
model='embeddinggemma',
input=[
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
]
)
print(len(batch['embeddings'])) # number of vectors
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const batch = await ollama.embed({
model: 'embeddinggemma',
input: [
'The quick brown fox jumps over the lazy dog.',
'The five boxing wizards jump quickly.',
'Jackdaws love my big sphinx of quartz.',
],
})
console.log(batch.embeddings.length) // number of vectors
```
</Tab>
</Tabs>
## Tips
- Use cosine similarity for most semantic search use cases.
- Use the same embedding model for both indexing and querying.

View File

@@ -0,0 +1,99 @@
---
title: Streaming
---
Streaming allows you to render text as it is produced by the model.
Streaming is enabled by default through the REST API, but disabled by default in the SDKs.
To enable streaming in the SDKs, set the `stream` parameter to `True`.
## Key streaming concepts
1. Chatting: Stream partial assistant messages. Each chunk includes the `content` so you can render messages as they arrive.
1. Thinking: Thinking-capable models emit a `thinking` field alongside regular content in each chunk. Detect this field in streaming chunks to show or hide reasoning traces before the final answer arrives.
1. Tool calling: Watch for streamed `tool_calls` in each chunk, execute the requested tool, and append tool outputs back into the conversation.
## Handling streamed chunks
<Note> It is necessary to accumulate the partial fields in order to maintain the history of the conversation. This is particularly important for tool calling where the thinking, tool call from the model, and the executed tool result must be passed back to the model in the next request. </Note>
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
stream=True,
)
in_thinking = False
content = ''
thinking = ''
for chunk in stream:
if chunk.message.thinking:
if not in_thinking:
in_thinking = True
print('Thinking:\n', end='', flush=True)
print(chunk.message.thinking, end='', flush=True)
# accumulate the partial thinking
thinking += chunk.message.thinking
elif chunk.message.content:
if in_thinking:
in_thinking = False
print('\n\nAnswer:\n', end='', flush=True)
print(chunk.message.content, end='', flush=True)
# accumulate the partial content
content += chunk.message.content
# append the accumulated fields to the messages for the next request
new_messages = [{ role: 'assistant', thinking: thinking, content: content }]
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
stream: true,
})
let inThinking = false
let content = ''
let thinking = ''
for await (const chunk of stream) {
if (chunk.message.thinking) {
if (!inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
process.stdout.write(chunk.message.thinking)
// accumulate the partial thinking
thinking += chunk.message.thinking
} else if (chunk.message.content) {
if (inThinking) {
inThinking = false
process.stdout.write('\n\nAnswer:\n')
}
process.stdout.write(chunk.message.content)
// accumulate the partial content
content += chunk.message.content
}
}
// append the accumulated fields to the messages for the next request
new_messages = [{ role: 'assistant', thinking: thinking, content: content }]
}
main().catch(console.error)
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,194 @@
---
title: Structured Outputs
---
Structured outputs let you enforce a JSON schema on model responses so you can reliably extract structured data, describe images, or keep every reply consistent.
## Generating structured JSON
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "gpt-oss",
"messages": [{"role": "user", "content": "Tell me about Canada in one line"}],
"stream": false,
"format": "json"
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
format='json'
)
print(response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'gpt-oss',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: 'json'
})
console.log(response.message.content)
```
</Tab>
</Tabs>
## Generating structured JSON with a schema
Provide a JSON schema to the `format` field.
<Note>
It is ideal to also pass the JSON schema as a string in the prompt to ground the model's response.
</Note>
<Tabs>
<Tab title="cURL">
```shell
curl -X POST http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "gpt-oss",
"messages": [{"role": "user", "content": "Tell me about Canada."}],
"stream": false,
"format": {
"type": "object",
"properties": {
"name": {"type": "string"},
"capital": {"type": "string"},
"languages": {
"type": "array",
"items": {"type": "string"}
}
},
"required": ["name", "capital", "languages"]
}
}'
```
</Tab>
<Tab title="Python">
Use Pydantic models and pass `model_json_schema()` to `format`, then validate the response:
```python
from ollama import chat
from pydantic import BaseModel
class Country(BaseModel):
name: str
capital: str
languages: list[str]
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'Tell me about Canada.'}],
format=Country.model_json_schema(),
)
country = Country.model_validate_json(response.message.content)
print(country)
```
</Tab>
<Tab title="JavaScript">
Serialize a Zod schema with `zodToJsonSchema()` and parse the structured response:
```javascript
import ollama from 'ollama'
import { z } from 'zod'
import { zodToJsonSchema } from 'zod-to-json-schema'
const Country = z.object({
name: z.string(),
capital: z.string(),
languages: z.array(z.string()),
})
const response = await ollama.chat({
model: 'gpt-oss',
messages: [{ role: 'user', content: 'Tell me about Canada.' }],
format: zodToJsonSchema(Country),
})
const country = Country.parse(JSON.parse(response.message.content))
console.log(country)
```
</Tab>
</Tabs>
## Example: Extract structured data
Define the objects you want returned and let the model populate the fields:
```python
from ollama import chat
from pydantic import BaseModel
class Pet(BaseModel):
name: str
animal: str
age: int
color: str | None
favorite_toy: str | None
class PetList(BaseModel):
pets: list[Pet]
response = chat(
model='gpt-oss',
messages=[{'role': 'user', 'content': 'I have two cats named Luna and Loki...'}],
format=PetList.model_json_schema(),
)
pets = PetList.model_validate_json(response.message.content)
print(pets)
```
## Example: Vision with structured outputs
Vision models accept the same `format` parameter, enabling deterministic descriptions of images:
```python
from ollama import chat
from pydantic import BaseModel
from typing import Literal, Optional
class Object(BaseModel):
name: str
confidence: float
attributes: str
class ImageDescription(BaseModel):
summary: str
objects: list[Object]
scene: str
colors: list[str]
time_of_day: Literal['Morning', 'Afternoon', 'Evening', 'Night']
setting: Literal['Indoor', 'Outdoor', 'Unknown']
text_content: Optional[str] = None
response = chat(
model='gemma3',
messages=[{
'role': 'user',
'content': 'Describe this photo and list the objects you detect.',
'images': ['path/to/image.jpg'],
}],
format=ImageDescription.model_json_schema(),
options={'temperature': 0},
)
image_description = ImageDescription.model_validate_json(response.message.content)
print(image_description)
```
## Tips for reliable structured outputs
- Define schemas with Pydantic (Python) or Zod (JavaScript) so they can be reused for validation.
- Lower the temperature (e.g., set it to `0`) for more deterministic completions.
- Structured outputs work through the OpenAI-compatible API via `response_format`

View File

@@ -0,0 +1,153 @@
---
title: Thinking
---
Thinking-capable models emit a `thinking` field that separates their reasoning trace from the final answer.
Use this capability to audit model steps, animate the model *thinking* in a UI, or hide the trace entirely when you only need the final response.
## Supported models
- [Qwen 3](https://ollama.com/library/qwen3)
- [GPT-OSS](https://ollama.com/library/gpt-oss) *(use `think` levels: `low`, `medium`, `high` — the trace cannot be fully disabled)*
- [DeepSeek-v3.1](https://ollama.com/library/deepseek-v3.1)
- [DeepSeek R1](https://ollama.com/library/deepseek-r1)
- Browse the latest additions under [thinking models](https://ollama.com/search?c=thinking)
## Enable thinking in API calls
Set the `think` field on chat or generate requests. Most models accept booleans (`true`/`false`).
GPT-OSS instead expects one of `low`, `medium`, or `high` to tune the trace length.
The `message.thinking` (chat endpoint) or `thinking` (generate endpoint) field contains the reasoning trace while `message.content` / `response` holds the final answer.
<Tabs>
<Tab title="cURL">
```shell
curl http://localhost:11434/api/chat -d '{
"model": "qwen3",
"messages": [{
"role": "user",
"content": "How many letter r are in strawberry?"
}],
"think": true,
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'How many letter r are in strawberry?'}],
think=True,
stream=False,
)
print('Thinking:\n', response.message.thinking)
print('Answer:\n', response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'deepseek-r1',
messages: [{ role: 'user', content: 'How many letter r are in strawberry?' }],
think: true,
stream: false,
})
console.log('Thinking:\n', response.message.thinking)
console.log('Answer:\n', response.message.content)
```
</Tab>
</Tabs>
<Note>
GPT-OSS requires `think` to be set to `"low"`, `"medium"`, or `"high"`. Passing `true`/`false` is ignored for that model.
</Note>
## Stream the reasoning trace
Thinking streams interleave reasoning tokens before answer tokens. Detect the first `thinking` chunk to render a "thinking" section, then switch to the final reply once `message.content` arrives.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
think=True,
stream=True,
)
in_thinking = False
for chunk in stream:
if chunk.message.thinking and not in_thinking:
in_thinking = True
print('Thinking:\n', end='')
if chunk.message.thinking:
print(chunk.message.thinking, end='')
elif chunk.message.content:
if in_thinking:
print('\n\nAnswer:\n', end='')
in_thinking = False
print(chunk.message.content, end='')
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
think: true,
stream: true,
})
let inThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking && !inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
if (chunk.message.thinking) {
process.stdout.write(chunk.message.thinking)
} else if (chunk.message.content) {
if (inThinking) {
process.stdout.write('\n\nAnswer:\n')
inThinking = false
}
process.stdout.write(chunk.message.content)
}
}
}
main()
```
</Tab>
</Tabs>
## CLI quick reference
- Enable thinking for a single run: `ollama run deepseek-r1 --think "Where should I visit in Lisbon?"`
- Disable thinking: `ollama run deepseek-r1 --think=false "Summarize this article"`
- Hide the trace while still using a thinking model: `ollama run deepseek-r1 --hidethinking "Is 9.9 bigger or 9.11?"`
- Inside interactive sessions, toggle with `/set think` or `/set nothink`.
- GPT-OSS only accepts levels: `ollama run gpt-oss --think=low "Draft a headline"` (replace `low` with `medium` or `high` as needed).
<Note>Thinking is enabled by default in the CLI and API for supported models.</Note>

View File

@@ -0,0 +1,777 @@
---
title: Tool calling
---
Ollama supports tool calling (also known as function calling) which allows a model to invoke tools and incorporate their results into its replies.
## Calling a single tool
Invoke a single tool and include its response in a follow-up request.
Also known as "single-shot" tool calling.
<Tabs>
<Tab title="cURL">
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What's the temperature in New York?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with a single tool result**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What's the temperature in New York?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
Install the Ollama Python SDK:
```bash
# with pip
pip install ollama -U
# with uv
uv add ollama
```
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C",
}
return temperatures.get(city, "Unknown")
messages = [{"role": "user", "content": "What's the temperature in New York?"}]
# pass functions directly as tools in the tools list or as a JSON schema
response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
messages.append(response.message)
if response.message.tool_calls:
# only recommended for models which only return a single tool call
call = response.message.tool_calls[0]
result = get_temperature(**call.function.arguments)
# add the tool result to the messages
messages.append({"role": "tool", "tool_name": call.function.name, "content": str(result)})
final_response = chat(model="qwen3", messages=messages, tools=[get_temperature], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
Install the Ollama JavaScript library:
```bash
# with npm
npm i ollama
# with bun
bun i ollama
```
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
'Tokyo': '18°C',
}
return temperatures[city] ?? 'Unknown'
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
]
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
if (response.message.tool_calls?.length) {
// only recommended for models which only return a single tool call
const call = response.message.tool_calls[0]
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Parallel tool calling
<Tabs>
<Tab title="cURL">
Request multiple tool calls in parallel, then send all tool responses back to the model.
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"}],
"stream": false,
"tools": [
{
"type": "function",
"function": {
"name": "get_temperature",
"description": "Get the current temperature for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
},
{
"type": "function",
"function": {
"name": "get_conditions",
"description": "Get the current weather conditions for a city",
"parameters": {
"type": "object",
"required": ["city"],
"properties": {
"city": {"type": "string", "description": "The name of the city"}
}
}
}
}
]
}'
```
**Generate a response with multiple tool results**
```shell
curl -s http://localhost:11434/api/chat -H "Content-Type: application/json" -d '{
"model": "qwen3",
"messages": [
{"role": "user", "content": "What are the current weather conditions and temperature in New York and London?"},
{
"role": "assistant",
"tool_calls": [
{
"type": "function",
"function": {
"index": 0,
"name": "get_temperature",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 1,
"name": "get_conditions",
"arguments": {"city": "New York"}
}
},
{
"type": "function",
"function": {
"index": 2,
"name": "get_temperature",
"arguments": {"city": "London"}
}
},
{
"type": "function",
"function": {
"index": 3,
"name": "get_conditions",
"arguments": {"city": "London"}
}
}
]
},
{"role": "tool", "tool_name": "get_temperature", "content": "22°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Partly cloudy"},
{"role": "tool", "tool_name": "get_temperature", "content": "15°C"},
{"role": "tool", "tool_name": "get_conditions", "content": "Rainy"}
],
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures.get(city, "Unknown")
def get_conditions(city: str) -> str:
"""Get the current weather conditions for a city
Args:
city: The name of the city
Returns:
The current weather conditions for the city
"""
conditions = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions.get(city, "Unknown")
messages = [{'role': 'user', 'content': 'What are the current weather conditions and temperature in New York and London?'}]
# The python client automatically parses functions as a tool schema so we can pass them directly
# Schemas can be passed directly in the tools list as well
response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
# add the assistant message to the messages
messages.append(response.message)
if response.message.tool_calls:
# process each tool call
for call in response.message.tool_calls:
# execute the appropriate tool
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
elif call.function.name == 'get_conditions':
result = get_conditions(**call.function.arguments)
else:
result = 'Unknown tool'
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': str(result)})
# generate the final response
final_response = chat(model='qwen3', messages=messages, tools=[get_temperature, get_conditions], think=True)
print(final_response.message.content)
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: { [key: string]: string } = {
"New York": "22°C",
"London": "15°C",
"Tokyo": "18°C"
}
return temperatures[city] || "Unknown"
}
function getConditions(city: string): string {
const conditions: { [key: string]: string } = {
"New York": "Partly cloudy",
"London": "Rainy",
"Tokyo": "Sunny"
}
return conditions[city] || "Unknown"
}
const tools = [
{
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
},
{
type: 'function',
function: {
name: 'get_conditions',
description: 'Get the current weather conditions for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
]
const messages = [{ role: 'user', content: 'What are the current weather conditions and temperature in New York and London?' }]
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true
})
// add the assistant message to the messages
messages.push(response.message)
if (response.message.tool_calls) {
// process each tool call
for (const call of response.message.tool_calls) {
// execute the appropriate tool
let result: string
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
result = getTemperature(args.city)
} else if (call.function.name === 'get_conditions') {
const args = call.function.arguments as { city: string }
result = getConditions(args.city)
} else {
result = 'Unknown tool'
}
// add the tool result to the messages
messages.push({ role: 'tool', tool_name: call.function.name, content: result })
}
// generate the final response
const finalResponse = await ollama.chat({ model: 'qwen3', messages, tools, think: true })
console.log(finalResponse.message.content)
}
```
</Tab>
</Tabs>
## Multi-turn tool calling (Agent loop)
An agent loop allows the model to decide when to invoke tools and incorporate their results into its replies.
It also might help to tell the model that it is in a loop and can make multiple tool calls.
<Tabs>
<Tab title="Python">
```python
from ollama import chat, ChatResponse
def add(a: int, b: int) -> int:
"""Add two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The sum of the two numbers
"""
return a + b
def multiply(a: int, b: int) -> int:
"""Multiply two numbers"""
"""
Args:
a: The first number
b: The second number
Returns:
The product of the two numbers
"""
return a * b
available_functions = {
'add': add,
'multiply': multiply,
}
messages = [{'role': 'user', 'content': 'What is (11434+12341)*412?'}]
while True:
response: ChatResponse = chat(
model='qwen3',
messages=messages,
tools=[add, multiply],
think=True,
)
messages.append(response.message)
print("Thinking: ", response.message.thinking)
print("Content: ", response.message.content)
if response.message.tool_calls:
for tc in response.message.tool_calls:
if tc.function.name in available_functions:
print(f"Calling {tc.function.name} with arguments {tc.function.arguments}")
result = available_functions[tc.function.name](**tc.function.arguments)
print(f"Result: {result}")
# add the tool result to the messages
messages.append({'role': 'tool', 'tool_name': tc.function.name, 'content': str(result)})
else:
# end the loop when there are no more tool calls
break
# continue the loop with the updated messages
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
type ToolName = 'add' | 'multiply'
function add(a: number, b: number): number {
return a + b
}
function multiply(a: number, b: number): number {
return a * b
}
const availableFunctions: Record<ToolName, (a: number, b: number) => number> = {
add,
multiply,
}
const tools = [
{
type: 'function',
function: {
name: 'add',
description: 'Add two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
{
type: 'function',
function: {
name: 'multiply',
description: 'Multiply two numbers',
parameters: {
type: 'object',
required: ['a', 'b'],
properties: {
a: { type: 'integer', description: 'The first number' },
b: { type: 'integer', description: 'The second number' },
},
},
},
},
]
async function agentLoop() {
const messages = [{ role: 'user', content: 'What is (11434+12341)*412?' }]
while (true) {
const response = await ollama.chat({
model: 'qwen3',
messages,
tools,
think: true,
})
messages.push(response.message)
console.log('Thinking:', response.message.thinking)
console.log('Content:', response.message.content)
const toolCalls = response.message.tool_calls ?? []
if (toolCalls.length) {
for (const call of toolCalls) {
const fn = availableFunctions[call.function.name as ToolName]
if (!fn) {
continue
}
const args = call.function.arguments as { a: number; b: number }
console.log(`Calling ${call.function.name} with arguments`, args)
const result = fn(args.a, args.b)
console.log(`Result: ${result}`)
messages.push({ role: 'tool', tool_name: call.function.name, content: String(result) })
}
} else {
break
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
## Tool calling with streaming
When streaming, gather every chunk of `thinking`, `content`, and `tool_calls`, then return those fields together with any tool results in the follow-up request.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
messages = [{'role': 'user', 'content': "What's the temperature in New York?"}]
while True:
stream = chat(
model='qwen3',
messages=messages,
tools=[get_temperature],
stream=True,
think=True,
)
thinking = ''
content = ''
tool_calls = []
done_thinking = False
# accumulate the partial fields
for chunk in stream:
if chunk.message.thinking:
thinking += chunk.message.thinking
print(chunk.message.thinking, end='', flush=True)
if chunk.message.content:
if not done_thinking:
done_thinking = True
print('\n')
content += chunk.message.content
print(chunk.message.content, end='', flush=True)
if chunk.message.tool_calls:
tool_calls.extend(chunk.message.tool_calls)
print(chunk.message.tool_calls)
# append accumulated fields to the messages
if thinking or content or tool_calls:
messages.append({'role': 'assistant', 'thinking': thinking, 'content': content, 'tool_calls': tool_calls})
if not tool_calls:
break
for call in tool_calls:
if call.function.name == 'get_temperature':
result = get_temperature(**call.function.arguments)
else:
result = 'Unknown tool'
messages.append({'role': 'tool', 'tool_name': call.function.name, 'content': result})
```
</Tab>
<Tab title="JavaScript">
```typescript
import ollama from 'ollama'
function getTemperature(city: string): string {
const temperatures: Record<string, string> = {
'New York': '22°C',
'London': '15°C',
}
return temperatures[city] ?? 'Unknown'
}
const getTemperatureTool = {
type: 'function',
function: {
name: 'get_temperature',
description: 'Get the current temperature for a city',
parameters: {
type: 'object',
required: ['city'],
properties: {
city: { type: 'string', description: 'The name of the city' },
},
},
},
}
async function agentLoop() {
const messages = [{ role: 'user', content: "What's the temperature in New York?" }]
while (true) {
const stream = await ollama.chat({
model: 'qwen3',
messages,
tools: [getTemperatureTool],
stream: true,
think: true,
})
let thinking = ''
let content = ''
const toolCalls: any[] = []
let doneThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking) {
thinking += chunk.message.thinking
process.stdout.write(chunk.message.thinking)
}
if (chunk.message.content) {
if (!doneThinking) {
doneThinking = true
process.stdout.write('\n')
}
content += chunk.message.content
process.stdout.write(chunk.message.content)
}
if (chunk.message.tool_calls?.length) {
toolCalls.push(...chunk.message.tool_calls)
console.log(chunk.message.tool_calls)
}
}
if (thinking || content || toolCalls.length) {
messages.push({ role: 'assistant', thinking, content, tool_calls: toolCalls } as any)
}
if (!toolCalls.length) {
break
}
for (const call of toolCalls) {
if (call.function.name === 'get_temperature') {
const args = call.function.arguments as { city: string }
const result = getTemperature(args.city)
messages.push({ role: 'tool', tool_name: call.function.name, content: result } )
} else {
messages.push({ role: 'tool', tool_name: call.function.name, content: 'Unknown tool' } )
}
}
}
}
agentLoop().catch(console.error)
```
</Tab>
</Tabs>
This loop streams the assistant response, accumulates partial fields, passes them back together, and appends the tool results so the model can complete its answer.
## Using functions as tools with Ollama Python SDK
The Python SDK automatically parses functions as a tool schema so we can pass them directly.
Schemas can still be passed if needed.
```python
from ollama import chat
def get_temperature(city: str) -> str:
"""Get the current temperature for a city
Args:
city: The name of the city
Returns:
The current temperature for the city
"""
temperatures = {
'New York': '22°C',
'London': '15°C',
}
return temperatures.get(city, 'Unknown')
available_functions = {
'get_temperature': get_temperature,
}
# directly pass the function as part of the tools list
response = chat(model='qwen3', messages=messages, tools=available_functions.values(), think=True)
```

View File

@@ -0,0 +1,85 @@
---
title: Vision
---
Vision models accept images alongside text so the model can describe, classify, and answer questions about what it sees.
## Quick start
```shell
ollama run gemma3 ./image.png whats in this image?
```
## Usage with Ollama's API
Provide an `images` array. SDKs accept file paths, URLs or raw bytes while the REST API expects base64-encoded image data.
<Tabs>
<Tab title="cURL">
```shell
# 1. Download a sample image
curl -L -o test.jpg "https://upload.wikimedia.org/wikipedia/commons/3/3a/Cat03.jpg"
# 2. Encode the image
IMG=$(base64 < test.jpg | tr -d '\n')
# 3. Send it to Ollama
curl -X POST http://localhost:11434/api/chat \
-H "Content-Type: application/json" \
-d '{
"model": "gemma3",
"messages": [{
"role": "user",
"content": "What is in this image?",
"images": ["'"$IMG"'"]
}],
"stream": false
}'
"
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
# from pathlib import Path
# Pass in the path to the image
path = input('Please enter the path to the image: ')
# You can also pass in base64 encoded image data
# img = base64.b64encode(Path(path).read_bytes()).decode()
# or the raw bytes
# img = Path(path).read_bytes()
response = chat(
model='gemma3',
messages=[
{
'role': 'user',
'content': 'What is in this image? Be concise.',
'images': [path],
}
],
)
print(response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const imagePath = '/absolute/path/to/image.jpg'
const response = await ollama.chat({
model: 'gemma3',
messages: [
{ role: 'user', content: 'What is in this image?', images: [imagePath] }
],
stream: false,
})
console.log(response.message.content)
```
</Tab>
</Tabs>

View File

@@ -0,0 +1,360 @@
---
title: Web search
---
Ollama's web search API can be used to augment models with the latest information to reduce hallucinations and improve accuracy.
Web search is provided as a REST API with deeper tool integrations in the Python and JavaScript libraries. This also enables models like OpenAIs gpt-oss models to conduct long-running research tasks.
## Authentication
For access to Ollama's web search API, create an [API key](https://ollama.com/settings/keys). A free Ollama account is required.
## Web search API
Performs a web search for a single query and returns relevant results.
### Request
`POST https://ollama.com/api/web_search`
- `query` (string, required): the search query string
- `max_results` (integer, optional): maximum results to return (default 5, max 10)
### Response
Returns an object containing:
- `results` (array): array of search result objects, each containing:
- `title` (string): the title of the web page
- `url` (string): the URL of the web page
- `content` (string): relevant content snippet from the web page
### Examples
<Note>
Ensure OLLAMA_API_KEY is set or it must be passed in the Authorization header.
</Note>
#### cURL Request
```bash
curl https://ollama.com/api/web_search \
--header "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"query":"what is ollama?"
}'
```
**Response**
```json
{
"results": [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available..."
},
{
"title": "What is Ollama? Introduction to the AI model management tool",
"url": "https://www.hostinger.com/tutorials/what-is-ollama",
"content": "Ariffud M. 6min Read..."
},
{
"title": "Ollama Explained: Transforming AI Accessibility and Language ...",
"url": "https://www.geeksforgeeks.org/artificial-intelligence/ollama-explained-transforming-ai-accessibility-and-language-processing/",
"content": "Data Science Data Science Projects Data Analysis..."
}
]
}
```
#### Python library
```python
import ollama
response = ollama.web_search("What is Ollama?")
print(response)
```
**Example output**
```python
results = [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available in Ollama..."
},
{
"title": "What is Ollama? Features, Pricing, and Use Cases - Walturn",
"url": "https://www.walturn.com/insights/what-is-ollama-features-pricing-and-use-cases",
"content": "Our services..."
},
{
"title": "Complete Ollama Guide: Installation, Usage & Code Examples",
"url": "https://collabnix.com/complete-ollama-guide-installation-usage-code-examples",
"content": "Join our Discord Server..."
}
]
```
More Ollama [Python example](https://github.com/ollama/ollama-python/blob/main/examples/web-search.py)
#### JavaScript Library
```tsx
import { Ollama } from "ollama";
const client = new Ollama();
const results = await client.webSearch({ query: "what is ollama?" });
console.log(JSON.stringify(results, null, 2));
```
**Example output**
```json
{
"results": [
{
"title": "Ollama",
"url": "https://ollama.com/",
"content": "Cloud models are now available..."
},
{
"title": "What is Ollama? Introduction to the AI model management tool",
"url": "https://www.hostinger.com/tutorials/what-is-ollama",
"content": "Ollama is an open-source tool..."
},
{
"title": "Ollama Explained: Transforming AI Accessibility and Language Processing",
"url": "https://www.geeksforgeeks.org/artificial-intelligence/ollama-explained-transforming-ai-accessibility-and-language-processing/",
"content": "Ollama is a groundbreaking..."
}
]
}
```
More Ollama [JavaScript example](https://github.com/ollama/ollama-js/blob/main/examples/websearch/websearch-tools.ts)
## Web fetch API
Fetches a single web page by URL and returns its content.
### Request
`POST https://ollama.com/api/web_fetch`
- `url` (string, required): the URL to fetch
### Response
Returns an object containing:
- `title` (string): the title of the web page
- `content` (string): the main content of the web page
- `links` (array): array of links found on the page
### Examples
#### cURL Request
```python
curl --request POST \
--url https://ollama.com/api/web_fetch \
--header "Authorization: Bearer $OLLAMA_API_KEY" \
--header 'Content-Type: application/json' \
--data '{
"url": "ollama.com"
}'
```
**Response**
```json
{
"title": "Ollama",
"content": "[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama...",
"links": [
"http://ollama.com/",
"http://ollama.com/models",
"https://github.com/ollama/ollama"
]
```
#### Python SDK
```python
from ollama import web_fetch
result = web_fetch('https://ollama.com')
print(result)
```
**Result**
```python
WebFetchResponse(
title='Ollama',
content='[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama\n\n**Chat & build
with open models**\n\n[Download](https://ollama.com/download) [Explore
models](https://ollama.com/models)\n\nAvailable for macOS, Windows, and Linux',
links=['https://ollama.com/', 'https://ollama.com/models', 'https://github.com/ollama/ollama']
)
```
#### JavaScript SDK
```tsx
import { Ollama } from "ollama";
const client = new Ollama();
const fetchResult = await client.webFetch({ url: "https://ollama.com" });
console.log(JSON.stringify(fetchResult, null, 2));
```
**Result**
```json
{
"title": "Ollama",
"content": "[Cloud models](https://ollama.com/blog/cloud-models) are now available in Ollama...",
"links": [
"https://ollama.com/",
"https://ollama.com/models",
"https://github.com/ollama/ollama"
]
}
```
## Building a search agent
Use Ollamas web search API as a tool to build a mini search agent.
This example uses Alibabas Qwen 3 model with 4B parameters.
```bash
ollama pull qwen3:4b
```
```python
from ollama import chat, web_fetch, web_search
available_tools = {'web_search': web_search, 'web_fetch': web_fetch}
messages = [{'role': 'user', 'content': "what is ollama's new engine"}]
while True:
response = chat(
model='qwen3:4b',
messages=messages,
tools=[web_search, web_fetch],
think=True
)
if response.message.thinking:
print('Thinking: ', response.message.thinking)
if response.message.content:
print('Content: ', response.message.content)
messages.append(response.message)
if response.message.tool_calls:
print('Tool calls: ', response.message.tool_calls)
for tool_call in response.message.tool_calls:
function_to_call = available_tools.get(tool_call.function.name)
if function_to_call:
args = tool_call.function.arguments
result = function_to_call(**args)
print('Result: ', str(result)[:200]+'...')
# Result is truncated for limited context lengths
messages.append({'role': 'tool', 'content': str(result)[:2000 * 4], 'tool_name': tool_call.function.name})
else:
messages.append({'role': 'tool', 'content': f'Tool {tool_call.function.name} not found', 'tool_name': tool_call.function.name})
else:
break
```
**Result**
```
Thinking: Okay, the user is asking about Ollama's new engine. I need to figure out what they're referring to. Ollama is a company that develops large language models, so maybe they've released a new model or an updated version of their existing engine....
Tool calls: [ToolCall(function=Function(name='web_search', arguments={'max_results': 3, 'query': 'Ollama new engine'}))]
Result: results=[WebSearchResult(content='# New model scheduling\n\n## September 23, 2025\n\nOllama now includes a significantly improved model scheduling system. Ahead of running a model, Ollamas new engine
Thinking: Okay, the user asked about Ollama's new engine. Let me look at the search results.
First result is from September 23, 2025, talking about new model scheduling. It mentions improved memory management, reduced crashes, better GPU utilization, and multi-GPU performance. Examples show speed improvements and accurate memory reporting. Supported models include gemma3, llama4, qwen3, etc...
Content: Ollama has introduced two key updates to its engine, both released in 2025:
1. **Enhanced Model Scheduling (September 23, 2025)**
- **Precision Memory Management**: Exact memory allocation reduces out-of-memory crashes and optimizes GPU utilization.
- **Performance Gains**: Examples show significant speed improvements (e.g., 85.54 tokens/s vs 52.02 tokens/s) and full GPU layer utilization.
- **Multi-GPU Support**: Improved efficiency across multiple GPUs, with accurate memory reporting via tools like `nvidia-smi`.
- **Supported Models**: Includes `gemma3`, `llama4`, `qwen3`, `mistral-small3.2`, and more.
2. **Multimodal Engine (May 15, 2025)**
- **Vision Support**: First-class support for vision models, including `llama4:scout` (109B parameters), `gemma3`, `qwen2.5vl`, and `mistral-small3.1`.
- **Multimodal Tasks**: Examples include identifying animals in multiple images, answering location-based questions from videos, and document scanning.
These updates highlight Ollama's focus on efficiency, performance, and expanded capabilities for both text and vision tasks.
```
### Context length and agents
Web search results can return thousands of tokens. It is recommended to increase the context length of the model to at least ~32000 tokens. Search agents work best with full context length. [Ollama's cloud models](https://docs.ollama.com/cloud) run at the full context length.
## MCP Server
You can enable web search in any MCP client through the [Python MCP server](https://github.com/ollama/ollama-python/blob/main/examples/web-search-mcp.py).
### Cline
Ollama's web search can be integrated with Cline easily using the MCP server configuration.
`Manage MCP Servers` > `Configure MCP Servers` > Add the following configuration:
```json
{
"mcpServers": {
"web_search_and_fetch": {
"type": "stdio",
"command": "uv",
"args": ["run", "path/to/web-search-mcp.py"],
"env": { "OLLAMA_API_KEY": "your_api_key_here" }
}
}
}
```
![Cline MCP Configuration](/images/cline-mcp.png)
### Codex
Ollama works well with OpenAI's Codex tool.
Add the following configuration to `~/.codex/config.toml`
```python
[mcp_servers.web_search]
command = "uv"
args = ["run", "path/to/web-search-mcp.py"]
env = { "OLLAMA_API_KEY" = "your_api_key_here" }
```
![Codex MCP Configuration](/images/codex-mcp.png)
### Goose
Ollama can integrate with Goose via its MCP feature.
![Goose MCP Configuration 1](/images/goose-mcp-1.png)
![Goose MCP Configuration 2](/images/goose-mcp-2.png)
### Other integrations
Ollama can be integrated into most of the tools available either through direct integration of Ollama's API, Python / JavaScript libraries, OpenAI compatible API, and MCP server integration.

91
docs/cli.mdx Normal file
View File

@@ -0,0 +1,91 @@
---
title: CLI Reference
---
### Run a model
```
ollama run gemma3
```
#### Multiline input
For multiline input, you can wrap text with `"""`:
```
>>> """Hello,
... world!
... """
I'm a basic program that prints the famous "Hello, world!" message to the console.
```
#### Multimodal models
```
ollama run gemma3 "What's in this image? /Users/jmorgan/Desktop/smile.png"
```
### Download a model
```
ollama pull gemma3
```
### Remove a model
```
ollama rm gemma3
```
### List models
```
ollama ls
```
### Sign in to Ollama
```
ollama signin
```
### Sign out of Ollama
```
ollama signout
```
### Create a customized model
First, create a `Modelfile`
```
FROM gemma3
SYSTEM """You are a happy cat."""
```
Then run `ollama create`:
```
ollama create -f Modelfile
```
### List running models
```
ollama ps
```
### Stop a running model
```
ollama stop gemma3
```
### Start Ollama
```
ollama serve
```
To view a list of environment variables that can be set run `ollama serve --help`

Some files were not shown because too many files have changed in this diff Show More