mirror of
https://github.com/likelovewant/ollama-for-amd.git
synced 2025-12-22 06:43:57 +00:00
Compare commits
788 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cb13784a11 | ||
|
|
bc1a818fdc | ||
|
|
ba2253dc30 | ||
|
|
68e04c7ff8 | ||
|
|
270679932f | ||
|
|
65fb3ff49d | ||
|
|
e2a0b24435 | ||
|
|
1813ff85a0 | ||
|
|
b531777a66 | ||
|
|
fe3ec8dbf0 | ||
|
|
c744134287 | ||
|
|
4be41d2d45 | ||
|
|
de670570c9 | ||
|
|
201d93716e | ||
|
|
160cecc8e2 | ||
|
|
8b6e5baee7 | ||
|
|
75d17fc6c2 | ||
|
|
8fafc8af77 | ||
|
|
c3c85aa06c | ||
|
|
0d713051a2 | ||
|
|
c4c5a4a01e | ||
|
|
3dcfd5f69e | ||
|
|
53a969d509 | ||
|
|
08fbb60bb2 | ||
|
|
850da848c5 | ||
|
|
2aba569a2a | ||
|
|
fd8aa947f3 | ||
|
|
ddaca643d0 | ||
|
|
05982a95cb | ||
|
|
4987f13d34 | ||
|
|
e638f2acb6 | ||
|
|
18087f2ec7 | ||
|
|
6c833d5f8d | ||
|
|
6544e14735 | ||
|
|
5db8a818a1 | ||
|
|
6db8da9958 | ||
|
|
0c68ec8d6a | ||
|
|
70d9e363e1 | ||
|
|
1a2feb2a97 | ||
|
|
aab2190420 | ||
|
|
629db9dc43 | ||
|
|
e0cd511661 | ||
|
|
207332078f | ||
|
|
93085127f4 | ||
|
|
c00fa9cc2b | ||
|
|
df411c4b02 | ||
|
|
3d32249c74 | ||
|
|
d681cd7c29 | ||
|
|
47298fce39 | ||
|
|
4a48937ef1 | ||
|
|
967a82f52f | ||
|
|
bbbc73d637 | ||
|
|
15e3611d3d | ||
|
|
77060d462c | ||
|
|
1b91d4dda1 | ||
|
|
7d965258ce | ||
|
|
6a62b894c7 | ||
|
|
90d429f5a8 | ||
|
|
1fc35f1260 | ||
|
|
aa45f7ce27 | ||
|
|
4e5d862ec4 | ||
|
|
303be9304c | ||
|
|
bd15eba4e4 | ||
|
|
bc71278670 | ||
|
|
918231931c | ||
|
|
04c1849878 | ||
|
|
2c2f4deaa9 | ||
|
|
292767afb4 | ||
|
|
ae5e0f0889 | ||
|
|
19e6796eac | ||
|
|
33801c1597 | ||
|
|
e4340667e3 | ||
|
|
2fa1e92a99 | ||
|
|
07e36761c3 | ||
|
|
c29fb007c0 | ||
|
|
730ed6e9e1 | ||
|
|
dc06601677 | ||
|
|
1ed2881ef0 | ||
|
|
0bda72892c | ||
|
|
55ca827267 | ||
|
|
c68f367ef6 | ||
|
|
fdb109469f | ||
|
|
05a43e078a | ||
|
|
bc8909fb38 | ||
|
|
6b50f2b9cd | ||
|
|
35ac4eb12c | ||
|
|
3d0b1734c0 | ||
|
|
efaee8c2d6 | ||
|
|
734b57da0e | ||
|
|
83021fcf0f | ||
|
|
0469861d9d | ||
|
|
04431b50fa | ||
|
|
c47154c08d | ||
|
|
b04e46da3e | ||
|
|
34efbbd3f0 | ||
|
|
05ba4ca1f4 | ||
|
|
5a56ff3cf0 | ||
|
|
2fba04b5fb | ||
|
|
fbd82ba5bb | ||
|
|
2e742544bf | ||
|
|
bbb195a6ff | ||
|
|
fd88cd7cb0 | ||
|
|
e1979c571a | ||
|
|
bf78ed6ee9 | ||
|
|
a40d427bce | ||
|
|
64883e3c4c | ||
|
|
41efdd4048 | ||
|
|
c23e6f4cae | ||
|
|
af060eb250 | ||
|
|
ae5c33008e | ||
|
|
000a3ec8b9 | ||
|
|
3677842ff1 | ||
|
|
242df70a75 | ||
|
|
dba39b2eee | ||
|
|
9f3a37fd36 | ||
|
|
7460259eb3 | ||
|
|
22ccdd74c2 | ||
|
|
0c3d0e7533 | ||
|
|
e7f56ef3d8 | ||
|
|
eb0a5d4459 | ||
|
|
ceac416ec2 | ||
|
|
2717dce6fe | ||
|
|
9b8187b487 | ||
|
|
8b894933a7 | ||
|
|
9c5bf342bc | ||
|
|
564b558c92 | ||
|
|
a417ac97ee | ||
|
|
05d53457af | ||
|
|
b225508c9b | ||
|
|
fa1c987a29 | ||
|
|
ad95d5b30b | ||
|
|
c253433d68 | ||
|
|
a1cff89b30 | ||
|
|
93c64ea1b1 | ||
|
|
3f6642f6fc | ||
|
|
6f7117145f | ||
|
|
472feec2ff | ||
|
|
47991940d4 | ||
|
|
9f3f80891d | ||
|
|
92b96d54ef | ||
|
|
9d56e63dbf | ||
|
|
053092185e | ||
|
|
44a6792873 | ||
|
|
e4ce68311a | ||
|
|
26214125e8 | ||
|
|
61fb912ca4 | ||
|
|
aba1575315 | ||
|
|
eb10390de9 | ||
|
|
feb18cd710 | ||
|
|
8a7e2055d2 | ||
|
|
29ddfc2cab | ||
|
|
71cb86af3e | ||
|
|
5198956372 | ||
|
|
17a023f34b | ||
|
|
8d6fffaead | ||
|
|
20b53eaa72 | ||
|
|
6745182885 | ||
|
|
f810ec741c | ||
|
|
e119783e66 | ||
|
|
1a558f98e2 | ||
|
|
7b91c9ce51 | ||
|
|
950d33aa30 | ||
|
|
9714e38dd0 | ||
|
|
4378ae4ffa | ||
|
|
501cb38b8c | ||
|
|
5994e8e8fd | ||
|
|
59e3a35203 | ||
|
|
b3e6120736 | ||
|
|
fb92b61754 | ||
|
|
8149a3c86e | ||
|
|
0cc90a8186 | ||
|
|
e42300f25b | ||
|
|
66e73809a1 | ||
|
|
c632fdbad8 | ||
|
|
517807cdf2 | ||
|
|
ead4a9a1d0 | ||
|
|
4383a3ab7a | ||
|
|
9d97e6a9f1 | ||
|
|
1081532430 | ||
|
|
59412fbb43 | ||
|
|
86834a2797 | ||
|
|
85ccf7354d | ||
|
|
30fb7e19f8 | ||
|
|
d3450dd52e | ||
|
|
4bcb04ad88 | ||
|
|
e3d5708754 | ||
|
|
4be4dc8717 | ||
|
|
109d4fc3b4 | ||
|
|
2cb0a580f3 | ||
|
|
7cce5aac76 | ||
|
|
131c496340 | ||
|
|
4ae4f47b16 | ||
|
|
073fa31df5 | ||
|
|
91fc3c48e3 | ||
|
|
6de62664d9 | ||
|
|
463a6caad8 | ||
|
|
fc5fb09f51 | ||
|
|
05ccb17c6e | ||
|
|
f804e8a460 | ||
|
|
9cfbffafc5 | ||
|
|
470d580205 | ||
|
|
b517bb1c19 | ||
|
|
e3ade453a8 | ||
|
|
048bd4472a | ||
|
|
ec8bf5e6c5 | ||
|
|
709bbb0b6d | ||
|
|
abeec240f9 | ||
|
|
df335aac09 | ||
|
|
026bc29237 | ||
|
|
883d031268 | ||
|
|
5271ff8559 | ||
|
|
d6f7233a1c | ||
|
|
8de1da4767 | ||
|
|
d925b5350c | ||
|
|
6eaf194b85 | ||
|
|
d5a0d8d904 | ||
|
|
ef7d26ba2c | ||
|
|
1a19df1f3a | ||
|
|
7ccfd97a93 | ||
|
|
c385ca8672 | ||
|
|
837379a94c | ||
|
|
a24f90604f | ||
|
|
dc5a645434 | ||
|
|
bb71654ebe | ||
|
|
d4af9f04f9 | ||
|
|
a343ae53a4 | ||
|
|
d0cf6c8281 | ||
|
|
8f4ec9ab28 | ||
|
|
dbfd7bd027 | ||
|
|
ee04dbba51 | ||
|
|
ea7657b54a | ||
|
|
2c776f0780 | ||
|
|
79f6376f5b | ||
|
|
756c78cfc7 | ||
|
|
d7f4f788d1 | ||
|
|
114c3f2265 | ||
|
|
f2e9c9aff5 | ||
|
|
aa9d889522 | ||
|
|
735c41f9ca | ||
|
|
223a619468 | ||
|
|
759dd78dd6 | ||
|
|
44bc36d063 | ||
|
|
8f14e1f5f6 | ||
|
|
203c137810 | ||
|
|
fa8be9e35c | ||
|
|
8a75e9ee15 | ||
|
|
9231379bce | ||
|
|
c7ba6128b4 | ||
|
|
8970233a2b | ||
|
|
cde948f976 | ||
|
|
7c8aba0d83 | ||
|
|
4742e12c23 | ||
|
|
2d06977ade | ||
|
|
30f8a68c4c | ||
|
|
e378e33421 | ||
|
|
fcec04bf42 | ||
|
|
ee92ca3e1d | ||
|
|
8253ad4d2b | ||
|
|
fa7776fd24 | ||
|
|
0d38b66502 | ||
|
|
e5e077b4b7 | ||
|
|
4183bb0574 | ||
|
|
ff89ba90bc | ||
|
|
6dcc5dfb9c | ||
|
|
25911a6e6b | ||
|
|
8afa6e83f2 | ||
|
|
ea85e27bbd | ||
|
|
c116a7523d | ||
|
|
3515cc377c | ||
|
|
bbf66c0b96 | ||
|
|
764be7480f | ||
|
|
b72e5adb14 | ||
|
|
80b538e312 | ||
|
|
4f8a0166cc | ||
|
|
1e6eab5c33 | ||
|
|
6c733bf0a6 | ||
|
|
3bac5cba60 | ||
|
|
4151ef8cf7 | ||
|
|
e4ff6e6c0f | ||
|
|
82da19c634 | ||
|
|
bdd9d22dfd | ||
|
|
5fc38d042f | ||
|
|
475a11d08e | ||
|
|
191d94289d | ||
|
|
802ad16ce4 | ||
|
|
5e67f4f90e | ||
|
|
e840ccb523 | ||
|
|
b4fe3adc0a | ||
|
|
d73f8aa8c3 | ||
|
|
92c2e8a56c | ||
|
|
2e3fd86d48 | ||
|
|
4261a3b0b2 | ||
|
|
acef9b4c1b | ||
|
|
9a43994c45 | ||
|
|
f8a6e88819 | ||
|
|
35fda7b4af | ||
|
|
66fb8575ce | ||
|
|
20c3266e94 | ||
|
|
34088dbcfb | ||
|
|
e41dd73705 | ||
|
|
43107b15b9 | ||
|
|
1f91cb0c8c | ||
|
|
12d8ad0d38 | ||
|
|
592d21e7db | ||
|
|
5a08b01f5b | ||
|
|
4f473e224c | ||
|
|
9d60bb44cf | ||
|
|
f371260e75 | ||
|
|
c9e6d7719e | ||
|
|
2c4ce40334 | ||
|
|
5d8c173529 | ||
|
|
44b17d2bfa | ||
|
|
4ad87b58bb | ||
|
|
3b8b692218 | ||
|
|
4129af9205 | ||
|
|
45f216a9c7 | ||
|
|
d0b32def60 | ||
|
|
11ffc36157 | ||
|
|
ba04902670 | ||
|
|
3944602f51 | ||
|
|
73b642e6f3 | ||
|
|
ad118d8b13 | ||
|
|
f08534137b | ||
|
|
4b4a90f233 | ||
|
|
03274a6b2f | ||
|
|
cc6463ebca | ||
|
|
405d2f628f | ||
|
|
a3f7dd3e98 | ||
|
|
c85c0ebf89 | ||
|
|
10a8e04a8d | ||
|
|
1c6669e64c | ||
|
|
b2b270ad5d | ||
|
|
2bb69b40c7 | ||
|
|
65bff664cb | ||
|
|
c088ac0e79 | ||
|
|
0a066cfd91 | ||
|
|
87b7af6cee | ||
|
|
f2527b08fb | ||
|
|
71a4057fcf | ||
|
|
5ab7422508 | ||
|
|
8bcb3125c1 | ||
|
|
6baf1e31e2 | ||
|
|
ed567ef43b | ||
|
|
a6e64fbdf2 | ||
|
|
60cfa2a203 | ||
|
|
55bbf3b4a1 | ||
|
|
6bda1d2479 | ||
|
|
50f2219dd6 | ||
|
|
9e125d884c | ||
|
|
a6fbfc880c | ||
|
|
502028968d | ||
|
|
5a8eb0e151 | ||
|
|
9f8a18ec05 | ||
|
|
6b04cad7e8 | ||
|
|
45f56355d5 | ||
|
|
0dabb4ef6a | ||
|
|
2e77aa1ae7 | ||
|
|
deaabe292d | ||
|
|
af21a5ac39 | ||
|
|
f63d7f68eb | ||
|
|
82ad1dbc07 | ||
|
|
feeabdadd2 | ||
|
|
fc0309615e | ||
|
|
09d308d6b6 | ||
|
|
a8ed68bd93 | ||
|
|
2ae65ae471 | ||
|
|
a3b6886b7d | ||
|
|
c6a6d7294d | ||
|
|
2cf007c9d1 | ||
|
|
0683efa637 | ||
|
|
0943001193 | ||
|
|
5c42800fca | ||
|
|
65f10c2823 | ||
|
|
aaa7818000 | ||
|
|
f15ffc4320 | ||
|
|
d008f108cc | ||
|
|
5f57b0ef42 | ||
|
|
aa25aff10d | ||
|
|
ea79003180 | ||
|
|
9239a254e0 | ||
|
|
066d0f4746 | ||
|
|
aea6fb9b58 | ||
|
|
012cf65340 | ||
|
|
a45231af47 | ||
|
|
2307fc2bcd | ||
|
|
6623898198 | ||
|
|
eda472df1b | ||
|
|
f18e0cb550 | ||
|
|
68b58c5cb8 | ||
|
|
e8b981fa5d | ||
|
|
884d26093c | ||
|
|
1f371ea92f | ||
|
|
73d6a82cce | ||
|
|
6db8a3771c | ||
|
|
d950ff12c0 | ||
|
|
adff143bcd | ||
|
|
fbe6ae285a | ||
|
|
fdd4d479a3 | ||
|
|
61aeaf7e81 | ||
|
|
7359b02707 | ||
|
|
c890011322 | ||
|
|
e0ed984cde | ||
|
|
139f84cf21 | ||
|
|
375839ea2d | ||
|
|
69b2fe9282 | ||
|
|
9ed8bf14cb | ||
|
|
e6a800ca11 | ||
|
|
ff180c3466 | ||
|
|
3fe74fba42 | ||
|
|
1a0cfd080a | ||
|
|
94ab428e3f | ||
|
|
d755577473 | ||
|
|
a2cc8571c5 | ||
|
|
7edfdd2f5f | ||
|
|
333e360422 | ||
|
|
cb104a2082 | ||
|
|
27da2cddc5 | ||
|
|
feb8923ada | ||
|
|
fe623c2cf4 | ||
|
|
3c14461d5d | ||
|
|
499ae7311f | ||
|
|
ef202789fa | ||
|
|
55760195e6 | ||
|
|
bd68d3ae50 | ||
|
|
ff80718e9c | ||
|
|
0aa8b371dd | ||
|
|
23125648b8 | ||
|
|
0478d440f0 | ||
|
|
8cc33f4c2b | ||
|
|
f46df4e5d2 | ||
|
|
c6bcdc4223 | ||
|
|
4b903f088a | ||
|
|
c7f4ae7b9c | ||
|
|
526b2ed102 | ||
|
|
a7240c6d63 | ||
|
|
9d6df90805 | ||
|
|
0cefd46f23 | ||
|
|
ad035ad595 | ||
|
|
f95a1f2bef | ||
|
|
82a9e9462a | ||
|
|
76724e2f29 | ||
|
|
ecf14a220f | ||
|
|
69ce44b33c | ||
|
|
5969674cf1 | ||
|
|
867d75b21e | ||
|
|
3fa78598a1 | ||
|
|
0d6e35d3c6 | ||
|
|
20c5fd39c8 | ||
|
|
6e9a7a2568 | ||
|
|
b585a58121 | ||
|
|
fa9973cd7f | ||
|
|
3d9498a425 | ||
|
|
3098c8b29b | ||
|
|
5e380c3b42 | ||
|
|
392de84031 | ||
|
|
5d967d59b1 | ||
|
|
af31ccefc0 | ||
|
|
fa393554b9 | ||
|
|
307e3b3e1d | ||
|
|
4090aca97b | ||
|
|
92ce438de0 | ||
|
|
424810450f | ||
|
|
95e744beeb | ||
|
|
3b2d2c8326 | ||
|
|
d931ee8f22 | ||
|
|
7073600797 | ||
|
|
b1c40138da | ||
|
|
17466217e5 | ||
|
|
1703d1472e | ||
|
|
913905028b | ||
|
|
7e5c8eee5c | ||
|
|
6a74bba7e7 | ||
|
|
76ea735aaf | ||
|
|
dd1d4e99e7 | ||
|
|
a6ef73f4f2 | ||
|
|
c2f5d6662b | ||
|
|
57fb759f3c | ||
|
|
8dd12c873d | ||
|
|
e6d2d04121 | ||
|
|
074bac8447 | ||
|
|
8e8f2c6d67 | ||
|
|
938e8447e8 | ||
|
|
d5d5f0c445 | ||
|
|
5478571e92 | ||
|
|
a7835c6716 | ||
|
|
ad3c7c9bda | ||
|
|
415c8fcc3d | ||
|
|
718eda1b3e | ||
|
|
421b7edeb4 | ||
|
|
7b68e254c2 | ||
|
|
7bec2724a5 | ||
|
|
a27462b708 | ||
|
|
6bf0b8193a | ||
|
|
db428adbb8 | ||
|
|
fe5b9bb21b | ||
|
|
6ec71d8fb6 | ||
|
|
44b466eeb2 | ||
|
|
a25f3f8260 | ||
|
|
dd93e1af85 | ||
|
|
d2ee599dcf | ||
|
|
6ed8898590 | ||
|
|
5cfc1c39f3 | ||
|
|
f0ad49ea17 | ||
|
|
7ba9fa9c7d | ||
|
|
8bf11b84c1 | ||
|
|
470af8ab89 | ||
|
|
178761aef3 | ||
|
|
f0c66e6dea | ||
|
|
54055a6dae | ||
|
|
340448d2d1 | ||
|
|
ced7d0e53d | ||
|
|
a0dba0f8ae | ||
|
|
5e20b170a7 | ||
|
|
d26c18e25c | ||
|
|
8d376acc9b | ||
|
|
dc1e81f027 | ||
|
|
5d0279164c | ||
|
|
214a7678ea | ||
|
|
4892872c18 | ||
|
|
0b9198bf47 | ||
|
|
e9e5f61c45 | ||
|
|
11dde41824 | ||
|
|
a53d744b01 | ||
|
|
e82cdb5f24 | ||
|
|
40b10eee6d | ||
|
|
424f648632 | ||
|
|
2eb1fb3231 | ||
|
|
0806521642 | ||
|
|
88738b357b | ||
|
|
4e535e6188 | ||
|
|
40b8fdbdca | ||
|
|
d9472e31b7 | ||
|
|
1d99451ad7 | ||
|
|
09bb2e30f6 | ||
|
|
dc264be6ff | ||
|
|
fbe7039618 | ||
|
|
943464ccb8 | ||
|
|
369de832cd | ||
|
|
3457a315b2 | ||
|
|
ed4e139314 | ||
|
|
56dc316a57 | ||
|
|
2fec73eef6 | ||
|
|
1e7f62cb42 | ||
|
|
ccb7eb8135 | ||
|
|
637fd21230 | ||
|
|
0fe487e732 | ||
|
|
6bfaa6e282 | ||
|
|
378d3210dc | ||
|
|
97fe45e36d | ||
|
|
64a9cc8f05 | ||
|
|
f50d691254 | ||
|
|
34c3b68fc8 | ||
|
|
f33ccd5d27 | ||
|
|
bc108b9ad6 | ||
|
|
0c3d27ae42 | ||
|
|
ef65174df2 | ||
|
|
42ecb9f138 | ||
|
|
5c0331fd83 | ||
|
|
e7019c9455 | ||
|
|
d98bfe7e70 | ||
|
|
6747099d71 | ||
|
|
ccc8c6777b | ||
|
|
dbb149e6f7 | ||
|
|
a807985e59 | ||
|
|
8643c4d5bf | ||
|
|
76014b9ac7 | ||
|
|
b0c3aba590 | ||
|
|
19c0c25de8 | ||
|
|
2f723ac2d6 | ||
|
|
249fbbe52f | ||
|
|
c38680b8a1 | ||
|
|
16fca86c4a | ||
|
|
0f3f9e353d | ||
|
|
eceb276901 | ||
|
|
6bd0a983cd | ||
|
|
1861fbdeb5 | ||
|
|
3b96a93672 | ||
|
|
e53b3cbd0c | ||
|
|
b51e0f397c | ||
|
|
b42970063d | ||
|
|
493385eb3e | ||
|
|
9876c9faa4 | ||
|
|
4e415029b3 | ||
|
|
e172f095ba | ||
|
|
c001b98087 | ||
|
|
23fc8e92eb | ||
|
|
4059a297a6 | ||
|
|
66b2539238 | ||
|
|
ef27d52e79 | ||
|
|
b2a465296d | ||
|
|
5d097277ef | ||
|
|
071a9872cb | ||
|
|
cc2978039c | ||
|
|
e9c7bade80 | ||
|
|
0bd0454ea7 | ||
|
|
6097b74894 | ||
|
|
2c9f7a9e17 | ||
|
|
01aa788722 | ||
|
|
ead27aa9fe | ||
|
|
b816ff86c9 | ||
|
|
e5d84fb90b | ||
|
|
dd66712e31 | ||
|
|
f66216e399 | ||
|
|
f4f0992b6e | ||
|
|
1feff61977 | ||
|
|
5e0b904e88 | ||
|
|
9bd1a6116c | ||
|
|
131f0355a5 | ||
|
|
17bb5ea679 | ||
|
|
ce929984a3 | ||
|
|
4b34930a31 | ||
|
|
74bd09652d | ||
|
|
fb6252d786 | ||
|
|
c794fef2f2 | ||
|
|
00ebda8cc4 | ||
|
|
d14ce75b95 | ||
|
|
2d6eac9084 | ||
|
|
3ed7ad3ab3 | ||
|
|
6d1103048e | ||
|
|
0ff28758b3 | ||
|
|
d3e9ca3eda | ||
|
|
0fbfcf3c9c | ||
|
|
0c220935bd | ||
|
|
ffbfe833da | ||
|
|
42a14f7f63 | ||
|
|
f8c3dbe5b5 | ||
|
|
b078dd157c | ||
|
|
2ddacd7516 | ||
|
|
da0e345200 | ||
|
|
df94175a0f | ||
|
|
61a8825216 | ||
|
|
a69a1e6e63 | ||
|
|
021dcf089d | ||
|
|
bf24498b1e | ||
|
|
95e271d98f | ||
|
|
364629b8d6 | ||
|
|
108fe02165 | ||
|
|
4561fff36e | ||
|
|
50b5962042 | ||
|
|
457576739f | ||
|
|
e27e4a3c1b | ||
|
|
088514bbd4 | ||
|
|
2c8b484643 | ||
|
|
8294676150 | ||
|
|
ef378ad673 | ||
|
|
2d2247e59e | ||
|
|
7bf793a600 | ||
|
|
282bfaaa95 | ||
|
|
9679f40146 | ||
|
|
3892c3a703 | ||
|
|
4e320b8b90 | ||
|
|
4cd0c73408 | ||
|
|
eb2b22b042 | ||
|
|
4ea4d2b189 | ||
|
|
8d76fa23ef | ||
|
|
74b44fdf8f | ||
|
|
65b88c544f | ||
|
|
a422ba39c9 | ||
|
|
d2ec22371e | ||
|
|
033cec232a | ||
|
|
543240fb5f | ||
|
|
4bed739259 | ||
|
|
80c7ce381b | ||
|
|
ccfd41c4f0 | ||
|
|
3e102b7dad | ||
|
|
ec46f3286c | ||
|
|
5e2e0b46b1 | ||
|
|
45a13b1dec | ||
|
|
5c0b663969 | ||
|
|
30d7a59ba8 | ||
|
|
4aeb67ef4c | ||
|
|
3ba91634c1 | ||
|
|
1b7433b71e | ||
|
|
a70820daa0 | ||
|
|
6b45b1d6b4 | ||
|
|
85ab552028 | ||
|
|
c3945aaa1d | ||
|
|
b3af953a55 | ||
|
|
3a65093078 | ||
|
|
ad4e0bf3be | ||
|
|
88ab587807 | ||
|
|
aee28501b5 | ||
|
|
83f0ec8269 | ||
|
|
c6b6938b3a | ||
|
|
fb4664fcec | ||
|
|
20e3593863 | ||
|
|
63a394068c | ||
|
|
ab39e08eb9 | ||
|
|
11bfa62796 | ||
|
|
f63e62e546 | ||
|
|
65b0f329d1 | ||
|
|
06007c0a18 | ||
|
|
a8e83a7654 | ||
|
|
475005504e | ||
|
|
2c40c4d35e | ||
|
|
e95278932b | ||
|
|
9d2a20a763 | ||
|
|
2e54d72fc3 | ||
|
|
6b32a2d549 | ||
|
|
c5cbe4fc2a | ||
|
|
f888912870 | ||
|
|
9e4642e9b3 | ||
|
|
6b0486c216 | ||
|
|
d368c039f0 | ||
|
|
9b54267e69 | ||
|
|
46bb0169c4 | ||
|
|
8934324b72 | ||
|
|
0e886595bf | ||
|
|
c62861f4fa | ||
|
|
0df1800436 | ||
|
|
631fecc6d9 | ||
|
|
4346c2409d | ||
|
|
4b037a97dc | ||
|
|
5f74d1fd47 | ||
|
|
4dcf80167a | ||
|
|
26a26998fb | ||
|
|
9926eae015 | ||
|
|
8585b7b151 | ||
|
|
7e34f4fbfa | ||
|
|
fe776293f7 | ||
|
|
d8a5d96b98 | ||
|
|
757668c42f | ||
|
|
96ec8afd09 | ||
|
|
e093db92c4 | ||
|
|
a1cda80bcb | ||
|
|
642a2496fe | ||
|
|
4614fafae0 | ||
|
|
4100ed7bdd | ||
|
|
f52b2615ef | ||
|
|
25f9b152f9 | ||
|
|
6da8b6a879 | ||
|
|
0daaaef8c9 | ||
|
|
98272fbd58 | ||
|
|
b27e8f3f10 | ||
|
|
45df786f09 | ||
|
|
daaf42e4a4 | ||
|
|
2dc60d4620 | ||
|
|
b5312f30e8 | ||
|
|
26c2e0bd35 | ||
|
|
bf920883d5 | ||
|
|
58b9ec1f6b | ||
|
|
7bae7fa5ce | ||
|
|
764e199d67 | ||
|
|
bfce55db3d | ||
|
|
bab6f34dc0 | ||
|
|
0682dae027 | ||
|
|
1f6986e919 | ||
|
|
4289c74359 | ||
|
|
25248f4bd5 | ||
|
|
e82001c122 | ||
|
|
a7e63b82be | ||
|
|
b70fc4d51e | ||
|
|
e2252d0fc6 | ||
|
|
cae5d4d4ea | ||
|
|
d80ea37d36 | ||
|
|
05a01fdecb | ||
|
|
8fe6f69f28 | ||
|
|
1fdb351c37 | ||
|
|
7a01ad7614 | ||
|
|
55ab9f371a | ||
|
|
fefbf8f74b | ||
|
|
b428ddd796 | ||
|
|
ba7d31240e | ||
|
|
d25efe3954 | ||
|
|
36dfb906bb | ||
|
|
a6f0f908b9 | ||
|
|
3b1ddb2b3a | ||
|
|
1579c4f06d | ||
|
|
3519dd1c6e | ||
|
|
e41c4cbea7 | ||
|
|
ee048b76d4 | ||
|
|
af68d60a58 | ||
|
|
92731dfc6f | ||
|
|
21aa666a1e | ||
|
|
ee141cc821 | ||
|
|
55e5776c44 | ||
|
|
854a9195f3 | ||
|
|
96a97adf9b | ||
|
|
e75c6126e9 | ||
|
|
cda6f5c66c | ||
|
|
1f7de23036 | ||
|
|
bebb6823c0 | ||
|
|
31e472baa4 | ||
|
|
657685e85d | ||
|
|
a14912858e | ||
|
|
eed11ded30 | ||
|
|
b42aba40ed | ||
|
|
25885e5335 |
256
.github/workflows/release.yaml
vendored
256
.github/workflows/release.yaml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
echo GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=${GITHUB_REF_NAME#v}\" \"-X=github.com/ollama/ollama/server.mode=release\"'" >>$GITHUB_OUTPUT
|
||||
|
||||
darwin-build:
|
||||
runs-on: macos-13
|
||||
runs-on: macos-13-xlarge
|
||||
environment: release
|
||||
needs: setup-environment
|
||||
strategy:
|
||||
@@ -54,48 +54,6 @@ jobs:
|
||||
name: build-${{ matrix.os }}-${{ matrix.arch }}
|
||||
path: dist/*
|
||||
|
||||
darwin-sign:
|
||||
runs-on: macos-13
|
||||
environment: release
|
||||
needs: darwin-build
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- run: |
|
||||
echo $MACOS_SIGNING_KEY | base64 --decode > certificate.p12
|
||||
security create-keychain -p password build.keychain
|
||||
security default-keychain -s build.keychain
|
||||
security unlock-keychain -p password build.keychain
|
||||
security import certificate.p12 -k build.keychain -P $MACOS_SIGNING_KEY_PASSWORD -T /usr/bin/codesign
|
||||
security set-key-partition-list -S apple-tool:,apple:,codesign: -s -k password build.keychain
|
||||
security set-keychain-settings -lut 3600 build.keychain
|
||||
env:
|
||||
MACOS_SIGNING_KEY: ${{ secrets.MACOS_SIGNING_KEY }}
|
||||
MACOS_SIGNING_KEY_PASSWORD: ${{ secrets.MACOS_SIGNING_KEY_PASSWORD }}
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: build-darwin-amd64
|
||||
path: dist/darwin-amd64
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: build-darwin-arm64
|
||||
path: dist/darwin-arm64
|
||||
- run: |
|
||||
export VERSION=${GITHUB_REF_NAME#v}
|
||||
./scripts/build_darwin.sh sign macapp
|
||||
env:
|
||||
APPLE_IDENTITY: ${{ secrets.APPLE_IDENTITY }}
|
||||
APPLE_PASSWORD: ${{ secrets.APPLE_PASSWORD }}
|
||||
APPLE_TEAM_ID: ${{ vars.APPLE_TEAM_ID }}
|
||||
APPLE_ID: ${{ vars.APPLE_ID }}
|
||||
SDKROOT: /Applications/Xcode_14.1.0.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX.sdk
|
||||
DEVELOPER_DIR: /Applications/Xcode_14.1.0.app/Contents/Developer
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-darwin
|
||||
path: |
|
||||
dist/Ollama-darwin.zip
|
||||
dist/ollama-darwin.tgz
|
||||
|
||||
windows-depends:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -103,21 +61,40 @@ jobs:
|
||||
arch: [amd64]
|
||||
preset: ['CPU']
|
||||
include:
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'CUDA 11'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
cuda-version: '11.3'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'CUDA 12'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/12.8.0/local_installers/cuda_12.8.0_571.96_windows.exe
|
||||
cuda-components:
|
||||
- '"cudart"'
|
||||
- '"nvcc"'
|
||||
- '"cublas"'
|
||||
- '"cublas_dev"'
|
||||
cuda-version: '12.8'
|
||||
flags: ''
|
||||
runner_dir: 'cuda_v12'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'CUDA 13'
|
||||
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
|
||||
cuda-components:
|
||||
- '"cudart"'
|
||||
- '"nvcc"'
|
||||
- '"cublas"'
|
||||
- '"cublas_dev"'
|
||||
- '"crt"'
|
||||
- '"nvvm"'
|
||||
- '"nvptxcompiler"'
|
||||
cuda-version: '13.0'
|
||||
flags: ''
|
||||
runner_dir: 'cuda_v13'
|
||||
- os: windows
|
||||
arch: amd64
|
||||
preset: 'ROCm 6'
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
rocm-version: '6.2'
|
||||
flags: '-DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
|
||||
runner_dir: 'rocm'
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
env:
|
||||
@@ -141,7 +118,7 @@ jobs:
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
$subpackages = @("cudart", "nvcc", "cublas", "cublas_dev") | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
|
||||
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
@@ -160,6 +137,9 @@ jobs:
|
||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: matrix.preset == 'CPU'
|
||||
run: |
|
||||
echo "CC=clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
@@ -178,11 +158,12 @@ jobs:
|
||||
key: ccache-${{ matrix.os }}-${{ matrix.arch }}-${{ matrix.preset }}
|
||||
- name: Build target "${{ matrix.preset }}"
|
||||
run: |
|
||||
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
cmake --preset "${{ matrix.preset }}"
|
||||
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }} -DOLLAMA_RUNNER_DIR="${{ matrix.runner_dir }}"
|
||||
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||
cmake --install build --component "${{ startsWith(matrix.preset, 'CUDA ') && 'CUDA' || startsWith(matrix.preset, 'ROCm ') && 'HIP' || 'CPU' }}" --strip --parallel 8
|
||||
Remove-Item -Path dist\lib\ollama\rocm\rocblas\library\*gfx906* -ErrorAction SilentlyContinue
|
||||
env:
|
||||
CMAKE_GENERATOR: Ninja
|
||||
- uses: actions/upload-artifact@v4
|
||||
@@ -195,19 +176,19 @@ jobs:
|
||||
matrix:
|
||||
os: [windows]
|
||||
arch: [amd64, arm64]
|
||||
include:
|
||||
- os: windows
|
||||
arch: amd64
|
||||
llvmarch: x86_64
|
||||
- os: windows
|
||||
arch: arm64
|
||||
llvmarch: aarch64
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
needs: [setup-environment]
|
||||
env:
|
||||
GOFLAGS: ${{ needs.setup-environment.outputs.GOFLAGS }}
|
||||
steps:
|
||||
- name: Install AMD64 system dependencies
|
||||
if: matrix.arch == 'amd64'
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
Start-Process "C:\msys64\usr\bin\pacman.exe" -ArgumentList @("-S", "--noconfirm", "mingw-w64-clang-x86_64-gcc-compat", "mingw-w64-clang-x86_64-clang") -NoNewWindow -Wait
|
||||
echo "C:\msys64\usr\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "C:\msys64\clang64\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install ARM64 system dependencies
|
||||
if: matrix.arch == 'arm64'
|
||||
run: |
|
||||
@@ -219,72 +200,36 @@ jobs:
|
||||
|
||||
choco install -y --no-progress git gzip
|
||||
echo "C:\Program Files\Git\cmd" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
|
||||
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-aarch64.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip"
|
||||
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt-aarch64.zip -DestinationPath "C:\Program Files\"
|
||||
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt-aarch64").path
|
||||
echo $installPath\bin | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- name: Install clang and gcc-compat
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
Set-ExecutionPolicy Bypass -Scope Process -Force
|
||||
Invoke-WebRequest -Uri "https://github.com/mstorsjo/llvm-mingw/releases/download/20240619/llvm-mingw-20240619-ucrt-${{ matrix.llvmarch }}.zip" -OutFile "${{ runner.temp }}\llvm-mingw-ucrt.zip"
|
||||
Expand-Archive -Path ${{ runner.temp }}\llvm-mingw-ucrt.zip -DestinationPath "C:\Program Files\"
|
||||
$installPath=(Resolve-Path -Path "C:\Program Files\llvm-mingw-*-ucrt*").path
|
||||
echo "$installPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version-file: go.mod
|
||||
- name: Verify gcc is actually clang
|
||||
run: |
|
||||
$ErrorActionPreference='Continue'
|
||||
$version=& gcc -v 2>&1
|
||||
$version=$version -join "`n"
|
||||
echo "gcc is $version"
|
||||
if ($version -notmatch 'clang') {
|
||||
echo "ERROR: GCC must be clang for proper utf16 handling"
|
||||
exit 1
|
||||
}
|
||||
$ErrorActionPreference='Stop'
|
||||
- run: |
|
||||
go build -o dist/${{ matrix.os }}-${{ matrix.arch }}/ .
|
||||
- if: matrix.arch == 'arm64'
|
||||
run: |
|
||||
Invoke-WebRequest -Uri "https://aka.ms/vs/17/release/vc_redist.arm64.exe" -OutFile "dist\windows-arm64\vc_redist.arm64.exe"
|
||||
- run: |
|
||||
$env:VERSION='${{ github.ref_name }}' -Replace "v(.*)", '$1'
|
||||
& .\scripts\build_windows.ps1 buildApp
|
||||
env:
|
||||
VCToolsRedistDir: stub
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: build-${{ matrix.os }}-${{ matrix.arch }}
|
||||
path: |
|
||||
dist\${{ matrix.os }}-${{ matrix.arch }}\*.exe
|
||||
dist\${{ matrix.os }}-${{ matrix.arch }}-app.exe
|
||||
|
||||
windows-sign:
|
||||
runs-on: windows-2022
|
||||
environment: release
|
||||
needs: [windows-depends, windows-build]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: google-github-actions/auth@v2
|
||||
with:
|
||||
project_id: ollama
|
||||
credentials_json: ${{ secrets.GOOGLE_SIGNING_CREDENTIALS }}
|
||||
- run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
Invoke-WebRequest -Uri "https://go.microsoft.com/fwlink/p/?LinkId=323507" -OutFile "${{ runner.temp }}\sdksetup.exe"
|
||||
Start-Process "${{ runner.temp }}\sdksetup.exe" -ArgumentList @("/q") -NoNewWindow -Wait
|
||||
|
||||
Invoke-WebRequest -Uri "https://github.com/GoogleCloudPlatform/kms-integrations/releases/download/cng-v1.0/kmscng-1.0-windows-amd64.zip" -OutFile "${{ runner.temp }}\plugin.zip"
|
||||
Expand-Archive -Path "${{ runner.temp }}\plugin.zip" -DestinationPath "${{ runner.temp }}\plugin\"
|
||||
& "${{ runner.temp }}\plugin\*\kmscng.msi" /quiet
|
||||
|
||||
echo "${{ vars.OLLAMA_CERT }}" >ollama_inc.crt
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: build-windows-*
|
||||
path: dist\
|
||||
merge-multiple: true
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: depends-windows-amd64-*
|
||||
path: dist\windows-amd64\
|
||||
merge-multiple: true
|
||||
- run: |
|
||||
& .\scripts\build_windows.ps1 gatherDependencies sign buildInstaller distZip
|
||||
env:
|
||||
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
|
||||
- uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-windows
|
||||
path: |
|
||||
dist\OllamaSetup.exe
|
||||
dist\ollama-windows-*.zip
|
||||
|
||||
linux-build:
|
||||
strategy:
|
||||
@@ -292,13 +237,13 @@ jobs:
|
||||
include:
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: archive
|
||||
target: archive_novulkan
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: rocm
|
||||
- os: linux
|
||||
arch: arm64
|
||||
target: archive
|
||||
target: archive_novulkan
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
needs: setup-environment
|
||||
@@ -317,21 +262,26 @@ jobs:
|
||||
CGO_CFLAGS=${{ env.CGO_CFLAGS }}
|
||||
CGO_CXXFLAGS=${{ env.CGO_CXXFLAGS }}
|
||||
outputs: type=local,dest=dist/${{ matrix.os }}-${{ matrix.arch }}
|
||||
cache-from: type=registry,ref=ollama/ollama:latest
|
||||
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
|
||||
cache-to: type=inline
|
||||
- run: |
|
||||
for COMPONENT in bin/* lib/ollama/*; do
|
||||
case "$COMPONENT" in
|
||||
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/*.so) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_v11) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_v12) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
|
||||
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
|
||||
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
|
||||
bin/ollama) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/*.so*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_v*) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}.tar.in ;;
|
||||
lib/ollama/cuda_jetpack5) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack5.tar.in ;;
|
||||
lib/ollama/cuda_jetpack6) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-jetpack6.tar.in ;;
|
||||
lib/ollama/rocm) echo $COMPONENT >>ollama-${{ matrix.os }}-${{ matrix.arch }}-rocm.tar.in ;;
|
||||
esac
|
||||
done
|
||||
working-directory: dist/${{ matrix.os }}-${{ matrix.arch }}
|
||||
- run: |
|
||||
echo "Manifests"
|
||||
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in ; do
|
||||
echo $ARCHIVE
|
||||
cat $ARCHIVE
|
||||
done
|
||||
- run: |
|
||||
for ARCHIVE in dist/${{ matrix.os }}-${{ matrix.arch }}/*.tar.in; do
|
||||
tar c -C dist/${{ matrix.os }}-${{ matrix.arch }} -T $ARCHIVE --owner 0 --group 0 | pigz -9vc >$(basename ${ARCHIVE//.*/}.tgz);
|
||||
@@ -349,12 +299,14 @@ jobs:
|
||||
include:
|
||||
- os: linux
|
||||
arch: arm64
|
||||
target: novulkan
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
- os: linux
|
||||
arch: amd64
|
||||
target: novulkan
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
@@ -367,6 +319,14 @@ jobs:
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
FLAVOR=rocm
|
||||
- os: linux
|
||||
arch: amd64
|
||||
suffix: '-vulkan'
|
||||
target: default
|
||||
build-args: |
|
||||
CGO_CFLAGS
|
||||
CGO_CXXFLAGS
|
||||
GOFLAGS
|
||||
runs-on: ${{ matrix.arch == 'arm64' && format('{0}-{1}', matrix.os, matrix.arch) || matrix.os }}
|
||||
environment: release
|
||||
needs: setup-environment
|
||||
@@ -384,9 +344,10 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
platforms: ${{ matrix.os }}/${{ matrix.arch }}
|
||||
target: ${{ matrix.target }}
|
||||
build-args: ${{ matrix.build-args }}
|
||||
outputs: type=image,name=ollama/ollama,push-by-digest=true,name-canonical=true,push=true
|
||||
cache-from: type=registry,ref=ollama/ollama:latest
|
||||
outputs: type=image,name=${{ vars.DOCKER_REPO }},push-by-digest=true,name-canonical=true,push=true
|
||||
cache-from: type=registry,ref=${{ vars.DOCKER_REPO }}:latest
|
||||
cache-to: type=inline
|
||||
- run: |
|
||||
mkdir -p ${{ matrix.os }}-${{ matrix.arch }}
|
||||
@@ -418,7 +379,7 @@ jobs:
|
||||
latest=false
|
||||
suffix=${{ matrix.suffix }}
|
||||
images: |
|
||||
ollama/ollama
|
||||
${{ vars.DOCKER_REPO }}
|
||||
tags: |
|
||||
type=ref,enable=true,priority=600,prefix=pr-,event=pr
|
||||
type=semver,pattern={{version}}
|
||||
@@ -428,40 +389,24 @@ jobs:
|
||||
path: ${{ runner.temp }}
|
||||
merge-multiple: true
|
||||
- run: |
|
||||
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf 'ollama/ollama@%s ')
|
||||
docker buildx imagetools inspect ollama/ollama:${{ steps.metadata.outputs.version }}
|
||||
docker buildx imagetools create $(echo '${{ steps.metadata.outputs.json }}' | jq -cr '.tags | map("-t", .) | join(" ")') $(cat *-${{ matrix.suffix }}.txt | xargs printf '${{ vars.DOCKER_REPO }}@%s ')
|
||||
docker buildx imagetools inspect ${{ vars.DOCKER_REPO }}:${{ steps.metadata.outputs.version }}
|
||||
working-directory: ${{ runner.temp }}
|
||||
|
||||
# Aggregate all the assets and ship a release
|
||||
release:
|
||||
needs: [darwin-sign, windows-sign, linux-build]
|
||||
runs-on: linux
|
||||
# Trigger downstream release process
|
||||
trigger:
|
||||
runs-on: ubuntu-latest
|
||||
environment: release
|
||||
needs: [darwin-build, windows-build, windows-depends, linux-build]
|
||||
permissions:
|
||||
contents: write
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: dist-darwin
|
||||
path: dist
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: dist-windows
|
||||
path: dist
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
pattern: dist-linux-*
|
||||
path: dist
|
||||
merge-multiple: true
|
||||
- run: find . -type f -not -name 'sha256sum.txt' | xargs sha256sum | tee sha256sum.txt
|
||||
working-directory: dist
|
||||
- name: Create or update Release
|
||||
- name: Create or update Release for tag
|
||||
run: |
|
||||
RELEASE_VERSION="$(echo ${GITHUB_REF_NAME} | cut -f1 -d-)"
|
||||
|
||||
echo "Looking for existing release for ${RELEASE_VERSION}"
|
||||
OLD_TAG=$(gh release ls --json name,tagName | jq -r ".[] | select(.name == \"${RELEASE_VERSION}\") | .tagName")
|
||||
if [ -n "$OLD_TAG" ]; then
|
||||
@@ -475,5 +420,12 @@ jobs:
|
||||
--generate-notes \
|
||||
--prerelease
|
||||
fi
|
||||
echo "Uploading artifacts for tag ${GITHUB_REF_NAME}"
|
||||
gh release upload ${GITHUB_REF_NAME} dist/* --clobber
|
||||
- name: Trigger downstream release process
|
||||
run: |
|
||||
curl -L \
|
||||
-X POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Authorization: Bearer ${{ secrets.RELEASE_TOKEN }}" \
|
||||
-H "X-GitHub-Api-Version: 2022-11-28" \
|
||||
https://api.github.com/repos/ollama/${{ vars.RELEASE_REPO }}/dispatches \
|
||||
-d "{\"event_type\": \"trigger-workflow\", \"client_payload\": {\"run_id\": \"${GITHUB_RUN_ID}\", \"version\": \"${GITHUB_REF_NAME#v}\", \"origin\": \"${GITHUB_REPOSITORY}\", \"publish\": \"1\"}}"
|
||||
|
||||
64
.github/workflows/test.yaml
vendored
64
.github/workflows/test.yaml
vendored
@@ -36,7 +36,7 @@ jobs:
|
||||
| xargs python3 -c "import sys; from pathlib import Path; print(any(Path(x).match(glob) for x in sys.argv[1:] for glob in '$*'.split(' ')))"
|
||||
}
|
||||
|
||||
echo changed=$(changed 'llama/llama.cpp/**' 'ml/backend/ggml/ggml/**') | tee -a $GITHUB_OUTPUT
|
||||
echo changed=$(changed 'llama/llama.cpp/**/*' 'ml/backend/ggml/ggml/**/*') | tee -a $GITHUB_OUTPUT
|
||||
|
||||
linux:
|
||||
needs: [changes]
|
||||
@@ -46,12 +46,18 @@ jobs:
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
container: nvidia/cuda:11.8.0-devel-ubuntu22.04
|
||||
container: nvidia/cuda:13.0.0-devel-ubuntu22.04
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=87'
|
||||
- preset: ROCm
|
||||
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||
extra-packages: rocm-libs
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_PREFIX_PATH=/opt/rocm'
|
||||
- preset: Vulkan
|
||||
container: ubuntu:22.04
|
||||
extra-packages: >
|
||||
mesa-vulkan-drivers vulkan-tools
|
||||
libvulkan1 libvulkan-dev
|
||||
vulkan-sdk cmake ccache g++ make
|
||||
runs-on: linux
|
||||
container: ${{ matrix.container }}
|
||||
steps:
|
||||
@@ -59,7 +65,19 @@ jobs:
|
||||
- run: |
|
||||
[ -n "${{ matrix.container }}" ] || sudo=sudo
|
||||
$sudo apt-get update
|
||||
# Add LunarG Vulkan SDK apt repo for Ubuntu 22.04
|
||||
if [ "${{ matrix.preset }}" = "Vulkan" ]; then
|
||||
$sudo apt-get install -y --no-install-recommends wget gnupg ca-certificates software-properties-common
|
||||
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | $sudo gpg --dearmor -o /usr/share/keyrings/lunarg-archive-keyring.gpg
|
||||
# Use signed-by to bind the repo to the installed keyring to avoid NO_PUBKEY
|
||||
echo "deb [signed-by=/usr/share/keyrings/lunarg-archive-keyring.gpg] https://packages.lunarg.com/vulkan/1.4.313 jammy main" | $sudo tee /etc/apt/sources.list.d/lunarg-vulkan-1.4.313-jammy.list > /dev/null
|
||||
$sudo apt-get update
|
||||
fi
|
||||
$sudo apt-get install -y cmake ccache ${{ matrix.extra-packages }}
|
||||
# Export VULKAN_SDK if provided by LunarG package (defensive)
|
||||
if [ -d "/usr/lib/x86_64-linux-gnu/vulkan" ] && [ "${{ matrix.preset }}" = "Vulkan" ]; then
|
||||
echo "VULKAN_SDK=/usr" >> $GITHUB_ENV
|
||||
fi
|
||||
env:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
- uses: actions/cache@v4
|
||||
@@ -78,23 +96,35 @@ jobs:
|
||||
include:
|
||||
- preset: CPU
|
||||
- preset: CUDA
|
||||
install: https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe
|
||||
install: https://developer.download.nvidia.com/compute/cuda/13.0.0/local_installers/cuda_13.0.0_windows.exe
|
||||
flags: '-DCMAKE_CUDA_ARCHITECTURES=80'
|
||||
cuda-components:
|
||||
- '"cudart"'
|
||||
- '"nvcc"'
|
||||
- '"cublas"'
|
||||
- '"cublas_dev"'
|
||||
- '"crt"'
|
||||
- '"nvvm"'
|
||||
- '"nvptxcompiler"'
|
||||
cuda-version: '13.0'
|
||||
- preset: ROCm
|
||||
install: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q4-WinSvr2022-For-HIP.exe
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010'
|
||||
flags: '-DAMDGPU_TARGETS=gfx1010 -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma" -DCMAKE_CXX_FLAGS="-parallel-jobs=4 -Wno-ignored-attributes -Wno-deprecated-pragma"'
|
||||
- preset: Vulkan
|
||||
install: https://sdk.lunarg.com/sdk/download/1.4.321.1/windows/vulkansdk-windows-X64-1.4.321.1.exe
|
||||
runs-on: windows
|
||||
steps:
|
||||
- run: |
|
||||
choco install -y --no-progress ccache ninja
|
||||
ccache -o cache_dir=${{ github.workspace }}\.ccache
|
||||
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm'
|
||||
- if: matrix.preset == 'CUDA' || matrix.preset == 'ROCm' || matrix.preset == 'Vulkan'
|
||||
id: cache-install
|
||||
uses: actions/cache/restore@v4
|
||||
with:
|
||||
path: |
|
||||
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
|
||||
C:\Program Files\AMD\ROCm
|
||||
C:\VulkanSDK
|
||||
key: ${{ matrix.install }}
|
||||
- if: matrix.preset == 'CUDA'
|
||||
name: Install CUDA ${{ matrix.cuda-version }}
|
||||
@@ -102,7 +132,8 @@ jobs:
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s", "cudart_11.3", "nvcc_11.3", "cublas_11.3", "cublas_dev_11.3")) -NoNewWindow -Wait
|
||||
$subpackages = @(${{ join(matrix.cuda-components, ', ') }}) | Foreach-Object {"${_}_${{ matrix.cuda-version }}"}
|
||||
Start-Process -FilePath .\install.exe -ArgumentList (@("-s") + $subpackages) -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$cudaPath = (Resolve-Path "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\*").path
|
||||
@@ -120,6 +151,21 @@ jobs:
|
||||
echo "$hipPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CC=$hipPath\bin\clang.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "HIPCXX=$hipPath\bin\clang++.exe" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "HIP_PLATFORM=amd" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
echo "CMAKE_PREFIX_PATH=$hipPath" | Out-File -FilePath $env:GITHUB_ENV -Append
|
||||
- if: matrix.preset == 'Vulkan'
|
||||
name: Install Vulkan ${{ matrix.rocm-version }}
|
||||
run: |
|
||||
$ErrorActionPreference = "Stop"
|
||||
if ("${{ steps.cache-install.outputs.cache-hit }}" -ne 'true') {
|
||||
Invoke-WebRequest -Uri "${{ matrix.install }}" -OutFile "install.exe"
|
||||
Start-Process -FilePath .\install.exe -ArgumentList "-c","--am","--al","in" -NoNewWindow -Wait
|
||||
}
|
||||
|
||||
$vulkanPath = (Resolve-Path "C:\VulkanSDK\*").path
|
||||
echo "$vulkanPath\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "VULKAN_SDK=$vulkanPath" >> $env:GITHUB_ENV
|
||||
- if: ${{ !cancelled() && steps.cache-install.outputs.cache-hit != 'true' }}
|
||||
uses: actions/cache/save@v4
|
||||
with:
|
||||
@@ -133,8 +179,8 @@ jobs:
|
||||
path: ${{ github.workspace }}\.ccache
|
||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ matrix.preset }}
|
||||
- run: |
|
||||
Import-Module 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
Import-Module 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise\Common7\Tools\Microsoft.VisualStudio.DevShell.dll'
|
||||
Enter-VsDevShell -VsInstallPath 'C:\Program Files\Microsoft Visual Studio\2022\Enterprise' -SkipAutomaticLocation -DevCmdArguments '-arch=x64 -no_logo'
|
||||
cmake --preset "${{ matrix.preset }}" ${{ matrix.flags }}
|
||||
cmake --build --parallel --preset "${{ matrix.preset }}"
|
||||
env:
|
||||
@@ -237,5 +283,5 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Verify patches apply cleanly and do not change files
|
||||
run: |
|
||||
make -f Makefile.sync clean sync
|
||||
make -f Makefile.sync clean checkout apply-patches sync
|
||||
git diff --compact-summary --exit-code
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -8,6 +8,7 @@
|
||||
dist
|
||||
build
|
||||
.cache
|
||||
.gocache
|
||||
*.exe
|
||||
.idea
|
||||
test_data
|
||||
|
||||
@@ -19,8 +19,8 @@ linters:
|
||||
- nolintlint
|
||||
- nosprintfhostport
|
||||
- staticcheck
|
||||
- tenv
|
||||
- unconvert
|
||||
- usetesting
|
||||
- wastedassign
|
||||
- whitespace
|
||||
disable:
|
||||
|
||||
@@ -3,6 +3,7 @@ cmake_minimum_required(VERSION 3.21)
|
||||
project(Ollama C CXX)
|
||||
|
||||
include(CheckLanguage)
|
||||
include(GNUInstallDirs)
|
||||
|
||||
find_package(Threads REQUIRED)
|
||||
|
||||
@@ -23,6 +24,8 @@ set(GGML_SCHED_MAX_COPIES 4)
|
||||
set(GGML_LLAMAFILE ON)
|
||||
set(GGML_CUDA_PEER_MAX_BATCH_SIZE 128)
|
||||
set(GGML_CUDA_GRAPHS ON)
|
||||
set(GGML_CUDA_FA ON)
|
||||
set(GGML_CUDA_COMPRESSION_MODE default)
|
||||
|
||||
if((CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
|
||||
OR (NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_SYSTEM_PROCESSOR MATCHES "arm|aarch64|ARM64|ARMv[0-9]+"))
|
||||
@@ -35,7 +38,7 @@ if (CMAKE_OSX_ARCHITECTURES MATCHES "x86_64")
|
||||
endif()
|
||||
|
||||
set(OLLAMA_BUILD_DIR ${CMAKE_BINARY_DIR}/lib/ollama)
|
||||
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama)
|
||||
set(OLLAMA_INSTALL_DIR ${CMAKE_INSTALL_PREFIX}/lib/ollama/${OLLAMA_RUNNER_DIR})
|
||||
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${OLLAMA_BUILD_DIR})
|
||||
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY_DEBUG ${OLLAMA_BUILD_DIR})
|
||||
@@ -49,6 +52,8 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/include
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu)
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cpu/amx)
|
||||
|
||||
add_compile_definitions(NDEBUG GGML_VERSION=0x0 GGML_COMMIT=0x0)
|
||||
|
||||
set(GGML_CPU ON)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src)
|
||||
set_property(TARGET ggml PROPERTY EXCLUDE_FROM_ALL TRUE)
|
||||
@@ -74,32 +79,16 @@ if(CMAKE_CUDA_COMPILER)
|
||||
|
||||
find_package(CUDAToolkit)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-cuda)
|
||||
set(OLLAMA_CUDA_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/cuda_v${CUDAToolkit_VERSION_MAJOR})
|
||||
install(TARGETS ggml-cuda
|
||||
RUNTIME_DEPENDENCIES
|
||||
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_LIBRARY_DIR}
|
||||
DIRECTORIES ${CUDAToolkit_BIN_DIR} ${CUDAToolkit_BIN_DIR}/x64 ${CUDAToolkit_LIBRARY_DIR}
|
||||
PRE_INCLUDE_REGEXES cublas cublasLt cudart
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
RUNTIME DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||
LIBRARY DESTINATION ${OLLAMA_CUDA_INSTALL_DIR} COMPONENT CUDA
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT CUDA
|
||||
)
|
||||
endif()
|
||||
|
||||
set(AMDGPU_TARGETS
|
||||
gfx1010:xnack-
|
||||
gfx1011
|
||||
gfx1012:xnack-
|
||||
gfx1030
|
||||
gfx1031
|
||||
gfx1032
|
||||
gfx1034
|
||||
gfx1035
|
||||
gfx1100
|
||||
gfx1101
|
||||
gfx1102
|
||||
gfx1103
|
||||
gfx1150
|
||||
CACHE STRING "List of AMDGPU targets to build for")
|
||||
|
||||
set(WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX ""
|
||||
CACHE STRING
|
||||
@@ -110,36 +99,56 @@ check_language(HIP)
|
||||
if(CMAKE_HIP_COMPILER)
|
||||
set(HIP_PLATFORM "amd")
|
||||
|
||||
find_package(hip REQUIRED)
|
||||
if(NOT AMDGPU_TARGETS)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|900(:xnack-)|902|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011|1012(:xnack-)|103[0-6]|110[0-3]|1150)$")
|
||||
elseif(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
find_package(hip REQUIRED)
|
||||
list(FILTER AMDGPU_TARGETS INCLUDE REGEX "^gfx(803|90[012]|906(:xnack-)|90c(:xnack-)|1010(:xnack-)|1011(:xnack-)|1012(:xnack-)|103[0-6]|110[0-3]|115[0123]|120[01])$")
|
||||
endif()
|
||||
|
||||
if(WIN32 AND WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX)
|
||||
list(FILTER AMDGPU_TARGETS EXCLUDE REGEX ${WINDOWS_AMDGPU_TARGETS_EXCLUDE_REGEX})
|
||||
endif()
|
||||
|
||||
if(AMDGPU_TARGETS)
|
||||
find_package(hip REQUIRED)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-hip)
|
||||
|
||||
if (WIN32)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY=1)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_CUDA_NO_PEER_COPY)
|
||||
endif()
|
||||
|
||||
set(OLLAMA_HIP_INSTALL_DIR ${OLLAMA_INSTALL_DIR}/rocm)
|
||||
target_compile_definitions(ggml-hip PRIVATE GGML_HIP_NO_VMM)
|
||||
|
||||
install(TARGETS ggml-hip
|
||||
RUNTIME_DEPENDENCIES
|
||||
RUNTIME_DEPENDENCY_SET rocm
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
|
||||
)
|
||||
install(RUNTIME_DEPENDENCY_SET rocm
|
||||
DIRECTORIES ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR}
|
||||
PRE_INCLUDE_REGEXES hipblas rocblas amdhip64 rocsolver amd_comgr hsa-runtime64 rocsparse tinfo rocprofiler-register drm drm_amdgpu numa elf
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
POST_EXCLUDE_REGEXES "system32"
|
||||
RUNTIME DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||
LIBRARY DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP
|
||||
)
|
||||
|
||||
foreach(HIP_LIB_BIN_INSTALL_DIR IN ITEMS ${HIP_BIN_INSTALL_DIR} ${HIP_LIB_INSTALL_DIR})
|
||||
if(EXISTS ${HIP_LIB_BIN_INSTALL_DIR}/rocblas)
|
||||
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_HIP_INSTALL_DIR} COMPONENT HIP)
|
||||
install(DIRECTORY ${HIP_LIB_BIN_INSTALL_DIR}/rocblas DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT HIP)
|
||||
break()
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
find_package(Vulkan)
|
||||
if(Vulkan_FOUND)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ml/backend/ggml/ggml/src/ggml-vulkan)
|
||||
install(TARGETS ggml-vulkan
|
||||
RUNTIME_DEPENDENCIES
|
||||
PRE_INCLUDE_REGEXES vulkan
|
||||
PRE_EXCLUDE_REGEXES ".*"
|
||||
RUNTIME DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
|
||||
LIBRARY DESTINATION ${OLLAMA_INSTALL_DIR} COMPONENT Vulkan
|
||||
)
|
||||
endif()
|
||||
|
||||
@@ -6,7 +6,8 @@
|
||||
"binaryDir": "${sourceDir}/build",
|
||||
"installDir": "${sourceDir}/dist",
|
||||
"cacheVariables": {
|
||||
"CMAKE_BUILD_TYPE": "Release"
|
||||
"CMAKE_BUILD_TYPE": "Release",
|
||||
"CMAKE_MSVC_RUNTIME_LIBRARY": "MultiThreaded"
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -21,14 +22,24 @@
|
||||
"name": "CUDA 11",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;53;60;61;70;75;80;86"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50-virtual;60-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual",
|
||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CUDA 12",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;60;61;70;75;80;86;87;89;90;90a;100"
|
||||
"CMAKE_CUDA_ARCHITECTURES": "50;52;60;61;70;75;80;86;89;90;90a;120",
|
||||
"CMAKE_CUDA_FLAGS": "-Wno-deprecated-gpu-targets -t 2"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "CUDA 13",
|
||||
"inherits": [ "CUDA" ],
|
||||
"cacheVariables": {
|
||||
"CMAKE_CUDA_ARCHITECTURES": "75-virtual;80-virtual;86-virtual;87-virtual;89-virtual;90-virtual;90a-virtual;100-virtual;103-virtual;110-virtual;120-virtual;121-virtual",
|
||||
"CMAKE_CUDA_FLAGS": "-t 2"
|
||||
}
|
||||
},
|
||||
{
|
||||
@@ -56,8 +67,13 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"cacheVariables": {
|
||||
"AMDGPU_TARGETS": "gfx803;gfx902;gfx1011;gfx1030;gfx1031;gfx1032;gfx1034;gfx1035;gfx1036;gfx1100;gfx1101;gfx1102;gfx1103;gfx1150;gfx900:xnack-;gfx906:xnack-;gfx90c:xnack-;gfx1010:xnack-;gfx1012:xnack-;"
|
||||
"CMAKE_HIP_FLAGS": "-parallel-jobs=4",
|
||||
"AMDGPU_TARGETS": "gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102;gfx1151;gfx1200;gfx1201;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "Vulkan",
|
||||
"inherits": [ "Default" ]
|
||||
}
|
||||
],
|
||||
"buildPresets": [
|
||||
@@ -86,6 +102,11 @@
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "CUDA 12"
|
||||
},
|
||||
{
|
||||
"name": "CUDA 13",
|
||||
"inherits": [ "CUDA" ],
|
||||
"configurePreset": "CUDA 13"
|
||||
},
|
||||
{
|
||||
"name": "JetPack 5",
|
||||
"inherits": [ "CUDA" ],
|
||||
@@ -105,6 +126,11 @@
|
||||
"name": "ROCm 6",
|
||||
"inherits": [ "ROCm" ],
|
||||
"configurePreset": "ROCm 6"
|
||||
},
|
||||
{
|
||||
"name": "Vulkan",
|
||||
"targets": [ "ggml-vulkan" ],
|
||||
"configurePreset": "Vulkan"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
@@ -51,7 +51,7 @@ see if the change were accepted.
|
||||
|
||||
The title should look like:
|
||||
|
||||
<package>: <short description>
|
||||
<package>: <short description>
|
||||
|
||||
The package is the most affected Go package. If the change does not affect Go
|
||||
code, then use the directory name instead. Changes to a single well-known
|
||||
@@ -65,7 +65,8 @@ continuation of the sentence:
|
||||
Examples:
|
||||
|
||||
llm/backend/mlx: support the llama architecture
|
||||
CONTRIBUTING: provide clairity on good commit messages, and bad
|
||||
CONTRIBUTING: provide clarity on good commit messages, and bad
|
||||
docs: simplify manual installation with shorter curl commands
|
||||
|
||||
Bad Examples:
|
||||
|
||||
|
||||
133
Dockerfile
133
Dockerfile
@@ -1,20 +1,33 @@
|
||||
# vim: filetype=dockerfile
|
||||
|
||||
ARG FLAVOR=${TARGETARCH}
|
||||
ARG PARALLEL=8
|
||||
|
||||
ARG ROCMVERSION=6.3.3
|
||||
ARG JETPACK5VERSION=r35.4.1
|
||||
ARG JETPACK6VERSION=r36.4.0
|
||||
ARG CMAKEVERSION=3.31.2
|
||||
ARG VULKANVERSION=1.4.321.1
|
||||
|
||||
# CUDA v11 requires gcc v10. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||
# We require gcc v10 minimum. v10.3 has regressions, so the rockylinux 8.5 AppStream has the latest compatible version
|
||||
FROM --platform=linux/amd64 rocm/dev-almalinux-8:${ROCMVERSION}-complete AS base-amd64
|
||||
RUN yum install -y yum-utils \
|
||||
&& yum-config-manager --add-repo https://dl.rockylinux.org/vault/rocky/8.5/AppStream/\$basearch/os/ \
|
||||
&& rpm --import https://dl.rockylinux.org/pub/rocky/RPM-GPG-KEY-Rocky-8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
|
||||
&& dnf install -y yum-utils ccache gcc-toolset-10-gcc-10.2.1-8.2.el8 gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 gcc-toolset-10-binutils-2.35-11.el8 \
|
||||
&& dnf install -y ccache \
|
||||
&& yum-config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
|
||||
ENV PATH=/opt/rh/gcc-toolset-10/root/usr/bin:$PATH
|
||||
ARG VULKANVERSION
|
||||
RUN wget https://sdk.lunarg.com/sdk/download/${VULKANVERSION}/linux/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz -O /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
|
||||
&& tar xvf /tmp/vulkansdk-linux-x86_64-${VULKANVERSION}.tar.xz \
|
||||
&& dnf -y install ninja-build \
|
||||
&& ln -s /usr/bin/python3 /usr/bin/python \
|
||||
&& /${VULKANVERSION}/vulkansdk -j 8 vulkan-headers \
|
||||
&& /${VULKANVERSION}/vulkansdk -j 8 shaderc
|
||||
RUN cp -r /${VULKANVERSION}/x86_64/include/* /usr/local/include/ \
|
||||
&& cp -r /${VULKANVERSION}/x86_64/lib/* /usr/local/lib
|
||||
ENV PATH=/${VULKANVERSION}/x86_64/bin:$PATH
|
||||
|
||||
FROM --platform=linux/arm64 almalinux:8 AS base-arm64
|
||||
# install epel-release for ccache
|
||||
@@ -33,35 +46,52 @@ ENV LDFLAGS=-s
|
||||
FROM base AS cpu
|
||||
RUN dnf install -y gcc-toolset-11-gcc gcc-toolset-11-gcc-c++
|
||||
ENV PATH=/opt/rh/gcc-toolset-11/root/usr/bin:$PATH
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CPU' \
|
||||
&& cmake --build --parallel --preset 'CPU' \
|
||||
&& cmake --install build --component CPU --strip --parallel 8
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CPU' \
|
||||
&& cmake --install build --component CPU --strip --parallel ${PARALLEL}
|
||||
|
||||
FROM base AS cuda-11
|
||||
ARG CUDA11VERSION=11.3
|
||||
ARG CUDA11VERSION=11.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA11VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-11/bin:$PATH
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 11' \
|
||||
&& cmake --build --parallel --preset 'CUDA 11' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
cmake --preset 'CUDA 11' -DOLLAMA_RUNNER_DIR="cuda_v11" \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 11' \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
FROM base AS cuda-12
|
||||
ARG CUDA12VERSION=12.8
|
||||
RUN dnf install -y cuda-toolkit-${CUDA12VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-12/bin:$PATH
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 12' \
|
||||
&& cmake --build --parallel --preset 'CUDA 12' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
cmake --preset 'CUDA 12' -DOLLAMA_RUNNER_DIR="cuda_v12"\
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 12' \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
|
||||
FROM base AS cuda-13
|
||||
ARG CUDA13VERSION=13.0
|
||||
RUN dnf install -y cuda-toolkit-${CUDA13VERSION//./-}
|
||||
ENV PATH=/usr/local/cuda-13/bin:$PATH
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'CUDA 13' -DOLLAMA_RUNNER_DIR="cuda_v13" \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'CUDA 13' \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
|
||||
FROM base AS rocm-6
|
||||
ENV PATH=/opt/rocm/hcc/bin:/opt/rocm/hip/bin:/opt/rocm/bin:/opt/rocm/hcc/bin:$PATH
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'ROCm 6' \
|
||||
&& cmake --build --parallel --preset 'ROCm 6' \
|
||||
&& cmake --install build --component HIP --strip --parallel 8
|
||||
cmake --preset 'ROCm 6' -DOLLAMA_RUNNER_DIR="rocm" \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'ROCm 6' \
|
||||
&& cmake --install build --component HIP --strip --parallel ${PARALLEL}
|
||||
RUN rm -f dist/lib/ollama/rocm/rocblas/library/*gfx90[06]*
|
||||
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK5VERSION} AS jetpack-5
|
||||
ARG CMAKEVERSION
|
||||
@@ -69,10 +99,11 @@ RUN apt-get update && apt-get install -y curl ccache \
|
||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'JetPack 5' \
|
||||
&& cmake --build --parallel --preset 'JetPack 5' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
cmake --preset 'JetPack 5' -DOLLAMA_RUNNER_DIR="cuda_jetpack5" \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 5' \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
FROM --platform=linux/arm64 nvcr.io/nvidia/l4t-jetpack:${JETPACK6VERSION} AS jetpack-6
|
||||
ARG CMAKEVERSION
|
||||
@@ -80,44 +111,84 @@ RUN apt-get update && apt-get install -y curl ccache \
|
||||
&& curl -fsSL https://github.com/Kitware/CMake/releases/download/v${CMAKEVERSION}/cmake-${CMAKEVERSION}-linux-$(uname -m).tar.gz | tar xz -C /usr/local --strip-components 1
|
||||
COPY CMakeLists.txt CMakePresets.json .
|
||||
COPY ml/backend/ggml/ggml ml/backend/ggml/ggml
|
||||
ARG PARALLEL
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'JetPack 6' \
|
||||
&& cmake --build --parallel --preset 'JetPack 6' \
|
||||
&& cmake --install build --component CUDA --strip --parallel 8
|
||||
cmake --preset 'JetPack 6' -DOLLAMA_RUNNER_DIR="cuda_jetpack6" \
|
||||
&& cmake --build --parallel ${PARALLEL} --preset 'JetPack 6' \
|
||||
&& cmake --install build --component CUDA --strip --parallel ${PARALLEL}
|
||||
|
||||
FROM base AS vulkan
|
||||
RUN --mount=type=cache,target=/root/.ccache \
|
||||
cmake --preset 'Vulkan' -DOLLAMA_RUNNER_DIR="vulkan" \
|
||||
&& cmake --build --parallel --preset 'Vulkan' \
|
||||
&& cmake --install build --component Vulkan --strip --parallel 8
|
||||
|
||||
|
||||
FROM base AS build
|
||||
ARG GOVERSION=1.23.4
|
||||
RUN curl -fsSL https://golang.org/dl/go${GOVERSION}.linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
WORKDIR /go/src/github.com/ollama/ollama
|
||||
COPY go.mod go.sum .
|
||||
RUN curl -fsSL https://golang.org/dl/go$(awk '/^go/ { print $2 }' go.mod).linux-$(case $(uname -m) in x86_64) echo amd64 ;; aarch64) echo arm64 ;; esac).tar.gz | tar xz -C /usr/local
|
||||
ENV PATH=/usr/local/go/bin:$PATH
|
||||
RUN go mod download
|
||||
COPY . .
|
||||
ARG GOFLAGS="'-ldflags=-w -s'"
|
||||
ENV CGO_ENABLED=1
|
||||
ARG CGO_CFLAGS
|
||||
ARG CGO_CXXFLAGS
|
||||
RUN --mount=type=cache,target=/root/.cache/go-build \
|
||||
go build -trimpath -buildmode=pie -o /bin/ollama .
|
||||
|
||||
FROM --platform=linux/amd64 scratch AS amd64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
|
||||
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
|
||||
COPY --from=vulkan dist/lib/ollama /lib/ollama/
|
||||
|
||||
FROM --platform=linux/arm64 scratch AS arm64
|
||||
COPY --from=cuda-11 dist/lib/ollama/cuda_v11 /lib/ollama/cuda_v11
|
||||
COPY --from=cuda-12 dist/lib/ollama/cuda_v12 /lib/ollama/cuda_v12
|
||||
COPY --from=jetpack-5 dist/lib/ollama/cuda_v11 lib/ollama/cuda_jetpack5
|
||||
COPY --from=jetpack-6 dist/lib/ollama/cuda_v12 lib/ollama/cuda_jetpack6
|
||||
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
|
||||
COPY --from=cuda-13 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=jetpack-5 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=jetpack-6 dist/lib/ollama/ /lib/ollama/
|
||||
|
||||
FROM scratch AS rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama/rocm /lib/ollama/rocm
|
||||
COPY --from=rocm-6 dist/lib/ollama /lib/ollama
|
||||
|
||||
FROM ${FLAVOR} AS archive
|
||||
ARG VULKANVERSION
|
||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||
COPY --from=build /bin/ollama /bin/ollama
|
||||
|
||||
FROM ubuntu:20.04
|
||||
# Temporary opt-out stages for Vulkan
|
||||
FROM --platform=linux/amd64 scratch AS amd64_novulkan
|
||||
# COPY --from=cuda-11 dist/lib/ollama/ /lib/ollama/
|
||||
COPY --from=cuda-12 dist/lib/ollama /lib/ollama/
|
||||
COPY --from=cuda-13 dist/lib/ollama /lib/ollama/
|
||||
FROM arm64 AS arm64_novulkan
|
||||
FROM ${FLAVOR}_novulkan AS archive_novulkan
|
||||
COPY --from=cpu dist/lib/ollama /lib/ollama
|
||||
COPY --from=build /bin/ollama /bin/ollama
|
||||
FROM ubuntu:24.04 AS novulkan
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y ca-certificates \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=archive_novulkan /bin /usr/bin
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
COPY --from=archive_novulkan /lib/ollama /usr/lib/ollama
|
||||
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV OLLAMA_HOST=0.0.0.0:11434
|
||||
EXPOSE 11434
|
||||
ENTRYPOINT ["/bin/ollama"]
|
||||
CMD ["serve"]
|
||||
|
||||
FROM ubuntu:24.04 AS default
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y ca-certificates libvulkan1 \
|
||||
&& apt-get clean \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
COPY --from=archive /bin /usr/bin
|
||||
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
|
||||
COPY --from=archive /lib/ollama /usr/lib/ollama
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
|
||||
UPSTREAM=https://github.com/ggml-org/llama.cpp.git
|
||||
WORKDIR=llama/vendor
|
||||
FETCH_HEAD=d7cfe1ffe0f435d0048a6058d529daf76e072d9c
|
||||
FETCH_HEAD=7049736b2dd9011bf819e298b844ebbc4b5afdc9
|
||||
|
||||
.PHONY: help
|
||||
help:
|
||||
@@ -12,31 +12,42 @@ help:
|
||||
@echo " clean Clean local repository"
|
||||
@echo
|
||||
@echo "Example:"
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean sync"
|
||||
@echo " make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches sync"
|
||||
|
||||
.PHONY: sync
|
||||
sync: llama/build-info.cpp llama/llama.cpp ml/backend/ggml/ggml apply-patches
|
||||
sync: llama/build-info.cpp ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal
|
||||
|
||||
.PHONY: llama/build-info.cpp
|
||||
llama/build-info.cpp: llama/build-info.cpp.in
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' $< > $@
|
||||
llama/build-info.cpp: llama/build-info.cpp.in llama/llama.cpp
|
||||
sed -e 's|@FETCH_HEAD@|$(FETCH_HEAD)|' <$< >$@
|
||||
|
||||
ml/backend/ggml/ggml/src/ggml-metal/ggml-metal-embed.metal: ml/backend/ggml/ggml
|
||||
go generate ./$(@D)
|
||||
|
||||
.PHONY: llama/llama.cpp
|
||||
llama/llama.cpp: llama/vendor/ apply-patches
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
llama/llama.cpp: llama/vendor
|
||||
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /) $@
|
||||
|
||||
.PHONY: ml/backend/ggml/ggml apply-patches
|
||||
ml/backend/ggml/ggml: llama/vendor/ggml/ apply-patches
|
||||
rsync -arvzc -f "merge $@/.rsync-filter" $< $@
|
||||
.PHONY: ml/backend/ggml/ggml
|
||||
ml/backend/ggml/ggml: llama/vendor
|
||||
rsync -arvzc --delete -f "include LICENSE" -f "merge $@/.rsync-filter" $(addprefix $<,/LICENSE /ggml/) $@
|
||||
|
||||
PATCHES=$(wildcard llama/patches/*.patch)
|
||||
PATCHED=$(join $(dir $(PATCHES)), $(addsuffix ed, $(addprefix ., $(notdir $(PATCHES)))))
|
||||
|
||||
.PHONY: apply-patches
|
||||
.NOTPARALLEL:
|
||||
apply-patches: $(addsuffix ed, $(PATCHES))
|
||||
apply-patches: $(PATCHED)
|
||||
|
||||
%.patched: %.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then touch $@; else git -C $(WORKDIR) am --abort; exit 1; fi
|
||||
llama/patches/.%.patched: llama/patches/%.patch
|
||||
@if git -c user.name=nobody -c 'user.email=<>' -C $(WORKDIR) am -3 $(realpath $<); then \
|
||||
touch $@; \
|
||||
else \
|
||||
echo "Patch failed. Resolve any conflicts then continue."; \
|
||||
echo "1. Run 'git -C $(WORKDIR) am --continue'"; \
|
||||
echo "2. Run 'make -f $(lastword $(MAKEFILE_LIST)) format-patches'"; \
|
||||
echo "3. Run 'make -f $(lastword $(MAKEFILE_LIST)) clean apply-patches'"; \
|
||||
exit 1; \
|
||||
fi
|
||||
|
||||
.PHONY: checkout
|
||||
checkout: $(WORKDIR)
|
||||
@@ -57,4 +68,5 @@ format-patches: llama/patches
|
||||
|
||||
.PHONE: clean
|
||||
clean: checkout
|
||||
$(RM) $(addsuffix ed, $(PATCHES))
|
||||
@git -C $(WORKDIR) am --abort || true
|
||||
$(RM) llama/patches/.*.patched
|
||||
|
||||
110
README.md
110
README.md
@@ -1,6 +1,6 @@
|
||||
<div align="center">
|
||||
<a href="https://ollama.com" />
|
||||
<img alt="ollama" height="200px" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
<a href="https://ollama.com">
|
||||
<img alt="ollama" width="240" src="https://github.com/ollama/ollama/assets/3325447/0d0b44e2-8f4a-4e99-9b52-a5c1c741c8f7">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
@@ -10,7 +10,7 @@ Get up and running with large language models.
|
||||
|
||||
### macOS
|
||||
|
||||
[Download](https://ollama.com/download/Ollama-darwin.zip)
|
||||
[Download](https://ollama.com/download/Ollama.dmg)
|
||||
|
||||
### Windows
|
||||
|
||||
@@ -26,7 +26,7 @@ Please download from ollama [official](https://ollama.com/download/OllamaSetup.e
|
||||
|
||||
Example extra list add on this repo.
|
||||
```
|
||||
"gfx803" "gfx900:xnack-" "gfx902" gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150(expertimental)"...
|
||||
(ROCm5) "gfx803" "gfx900:xnack-" "gfx902" (ROCm6) gfx906:xnack- "gfx1010:xnack-" "gfx1011" "gfx1012:xnack-" "gfx1031" "gfx1032" "gfx1034" "gfx1035" "gfx1036" "gfx1103" "gfx1150" "gfx1201" (expertimental)"...
|
||||
```
|
||||
Please follow the [wiki](https://github.com/likelovewant/ollama-for-amd/wiki) guide to build or use the pre-release version.
|
||||
|
||||
@@ -62,10 +62,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
|
||||
|
||||
## Quickstart
|
||||
|
||||
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
|
||||
To run and chat with [Gemma 3](https://ollama.com/library/gemma3):
|
||||
|
||||
```shell
|
||||
ollama run llama3.2
|
||||
ollama run gemma3
|
||||
```
|
||||
|
||||
## Model library
|
||||
@@ -76,8 +76,15 @@ Here are some example models that can be downloaded:
|
||||
|
||||
| Model | Parameters | Size | Download |
|
||||
| ------------------ | ---------- | ----- | -------------------------------- |
|
||||
| Gemma 3 | 1B | 815MB | `ollama run gemma3:1b` |
|
||||
| Gemma 3 | 4B | 3.3GB | `ollama run gemma3` |
|
||||
| Gemma 3 | 12B | 8.1GB | `ollama run gemma3:12b` |
|
||||
| Gemma 3 | 27B | 17GB | `ollama run gemma3:27b` |
|
||||
| QwQ | 32B | 20GB | `ollama run qwq` |
|
||||
| DeepSeek-R1 | 7B | 4.7GB | `ollama run deepseek-r1` |
|
||||
| DeepSeek-R1 | 671B | 404GB | `ollama run deepseek-r1:671b` |
|
||||
| Llama 4 | 109B | 67GB | `ollama run llama4:scout` |
|
||||
| Llama 4 | 400B | 245GB | `ollama run llama4:maverick` |
|
||||
| Llama 3.3 | 70B | 43GB | `ollama run llama3.3` |
|
||||
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
|
||||
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
|
||||
@@ -86,10 +93,7 @@ Here are some example models that can be downloaded:
|
||||
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
|
||||
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
|
||||
| Phi 4 | 14B | 9.1GB | `ollama run phi4` |
|
||||
| Phi 3 Mini | 3.8B | 2.3GB | `ollama run phi3` |
|
||||
| Gemma 2 | 2B | 1.6GB | `ollama run gemma2:2b` |
|
||||
| Gemma 2 | 9B | 5.5GB | `ollama run gemma2` |
|
||||
| Gemma 2 | 27B | 16GB | `ollama run gemma2:27b` |
|
||||
| Phi 4 Mini | 3.8B | 2.5GB | `ollama run phi4-mini` |
|
||||
| Mistral | 7B | 4.1GB | `ollama run mistral` |
|
||||
| Moondream 2 | 1.4B | 829MB | `ollama run moondream` |
|
||||
| Neural Chat | 7B | 4.1GB | `ollama run neural-chat` |
|
||||
@@ -97,7 +101,7 @@ Here are some example models that can be downloaded:
|
||||
| Code Llama | 7B | 3.8GB | `ollama run codellama` |
|
||||
| Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` |
|
||||
| LLaVA | 7B | 4.5GB | `ollama run llava` |
|
||||
| Solar | 10.7B | 6.1GB | `ollama run solar` |
|
||||
| Granite-3.3 | 8B | 4.9GB | `ollama run granite3.3` |
|
||||
|
||||
> [!NOTE]
|
||||
> You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
@@ -297,6 +301,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
### Web & Desktop
|
||||
|
||||
- [Open WebUI](https://github.com/open-webui/open-webui)
|
||||
- [SwiftChat (macOS with ReactNative)](https://github.com/aws-samples/swift-chat)
|
||||
- [Enchanted (macOS native)](https://github.com/AugustDev/enchanted)
|
||||
- [Hollama](https://github.com/fmaclen/hollama)
|
||||
- [Lollms-Webui](https://github.com/ParisNeo/lollms-webui)
|
||||
@@ -304,12 +309,13 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt)
|
||||
- [HTML UI](https://github.com/rtcfirefly/ollama-ui)
|
||||
- [Saddle](https://github.com/jikkuatwork/saddle)
|
||||
- [TagSpaces](https://www.tagspaces.org) (A platform for file-based apps, [utilizing Ollama](https://docs.tagspaces.org/ai/) for the generation of tags and descriptions)
|
||||
- [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama)
|
||||
- [Chatbot UI v2](https://github.com/mckaywrigley/chatbot-ui)
|
||||
- [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file)
|
||||
- [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui)
|
||||
- [Ollamac](https://github.com/kevinhermawan/Ollamac)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI/blob/main/docs/config-local-ollama.md)
|
||||
- [big-AGI](https://github.com/enricoros/big-AGI)
|
||||
- [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core)
|
||||
- [Amica](https://github.com/semperai/amica)
|
||||
- [chatd](https://github.com/BruceMacD/chatd)
|
||||
@@ -330,6 +336,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Ollama Basic Chat: Uses HyperDiv Reactive UI](https://github.com/rapidarchitect/ollama_basic_chat)
|
||||
- [Ollama-chats RPG](https://github.com/drazdra/ollama-chats)
|
||||
- [IntelliBar](https://intellibar.app/) (AI-powered assistant for macOS)
|
||||
- [Jirapt](https://github.com/AliAhmedNada/jirapt) (Jira Integration to generate issues, tasks, epics)
|
||||
- [ojira](https://github.com/AliAhmedNada/ojira) (Jira chrome plugin to easily generate descriptions for tasks)
|
||||
- [QA-Pilot](https://github.com/reid41/QA-Pilot) (Interactive chat tool that can leverage Ollama models for rapid understanding and navigation of GitHub code repositories)
|
||||
- [ChatOllama](https://github.com/sugarforever/chat-ollama) (Open Source Chatbot based on Ollama with Knowledge Bases)
|
||||
- [CRAG Ollama Chat](https://github.com/Nagi-ovo/CRAG-Ollama-Chat) (Simple Web Search with Corrective RAG)
|
||||
@@ -343,13 +351,14 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [RWKV-Runner](https://github.com/josStorer/RWKV-Runner) (RWKV offline LLM deployment tool, also usable as a client for ChatGPT and Ollama)
|
||||
- [Ollama Grid Search](https://github.com/dezoito/ollama-grid-search) (app to evaluate and compare models)
|
||||
- [Olpaka](https://github.com/Otacon/olpaka) (User-friendly Flutter Web App for Ollama)
|
||||
- [Casibase](https://casibase.org) (An open source AI knowledge base and dialogue system combining the latest RAG, SSO, ollama support, and multiple large language models.)
|
||||
- [OllamaSpring](https://github.com/CrazyNeil/OllamaSpring) (Ollama Client for macOS)
|
||||
- [LLocal.in](https://github.com/kartikm7/llocal) (Easy to use Electron Desktop Client for Ollama)
|
||||
- [Shinkai Desktop](https://github.com/dcSpark/shinkai-apps) (Two click install Local AI using Ollama + Files + RAG)
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in discord )
|
||||
- [AiLama](https://github.com/zeyoyt/ailama) (A Discord User App that allows you to interact with Ollama anywhere in Discord)
|
||||
- [Ollama with Google Mesop](https://github.com/rapidarchitect/ollama_mesop/) (Mesop Chat Client implementation with Ollama)
|
||||
- [R2R](https://github.com/SciPhi-AI/R2R) (Open-source RAG engine)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy to use GUI with sample custom LLM for Drivers Education)
|
||||
- [Ollama-Kis](https://github.com/elearningshow/ollama-kis) (A simple easy-to-use GUI with sample custom LLM for Drivers Education)
|
||||
- [OpenGPA](https://opengpa.org) (Open-source offline-first Enterprise Agentic Application)
|
||||
- [Painting Droid](https://github.com/mateuszmigas/painting-droid) (Painting app with AI integrations)
|
||||
- [Kerlig AI](https://www.kerlig.com/) (AI writing assistant for macOS)
|
||||
@@ -358,22 +367,22 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [LLMStack](https://github.com/trypromptly/LLMStack) (No-code multi-agent framework to build LLM agents and workflows)
|
||||
- [BoltAI for Mac](https://boltai.com) (AI Chat Client for Mac)
|
||||
- [Harbor](https://github.com/av/harbor) (Containerized LLM Toolkit with Ollama as default backend)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for linux and macos made with GTK4 and Adwaita)
|
||||
- [PyGPT](https://github.com/szczyglis-dev/py-gpt) (AI desktop assistant for Linux, Windows, and Mac)
|
||||
- [Alpaca](https://github.com/Jeffser/Alpaca) (An Ollama client application for Linux and macOS made with GTK4 and Adwaita)
|
||||
- [AutoGPT](https://github.com/Significant-Gravitas/AutoGPT/blob/master/docs/content/platform/ollama.md) (AutoGPT Ollama integration)
|
||||
- [Go-CREW](https://www.jonathanhecl.com/go-crew/) (Powerful Offline RAG in Golang)
|
||||
- [PartCAD](https://github.com/openvmp/partcad/) (CAD model generation with OpenSCAD and CadQuery)
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot and Ollama4j
|
||||
- [Ollama4j Web UI](https://github.com/ollama4j/ollama4j-web-ui) - Java-based Web UI for Ollama built with Vaadin, Spring Boot, and Ollama4j
|
||||
- [PyOllaMx](https://github.com/kspviswa/pyOllaMx) - macOS application capable of chatting with both Ollama and Apple MLX models.
|
||||
- [Claude Dev](https://github.com/saoudrizwan/claude-dev) - VSCode extension for multi-file/whole-repo coding
|
||||
- [Cline](https://github.com/cline/cline) - Formerly known as Claude Dev is a VSCode extension for multi-file/whole-repo coding
|
||||
- [Cherry Studio](https://github.com/kangfenmao/cherry-studio) (Desktop client with Ollama support)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
|
||||
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
|
||||
- [Tkinter-based client](https://github.com/chyok/ollama-gui) (Python tkinter-based Client for Ollama)
|
||||
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
|
||||
- [Local Multimodal AI Chat](https://github.com/Leon-Sander/Local-Multimodal-AI-Chat) (Ollama-based LLM Chat with support for multiple features, including PDF RAG, voice chat, image-based interactions, and integration with OpenAI.)
|
||||
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG on Mac/Windows/Linux)
|
||||
- [ARGO](https://github.com/xark-argo/argo) (Locally download and run Ollama and Huggingface models with RAG and deep research on Mac/Windows/Linux)
|
||||
- [OrionChat](https://github.com/EliasPereirah/OrionChat) - OrionChat is a web interface for chatting with different AI providers
|
||||
- [G1](https://github.com/bklieger-groq/g1) (Prototype of using prompting strategies to improve the LLM's reasoning through o1-like reasoning chains.)
|
||||
- [Web management](https://github.com/lemonit-eric-mao/ollama-web-management) (Web management page)
|
||||
@@ -385,7 +394,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [DualMind](https://github.com/tcsenpai/dualmind) (Experimental app allowing two models to talk to each other in the terminal or in a web interface)
|
||||
- [ollamarama-matrix](https://github.com/h1ddenpr0cess20/ollamarama-matrix) (Ollama chatbot for the Matrix chat protocol)
|
||||
- [ollama-chat-app](https://github.com/anan1213095357/ollama-chat-app) (Flutter-based chat app)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard and said in the meetings)
|
||||
- [Perfect Memory AI](https://www.perfectmemory.ai/) (Productivity AI assists personalized by what you have seen on your screen, heard, and said in the meetings)
|
||||
- [Hexabot](https://github.com/hexastack/hexabot) (A conversational AI builder)
|
||||
- [Reddit Rate](https://github.com/rapidarchitect/reddit_analyzer) (Search and Rate Reddit topics with a weighted summation)
|
||||
- [OpenTalkGpt](https://github.com/adarshM84/OpenTalkGpt) (Chrome Extension to manage open-source models supported by Ollama, create custom models, and chat with models from a user-friendly UI)
|
||||
@@ -403,11 +412,31 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [ChibiChat](https://github.com/CosmicEventHorizon/ChibiChat) (Kotlin-based Android app to chat with Ollama and Koboldcpp API endpoints)
|
||||
- [LocalLLM](https://github.com/qusaismael/localllm) (Minimal Web-App to run ollama models on it with a GUI)
|
||||
- [Ollamazing](https://github.com/buiducnhat/ollamazing) (Web extension to run Ollama models)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivent endpoint with Ollama support for running locally)
|
||||
- [OpenDeepResearcher-via-searxng](https://github.com/benhaotang/OpenDeepResearcher-via-searxng) (A Deep Research equivalent endpoint with Ollama support for running locally)
|
||||
- [AntSK](https://github.com/AIDotNet/AntSK) (Out-of-the-box & Adaptable RAG Chatbot)
|
||||
- [MaxKB](https://github.com/1Panel-dev/MaxKB/) (Ready-to-use & flexible RAG Chatbot)
|
||||
- [yla](https://github.com/danielekp/yla) (Web interface to freely interact with your customized models)
|
||||
- [LangBot](https://github.com/RockChinQ/LangBot) (LLM-based instant messaging bots platform, with Agents, RAG features, supports multiple platforms)
|
||||
- [1Panel](https://github.com/1Panel-dev/1Panel/) (Web-based Linux Server Management Tool)
|
||||
- [AstrBot](https://github.com/Soulter/AstrBot/) (User-friendly LLM-based multi-platform chatbot with a WebUI, supporting RAG, LLM agents, and plugins integration)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
- [Flufy](https://github.com/Aharon-Bensadoun/Flufy) (A beautiful chat interface for interacting with Ollama's API. Built with React, TypeScript, and Material-UI.)
|
||||
- [Ellama](https://github.com/zeozeozeo/ellama) (Friendly native app to chat with an Ollama instance)
|
||||
- [screenpipe](https://github.com/mediar-ai/screenpipe) Build agents powered by your screen history
|
||||
- [Ollamb](https://github.com/hengkysteen/ollamb) (Simple yet rich in features, cross-platform built with Flutter and designed for Ollama. Try the [web demo](https://hengkysteen.github.io/demo/ollamb/).)
|
||||
- [Writeopia](https://github.com/Writeopia/Writeopia) (Text editor with integration with Ollama)
|
||||
- [AppFlowy](https://github.com/AppFlowy-IO/AppFlowy) (AI collaborative workspace with Ollama, cross-platform and self-hostable)
|
||||
- [Lumina](https://github.com/cushydigit/lumina.git) (A lightweight, minimal React.js frontend for interacting with Ollama servers)
|
||||
- [Tiny Notepad](https://pypi.org/project/tiny-notepad) (A lightweight, notepad-like interface to chat with ollama available on PyPI)
|
||||
- [macLlama (macOS native)](https://github.com/hellotunamayo/macLlama) (A native macOS GUI application for interacting with Ollama models, featuring a chat interface.)
|
||||
- [GPTranslate](https://github.com/philberndt/GPTranslate) (A fast and lightweight, AI powered desktop translation application written with Rust and Tauri. Features real-time translation with OpenAI/Azure/Ollama.)
|
||||
- [ollama launcher](https://github.com/NGC13009/ollama-launcher) (A launcher for Ollama, aiming to provide users with convenient functions such as ollama server launching, management, or configuration.)
|
||||
- [ai-hub](https://github.com/Aj-Seven/ai-hub) (AI Hub supports multiple models via API keys and Chat support via Ollama API.)
|
||||
- [Mayan EDMS](https://gitlab.com/mayan-edms/mayan-edms) (Open source document management system to organize, tag, search, and automate your files with powerful Ollama driven workflows.)
|
||||
- [Serene Pub](https://github.com/doolijb/serene-pub) (Beginner friendly, open source AI Roleplaying App for Windows, Mac OS and Linux. Search, download and use models with Ollama all inside the app.)
|
||||
- [Andes](https://github.com/aqerd/andes) (A Visual Studio Code extension that provides a local UI interface for Ollama models)
|
||||
- [Clueless](https://github.com/KashyapTan/clueless) (Open Source & Local Cluely: A desktop application LLM assistant to help you talk to anything on your screen using locally served Ollama models. Also undetectable to screenshare)
|
||||
- [ollama-co2](https://github.com/carbonatedWaterOrg/ollama-co2) (FastAPI web interface for monitoring and managing local and remote Ollama servers with real-time model monitoring and concurrent downloads)
|
||||
|
||||
### Cloud
|
||||
|
||||
@@ -447,10 +476,17 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [SwollamaCLI](https://github.com/marcusziade/Swollama) bundled with the Swollama Swift package. [Demo](https://github.com/marcusziade/Swollama?tab=readme-ov-file#cli-usage)
|
||||
- [aichat](https://github.com/sigoden/aichat) All-in-one LLM CLI tool featuring Shell Assistant, Chat-REPL, RAG, AI tools & agents, with access to OpenAI, Claude, Gemini, Ollama, Groq, and more.
|
||||
- [PowershAI](https://github.com/rrg92/powershai) PowerShell module that brings AI to terminal on Windows, including support for Ollama
|
||||
- [DeepShell](https://github.com/Abyss-c0re/deepshell) Your self-hosted AI assistant. Interactive Shell, Files and Folders analysis.
|
||||
- [orbiton](https://github.com/xyproto/orbiton) Configuration-free text editor and IDE with support for tab completion with Ollama.
|
||||
- [orca-cli](https://github.com/molbal/orca-cli) Ollama Registry CLI Application - Browse, pull, and download models from Ollama Registry in your terminal.
|
||||
- [GGUF-to-Ollama](https://github.com/jonathanhecl/gguf-to-ollama) - Importing GGUF to Ollama made easy (multiplatform)
|
||||
- [AWS-Strands-With-Ollama](https://github.com/rapidarchitect/ollama_strands) - AWS Strands Agents with Ollama Examples
|
||||
- [ollama-multirun](https://github.com/attogram/ollama-multirun) - A bash shell script to run a single prompt against any or all of your locally installed ollama models, saving the output and performance statistics as easily navigable web pages. ([Demo](https://attogram.github.io/ai_test_zone/))
|
||||
- [ollama-bash-toolshed](https://github.com/attogram/ollama-bash-toolshed) - Bash scripts to chat with tool using models. Add new tools to your shed with ease. Runs on Ollama.
|
||||
|
||||
### Apple Vision Pro
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Cross-platform AI chat app supporting Apple Vision Pro via "Designed for iPad")
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
|
||||
### Database
|
||||
@@ -473,7 +509,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
|
||||
### Libraries
|
||||
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [LangChain](https://python.langchain.com/docs/integrations/chat/ollama/) and [LangChain.js](https://js.langchain.com/docs/integrations/chat/ollama/) with [example](https://js.langchain.com/docs/tutorials/local_rag/)
|
||||
- [Firebase Genkit](https://firebase.google.com/docs/genkit/plugins/ollama)
|
||||
- [crewAI](https://github.com/crewAIInc/crewAI)
|
||||
- [Yacana](https://remembersoftwares.github.io/yacana/) (User-friendly multi-agent framework for brainstorming and executing predetermined flows with built-in tool integration)
|
||||
@@ -520,18 +556,27 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Swollama for Swift](https://github.com/marcusziade/Swollama) with [DocC](https://marcusziade.github.io/Swollama/documentation/swollama/)
|
||||
- [GoLamify](https://github.com/prasad89/golamify)
|
||||
- [Ollama for Haskell](https://github.com/tusharad/ollama-haskell)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in unified API)
|
||||
- [multi-llm-ts](https://github.com/nbonamy/multi-llm-ts) (A Typescript/JavaScript library allowing access to different LLM in a unified API)
|
||||
- [LlmTornado](https://github.com/lofcz/llmtornado) (C# library providing a unified interface for major FOSS & Commercial inference APIs)
|
||||
- [Ollama for Zig](https://github.com/dravenk/ollama-zig)
|
||||
- [Abso](https://github.com/lunary-ai/abso) (OpenAI-compatible TypeScript SDK for any LLM provider)
|
||||
- [Nichey](https://github.com/goodreasonai/nichey) is a Python package for generating custom wikis for your research topic
|
||||
- [Ollama for D](https://github.com/kassane/ollama-d)
|
||||
- [OllamaPlusPlus](https://github.com/HardCodeDev777/OllamaPlusPlus) (Very simple C++ library for Ollama)
|
||||
- [any-llm](https://github.com/mozilla-ai/any-llm) (A single interface to use different llm providers by [mozilla.ai](https://www.mozilla.ai/))
|
||||
- [any-agent](https://github.com/mozilla-ai/any-agent) (A single interface to use and evaluate different agent frameworks by [mozilla.ai](https://www.mozilla.ai/))
|
||||
- [Neuro SAN](https://github.com/cognizant-ai-lab/neuro-san-studio) (Data-driven multi-agent orchestration framework) with [example](https://github.com/cognizant-ai-lab/neuro-san-studio/blob/main/docs/user_guide.md#ollama)
|
||||
- [achatbot-go](https://github.com/ai-bot-pro/achatbot-go) a multimodal(text/audio/image) chatbot.
|
||||
|
||||
### Mobile
|
||||
|
||||
- [SwiftChat](https://github.com/aws-samples/swift-chat) (Lightning-fast Cross-platform AI chat app with native UI for Android, iOS, and iPad)
|
||||
- [Enchanted](https://github.com/AugustDev/enchanted)
|
||||
- [Maid](https://github.com/Mobile-Artificial-Intelligence/maid)
|
||||
- [Ollama App](https://github.com/JHubi1/ollama-app) (Modern and easy-to-use multi-platform client for Ollama)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
|
||||
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy-focused LLM chat interface with optional encryption)
|
||||
- [Ollama Android Chat](https://github.com/sunshine0523/OllamaServer) (No need for Termux, start the Ollama service with one click on an Android device)
|
||||
- [Reins](https://github.com/ibrahimcetin/reins) (Easily tweak parameters, customize system prompts per chat, and enhance your AI experiments with reasoning model support.)
|
||||
|
||||
### Extensions & Plugins
|
||||
|
||||
@@ -553,7 +598,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Obsidian Local GPT plugin](https://github.com/pfrankov/obsidian-local-gpt)
|
||||
- [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama)
|
||||
- [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use ollama as a copilot like Github copilot)
|
||||
- [Ollama Copilot](https://github.com/bernardo-bruning/ollama-copilot) (Proxy that allows you to use Ollama as a copilot like GitHub Copilot)
|
||||
- [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)
|
||||
- [Wingman-AI](https://github.com/RussellCanfield/wingman-ai) (Copilot code and chat alternative using Ollama and Hugging Face)
|
||||
- [Page Assist](https://github.com/n4ze3m/page-assist) (Chrome Extension)
|
||||
@@ -563,8 +608,8 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [Discord-Ollama Chat Bot](https://github.com/kevinthedang/discord-ollama) (Generalized TypeScript Discord Bot w/ Tuning Documentation)
|
||||
- [ChatGPTBox: All in one browser extension](https://github.com/josStorer/chatGPTBox) with [Integrating Tutorial](https://github.com/josStorer/chatGPTBox/issues/616#issuecomment-1975186467)
|
||||
- [Discord AI chat/moderation bot](https://github.com/rapmd73/Companion) Chat/moderation bot written in python. Uses Ollama to create personalities.
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depends on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front end Open WebUI service.)
|
||||
- [Headless Ollama](https://github.com/nischalj10/headless-ollama) (Scripts to automatically install ollama client & models on any OS for apps that depend on ollama server)
|
||||
- [Terraform AWS Ollama & Open WebUI](https://github.com/xuyangbocn/terraform-aws-self-host-llm) (A Terraform module to deploy on AWS a ready-to-use Ollama service, together with its front-end Open WebUI service.)
|
||||
- [node-red-contrib-ollama](https://github.com/jakubburkiewicz/node-red-contrib-ollama)
|
||||
- [Local AI Helper](https://github.com/ivostoykov/localAI) (Chrome and Firefox extensions that enable interactions with the active tab and customisable API endpoints. Includes secure storage for user prompts.)
|
||||
- [vnc-lm](https://github.com/jake83741/vnc-lm) (Discord bot for messaging with LLMs through Ollama and LiteLLM. Seamlessly move between local and flagship models.)
|
||||
@@ -577,12 +622,19 @@ See the [API documentation](./docs/api.md) for all endpoints.
|
||||
- [TextLLaMA](https://github.com/adarshM84/TextLLaMA) A Chrome Extension that helps you write emails, correct grammar, and translate into any language
|
||||
- [Simple-Discord-AI](https://github.com/zyphixor/simple-discord-ai)
|
||||
- [LLM Telegram Bot](https://github.com/innightwolfsleep/llm_telegram_bot) (telegram bot, primary for RP. Oobabooga-like buttons, [A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui) API integration e.t.c)
|
||||
- [mcp-llm](https://github.com/sammcj/mcp-llm) (MCP Server to allow LLMs to call other LLMs)
|
||||
- [SimpleOllamaUnity](https://github.com/HardCodeDev777/SimpleOllamaUnity) (Unity Engine extension for communicating with Ollama in a few lines of code. Also works at runtime)
|
||||
- [UnityCodeLama](https://github.com/HardCodeDev777/UnityCodeLama) (Unity Edtior tool to analyze scripts via Ollama)
|
||||
- [NativeMind](https://github.com/NativeMindBrowser/NativeMindExtension) (Private, on-device AI Assistant, no cloud dependencies)
|
||||
- [GMAI - Gradle Managed AI](https://gmai.premex.se/) (Gradle plugin for automated Ollama lifecycle management during build phases)
|
||||
- [NOMYO Router](https://github.com/nomyo-ai/nomyo-router) (A transparent Ollama proxy with model deployment aware routing which auto-manages multiple Ollama instances in a given network)
|
||||
|
||||
### Supported backends
|
||||
|
||||
- [llama.cpp](https://github.com/ggerganov/llama.cpp) project founded by Georgi Gerganov.
|
||||
- [llama.cpp](https://github.com/ggml-org/llama.cpp) project founded by Georgi Gerganov.
|
||||
|
||||
### Observability
|
||||
- [Opik](https://www.comet.com/docs/opik/cookbook/ollama) is an open-source platform to debug, evaluate, and monitor your LLM applications, RAG systems, and agentic workflows with comprehensive tracing, automated evaluations, and production-ready dashboards. Opik supports native intergration to Ollama.
|
||||
- [Lunary](https://lunary.ai/docs/integrations/ollama) is the leading open-source LLM observability platform. It provides a variety of enterprise-grade features such as real-time analytics, prompt templates management, PII masking, and comprehensive agent tracing.
|
||||
- [OpenLIT](https://github.com/openlit/openlit) is an OpenTelemetry-native tool for monitoring Ollama Applications & GPUs using traces and metrics.
|
||||
- [HoneyHive](https://docs.honeyhive.ai/integrations/ollama) is an AI observability and evaluation platform for AI agents. Use HoneyHive to evaluate agent performance, interrogate failures, and monitor quality in production.
|
||||
|
||||
@@ -24,7 +24,10 @@ import (
|
||||
"net/http"
|
||||
"net/url"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/auth"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/version"
|
||||
@@ -42,6 +45,12 @@ func checkError(resp *http.Response, body []byte) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
if resp.StatusCode == http.StatusUnauthorized {
|
||||
authError := AuthorizationError{StatusCode: resp.StatusCode}
|
||||
json.Unmarshal(body, &authError)
|
||||
return authError
|
||||
}
|
||||
|
||||
apiError := StatusError{StatusCode: resp.StatusCode}
|
||||
|
||||
err := json.Unmarshal(body, &apiError)
|
||||
@@ -76,6 +85,14 @@ func NewClient(base *url.URL, http *http.Client) *Client {
|
||||
}
|
||||
}
|
||||
|
||||
func getAuthorizationToken(ctx context.Context, challenge string) (string, error) {
|
||||
token, err := auth.Sign(ctx, []byte(challenge))
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return token, nil
|
||||
}
|
||||
|
||||
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
|
||||
var reqBody io.Reader
|
||||
var data []byte
|
||||
@@ -97,6 +114,21 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), reqBody)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -106,6 +138,10 @@ func (c *Client) do(ctx context.Context, method, path string, reqData, respData
|
||||
request.Header.Set("Accept", "application/json")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
respObj, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -143,6 +179,22 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
}
|
||||
|
||||
requestURL := c.base.JoinPath(path)
|
||||
|
||||
var token string
|
||||
if envconfig.UseAuth() || c.base.Hostname() == "ollama.com" {
|
||||
var err error
|
||||
now := strconv.FormatInt(time.Now().Unix(), 10)
|
||||
chal := fmt.Sprintf("%s,%s?ts=%s", method, path, now)
|
||||
token, err = getAuthorizationToken(ctx, chal)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
q := requestURL.Query()
|
||||
q.Set("ts", now)
|
||||
requestURL.RawQuery = q.Encode()
|
||||
}
|
||||
|
||||
request, err := http.NewRequestWithContext(ctx, method, requestURL.String(), buf)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -152,6 +204,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
request.Header.Set("Accept", "application/x-ndjson")
|
||||
request.Header.Set("User-Agent", fmt.Sprintf("ollama/%s (%s %s) Go/%s", version.Version, runtime.GOARCH, runtime.GOOS, runtime.Version()))
|
||||
|
||||
if token != "" {
|
||||
request.Header.Set("Authorization", token)
|
||||
}
|
||||
|
||||
response, err := c.http.Do(request)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -164,7 +220,8 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
scanner.Buffer(scanBuf, maxBufferSize)
|
||||
for scanner.Scan() {
|
||||
var errorResponse struct {
|
||||
Error string `json:"error,omitempty"`
|
||||
Error string `json:"error,omitempty"`
|
||||
SigninURL string `json:"signin_url,omitempty"`
|
||||
}
|
||||
|
||||
bts := scanner.Bytes()
|
||||
@@ -172,11 +229,13 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
return fmt.Errorf("unmarshal: %w", err)
|
||||
}
|
||||
|
||||
if errorResponse.Error != "" {
|
||||
return errors.New(errorResponse.Error)
|
||||
}
|
||||
|
||||
if response.StatusCode >= http.StatusBadRequest {
|
||||
if response.StatusCode == http.StatusUnauthorized {
|
||||
return AuthorizationError{
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
SigninURL: errorResponse.SigninURL,
|
||||
}
|
||||
} else if response.StatusCode >= http.StatusBadRequest {
|
||||
return StatusError{
|
||||
StatusCode: response.StatusCode,
|
||||
Status: response.Status,
|
||||
@@ -184,6 +243,10 @@ func (c *Client) stream(ctx context.Context, method, path string, data any, fn f
|
||||
}
|
||||
}
|
||||
|
||||
if errorResponse.Error != "" {
|
||||
return errors.New(errorResponse.Error)
|
||||
}
|
||||
|
||||
if err := fn(bts); err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -378,3 +441,21 @@ func (c *Client) Version(ctx context.Context) (string, error) {
|
||||
|
||||
return version.Version, nil
|
||||
}
|
||||
|
||||
// Signout will signout a client for a local ollama server.
|
||||
func (c *Client) Signout(ctx context.Context) error {
|
||||
return c.do(ctx, http.MethodPost, "/api/signout", nil, nil)
|
||||
}
|
||||
|
||||
// Disconnect will disconnect an ollama instance from ollama.com.
|
||||
func (c *Client) Disconnect(ctx context.Context, encodedKey string) error {
|
||||
return c.do(ctx, http.MethodDelete, fmt.Sprintf("/api/user/keys/%s", encodedKey), nil, nil)
|
||||
}
|
||||
|
||||
func (c *Client) Whoami(ctx context.Context) (*UserResponse, error) {
|
||||
var resp UserResponse
|
||||
if err := c.do(ctx, http.MethodPost, "/api/me", nil, &resp); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return &resp, nil
|
||||
}
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"net/http"
|
||||
@@ -90,6 +89,16 @@ func TestClientStream(t *testing.T) {
|
||||
},
|
||||
wantErr: "mid-stream error",
|
||||
},
|
||||
{
|
||||
name: "http status error takes precedence over general error",
|
||||
responses: []any{
|
||||
testError{
|
||||
message: "custom error message",
|
||||
statusCode: http.StatusInternalServerError,
|
||||
},
|
||||
},
|
||||
wantErr: "500",
|
||||
},
|
||||
{
|
||||
name: "successful stream completion",
|
||||
responses: []any{
|
||||
@@ -137,7 +146,7 @@ func TestClientStream(t *testing.T) {
|
||||
client := NewClient(&url.URL{Scheme: "http", Host: ts.Listener.Addr().String()}, http.DefaultClient)
|
||||
|
||||
var receivedChunks []ChatResponse
|
||||
err := client.stream(context.Background(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
err := client.stream(t.Context(), http.MethodPost, "/v1/chat", nil, func(chunk []byte) error {
|
||||
var resp ChatResponse
|
||||
if err := json.Unmarshal(chunk, &resp); err != nil {
|
||||
return fmt.Errorf("failed to unmarshal chunk: %w", err)
|
||||
@@ -223,7 +232,7 @@ func TestClientDo(t *testing.T) {
|
||||
ID string `json:"id"`
|
||||
Success bool `json:"success"`
|
||||
}
|
||||
err := client.do(context.Background(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
err := client.do(t.Context(), http.MethodPost, "/v1/messages", nil, &resp)
|
||||
|
||||
if tc.wantErr != "" {
|
||||
if err == nil {
|
||||
|
||||
515
api/types.go
515
api/types.go
@@ -11,7 +11,10 @@ import (
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
"github.com/google/uuid"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// StatusError is an error with an HTTP status code and message.
|
||||
@@ -35,6 +38,19 @@ func (e StatusError) Error() string {
|
||||
}
|
||||
}
|
||||
|
||||
type AuthorizationError struct {
|
||||
StatusCode int
|
||||
Status string
|
||||
SigninURL string `json:"signin_url"`
|
||||
}
|
||||
|
||||
func (e AuthorizationError) Error() string {
|
||||
if e.Status != "" {
|
||||
return e.Status
|
||||
}
|
||||
return "something went wrong, please see the ollama server logs for details"
|
||||
}
|
||||
|
||||
// ImageData represents the raw binary data of an image file.
|
||||
type ImageData []byte
|
||||
|
||||
@@ -75,13 +91,32 @@ type GenerateRequest struct {
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Images is an optional list of base64-encoded images accompanying this
|
||||
// Images is an optional list of raw image bytes accompanying this
|
||||
// request, for multimodal models.
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
|
||||
// Options lists model-specific options. For example, temperature can be
|
||||
// set through this field, if the model supports it.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
|
||||
// for supported models. Needs to be a pointer so we can distinguish between false
|
||||
// (request that thinking _not_ be used) and unset (use the old behavior
|
||||
// before this option was introduced)
|
||||
Think *ThinkValue `json:"think,omitempty"`
|
||||
|
||||
// Truncate is a boolean that, when set to true, truncates the chat history messages
|
||||
// if the rendered prompt exceeds the context length limit.
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Shift is a boolean that, when set to true, shifts the chat history
|
||||
// when hitting the context length limit instead of erroring.
|
||||
Shift *bool `json:"shift,omitempty"`
|
||||
|
||||
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
|
||||
// template instead of calling the model.
|
||||
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
|
||||
}
|
||||
|
||||
// ChatRequest describes a request sent by [Client.Chat].
|
||||
@@ -106,7 +141,24 @@ type ChatRequest struct {
|
||||
Tools `json:"tools,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Think controls whether thinking/reasoning models will think before
|
||||
// responding. Can be a boolean (true/false) or a string ("high", "medium", "low")
|
||||
// for supported models.
|
||||
Think *ThinkValue `json:"think,omitempty"`
|
||||
|
||||
// Truncate is a boolean that, when set to true, truncates the chat history messages
|
||||
// if the rendered prompt exceeds the context length limit.
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Shift is a boolean that, when set to true, shifts the chat history
|
||||
// when hitting the context length limit instead of erroring.
|
||||
Shift *bool `json:"shift,omitempty"`
|
||||
|
||||
// DebugRenderOnly is a debug option that, when set to true, returns the rendered
|
||||
// template instead of calling the model.
|
||||
DebugRenderOnly bool `json:"_debug_render_only,omitempty"`
|
||||
}
|
||||
|
||||
type Tools []Tool
|
||||
@@ -125,10 +177,14 @@ func (t Tool) String() string {
|
||||
// role ("system", "user", or "assistant"), the content and an optional list
|
||||
// of images.
|
||||
type Message struct {
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
Role string `json:"role"`
|
||||
Content string `json:"content"`
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
Images []ImageData `json:"images,omitempty"`
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
ToolName string `json:"tool_name,omitempty"`
|
||||
}
|
||||
|
||||
func (m *Message) UnmarshalJSON(b []byte) error {
|
||||
@@ -148,7 +204,7 @@ type ToolCall struct {
|
||||
}
|
||||
|
||||
type ToolCallFunction struct {
|
||||
Index int `json:"index,omitempty"`
|
||||
Index int `json:"index"`
|
||||
Name string `json:"name"`
|
||||
Arguments ToolCallFunctionArguments `json:"arguments"`
|
||||
}
|
||||
@@ -162,21 +218,122 @@ func (t *ToolCallFunctionArguments) String() string {
|
||||
|
||||
type Tool struct {
|
||||
Type string `json:"type"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Function ToolFunction `json:"function"`
|
||||
}
|
||||
|
||||
// PropertyType can be either a string or an array of strings
|
||||
type PropertyType []string
|
||||
|
||||
// UnmarshalJSON implements the json.Unmarshaler interface
|
||||
func (pt *PropertyType) UnmarshalJSON(data []byte) error {
|
||||
// Try to unmarshal as a string first
|
||||
var s string
|
||||
if err := json.Unmarshal(data, &s); err == nil {
|
||||
*pt = []string{s}
|
||||
return nil
|
||||
}
|
||||
|
||||
// If that fails, try to unmarshal as an array of strings
|
||||
var a []string
|
||||
if err := json.Unmarshal(data, &a); err != nil {
|
||||
return err
|
||||
}
|
||||
*pt = a
|
||||
return nil
|
||||
}
|
||||
|
||||
// MarshalJSON implements the json.Marshaler interface
|
||||
func (pt PropertyType) MarshalJSON() ([]byte, error) {
|
||||
if len(pt) == 1 {
|
||||
// If there's only one type, marshal as a string
|
||||
return json.Marshal(pt[0])
|
||||
}
|
||||
// Otherwise marshal as an array
|
||||
return json.Marshal([]string(pt))
|
||||
}
|
||||
|
||||
// String returns a string representation of the PropertyType
|
||||
func (pt PropertyType) String() string {
|
||||
if len(pt) == 0 {
|
||||
return ""
|
||||
}
|
||||
if len(pt) == 1 {
|
||||
return pt[0]
|
||||
}
|
||||
return fmt.Sprintf("%v", []string(pt))
|
||||
}
|
||||
|
||||
type ToolProperty struct {
|
||||
AnyOf []ToolProperty `json:"anyOf,omitempty"`
|
||||
Type PropertyType `json:"type,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Description string `json:"description,omitempty"`
|
||||
Enum []any `json:"enum,omitempty"`
|
||||
}
|
||||
|
||||
// ToTypeScriptType converts a ToolProperty to a TypeScript type string
|
||||
func (tp ToolProperty) ToTypeScriptType() string {
|
||||
if len(tp.AnyOf) > 0 {
|
||||
var types []string
|
||||
for _, anyOf := range tp.AnyOf {
|
||||
types = append(types, anyOf.ToTypeScriptType())
|
||||
}
|
||||
return strings.Join(types, " | ")
|
||||
}
|
||||
|
||||
if len(tp.Type) == 0 {
|
||||
return "any"
|
||||
}
|
||||
|
||||
if len(tp.Type) == 1 {
|
||||
return mapToTypeScriptType(tp.Type[0])
|
||||
}
|
||||
|
||||
var types []string
|
||||
for _, t := range tp.Type {
|
||||
types = append(types, mapToTypeScriptType(t))
|
||||
}
|
||||
return strings.Join(types, " | ")
|
||||
}
|
||||
|
||||
// mapToTypeScriptType maps JSON Schema types to TypeScript types
|
||||
func mapToTypeScriptType(jsonType string) string {
|
||||
switch jsonType {
|
||||
case "string":
|
||||
return "string"
|
||||
case "number", "integer":
|
||||
return "number"
|
||||
case "boolean":
|
||||
return "boolean"
|
||||
case "array":
|
||||
return "any[]"
|
||||
case "object":
|
||||
return "Record<string, any>"
|
||||
case "null":
|
||||
return "null"
|
||||
default:
|
||||
return "any"
|
||||
}
|
||||
}
|
||||
|
||||
type ToolFunctionParameters struct {
|
||||
Type string `json:"type"`
|
||||
Defs any `json:"$defs,omitempty"`
|
||||
Items any `json:"items,omitempty"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]ToolProperty `json:"properties"`
|
||||
}
|
||||
|
||||
func (t *ToolFunctionParameters) String() string {
|
||||
bts, _ := json.Marshal(t)
|
||||
return string(bts)
|
||||
}
|
||||
|
||||
type ToolFunction struct {
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description"`
|
||||
Parameters struct {
|
||||
Type string `json:"type"`
|
||||
Required []string `json:"required"`
|
||||
Properties map[string]struct {
|
||||
Type string `json:"type"`
|
||||
Description string `json:"description"`
|
||||
Enum []string `json:"enum,omitempty"`
|
||||
} `json:"properties"`
|
||||
} `json:"parameters"`
|
||||
Name string `json:"name"`
|
||||
Description string `json:"description,omitempty"`
|
||||
Parameters ToolFunctionParameters `json:"parameters"`
|
||||
}
|
||||
|
||||
func (t *ToolFunction) String() string {
|
||||
@@ -187,16 +344,38 @@ func (t *ToolFunction) String() string {
|
||||
// ChatResponse is the response returned by [Client.Chat]. Its fields are
|
||||
// similar to [GenerateResponse].
|
||||
type ChatResponse struct {
|
||||
Model string `json:"model"`
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
Message Message `json:"message"`
|
||||
DoneReason string `json:"done_reason,omitempty"`
|
||||
// Model is the model name that generated the response.
|
||||
Model string `json:"model"`
|
||||
|
||||
// RemoteModel is the name of the upstream model that generated the response.
|
||||
RemoteModel string `json:"remote_model,omitempty"`
|
||||
|
||||
// RemoteHost is the URL of the upstream Ollama host that generated the response.
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
|
||||
// CreatedAt is the timestamp of the response.
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
|
||||
// Message contains the message or part of a message from the model.
|
||||
Message Message `json:"message"`
|
||||
|
||||
// Done specifies if the response is complete.
|
||||
Done bool `json:"done"`
|
||||
|
||||
// DoneReason is the reason the model stopped generating text.
|
||||
DoneReason string `json:"done_reason,omitempty"`
|
||||
|
||||
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
|
||||
|
||||
Metrics
|
||||
}
|
||||
|
||||
// DebugInfo contains debug information for template rendering
|
||||
type DebugInfo struct {
|
||||
RenderedTemplate string `json:"rendered_template"`
|
||||
ImageCount int `json:"image_count,omitempty"`
|
||||
}
|
||||
|
||||
type Metrics struct {
|
||||
TotalDuration time.Duration `json:"total_duration,omitempty"`
|
||||
LoadDuration time.Duration `json:"load_duration,omitempty"`
|
||||
@@ -224,9 +403,6 @@ type Options struct {
|
||||
RepeatPenalty float32 `json:"repeat_penalty,omitempty"`
|
||||
PresencePenalty float32 `json:"presence_penalty,omitempty"`
|
||||
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
|
||||
Mirostat int `json:"mirostat,omitempty"`
|
||||
MirostatTau float32 `json:"mirostat_tau,omitempty"`
|
||||
MirostatEta float32 `json:"mirostat_eta,omitempty"`
|
||||
Stop []string `json:"stop,omitempty"`
|
||||
}
|
||||
|
||||
@@ -236,12 +412,7 @@ type Runner struct {
|
||||
NumBatch int `json:"num_batch,omitempty"`
|
||||
NumGPU int `json:"num_gpu,omitempty"`
|
||||
MainGPU int `json:"main_gpu,omitempty"`
|
||||
LowVRAM bool `json:"low_vram,omitempty"`
|
||||
F16KV bool `json:"f16_kv,omitempty"` // Deprecated: This option is ignored
|
||||
LogitsAll bool `json:"logits_all,omitempty"`
|
||||
VocabOnly bool `json:"vocab_only,omitempty"`
|
||||
UseMMap *bool `json:"use_mmap,omitempty"`
|
||||
UseMLock bool `json:"use_mlock,omitempty"`
|
||||
NumThread int `json:"num_thread,omitempty"`
|
||||
}
|
||||
|
||||
@@ -257,10 +428,14 @@ type EmbedRequest struct {
|
||||
// this request.
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Truncate truncates the input to fit the model's max sequence length.
|
||||
Truncate *bool `json:"truncate,omitempty"`
|
||||
|
||||
// Dimensions truncates the output embedding to the specified dimension.
|
||||
Dimensions int `json:"dimensions,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbedResponse is the response from [Client.Embed].
|
||||
@@ -286,7 +461,7 @@ type EmbeddingRequest struct {
|
||||
KeepAlive *Duration `json:"keep_alive,omitempty"`
|
||||
|
||||
// Options lists model-specific options.
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
}
|
||||
|
||||
// EmbeddingResponse is the response from [Client.Embeddings].
|
||||
@@ -296,18 +471,47 @@ type EmbeddingResponse struct {
|
||||
|
||||
// CreateRequest is the request passed to [Client.Create].
|
||||
type CreateRequest struct {
|
||||
Model string `json:"model"`
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
// Model is the model name to create.
|
||||
Model string `json:"model"`
|
||||
|
||||
// Stream specifies whether the response is streaming; it is true by default.
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Quantize is the quantization format for the model; leave blank to not change the quantization level.
|
||||
Quantize string `json:"quantize,omitempty"`
|
||||
|
||||
From string `json:"from,omitempty"`
|
||||
Files map[string]string `json:"files,omitempty"`
|
||||
Adapters map[string]string `json:"adapters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
License any `json:"license,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Parameters map[string]any `json:"parameters,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
// From is the name of the model or file to use as the source.
|
||||
From string `json:"from,omitempty"`
|
||||
|
||||
// RemoteHost is the URL of the upstream ollama API for the model (if any).
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
|
||||
// Files is a map of files include when creating the model.
|
||||
Files map[string]string `json:"files,omitempty"`
|
||||
|
||||
// Adapters is a map of LoRA adapters to include when creating the model.
|
||||
Adapters map[string]string `json:"adapters,omitempty"`
|
||||
|
||||
// Template is the template used when constructing a request to the model.
|
||||
Template string `json:"template,omitempty"`
|
||||
|
||||
// License is a string or list of strings for licenses.
|
||||
License any `json:"license,omitempty"`
|
||||
|
||||
// System is the system prompt for the model.
|
||||
System string `json:"system,omitempty"`
|
||||
|
||||
// Parameters is a map of hyper-parameters which are applied to the model.
|
||||
Parameters map[string]any `json:"parameters,omitempty"`
|
||||
|
||||
// Messages is a list of messages added to the model before chat and generation requests.
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
|
||||
Renderer string `json:"renderer,omitempty"`
|
||||
Parser string `json:"parser,omitempty"`
|
||||
|
||||
// Info is a map of additional information for the model
|
||||
Info map[string]any `json:"info,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
@@ -332,7 +536,7 @@ type ShowRequest struct {
|
||||
Template string `json:"template"`
|
||||
Verbose bool `json:"verbose"`
|
||||
|
||||
Options map[string]interface{} `json:"options"`
|
||||
Options map[string]any `json:"options"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
Name string `json:"name"`
|
||||
@@ -340,16 +544,22 @@ type ShowRequest struct {
|
||||
|
||||
// ShowResponse is the response returned from [Client.Show].
|
||||
type ShowResponse struct {
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
License string `json:"license,omitempty"`
|
||||
Modelfile string `json:"modelfile,omitempty"`
|
||||
Parameters string `json:"parameters,omitempty"`
|
||||
Template string `json:"template,omitempty"`
|
||||
System string `json:"system,omitempty"`
|
||||
Renderer string `json:"renderer,omitempty"`
|
||||
Parser string `json:"parser,omitempty"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Messages []Message `json:"messages,omitempty"`
|
||||
RemoteModel string `json:"remote_model,omitempty"`
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
ModelInfo map[string]any `json:"model_info,omitempty"`
|
||||
ProjectorInfo map[string]any `json:"projector_info,omitempty"`
|
||||
Tensors []Tensor `json:"tensors,omitempty"`
|
||||
Capabilities []model.Capability `json:"capabilities,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at,omitempty"`
|
||||
}
|
||||
|
||||
// CopyRequest is the request passed to [Client.Copy].
|
||||
@@ -361,9 +571,9 @@ type CopyRequest struct {
|
||||
// PullRequest is the request passed to [Client.Pull].
|
||||
type PullRequest struct {
|
||||
Model string `json:"model"`
|
||||
Insecure bool `json:"insecure,omitempty"`
|
||||
Username string `json:"username"`
|
||||
Password string `json:"password"`
|
||||
Insecure bool `json:"insecure,omitempty"` // Deprecated: ignored
|
||||
Username string `json:"username"` // Deprecated: ignored
|
||||
Password string `json:"password"` // Deprecated: ignored
|
||||
Stream *bool `json:"stream,omitempty"`
|
||||
|
||||
// Deprecated: set the model name with Model instead
|
||||
@@ -403,30 +613,26 @@ type ProcessResponse struct {
|
||||
|
||||
// ListModelResponse is a single model description in [ListResponse].
|
||||
type ListModelResponse struct {
|
||||
Name string `json:"name"`
|
||||
Model string `json:"model"`
|
||||
ModifiedAt time.Time `json:"modified_at"`
|
||||
Size int64 `json:"size"`
|
||||
Digest string `json:"digest"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
Name string `json:"name"`
|
||||
Model string `json:"model"`
|
||||
RemoteModel string `json:"remote_model,omitempty"`
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
ModifiedAt time.Time `json:"modified_at"`
|
||||
Size int64 `json:"size"`
|
||||
Digest string `json:"digest"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
}
|
||||
|
||||
// ProcessModelResponse is a single model description in [ProcessResponse].
|
||||
type ProcessModelResponse struct {
|
||||
Name string `json:"name"`
|
||||
Model string `json:"model"`
|
||||
Size int64 `json:"size"`
|
||||
Digest string `json:"digest"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
ExpiresAt time.Time `json:"expires_at"`
|
||||
SizeVRAM int64 `json:"size_vram"`
|
||||
}
|
||||
|
||||
type RetrieveModelResponse struct {
|
||||
Id string `json:"id"`
|
||||
Object string `json:"object"`
|
||||
Created int64 `json:"created"`
|
||||
OwnedBy string `json:"owned_by"`
|
||||
Name string `json:"name"`
|
||||
Model string `json:"model"`
|
||||
Size int64 `json:"size"`
|
||||
Digest string `json:"digest"`
|
||||
Details ModelDetails `json:"details,omitempty"`
|
||||
ExpiresAt time.Time `json:"expires_at"`
|
||||
SizeVRAM int64 `json:"size_vram"`
|
||||
ContextLength int `json:"context_length"`
|
||||
}
|
||||
|
||||
type TokenResponse struct {
|
||||
@@ -438,12 +644,22 @@ type GenerateResponse struct {
|
||||
// Model is the model name that generated the response.
|
||||
Model string `json:"model"`
|
||||
|
||||
// RemoteModel is the name of the upstream model that generated the response.
|
||||
RemoteModel string `json:"remote_model,omitempty"`
|
||||
|
||||
// RemoteHost is the URL of the upstream Ollama host that generated the response.
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
|
||||
// CreatedAt is the timestamp of the response.
|
||||
CreatedAt time.Time `json:"created_at"`
|
||||
|
||||
// Response is the textual response itself.
|
||||
Response string `json:"response"`
|
||||
|
||||
// Thinking contains the text that was inside thinking tags in the
|
||||
// original model output when ChatRequest.Think is enabled.
|
||||
Thinking string `json:"thinking,omitempty"`
|
||||
|
||||
// Done specifies if the response is complete.
|
||||
Done bool `json:"done"`
|
||||
|
||||
@@ -455,6 +671,10 @@ type GenerateResponse struct {
|
||||
Context []int `json:"context,omitempty"`
|
||||
|
||||
Metrics
|
||||
|
||||
ToolCalls []ToolCall `json:"tool_calls,omitempty"`
|
||||
|
||||
DebugInfo *DebugInfo `json:"_debug_info,omitempty"`
|
||||
}
|
||||
|
||||
// ModelDetails provides details about a model.
|
||||
@@ -467,6 +687,25 @@ type ModelDetails struct {
|
||||
QuantizationLevel string `json:"quantization_level"`
|
||||
}
|
||||
|
||||
// UserResponse provides information about a user.
|
||||
type UserResponse struct {
|
||||
ID uuid.UUID `json:"id"`
|
||||
Email string `json:"email"`
|
||||
Name string `json:"name"`
|
||||
Bio string `json:"bio,omitempty"`
|
||||
AvatarURL string `json:"avatarurl,omitempty"`
|
||||
FirstName string `json:"firstname,omitempty"`
|
||||
LastName string `json:"lastname,omitempty"`
|
||||
Plan string `json:"plan,omitempty"`
|
||||
}
|
||||
|
||||
// Tensor describes the metadata for a given tensor.
|
||||
type Tensor struct {
|
||||
Name string `json:"name"`
|
||||
Type string `json:"type"`
|
||||
Shape []uint64 `json:"shape"`
|
||||
}
|
||||
|
||||
func (m *Metrics) Summary() {
|
||||
if m.TotalDuration > 0 {
|
||||
fmt.Fprintf(os.Stderr, "total duration: %v\n", m.TotalDuration)
|
||||
@@ -495,7 +734,7 @@ func (m *Metrics) Summary() {
|
||||
}
|
||||
}
|
||||
|
||||
func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
func (opts *Options) FromMap(m map[string]any) error {
|
||||
valueOpts := reflect.ValueOf(opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts).Elem() // types of the fields in the options struct
|
||||
|
||||
@@ -552,12 +791,12 @@ func (opts *Options) FromMap(m map[string]interface{}) error {
|
||||
}
|
||||
field.SetString(val)
|
||||
case reflect.Slice:
|
||||
// JSON unmarshals to []interface{}, not []string
|
||||
val, ok := val.([]interface{})
|
||||
// JSON unmarshals to []any, not []string
|
||||
val, ok := val.([]any)
|
||||
if !ok {
|
||||
return fmt.Errorf("option %q must be of type array", key)
|
||||
}
|
||||
// convert []interface{} to []string
|
||||
// convert []any to []string
|
||||
slice := make([]string, len(val))
|
||||
for i, item := range val {
|
||||
str, ok := item.(string)
|
||||
@@ -604,9 +843,6 @@ func DefaultOptions() Options {
|
||||
RepeatPenalty: 1.1,
|
||||
PresencePenalty: 0.0,
|
||||
FrequencyPenalty: 0.0,
|
||||
Mirostat: 0,
|
||||
MirostatTau: 5.0,
|
||||
MirostatEta: 0.1,
|
||||
Seed: -1,
|
||||
|
||||
Runner: Runner{
|
||||
@@ -615,13 +851,118 @@ func DefaultOptions() Options {
|
||||
NumBatch: 512,
|
||||
NumGPU: -1, // -1 here indicates that NumGPU should be set dynamically
|
||||
NumThread: 0, // let the runtime decide
|
||||
LowVRAM: false,
|
||||
UseMLock: false,
|
||||
UseMMap: nil,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
// ThinkValue represents a value that can be a boolean or a string ("high", "medium", "low")
|
||||
type ThinkValue struct {
|
||||
// Value can be a bool or string
|
||||
Value interface{}
|
||||
}
|
||||
|
||||
// IsValid checks if the ThinkValue is valid
|
||||
func (t *ThinkValue) IsValid() bool {
|
||||
if t == nil || t.Value == nil {
|
||||
return true // nil is valid (means not set)
|
||||
}
|
||||
|
||||
switch v := t.Value.(type) {
|
||||
case bool:
|
||||
return true
|
||||
case string:
|
||||
return v == "high" || v == "medium" || v == "low"
|
||||
default:
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// IsBool returns true if the value is a boolean
|
||||
func (t *ThinkValue) IsBool() bool {
|
||||
if t == nil || t.Value == nil {
|
||||
return false
|
||||
}
|
||||
_, ok := t.Value.(bool)
|
||||
return ok
|
||||
}
|
||||
|
||||
// IsString returns true if the value is a string
|
||||
func (t *ThinkValue) IsString() bool {
|
||||
if t == nil || t.Value == nil {
|
||||
return false
|
||||
}
|
||||
_, ok := t.Value.(string)
|
||||
return ok
|
||||
}
|
||||
|
||||
// Bool returns the value as a bool (true if enabled in any way)
|
||||
func (t *ThinkValue) Bool() bool {
|
||||
if t == nil || t.Value == nil {
|
||||
return false
|
||||
}
|
||||
|
||||
switch v := t.Value.(type) {
|
||||
case bool:
|
||||
return v
|
||||
case string:
|
||||
// Any string value ("high", "medium", "low") means thinking is enabled
|
||||
return v == "high" || v == "medium" || v == "low"
|
||||
default:
|
||||
return false
|
||||
}
|
||||
}
|
||||
|
||||
// String returns the value as a string
|
||||
func (t *ThinkValue) String() string {
|
||||
if t == nil || t.Value == nil {
|
||||
return ""
|
||||
}
|
||||
|
||||
switch v := t.Value.(type) {
|
||||
case string:
|
||||
return v
|
||||
case bool:
|
||||
if v {
|
||||
return "medium" // Default level when just true
|
||||
}
|
||||
return ""
|
||||
default:
|
||||
return ""
|
||||
}
|
||||
}
|
||||
|
||||
// UnmarshalJSON implements json.Unmarshaler
|
||||
func (t *ThinkValue) UnmarshalJSON(data []byte) error {
|
||||
// Try to unmarshal as bool first
|
||||
var b bool
|
||||
if err := json.Unmarshal(data, &b); err == nil {
|
||||
t.Value = b
|
||||
return nil
|
||||
}
|
||||
|
||||
// Try to unmarshal as string
|
||||
var s string
|
||||
if err := json.Unmarshal(data, &s); err == nil {
|
||||
// Validate string values
|
||||
if s != "high" && s != "medium" && s != "low" {
|
||||
return fmt.Errorf("invalid think value: %q (must be \"high\", \"medium\", \"low\", true, or false)", s)
|
||||
}
|
||||
t.Value = s
|
||||
return nil
|
||||
}
|
||||
|
||||
return fmt.Errorf("think must be a boolean or string (\"high\", \"medium\", \"low\", true, or false)")
|
||||
}
|
||||
|
||||
// MarshalJSON implements json.Marshaler
|
||||
func (t *ThinkValue) MarshalJSON() ([]byte, error) {
|
||||
if t == nil || t.Value == nil {
|
||||
return []byte("null"), nil
|
||||
}
|
||||
return json.Marshal(t.Value)
|
||||
}
|
||||
|
||||
type Duration struct {
|
||||
time.Duration
|
||||
}
|
||||
@@ -646,7 +987,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
if t < 0 {
|
||||
d.Duration = time.Duration(math.MaxInt64)
|
||||
} else {
|
||||
d.Duration = time.Duration(int(t) * int(time.Second))
|
||||
d.Duration = time.Duration(t * float64(time.Second))
|
||||
}
|
||||
case string:
|
||||
d.Duration, err = time.ParseDuration(t)
|
||||
@@ -664,7 +1005,7 @@ func (d *Duration) UnmarshalJSON(b []byte) (err error) {
|
||||
}
|
||||
|
||||
// FormatParams converts specified parameter options to their correct types
|
||||
func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
func FormatParams(params map[string][]string) (map[string]any, error) {
|
||||
opts := Options{}
|
||||
valueOpts := reflect.ValueOf(&opts).Elem() // names of the fields in the options struct
|
||||
typeOpts := reflect.TypeOf(opts) // types of the fields in the options struct
|
||||
@@ -678,7 +1019,7 @@ func FormatParams(params map[string][]string) (map[string]interface{}, error) {
|
||||
}
|
||||
}
|
||||
|
||||
out := make(map[string]interface{})
|
||||
out := make(map[string]any)
|
||||
// iterate params and set values based on json struct tags
|
||||
for key, vals := range params {
|
||||
if opt, ok := jsonOpts[key]; !ok {
|
||||
|
||||
@@ -17,6 +17,11 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
|
||||
req string
|
||||
exp *Duration
|
||||
}{
|
||||
{
|
||||
name: "Unset",
|
||||
req: `{ }`,
|
||||
exp: nil,
|
||||
},
|
||||
{
|
||||
name: "Positive Integer",
|
||||
req: `{ "keep_alive": 42 }`,
|
||||
@@ -25,7 +30,7 @@ func TestKeepAliveParsingFromJSON(t *testing.T) {
|
||||
{
|
||||
name: "Positive Float",
|
||||
req: `{ "keep_alive": 42.5 }`,
|
||||
exp: &Duration{42 * time.Second},
|
||||
exp: &Duration{42500 * time.Millisecond},
|
||||
},
|
||||
{
|
||||
name: "Positive Integer String",
|
||||
@@ -134,7 +139,7 @@ func TestUseMmapParsingFromJSON(t *testing.T) {
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var oMap map[string]interface{}
|
||||
var oMap map[string]any
|
||||
err := json.Unmarshal([]byte(test.req), &oMap)
|
||||
require.NoError(t, err)
|
||||
opts := DefaultOptions()
|
||||
@@ -231,3 +236,279 @@ func TestMessage_UnmarshalJSON(t *testing.T) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolFunction_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
wantErr string
|
||||
}{
|
||||
{
|
||||
name: "valid enum with same types",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": ["a", "b", "c"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
{
|
||||
name: "empty enum array",
|
||||
input: `{
|
||||
"name": "test",
|
||||
"description": "test function",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"required": ["test"],
|
||||
"properties": {
|
||||
"test": {
|
||||
"type": "string",
|
||||
"description": "test prop",
|
||||
"enum": []
|
||||
}
|
||||
}
|
||||
}
|
||||
}`,
|
||||
wantErr: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var tf ToolFunction
|
||||
err := json.Unmarshal([]byte(tt.input), &tf)
|
||||
|
||||
if tt.wantErr != "" {
|
||||
require.Error(t, err)
|
||||
assert.Contains(t, err.Error(), tt.wantErr)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolCallFunction_IndexAlwaysMarshals(t *testing.T) {
|
||||
fn := ToolCallFunction{
|
||||
Name: "echo",
|
||||
Arguments: ToolCallFunctionArguments{"message": "hi"},
|
||||
}
|
||||
|
||||
data, err := json.Marshal(fn)
|
||||
require.NoError(t, err)
|
||||
|
||||
raw := map[string]any{}
|
||||
require.NoError(t, json.Unmarshal(data, &raw))
|
||||
require.Contains(t, raw, "index")
|
||||
assert.Equal(t, float64(0), raw["index"])
|
||||
|
||||
fn.Index = 3
|
||||
data, err = json.Marshal(fn)
|
||||
require.NoError(t, err)
|
||||
|
||||
raw = map[string]any{}
|
||||
require.NoError(t, json.Unmarshal(data, &raw))
|
||||
require.Contains(t, raw, "index")
|
||||
assert.Equal(t, float64(3), raw["index"])
|
||||
}
|
||||
|
||||
func TestPropertyType_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expected PropertyType
|
||||
}{
|
||||
{
|
||||
name: "string type",
|
||||
input: `"string"`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
{
|
||||
name: "array of types",
|
||||
input: `["string", "number"]`,
|
||||
expected: PropertyType{"string", "number"},
|
||||
},
|
||||
{
|
||||
name: "array with single type",
|
||||
input: `["string"]`,
|
||||
expected: PropertyType{"string"},
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var pt PropertyType
|
||||
if err := json.Unmarshal([]byte(test.input), &pt); err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if len(pt) != len(test.expected) {
|
||||
t.Errorf("Length mismatch: got %v, expected %v", len(pt), len(test.expected))
|
||||
}
|
||||
|
||||
for i, v := range pt {
|
||||
if v != test.expected[i] {
|
||||
t.Errorf("Value mismatch at index %d: got %v, expected %v", i, v, test.expected[i])
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestPropertyType_MarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input PropertyType
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single type",
|
||||
input: PropertyType{"string"},
|
||||
expected: `"string"`,
|
||||
},
|
||||
{
|
||||
name: "multiple types",
|
||||
input: PropertyType{"string", "number"},
|
||||
expected: `["string","number"]`,
|
||||
},
|
||||
{
|
||||
name: "empty type",
|
||||
input: PropertyType{},
|
||||
expected: `[]`,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
data, err := json.Marshal(test.input)
|
||||
if err != nil {
|
||||
t.Errorf("Unexpected error: %v", err)
|
||||
}
|
||||
|
||||
if string(data) != test.expected {
|
||||
t.Errorf("Marshaled data mismatch: got %v, expected %v", string(data), test.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestThinking_UnmarshalJSON(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
input string
|
||||
expectedThinking *ThinkValue
|
||||
expectedError bool
|
||||
}{
|
||||
{
|
||||
name: "true",
|
||||
input: `{ "think": true }`,
|
||||
expectedThinking: &ThinkValue{Value: true},
|
||||
},
|
||||
{
|
||||
name: "false",
|
||||
input: `{ "think": false }`,
|
||||
expectedThinking: &ThinkValue{Value: false},
|
||||
},
|
||||
{
|
||||
name: "unset",
|
||||
input: `{ }`,
|
||||
expectedThinking: nil,
|
||||
},
|
||||
{
|
||||
name: "string_high",
|
||||
input: `{ "think": "high" }`,
|
||||
expectedThinking: &ThinkValue{Value: "high"},
|
||||
},
|
||||
{
|
||||
name: "string_medium",
|
||||
input: `{ "think": "medium" }`,
|
||||
expectedThinking: &ThinkValue{Value: "medium"},
|
||||
},
|
||||
{
|
||||
name: "string_low",
|
||||
input: `{ "think": "low" }`,
|
||||
expectedThinking: &ThinkValue{Value: "low"},
|
||||
},
|
||||
{
|
||||
name: "invalid_string",
|
||||
input: `{ "think": "invalid" }`,
|
||||
expectedThinking: nil,
|
||||
expectedError: true,
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
var req GenerateRequest
|
||||
err := json.Unmarshal([]byte(test.input), &req)
|
||||
if test.expectedError {
|
||||
require.Error(t, err)
|
||||
} else {
|
||||
require.NoError(t, err)
|
||||
if test.expectedThinking == nil {
|
||||
assert.Nil(t, req.Think)
|
||||
} else {
|
||||
require.NotNil(t, req.Think)
|
||||
assert.Equal(t, test.expectedThinking.Value, req.Think.Value)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestToolFunctionParameters_String(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
params ToolFunctionParameters
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "simple object with string property",
|
||||
params: ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Required: []string{"name"},
|
||||
Properties: map[string]ToolProperty{
|
||||
"name": {
|
||||
Type: PropertyType{"string"},
|
||||
Description: "The name of the person",
|
||||
},
|
||||
},
|
||||
},
|
||||
expected: `{"type":"object","required":["name"],"properties":{"name":{"type":"string","description":"The name of the person"}}}`,
|
||||
},
|
||||
{
|
||||
name: "marshal failure returns empty string",
|
||||
params: ToolFunctionParameters{
|
||||
Type: "object",
|
||||
Defs: func() any {
|
||||
// Create a cycle that will cause json.Marshal to fail
|
||||
type selfRef struct {
|
||||
Self *selfRef
|
||||
}
|
||||
s := &selfRef{}
|
||||
s.Self = s
|
||||
return s
|
||||
}(),
|
||||
Properties: map[string]ToolProperty{},
|
||||
},
|
||||
expected: "",
|
||||
},
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
t.Run(test.name, func(t *testing.T) {
|
||||
result := test.params.String()
|
||||
assert.Equal(t, test.expected, result)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
142
api/types_typescript_test.go
Normal file
142
api/types_typescript_test.go
Normal file
@@ -0,0 +1,142 @@
|
||||
package api
|
||||
|
||||
import (
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestToolParameterToTypeScriptType(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
param ToolProperty
|
||||
expected string
|
||||
}{
|
||||
{
|
||||
name: "single string type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"string"},
|
||||
},
|
||||
expected: "string",
|
||||
},
|
||||
{
|
||||
name: "single number type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"number"},
|
||||
},
|
||||
expected: "number",
|
||||
},
|
||||
{
|
||||
name: "integer maps to number",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"integer"},
|
||||
},
|
||||
expected: "number",
|
||||
},
|
||||
{
|
||||
name: "boolean type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"boolean"},
|
||||
},
|
||||
expected: "boolean",
|
||||
},
|
||||
{
|
||||
name: "array type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"array"},
|
||||
},
|
||||
expected: "any[]",
|
||||
},
|
||||
{
|
||||
name: "object type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"object"},
|
||||
},
|
||||
expected: "Record<string, any>",
|
||||
},
|
||||
{
|
||||
name: "null type",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"null"},
|
||||
},
|
||||
expected: "null",
|
||||
},
|
||||
{
|
||||
name: "multiple types as union",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"string", "number"},
|
||||
},
|
||||
expected: "string | number",
|
||||
},
|
||||
{
|
||||
name: "string or null union",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"string", "null"},
|
||||
},
|
||||
expected: "string | null",
|
||||
},
|
||||
{
|
||||
name: "anyOf with single types",
|
||||
param: ToolProperty{
|
||||
AnyOf: []ToolProperty{
|
||||
{Type: PropertyType{"string"}},
|
||||
{Type: PropertyType{"number"}},
|
||||
},
|
||||
},
|
||||
expected: "string | number",
|
||||
},
|
||||
{
|
||||
name: "anyOf with multiple types in each branch",
|
||||
param: ToolProperty{
|
||||
AnyOf: []ToolProperty{
|
||||
{Type: PropertyType{"string", "null"}},
|
||||
{Type: PropertyType{"number"}},
|
||||
},
|
||||
},
|
||||
expected: "string | null | number",
|
||||
},
|
||||
{
|
||||
name: "nested anyOf",
|
||||
param: ToolProperty{
|
||||
AnyOf: []ToolProperty{
|
||||
{Type: PropertyType{"boolean"}},
|
||||
{
|
||||
AnyOf: []ToolProperty{
|
||||
{Type: PropertyType{"string"}},
|
||||
{Type: PropertyType{"number"}},
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
expected: "boolean | string | number",
|
||||
},
|
||||
{
|
||||
name: "empty type returns any",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{},
|
||||
},
|
||||
expected: "any",
|
||||
},
|
||||
{
|
||||
name: "unknown type maps to any",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"unknown_type"},
|
||||
},
|
||||
expected: "any",
|
||||
},
|
||||
{
|
||||
name: "multiple types including array",
|
||||
param: ToolProperty{
|
||||
Type: PropertyType{"string", "array", "null"},
|
||||
},
|
||||
expected: "string | any[] | null",
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := tt.param.ToTypeScriptType()
|
||||
if result != tt.expected {
|
||||
t.Errorf("ToTypeScriptType() = %q, want %q", result, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -4,20 +4,14 @@ import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func InitLogging() {
|
||||
level := slog.LevelInfo
|
||||
|
||||
if envconfig.Debug() {
|
||||
level = slog.LevelDebug
|
||||
}
|
||||
|
||||
var logFile *os.File
|
||||
var err error
|
||||
// Detect if we're a GUI app on windows, and if not, send logs to console
|
||||
@@ -33,20 +27,8 @@ func InitLogging() {
|
||||
return
|
||||
}
|
||||
}
|
||||
handler := slog.NewTextHandler(logFile, &slog.HandlerOptions{
|
||||
Level: level,
|
||||
AddSource: true,
|
||||
ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
|
||||
if attr.Key == slog.SourceKey {
|
||||
source := attr.Value.Any().(*slog.Source)
|
||||
source.File = filepath.Base(source.File)
|
||||
}
|
||||
return attr
|
||||
},
|
||||
})
|
||||
|
||||
slog.SetDefault(slog.New(handler))
|
||||
|
||||
slog.SetDefault(logutil.NewLogger(logFile, envconfig.LogLevel()))
|
||||
slog.Info("ollama app started")
|
||||
}
|
||||
|
||||
|
||||
15
auth/auth.go
15
auth/auth.go
@@ -18,21 +18,13 @@ import (
|
||||
|
||||
const defaultPrivateKey = "id_ed25519"
|
||||
|
||||
func keyPath() (string, error) {
|
||||
func GetPublicKey() (string, error) {
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return filepath.Join(home, ".ollama", defaultPrivateKey), nil
|
||||
}
|
||||
|
||||
func GetPublicKey() (string, error) {
|
||||
keyPath, err := keyPath()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
|
||||
privateKeyFile, err := os.ReadFile(keyPath)
|
||||
if err != nil {
|
||||
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
|
||||
@@ -59,11 +51,12 @@ func NewNonce(r io.Reader, length int) (string, error) {
|
||||
}
|
||||
|
||||
func Sign(ctx context.Context, bts []byte) (string, error) {
|
||||
keyPath, err := keyPath()
|
||||
home, err := os.UserHomeDir()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
keyPath := filepath.Join(home, ".ollama", defaultPrivateKey)
|
||||
privateKeyFile, err := os.ReadFile(keyPath)
|
||||
if err != nil {
|
||||
slog.Info(fmt.Sprintf("Failed to load private key: %v", err))
|
||||
|
||||
702
cmd/cmd.go
702
cmd/cmd.go
File diff suppressed because it is too large
Load Diff
574
cmd/cmd_test.go
574
cmd/cmd_test.go
@@ -2,12 +2,13 @@ package cmd
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"reflect"
|
||||
"strings"
|
||||
"testing"
|
||||
"time"
|
||||
@@ -16,6 +17,7 @@ import (
|
||||
"github.com/spf13/cobra"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
func TestShowInfo(t *testing.T) {
|
||||
@@ -27,7 +29,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -57,7 +59,7 @@ func TestShowInfo(t *testing.T) {
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -68,6 +70,60 @@ func TestShowInfo(t *testing.T) {
|
||||
embedding length 0
|
||||
quantization FP16
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("verbose model", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "8B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Parameters: `
|
||||
stop up`,
|
||||
ModelInfo: map[string]any{
|
||||
"general.architecture": "test",
|
||||
"general.parameter_count": float64(8_000_000_000),
|
||||
"some.true_bool": true,
|
||||
"some.false_bool": false,
|
||||
"test.context_length": float64(1000),
|
||||
"test.embedding_length": float64(11434),
|
||||
},
|
||||
Tensors: []api.Tensor{
|
||||
{Name: "blk.0.attn_k.weight", Type: "BF16", Shape: []uint64{42, 3117}},
|
||||
{Name: "blk.0.attn_q.weight", Type: "FP16", Shape: []uint64{3117, 42}},
|
||||
},
|
||||
}, true, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := ` Model
|
||||
architecture test
|
||||
parameters 8B
|
||||
context length 1000
|
||||
embedding length 11434
|
||||
quantization FP16
|
||||
|
||||
Parameters
|
||||
stop up
|
||||
|
||||
Metadata
|
||||
general.architecture test
|
||||
general.parameter_count 8e+09
|
||||
some.false_bool false
|
||||
some.true_bool true
|
||||
test.context_length 1000
|
||||
test.embedding_length 11434
|
||||
|
||||
Tensors
|
||||
blk.0.attn_k.weight BF16 [42 3117]
|
||||
blk.0.attn_q.weight FP16 [3117 42]
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
@@ -89,7 +145,7 @@ func TestShowInfo(t *testing.T) {
|
||||
stop you
|
||||
stop up
|
||||
temperature 99`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -126,7 +182,7 @@ func TestShowInfo(t *testing.T) {
|
||||
"clip.vision.embedding_length": float64(0),
|
||||
"clip.vision.projection_dim": float64(0),
|
||||
},
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -159,7 +215,7 @@ func TestShowInfo(t *testing.T) {
|
||||
Ahoy, matey!
|
||||
Weigh anchor!
|
||||
`,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -171,6 +227,7 @@ Weigh anchor!
|
||||
System
|
||||
You are a pirate!
|
||||
Ahoy, matey!
|
||||
...
|
||||
|
||||
`
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
@@ -188,7 +245,7 @@ Weigh anchor!
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
License: license,
|
||||
}, &b); err != nil {
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
@@ -206,6 +263,34 @@ Weigh anchor!
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("capabilities", func(t *testing.T) {
|
||||
var b bytes.Buffer
|
||||
if err := showInfo(&api.ShowResponse{
|
||||
Details: api.ModelDetails{
|
||||
Family: "test",
|
||||
ParameterSize: "7B",
|
||||
QuantizationLevel: "FP16",
|
||||
},
|
||||
Capabilities: []model.Capability{model.CapabilityVision, model.CapabilityTools},
|
||||
}, false, &b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
expect := " Model\n" +
|
||||
" architecture test \n" +
|
||||
" parameters 7B \n" +
|
||||
" quantization FP16 \n" +
|
||||
"\n" +
|
||||
" Capabilities\n" +
|
||||
" vision \n" +
|
||||
" tools \n" +
|
||||
"\n"
|
||||
|
||||
if diff := cmp.Diff(expect, b.String()); diff != "" {
|
||||
t.Errorf("unexpected output (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
func TestDeleteHandler(t *testing.T) {
|
||||
@@ -221,6 +306,8 @@ func TestDeleteHandler(t *testing.T) {
|
||||
w.WriteHeader(http.StatusOK)
|
||||
} else {
|
||||
w.WriteHeader(http.StatusNotFound)
|
||||
errPayload := `{"error":"model '%s' not found"}`
|
||||
w.Write([]byte(fmt.Sprintf(errPayload, req.Name)))
|
||||
}
|
||||
return
|
||||
}
|
||||
@@ -254,7 +341,7 @@ func TestDeleteHandler(t *testing.T) {
|
||||
t.Cleanup(mockServer.Close)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
if err := DeleteHandler(cmd, []string{"test-model"}); err != nil {
|
||||
t.Fatalf("DeleteHandler failed: %v", err)
|
||||
}
|
||||
@@ -263,7 +350,7 @@ func TestDeleteHandler(t *testing.T) {
|
||||
}
|
||||
|
||||
err := DeleteHandler(cmd, []string{"test-model-not-found"})
|
||||
if err == nil || !strings.Contains(err.Error(), "unable to stop existing running model \"test-model-not-found\"") {
|
||||
if err == nil || !strings.Contains(err.Error(), "model 'test-model-not-found' not found") {
|
||||
t.Fatalf("DeleteHandler failed: expected error about stopping non-existent model, got %v", err)
|
||||
}
|
||||
}
|
||||
@@ -316,11 +403,6 @@ func TestGetModelfileName(t *testing.T) {
|
||||
var expectedFilename string
|
||||
|
||||
if tt.fileExists {
|
||||
tempDir, err := os.MkdirTemp("", "modelfiledir")
|
||||
defer os.RemoveAll(tempDir)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile dir creation failed: %v", err)
|
||||
}
|
||||
var fn string
|
||||
if tt.modelfileName != "" {
|
||||
fn = tt.modelfileName
|
||||
@@ -328,10 +410,11 @@ func TestGetModelfileName(t *testing.T) {
|
||||
fn = "Modelfile"
|
||||
}
|
||||
|
||||
tempFile, err := os.CreateTemp(tempDir, fn)
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), fn)
|
||||
if err != nil {
|
||||
t.Fatalf("temp modelfile creation failed: %v", err)
|
||||
}
|
||||
defer tempFile.Close()
|
||||
|
||||
expectedFilename = tempFile.Name()
|
||||
err = cmd.Flags().Set("file", expectedFilename)
|
||||
@@ -409,9 +492,35 @@ func TestPushHandler(t *testing.T) {
|
||||
w.(http.Flusher).Flush()
|
||||
}
|
||||
},
|
||||
"/api/me": func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method != http.MethodPost {
|
||||
t.Errorf("expected POST request, got %s", r.Method)
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedOutput: "\nYou can find your model at:\n\n\thttps://ollama.com/test-model\n",
|
||||
},
|
||||
{
|
||||
name: "not signed in push",
|
||||
modelName: "notsignedin-model",
|
||||
serverResponse: map[string]func(w http.ResponseWriter, r *http.Request){
|
||||
"/api/me": func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method != http.MethodPost {
|
||||
t.Errorf("expected POST request, got %s", r.Method)
|
||||
}
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.WriteHeader(http.StatusUnauthorized)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": "unauthorized",
|
||||
"signin_url": "https://somethingsomething",
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedOutput: "You need to be signed in to push",
|
||||
},
|
||||
{
|
||||
name: "unauthorized push",
|
||||
modelName: "unauthorized-model",
|
||||
@@ -420,12 +529,17 @@ func TestPushHandler(t *testing.T) {
|
||||
w.Header().Set("Content-Type", "application/json")
|
||||
w.WriteHeader(http.StatusUnauthorized)
|
||||
err := json.NewEncoder(w).Encode(map[string]string{
|
||||
"error": "access denied",
|
||||
"error": "403: {\"errors\":[{\"code\":\"ACCESS DENIED\", \"message\":\"access denied\"}]}",
|
||||
})
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
"/api/me": func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method != http.MethodPost {
|
||||
t.Errorf("expected POST request, got %s", r.Method)
|
||||
}
|
||||
},
|
||||
},
|
||||
expectedError: "you are not authorized to push to this namespace, create the model under a namespace you own",
|
||||
},
|
||||
@@ -443,10 +557,14 @@ func TestPushHandler(t *testing.T) {
|
||||
defer mockServer.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
tmpDir := t.TempDir()
|
||||
t.Setenv("HOME", tmpDir)
|
||||
t.Setenv("USERPROFILE", tmpDir)
|
||||
initializeKeypair()
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
@@ -478,7 +596,7 @@ func TestPushHandler(t *testing.T) {
|
||||
t.Errorf("expected no error, got %v", err)
|
||||
}
|
||||
if tt.expectedOutput != "" {
|
||||
if got := string(stdout); got != tt.expectedOutput {
|
||||
if got := string(stdout); !strings.Contains(got, tt.expectedOutput) {
|
||||
t.Errorf("expected output %q, got %q", tt.expectedOutput, got)
|
||||
}
|
||||
}
|
||||
@@ -551,7 +669,7 @@ func TestListHandler(t *testing.T) {
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
|
||||
cmd := &cobra.Command{}
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Capture stdout
|
||||
oldStdout := os.Stdout
|
||||
@@ -606,7 +724,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
return
|
||||
}
|
||||
|
||||
if req.Name != "test-model" {
|
||||
if req.Model != "test-model" {
|
||||
t.Errorf("expected model name 'test-model', got %s", req.Name)
|
||||
}
|
||||
|
||||
@@ -646,7 +764,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}))
|
||||
t.Setenv("OLLAMA_HOST", mockServer.URL)
|
||||
t.Cleanup(mockServer.Close)
|
||||
tempFile, err := os.CreateTemp("", "modelfile")
|
||||
tempFile, err := os.CreateTemp(t.TempDir(), "modelfile")
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -666,7 +784,7 @@ func TestCreateHandler(t *testing.T) {
|
||||
}
|
||||
|
||||
cmd.Flags().Bool("insecure", false, "")
|
||||
cmd.SetContext(context.TODO())
|
||||
cmd.SetContext(t.Context())
|
||||
|
||||
// Redirect stderr to capture progress output
|
||||
oldStderr := os.Stderr
|
||||
@@ -707,3 +825,415 @@ func TestCreateHandler(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestNewCreateRequest(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
from string
|
||||
opts runOptions
|
||||
expected *api.CreateRequest
|
||||
}{
|
||||
{
|
||||
"basic test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "",
|
||||
Prompt: "You are a fun AI agent",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "/some/file/like/etc/passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"parent model as windows filepath test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "D:\\some\\file\\like\\etc\\passwd",
|
||||
Messages: []api.Message{},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "mymodel",
|
||||
Model: "newmodel",
|
||||
},
|
||||
},
|
||||
{
|
||||
"options test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
Options: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
Parameters: map[string]any{
|
||||
"temperature": 1.0,
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
"messages test",
|
||||
"newmodel",
|
||||
runOptions{
|
||||
Model: "mymodel",
|
||||
ParentModel: "parentmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
WordWrap: true,
|
||||
},
|
||||
&api.CreateRequest{
|
||||
From: "parentmodel",
|
||||
Model: "newmodel",
|
||||
System: "You are a fun AI agent",
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "hello there!",
|
||||
},
|
||||
{
|
||||
Role: "assistant",
|
||||
Content: "hello to you!",
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
actual := NewCreateRequest(tt.from, tt.opts)
|
||||
if !cmp.Equal(actual, tt.expected) {
|
||||
t.Errorf("expected output %#v, got %#v", tt.expected, actual)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestRunOptions_Copy(t *testing.T) {
|
||||
// Setup test data
|
||||
originalKeepAlive := &api.Duration{Duration: 5 * time.Minute}
|
||||
originalThink := &api.ThinkValue{Value: "test reasoning"}
|
||||
|
||||
original := runOptions{
|
||||
Model: "test-model",
|
||||
ParentModel: "parent-model",
|
||||
Prompt: "test prompt",
|
||||
Messages: []api.Message{
|
||||
{Role: "user", Content: "hello"},
|
||||
{Role: "assistant", Content: "hi there"},
|
||||
},
|
||||
WordWrap: true,
|
||||
Format: "json",
|
||||
System: "system prompt",
|
||||
Images: []api.ImageData{
|
||||
[]byte("image1"),
|
||||
[]byte("image2"),
|
||||
},
|
||||
Options: map[string]any{
|
||||
"temperature": 0.7,
|
||||
"max_tokens": 1000,
|
||||
"top_p": 0.9,
|
||||
},
|
||||
MultiModal: true,
|
||||
KeepAlive: originalKeepAlive,
|
||||
Think: originalThink,
|
||||
HideThinking: false,
|
||||
ShowConnect: true,
|
||||
}
|
||||
|
||||
// Test the copy
|
||||
copied := original.Copy()
|
||||
|
||||
// Test 1: Verify the copy is not the same instance
|
||||
if &copied == &original {
|
||||
t.Error("Copy should return a different instance")
|
||||
}
|
||||
|
||||
// Test 2: Verify all fields are copied correctly
|
||||
tests := []struct {
|
||||
name string
|
||||
got interface{}
|
||||
want interface{}
|
||||
}{
|
||||
{"Model", copied.Model, original.Model},
|
||||
{"ParentModel", copied.ParentModel, original.ParentModel},
|
||||
{"Prompt", copied.Prompt, original.Prompt},
|
||||
{"WordWrap", copied.WordWrap, original.WordWrap},
|
||||
{"Format", copied.Format, original.Format},
|
||||
{"System", copied.System, original.System},
|
||||
{"MultiModal", copied.MultiModal, original.MultiModal},
|
||||
{"HideThinking", copied.HideThinking, original.HideThinking},
|
||||
{"ShowConnect", copied.ShowConnect, original.ShowConnect},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
if !reflect.DeepEqual(tt.got, tt.want) {
|
||||
t.Errorf("%s mismatch: got %v, want %v", tt.name, tt.got, tt.want)
|
||||
}
|
||||
}
|
||||
|
||||
// Test 3: Verify Messages slice is deeply copied
|
||||
if len(copied.Messages) != len(original.Messages) {
|
||||
t.Errorf("Messages length mismatch: got %d, want %d", len(copied.Messages), len(original.Messages))
|
||||
}
|
||||
|
||||
if len(copied.Messages) > 0 && &copied.Messages[0] == &original.Messages[0] {
|
||||
t.Error("Messages should be different instances")
|
||||
}
|
||||
|
||||
// Modify original to verify independence
|
||||
if len(original.Messages) > 0 {
|
||||
originalContent := original.Messages[0].Content
|
||||
original.Messages[0].Content = "modified"
|
||||
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
|
||||
t.Error("Messages should be independent after copy")
|
||||
}
|
||||
// Restore for other tests
|
||||
original.Messages[0].Content = originalContent
|
||||
}
|
||||
|
||||
// Test 4: Verify Images slice is deeply copied
|
||||
if len(copied.Images) != len(original.Images) {
|
||||
t.Errorf("Images length mismatch: got %d, want %d", len(copied.Images), len(original.Images))
|
||||
}
|
||||
|
||||
if len(copied.Images) > 0 && &copied.Images[0] == &original.Images[0] {
|
||||
t.Error("Images should be different instances")
|
||||
}
|
||||
|
||||
// Modify original to verify independence
|
||||
if len(original.Images) > 0 {
|
||||
originalImage := original.Images[0]
|
||||
original.Images[0] = []byte("modified")
|
||||
if len(copied.Images) > 0 && string(copied.Images[0]) == "modified" {
|
||||
t.Error("Images should be independent after copy")
|
||||
}
|
||||
// Restore for other tests
|
||||
original.Images[0] = originalImage
|
||||
}
|
||||
|
||||
// Test 5: Verify Options map is deeply copied
|
||||
if len(copied.Options) != len(original.Options) {
|
||||
t.Errorf("Options length mismatch: got %d, want %d", len(copied.Options), len(original.Options))
|
||||
}
|
||||
|
||||
if len(copied.Options) > 0 && &copied.Options == &original.Options {
|
||||
t.Error("Options map should be different instances")
|
||||
}
|
||||
|
||||
// Modify original to verify independence
|
||||
if len(original.Options) > 0 {
|
||||
originalTemp := original.Options["temperature"]
|
||||
original.Options["temperature"] = 0.9
|
||||
if copied.Options["temperature"] == 0.9 {
|
||||
t.Error("Options should be independent after copy")
|
||||
}
|
||||
// Restore for other tests
|
||||
original.Options["temperature"] = originalTemp
|
||||
}
|
||||
|
||||
// Test 6: Verify KeepAlive pointer is copied (shallow copy)
|
||||
if copied.KeepAlive != original.KeepAlive {
|
||||
t.Error("KeepAlive pointer should be the same (shallow copy)")
|
||||
}
|
||||
|
||||
// Test 7: Verify Think pointer creates a new instance
|
||||
if original.Think != nil && copied.Think == original.Think {
|
||||
t.Error("Think should be a different instance")
|
||||
}
|
||||
|
||||
if original.Think != nil && copied.Think != nil {
|
||||
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
|
||||
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
|
||||
}
|
||||
}
|
||||
|
||||
// Test 8: Test with zero values
|
||||
zeroOriginal := runOptions{}
|
||||
zeroCopy := zeroOriginal.Copy()
|
||||
|
||||
if !reflect.DeepEqual(zeroCopy, zeroOriginal) {
|
||||
fmt.Printf("orig: %#v\ncopy: %#v\n", zeroOriginal, zeroCopy)
|
||||
t.Error("Copy of zero value should equal original zero value")
|
||||
}
|
||||
}
|
||||
|
||||
func TestRunOptions_Copy_EmptySlicesAndMaps(t *testing.T) {
|
||||
// Test with empty slices and maps
|
||||
original := runOptions{
|
||||
Messages: []api.Message{},
|
||||
Images: []api.ImageData{},
|
||||
Options: map[string]any{},
|
||||
}
|
||||
|
||||
copied := original.Copy()
|
||||
|
||||
if copied.Messages == nil {
|
||||
t.Error("Empty Messages slice should remain empty, not nil")
|
||||
}
|
||||
|
||||
if copied.Images == nil {
|
||||
t.Error("Empty Images slice should remain empty, not nil")
|
||||
}
|
||||
|
||||
if copied.Options == nil {
|
||||
t.Error("Empty Options map should remain empty, not nil")
|
||||
}
|
||||
|
||||
if len(copied.Messages) != 0 {
|
||||
t.Error("Empty Messages slice should remain empty")
|
||||
}
|
||||
|
||||
if len(copied.Images) != 0 {
|
||||
t.Error("Empty Images slice should remain empty")
|
||||
}
|
||||
|
||||
if len(copied.Options) != 0 {
|
||||
t.Error("Empty Options map should remain empty")
|
||||
}
|
||||
}
|
||||
|
||||
func TestRunOptions_Copy_NilPointers(t *testing.T) {
|
||||
// Test with nil pointers
|
||||
original := runOptions{
|
||||
KeepAlive: nil,
|
||||
Think: nil,
|
||||
}
|
||||
|
||||
copied := original.Copy()
|
||||
|
||||
if copied.KeepAlive != nil {
|
||||
t.Error("Nil KeepAlive should remain nil")
|
||||
}
|
||||
|
||||
if copied.Think != nil {
|
||||
t.Error("Nil Think should remain nil")
|
||||
}
|
||||
}
|
||||
|
||||
func TestRunOptions_Copy_ThinkValueVariants(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
think *api.ThinkValue
|
||||
}{
|
||||
{"nil Think", nil},
|
||||
{"bool true", &api.ThinkValue{Value: true}},
|
||||
{"bool false", &api.ThinkValue{Value: false}},
|
||||
{"string value", &api.ThinkValue{Value: "reasoning text"}},
|
||||
{"int value", &api.ThinkValue{Value: 42}},
|
||||
{"nil value", &api.ThinkValue{Value: nil}},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
original := runOptions{Think: tt.think}
|
||||
copied := original.Copy()
|
||||
|
||||
if tt.think == nil {
|
||||
if copied.Think != nil {
|
||||
t.Error("Nil Think should remain nil")
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
if copied.Think == nil {
|
||||
t.Error("Non-nil Think should not become nil")
|
||||
return
|
||||
}
|
||||
|
||||
if copied.Think == original.Think {
|
||||
t.Error("Think should be a different instance")
|
||||
}
|
||||
|
||||
if !reflect.DeepEqual(copied.Think.Value, original.Think.Value) {
|
||||
t.Errorf("Think.Value mismatch: got %v, want %v", copied.Think.Value, original.Think.Value)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestRunOptions_Copy_Independence(t *testing.T) {
|
||||
// Test that modifications to original don't affect copy
|
||||
originalThink := &api.ThinkValue{Value: "original"}
|
||||
original := runOptions{
|
||||
Model: "original-model",
|
||||
Messages: []api.Message{{Role: "user", Content: "original"}},
|
||||
Options: map[string]any{"key": "value"},
|
||||
Think: originalThink,
|
||||
}
|
||||
|
||||
copied := original.Copy()
|
||||
|
||||
// Modify original
|
||||
original.Model = "modified-model"
|
||||
if len(original.Messages) > 0 {
|
||||
original.Messages[0].Content = "modified"
|
||||
}
|
||||
original.Options["key"] = "modified"
|
||||
if original.Think != nil {
|
||||
original.Think.Value = "modified"
|
||||
}
|
||||
|
||||
// Verify copy is unchanged
|
||||
if copied.Model == "modified-model" {
|
||||
t.Error("Copy Model should not be affected by original modification")
|
||||
}
|
||||
|
||||
if len(copied.Messages) > 0 && copied.Messages[0].Content == "modified" {
|
||||
t.Error("Copy Messages should not be affected by original modification")
|
||||
}
|
||||
|
||||
if copied.Options["key"] == "modified" {
|
||||
t.Error("Copy Options should not be affected by original modification")
|
||||
}
|
||||
|
||||
if copied.Think != nil && copied.Think.Value == "modified" {
|
||||
t.Error("Copy Think should not be affected by original modification")
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,6 +18,7 @@ import (
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/readline"
|
||||
"github.com/ollama/ollama/types/errtypes"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
type MultilineState int
|
||||
@@ -43,7 +44,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, "Use \"\"\" to begin a multi-line message.")
|
||||
|
||||
if opts.MultiModal {
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg or .png images.\n", filepath.FromSlash("/path/to/file"))
|
||||
fmt.Fprintf(os.Stderr, "Use %s to include .jpg, .png, or .webp images.\n", filepath.FromSlash("/path/to/file"))
|
||||
}
|
||||
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
@@ -61,6 +62,8 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Fprintln(os.Stderr, " /set noformat Disable formatting")
|
||||
fmt.Fprintln(os.Stderr, " /set verbose Show LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set quiet Disable LLM stats")
|
||||
fmt.Fprintln(os.Stderr, " /set think Enable thinking")
|
||||
fmt.Fprintln(os.Stderr, " /set nothink Disable thinking")
|
||||
fmt.Fprintln(os.Stderr, "")
|
||||
}
|
||||
|
||||
@@ -127,6 +130,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
var sb strings.Builder
|
||||
var multiline MultilineState
|
||||
var thinkExplicitlySet bool = opts.Think != nil
|
||||
|
||||
for {
|
||||
line, err := scanner.Readline()
|
||||
@@ -191,10 +195,30 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
fmt.Println("Usage:\n /load <modelname>")
|
||||
continue
|
||||
}
|
||||
origOpts := opts.Copy()
|
||||
|
||||
opts.Model = args[1]
|
||||
opts.Messages = []api.Message{}
|
||||
fmt.Printf("Loading model '%s'\n", opts.Model)
|
||||
opts.Think, err = inferThinkingOption(nil, &opts, thinkExplicitlySet)
|
||||
if err != nil {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
|
||||
opts = origOpts.Copy()
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
if err := loadOrUnloadModel(cmd, &opts); err != nil {
|
||||
if strings.Contains(err.Error(), "not found") {
|
||||
fmt.Printf("Couldn't find model '%s'\n", opts.Model)
|
||||
opts = origOpts.Copy()
|
||||
continue
|
||||
}
|
||||
if strings.Contains(err.Error(), "does not support thinking") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
continue
|
||||
@@ -255,6 +279,35 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
return err
|
||||
}
|
||||
fmt.Println("Set 'quiet' mode.")
|
||||
case "think":
|
||||
thinkValue := api.ThinkValue{Value: true}
|
||||
var maybeLevel string
|
||||
if len(args) > 2 {
|
||||
maybeLevel = args[2]
|
||||
}
|
||||
if maybeLevel != "" {
|
||||
// TODO(drifkin): validate the level, could be model dependent
|
||||
// though... It will also be validated on the server once a call is
|
||||
// made.
|
||||
thinkValue.Value = maybeLevel
|
||||
}
|
||||
opts.Think = &thinkValue
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
if maybeLevel != "" {
|
||||
fmt.Printf("Set 'think' mode to '%s'.\n", maybeLevel)
|
||||
} else {
|
||||
fmt.Println("Set 'think' mode.")
|
||||
}
|
||||
case "nothink":
|
||||
opts.Think = &api.ThinkValue{Value: false}
|
||||
thinkExplicitlySet = true
|
||||
if client, err := api.ClientFromEnvironment(); err == nil {
|
||||
ensureThinkingSupport(cmd.Context(), client, opts.Model)
|
||||
}
|
||||
fmt.Println("Set 'nothink' mode.")
|
||||
case "format":
|
||||
if len(args) < 3 || args[2] != "json" {
|
||||
fmt.Println("Invalid or missing format. For 'json' mode use '/set format json'")
|
||||
@@ -343,7 +396,7 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
switch args[1] {
|
||||
case "info":
|
||||
_ = showInfo(resp, os.Stderr)
|
||||
_ = showInfo(resp, false, os.Stderr)
|
||||
case "license":
|
||||
if resp.License == "" {
|
||||
fmt.Println("No license was specified for this model.")
|
||||
@@ -353,18 +406,21 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
case "modelfile":
|
||||
fmt.Println(resp.Modelfile)
|
||||
case "parameters":
|
||||
fmt.Println("Model defined parameters:")
|
||||
if resp.Parameters == "" {
|
||||
fmt.Println("No parameters were specified for this model.")
|
||||
fmt.Println(" No additional parameters were specified for this model.")
|
||||
} else {
|
||||
if len(opts.Options) > 0 {
|
||||
fmt.Println("User defined parameters:")
|
||||
for k, v := range opts.Options {
|
||||
fmt.Printf("%-*s %v\n", 30, k, v)
|
||||
}
|
||||
fmt.Println()
|
||||
for _, l := range strings.Split(resp.Parameters, "\n") {
|
||||
fmt.Printf(" %s\n", l)
|
||||
}
|
||||
fmt.Println("Model defined parameters:")
|
||||
fmt.Println(resp.Parameters)
|
||||
}
|
||||
fmt.Println()
|
||||
if len(opts.Options) > 0 {
|
||||
fmt.Println("User defined parameters:")
|
||||
for k, v := range opts.Options {
|
||||
fmt.Printf(" %-*s %v\n", 30, k, v)
|
||||
}
|
||||
fmt.Println()
|
||||
}
|
||||
case "system":
|
||||
switch {
|
||||
@@ -443,6 +499,12 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
|
||||
assistant, err := chat(cmd, opts)
|
||||
if err != nil {
|
||||
if strings.Contains(err.Error(), "does not support thinking") ||
|
||||
strings.Contains(err.Error(), "invalid think value") {
|
||||
fmt.Printf("error: %v\n", err)
|
||||
sb.Reset()
|
||||
continue
|
||||
}
|
||||
return err
|
||||
}
|
||||
if assistant != nil {
|
||||
@@ -455,9 +517,16 @@ func generateInteractive(cmd *cobra.Command, opts runOptions) error {
|
||||
}
|
||||
|
||||
func NewCreateRequest(name string, opts runOptions) *api.CreateRequest {
|
||||
parentModel := opts.ParentModel
|
||||
|
||||
modelName := model.ParseName(parentModel)
|
||||
if !modelName.IsValid() {
|
||||
parentModel = ""
|
||||
}
|
||||
|
||||
req := &api.CreateRequest{
|
||||
Name: name,
|
||||
From: cmp.Or(opts.ParentModel, opts.Model),
|
||||
Model: name,
|
||||
From: cmp.Or(parentModel, opts.Model),
|
||||
}
|
||||
|
||||
if opts.System != "" {
|
||||
@@ -491,6 +560,7 @@ func normalizeFilePath(fp string) string {
|
||||
"\\\\", "\\", // Escaped backslash
|
||||
"\\*", "*", // Escaped asterisk
|
||||
"\\?", "?", // Escaped question mark
|
||||
"\\~", "~", // Escaped tilde
|
||||
).Replace(fp)
|
||||
}
|
||||
|
||||
@@ -498,7 +568,7 @@ func extractFileNames(input string) []string {
|
||||
// Regex to match file paths starting with optional drive letter, / ./ \ or .\ and include escaped or unescaped spaces (\ or %20)
|
||||
// and followed by more characters and a file extension
|
||||
// This will capture non filename strings, but we'll check for file existence to remove mismatches
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png)\b`
|
||||
regexPattern := `(?:[a-zA-Z]:)?(?:\./|/|\\)[\S\\ ]+?\.(?i:jpg|jpeg|png|webp)\b`
|
||||
re := regexp.MustCompile(regexPattern)
|
||||
|
||||
return re.FindAllString(input, -1)
|
||||
@@ -518,6 +588,8 @@ func extractFileData(input string) (string, []api.ImageData, error) {
|
||||
return "", imgs, err
|
||||
}
|
||||
fmt.Fprintf(os.Stderr, "Added image '%s'\n", nfp)
|
||||
input = strings.ReplaceAll(input, "'"+nfp+"'", "")
|
||||
input = strings.ReplaceAll(input, "'"+fp+"'", "")
|
||||
input = strings.ReplaceAll(input, fp, "")
|
||||
imgs = append(imgs, data)
|
||||
}
|
||||
@@ -538,7 +610,7 @@ func getImageData(filePath string) ([]byte, error) {
|
||||
}
|
||||
|
||||
contentType := http.DetectContentType(buf)
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png"}
|
||||
allowedTypes := []string{"image/jpeg", "image/jpg", "image/png", "image/webp"}
|
||||
if !slices.Contains(allowedTypes, contentType) {
|
||||
return nil, fmt.Errorf("invalid image type: %s", contentType)
|
||||
}
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
@@ -10,14 +12,17 @@ func TestExtractFilenames(t *testing.T) {
|
||||
// Unix style paths
|
||||
input := ` some preamble
|
||||
./relative\ path/one.png inbetween1 ./not a valid two.jpg inbetween2 ./1.svg
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG`
|
||||
/unescaped space /three.jpeg inbetween3 /valid\ path/dir/four.png "./quoted with spaces/five.JPG
|
||||
/unescaped space /six.webp inbetween6 /valid\ path/dir/seven.WEBP`
|
||||
res := extractFileNames(input)
|
||||
assert.Len(t, res, 5)
|
||||
assert.Len(t, res, 7)
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[1], "two.jpg")
|
||||
assert.Contains(t, res[2], "three.jpeg")
|
||||
assert.Contains(t, res[3], "four.png")
|
||||
assert.Contains(t, res[4], "five.JPG")
|
||||
assert.Contains(t, res[5], "six.webp")
|
||||
assert.Contains(t, res[6], "seven.WEBP")
|
||||
assert.NotContains(t, res[4], '"')
|
||||
assert.NotContains(t, res, "inbetween1")
|
||||
assert.NotContains(t, res, "./1.svg")
|
||||
@@ -28,10 +33,12 @@ func TestExtractFilenames(t *testing.T) {
|
||||
/absolute/nospace/three.jpeg inbetween3 /absolute/with space/four.png inbetween4
|
||||
./relative\ path/five.JPG inbetween5 "./relative with/spaces/six.png inbetween6
|
||||
d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG some ending
|
||||
d:\program files\someplace\nine.png inbetween9 "E:\program files\someplace\ten.PNG
|
||||
c:/users/jdoe/eleven.webp inbetween11 c:/program files/someplace/twelve.WebP inbetween12
|
||||
d:\path with\spaces\thirteen.WEBP some ending
|
||||
`
|
||||
res = extractFileNames(input)
|
||||
assert.Len(t, res, 10)
|
||||
assert.Len(t, res, 13)
|
||||
assert.NotContains(t, res, "inbetween2")
|
||||
assert.Contains(t, res[0], "one.png")
|
||||
assert.Contains(t, res[0], "c:")
|
||||
@@ -49,4 +56,31 @@ d:\path with\spaces\seven.JPEG inbetween7 c:\users\jdoe\eight.png inbetween8
|
||||
assert.Contains(t, res[8], "d:")
|
||||
assert.Contains(t, res[9], "ten.PNG")
|
||||
assert.Contains(t, res[9], "E:")
|
||||
assert.Contains(t, res[10], "eleven.webp")
|
||||
assert.Contains(t, res[10], "c:")
|
||||
assert.Contains(t, res[11], "twelve.WebP")
|
||||
assert.Contains(t, res[11], "c:")
|
||||
assert.Contains(t, res[12], "thirteen.WEBP")
|
||||
assert.Contains(t, res[12], "d:")
|
||||
}
|
||||
|
||||
// Ensure that file paths wrapped in single quotes are removed with the quotes.
|
||||
func TestExtractFileDataRemovesQuotedFilepath(t *testing.T) {
|
||||
dir := t.TempDir()
|
||||
fp := filepath.Join(dir, "img.jpg")
|
||||
data := make([]byte, 600)
|
||||
copy(data, []byte{
|
||||
0xff, 0xd8, 0xff, 0xe0, 0x00, 0x10, 'J', 'F', 'I', 'F',
|
||||
0x00, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0xff, 0xd9,
|
||||
})
|
||||
if err := os.WriteFile(fp, data, 0o600); err != nil {
|
||||
t.Fatalf("failed to write test image: %v", err)
|
||||
}
|
||||
|
||||
input := "before '" + fp + "' after"
|
||||
cleaned, imgs, err := extractFileData(input)
|
||||
assert.NoError(t, err)
|
||||
assert.Len(t, imgs, 1)
|
||||
assert.Equal(t, cleaned, "before after")
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"errors"
|
||||
"os"
|
||||
"os/exec"
|
||||
"strings"
|
||||
"regexp"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
)
|
||||
@@ -19,11 +19,12 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !strings.Contains(link, "Ollama.app") {
|
||||
r := regexp.MustCompile(`^.*/Ollama\s?\d*.app`)
|
||||
m := r.FindStringSubmatch(link)
|
||||
if len(m) != 1 {
|
||||
return errors.New("could not find ollama app")
|
||||
}
|
||||
path := strings.Split(link, "Ollama.app")
|
||||
if err := exec.Command("/usr/bin/open", "-a", path[0]+"Ollama.app").Run(); err != nil {
|
||||
if err := exec.Command("/usr/bin/open", "-j", "-a", m[0], "--args", "--fast-startup").Run(); err != nil {
|
||||
return err
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
|
||||
@@ -4,17 +4,27 @@ import (
|
||||
"context"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"golang.org/x/sys/windows"
|
||||
)
|
||||
|
||||
const (
|
||||
Installer = "OllamaSetup.exe"
|
||||
)
|
||||
|
||||
func startApp(ctx context.Context, client *api.Client) error {
|
||||
// log.Printf("XXX Attempting to find and start ollama app")
|
||||
if len(isProcRunning(Installer)) > 0 {
|
||||
return fmt.Errorf("upgrade in progress...")
|
||||
}
|
||||
AppName := "ollama app.exe"
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
@@ -35,14 +45,11 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
}
|
||||
}
|
||||
// log.Printf("XXX attempting to start app %s", appExe)
|
||||
|
||||
cmd_path := "c:\\Windows\\system32\\cmd.exe"
|
||||
cmd := exec.Command(cmd_path, "/c", appExe)
|
||||
// TODO - these hide flags aren't working - still pops up a command window for some reason
|
||||
cmd := exec.Command(cmd_path, "/c", appExe, "--hide", "--fast-startup")
|
||||
cmd.SysProcAttr = &syscall.SysProcAttr{CreationFlags: 0x08000000, HideWindow: true}
|
||||
|
||||
// TODO this didn't help either...
|
||||
cmd.Stdin = strings.NewReader("")
|
||||
cmd.Stdout = os.Stdout
|
||||
cmd.Stderr = os.Stderr
|
||||
@@ -56,3 +63,50 @@ func startApp(ctx context.Context, client *api.Client) error {
|
||||
}
|
||||
return waitForServer(ctx, client)
|
||||
}
|
||||
|
||||
func isProcRunning(procName string) []uint32 {
|
||||
pids := make([]uint32, 2048)
|
||||
var ret uint32
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
if ret > uint32(len(pids)) {
|
||||
pids = make([]uint32, ret+10)
|
||||
if err := windows.EnumProcesses(pids, &ret); err != nil || ret == 0 {
|
||||
slog.Debug("failed to check for running installers", "error", err)
|
||||
return nil
|
||||
}
|
||||
}
|
||||
if ret < uint32(len(pids)) {
|
||||
pids = pids[:ret]
|
||||
}
|
||||
var matches []uint32
|
||||
for _, pid := range pids {
|
||||
if pid == 0 {
|
||||
continue
|
||||
}
|
||||
hProcess, err := windows.OpenProcess(windows.PROCESS_QUERY_INFORMATION|windows.PROCESS_VM_READ, false, pid)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
defer windows.CloseHandle(hProcess)
|
||||
var module windows.Handle
|
||||
var cbNeeded uint32
|
||||
cb := (uint32)(unsafe.Sizeof(module))
|
||||
if err := windows.EnumProcessModules(hProcess, &module, cb, &cbNeeded); err != nil {
|
||||
continue
|
||||
}
|
||||
var sz uint32 = 1024 * 8
|
||||
moduleName := make([]uint16, sz)
|
||||
cb = uint32(len(moduleName)) * (uint32)(unsafe.Sizeof(uint16(0)))
|
||||
if err := windows.GetModuleBaseName(hProcess, module, &moduleName[0], cb); err != nil && err != syscall.ERROR_INSUFFICIENT_BUFFER {
|
||||
continue
|
||||
}
|
||||
exeFile := path.Base(strings.ToLower(syscall.UTF16ToString(moduleName)))
|
||||
if strings.EqualFold(exeFile, procName) {
|
||||
matches = append(matches, pid)
|
||||
}
|
||||
}
|
||||
return matches
|
||||
}
|
||||
|
||||
63
cmd/warn_thinking_test.go
Normal file
63
cmd/warn_thinking_test.go
Normal file
@@ -0,0 +1,63 @@
|
||||
package cmd
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"io"
|
||||
"net/http"
|
||||
"net/http/httptest"
|
||||
"os"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
)
|
||||
|
||||
// Test that a warning is printed when thinking is requested but not supported.
|
||||
func TestWarnMissingThinking(t *testing.T) {
|
||||
cases := []struct {
|
||||
capabilities []model.Capability
|
||||
expectWarn bool
|
||||
}{
|
||||
{capabilities: []model.Capability{model.CapabilityThinking}, expectWarn: false},
|
||||
{capabilities: []model.Capability{}, expectWarn: true},
|
||||
}
|
||||
|
||||
for _, tc := range cases {
|
||||
srv := httptest.NewServer(http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.URL.Path != "/api/show" || r.Method != http.MethodPost {
|
||||
t.Fatalf("unexpected request to %s %s", r.URL.Path, r.Method)
|
||||
}
|
||||
var req api.ShowRequest
|
||||
if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
|
||||
t.Fatalf("decode request: %v", err)
|
||||
}
|
||||
resp := api.ShowResponse{Capabilities: tc.capabilities}
|
||||
if err := json.NewEncoder(w).Encode(resp); err != nil {
|
||||
t.Fatalf("encode response: %v", err)
|
||||
}
|
||||
}))
|
||||
defer srv.Close()
|
||||
|
||||
t.Setenv("OLLAMA_HOST", srv.URL)
|
||||
client, err := api.ClientFromEnvironment()
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
oldStderr := os.Stderr
|
||||
r, w, _ := os.Pipe()
|
||||
os.Stderr = w
|
||||
ensureThinkingSupport(t.Context(), client, "m")
|
||||
w.Close()
|
||||
os.Stderr = oldStderr
|
||||
out, _ := io.ReadAll(r)
|
||||
|
||||
warned := strings.Contains(string(out), "warning:")
|
||||
if tc.expectWarn && !warned {
|
||||
t.Errorf("expected warning, got none")
|
||||
}
|
||||
if !tc.expectWarn && warned {
|
||||
t.Errorf("did not expect warning, got: %s", string(out))
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,12 +1,14 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
@@ -15,6 +17,10 @@ import (
|
||||
type ModelParameters struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
|
||||
TextModel struct {
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
}
|
||||
|
||||
type AdapterParameters struct {
|
||||
@@ -47,8 +53,11 @@ func (ModelParameters) KV(t *Tokenizer) ggml.KV {
|
||||
}
|
||||
|
||||
for _, sv := range t.SpecialVocabulary {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
kv[fmt.Sprintf("tokenizer.ggml.add_%s_token", sv.Key())] = sv.AddToken
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_id", sv.Key())] = uint32(sv.ID)
|
||||
if len(sv.IDs) > 0 {
|
||||
kv[fmt.Sprintf("tokenizer.ggml.%s_token_ids", sv.Key())] = sv.IDs
|
||||
}
|
||||
}
|
||||
|
||||
return kv
|
||||
@@ -79,27 +88,17 @@ func (ModelParameters) specialTokenTypes() []string {
|
||||
}
|
||||
}
|
||||
|
||||
func (ModelParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv ggml.KV, ts []ggml.Tensor) error {
|
||||
return ggml.WriteGGUF(ws, kv, ts)
|
||||
}
|
||||
|
||||
type ModelConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(*Tokenizer) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
// specialTokenTypes returns any special token types the model uses
|
||||
specialTokenTypes() []string
|
||||
// writeFile writes the model to the provided io.WriteSeeker
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
type moreParser interface {
|
||||
@@ -110,15 +109,13 @@ type AdapterConverter interface {
|
||||
// KV maps parameters to LLM key-values
|
||||
KV(ggml.KV) ggml.KV
|
||||
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
|
||||
Tensors([]Tensor) []ggml.Tensor
|
||||
Tensors([]Tensor) []*ggml.Tensor
|
||||
// Replacements returns a list of string pairs to replace in tensor names.
|
||||
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
|
||||
Replacements() []string
|
||||
|
||||
writeFile(io.WriteSeeker, ggml.KV, []ggml.Tensor) error
|
||||
}
|
||||
|
||||
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
|
||||
func ConvertAdapter(fsys fs.FS, f *os.File, baseKV ggml.KV) error {
|
||||
bts, err := fs.ReadFile(fsys, "adapter_config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -153,14 +150,14 @@ func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV ggml.KV) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
|
||||
return writeFile(f, conv.KV(baseKV), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
|
||||
// and files it finds in the input path.
|
||||
// Supported input model formats include safetensors.
|
||||
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
|
||||
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
func ConvertModel(fsys fs.FS, f *os.File) error {
|
||||
bts, err := fs.ReadFile(fsys, "config.json")
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -177,24 +174,38 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
|
||||
var conv ModelConverter
|
||||
switch p.Architectures[0] {
|
||||
case "LlamaForCausalLM", "MistralForCausalLM":
|
||||
case "LlamaForCausalLM":
|
||||
conv = &llamaModel{}
|
||||
case "MllamaForConditionalGeneration":
|
||||
conv = &mllamaModel{}
|
||||
case "Llama4ForConditionalGeneration":
|
||||
conv = &llama4Model{}
|
||||
case "Mistral3ForConditionalGeneration":
|
||||
conv = &mistral3Model{}
|
||||
case "MixtralForCausalLM":
|
||||
conv = &mixtralModel{}
|
||||
case "GemmaForCausalLM":
|
||||
conv = &gemmaModel{}
|
||||
case "Gemma2ForCausalLM":
|
||||
conv = &gemma2Model{}
|
||||
case "Gemma3ForCausalLM", "Gemma3ForConditionalGeneration":
|
||||
conv = &gemma3Model{Architecture: p.Architectures[0]}
|
||||
case "Gemma3nForConditionalGeneration":
|
||||
conv = &gemma3nModel{}
|
||||
case "Phi3ForCausalLM":
|
||||
conv = &phi3Model{}
|
||||
case "Qwen2ForCausalLM":
|
||||
conv = &qwen2Model{}
|
||||
case "Qwen2_5_VLForConditionalGeneration":
|
||||
conv = &qwen25VLModel{}
|
||||
case "BertModel":
|
||||
conv = &bertModel{}
|
||||
case "CohereForCausalLM":
|
||||
conv = &commandrModel{}
|
||||
case "GptOssForCausalLM":
|
||||
conv = &gptossModel{}
|
||||
default:
|
||||
return errors.New("unsupported architecture")
|
||||
return fmt.Errorf("unsupported architecture %q", p.Architectures[0])
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(bts, conv); err != nil {
|
||||
@@ -212,17 +223,22 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
vocabSize := int(p.VocabSize)
|
||||
vocabSize := int(cmp.Or(p.VocabSize, p.TextModel.VocabSize))
|
||||
|
||||
switch {
|
||||
case vocabSize == 0:
|
||||
slog.Debug("vocabulary size was not explicitly set by the model", "default size", len(t.Vocabulary.Tokens))
|
||||
case vocabSize > len(t.Vocabulary.Tokens):
|
||||
slog.Warn("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
slog.Debug("vocabulary is smaller than expected, padding with dummy tokens", "expect", vocabSize, "actual", len(t.Vocabulary.Tokens))
|
||||
for i := range vocabSize - len(t.Vocabulary.Tokens) {
|
||||
t.Vocabulary.Tokens = append(t.Vocabulary.Tokens, fmt.Sprintf("[PAD%d]", i))
|
||||
t.Vocabulary.Scores = append(t.Vocabulary.Scores, -1)
|
||||
t.Vocabulary.Types = append(t.Vocabulary.Types, tokenTypeUserDefined)
|
||||
}
|
||||
case vocabSize < len(t.Vocabulary.Tokens):
|
||||
return fmt.Errorf("vocabulary is larger than expected '%d' instead of '%d'", len(t.Vocabulary.Tokens), vocabSize)
|
||||
slog.Debug("vocabulary is larger than expected", "want", vocabSize, "got", len(t.Vocabulary.Tokens))
|
||||
p.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
p.TextModel.VocabSize = uint32(len(t.Vocabulary.Tokens))
|
||||
default:
|
||||
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
|
||||
}
|
||||
@@ -232,5 +248,13 @@ func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
|
||||
return err
|
||||
}
|
||||
|
||||
return conv.writeFile(ws, conv.KV(t), conv.Tensors(ts))
|
||||
return writeFile(f, conv.KV(t), conv.Tensors(ts))
|
||||
}
|
||||
|
||||
func writeFile(f *os.File, kv ggml.KV, ts []*ggml.Tensor) error {
|
||||
for i := range ts {
|
||||
ts[i].Shape = slices.Clone(ts[i].Shape)
|
||||
slices.Reverse(ts[i].Shape)
|
||||
}
|
||||
return ggml.WriteGGUF(f, kv, ts)
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@ type bertModel struct {
|
||||
LayerNormEPS float32 `json:"layer_norm_eps"`
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
normalizeEmbeddings bool
|
||||
|
||||
PoolingType uint32
|
||||
}
|
||||
@@ -54,9 +55,11 @@ func (p *bertModel) parseMore(fsys fs.FS) error {
|
||||
|
||||
var pooling string
|
||||
for _, m := range modules {
|
||||
if m.Type == "sentence_transformers.models.Pooling" {
|
||||
switch m.Type {
|
||||
case "sentence_transformers.models.Pooling":
|
||||
pooling = m.Path
|
||||
break
|
||||
case "sentence_transformers.models.Normalize":
|
||||
p.normalizeEmbeddings = true
|
||||
}
|
||||
}
|
||||
|
||||
@@ -90,6 +93,7 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv["general.architecture"] = "bert"
|
||||
kv["bert.attention.causal"] = false
|
||||
kv["bert.pooling_type"] = p.PoolingType
|
||||
kv["bert.normalize_embeddings"] = p.normalizeEmbeddings
|
||||
|
||||
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
|
||||
|
||||
@@ -132,8 +136,8 @@ func (p *bertModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *bertModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if slices.Contains([]string{
|
||||
"embeddings.position_ids",
|
||||
@@ -143,7 +147,7 @@ func (p *bertModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
continue
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -43,10 +43,10 @@ func (p *commandrModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *commandrModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -42,14 +42,14 @@ func (p *gemmaModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *gemmaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && strings.HasSuffix(t.Name(), "_norm.weight") {
|
||||
t.SetRepacker(p.addOne)
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
@@ -21,8 +21,8 @@ func (p *gemma2Adapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *gemma2Adapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -31,7 +31,7 @@ func (p *gemma2Adapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
142
convert/convert_gemma3.go
Normal file
142
convert/convert_gemma3.go
Normal file
@@ -0,0 +1,142 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type gemma3Model struct {
|
||||
gemmaModel
|
||||
Architecture string
|
||||
TextModel struct {
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"` // attention.head_count 16
|
||||
LayerNormEpsilon float32 `json:"layer_norm_eps"` // attention.layer_norm_epsilon 1e-05
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"` // block_count 32
|
||||
HiddenSize uint32 `json:"hidden_size"` // embedding_length 1280
|
||||
IntermediateSize uint32 `json:"intermediate_size"` // feed_forward_length 5120
|
||||
ImageSize uint32 `json:"image_size"` // image_size 560
|
||||
NumChannels uint32 `json:"num_channels"` // num_channels 3
|
||||
PatchSize uint32 `json:"patch_size"` // patch_size 14
|
||||
} `json:"vision_config"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
|
||||
RopeLocalTheta float32 `json:"rope_local_base_freq"`
|
||||
RopeGlobalTheta float32 `json:"rope_global_base_freq"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
MultiModalTokensPerImage uint32 `json:"mm_tokens_per_image"`
|
||||
}
|
||||
|
||||
const (
|
||||
gemma4BLayerCount = 34
|
||||
gemma12BLayerCount = 48
|
||||
gemma27BLayerCount = 62
|
||||
)
|
||||
|
||||
func (p *gemma3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3"
|
||||
|
||||
numBlocks := cmp.Or(p.HiddenLayers, p.TextModel.HiddenLayers)
|
||||
kv["gemma3.block_count"] = numBlocks
|
||||
|
||||
var (
|
||||
numHeads uint32
|
||||
numKVHeads uint32
|
||||
)
|
||||
|
||||
switch numBlocks {
|
||||
case gemma4BLayerCount:
|
||||
numHeads = 8
|
||||
numKVHeads = 4
|
||||
case gemma12BLayerCount:
|
||||
numHeads = 16
|
||||
numKVHeads = 8
|
||||
case gemma27BLayerCount:
|
||||
numHeads = 32
|
||||
numKVHeads = 16
|
||||
default:
|
||||
numHeads = p.NumAttentionHeads
|
||||
numKVHeads = p.NumKeyValueHeads
|
||||
}
|
||||
|
||||
kv["gemma3.attention.head_count"] = numHeads
|
||||
kv["gemma3.attention.head_count_kv"] = numKVHeads
|
||||
|
||||
switch p.Architecture {
|
||||
case "Gemma3ForCausalLM":
|
||||
kv["gemma3.context_length"] = p.MaxPositionEmbeddings
|
||||
kv["gemma3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
|
||||
kv["gemma3.attention.key_length"] = p.HeadDim
|
||||
kv["gemma3.attention.value_length"] = p.HeadDim
|
||||
kv["gemma3.attention.sliding_window"] = p.SlidingWindow
|
||||
kv["gemma3.final_logit_softcapping"] = cmp.Or(p.FinalLogitSoftcap, 30)
|
||||
kv["gemma3.rope.local.freq_base"] = cmp.Or(p.RopeLocalTheta, 10000.0)
|
||||
kv["gemma3.rope.global.freq_base"] = cmp.Or(p.RopeGlobalTheta, 1000000.0)
|
||||
kv["gemma3.embedding_length"] = p.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.IntermediateSize
|
||||
default:
|
||||
kv["gemma3.context_length"] = cmp.Or(p.MaxPositionEmbeddings, 131072)
|
||||
kv["gemma3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["gemma3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["gemma3.attention.sliding_window"] = p.TextModel.SlidingWindow
|
||||
kv["gemma3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["gemma3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["gemma3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["gemma3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["gemma3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["gemma3.vision.num_channels"] = cmp.Or(p.VisionModel.NumChannels, 3)
|
||||
kv["gemma3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["gemma3.vision.attention.layer_norm_epsilon"] = cmp.Or(p.VisionModel.LayerNormEpsilon, 1e-6)
|
||||
kv["gemma3.attention.key_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
kv["gemma3.attention.value_length"] = cmp.Or(p.TextModel.HeadDim, 256)
|
||||
}
|
||||
|
||||
if p.MultiModalTokensPerImage > 0 {
|
||||
kv["gemma3.mm.tokens_per_image"] = p.MultiModalTokensPerImage
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *gemma3Model) Replacements() []string {
|
||||
return []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.norm", "output_norm",
|
||||
"vision_tower.vision_model.embeddings", "v",
|
||||
"vision_tower.vision_model", "v",
|
||||
"vision_model.vision_model.embeddings", "v",
|
||||
"vision_model.vision_model", "v",
|
||||
"language_model.", "",
|
||||
"model.layers", "blk",
|
||||
"encoder.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"self_attn.out_proj", "attn_output",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"input_projection_weight", "input_projection.weight",
|
||||
"multi_modal_projector", "mm",
|
||||
}
|
||||
}
|
||||
165
convert/convert_gemma3n.go
Normal file
165
convert/convert_gemma3n.go
Normal file
@@ -0,0 +1,165 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"gonum.org/v1/gonum/stat/distuv"
|
||||
)
|
||||
|
||||
type gemma3nModel struct {
|
||||
ModelParameters
|
||||
|
||||
TextModel struct {
|
||||
ActivationSparsityPattern []float32 `json:"activation_sparsity_pattern"`
|
||||
AltupActiveIdx uint32 `json:"altup_active_idx"`
|
||||
AltupCoefClip float32 `json:"altup_coef_clip"`
|
||||
AltupCorrectScale bool `json:"altup_correct_scale"`
|
||||
AltupLRMultiplier float32 `json:"altup_lr_multiplier"`
|
||||
AltupNumInputs uint32 `json:"altup_num_inputs"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
HiddenSizePerLayerInput uint32 `json:"hidden_size_per_layer_input"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
NumKVSharedLayers uint32 `json:"num_kv_shared_layers"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
RopeLocalBaseFreq float32 `json:"rope_local_base_freq"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
LayerTypes []string `json:"layer_types"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct{} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gemma3n"
|
||||
kv["gemma3n.activation_sparsity_scale"] = slices.Collect(func(yield func(float32) bool) {
|
||||
norm := distuv.Normal{Mu: 0, Sigma: 1}
|
||||
for _, v := range m.TextModel.ActivationSparsityPattern {
|
||||
if !yield(float32(norm.Quantile(float64(v)))) {
|
||||
break
|
||||
}
|
||||
}
|
||||
})
|
||||
kv["gemma3n.altup.active_idx"] = m.TextModel.AltupActiveIdx
|
||||
kv["gemma3n.altup.correct_scale"] = m.TextModel.AltupCorrectScale
|
||||
kv["gemma3n.altup.lr_multiplier"] = m.TextModel.AltupLRMultiplier
|
||||
kv["gemma3n.altup.num_inputs"] = m.TextModel.AltupNumInputs
|
||||
kv["gemma3n.attention.head_count_kv"] = m.TextModel.NumKeyValueHeads
|
||||
kv["gemma3n.attention.head_count"] = m.TextModel.NumAttentionHeads
|
||||
kv["gemma3n.attention.layer_norm_rms_epsilon"] = m.TextModel.RMSNormEPS
|
||||
kv["gemma3n.attention.sliding_window"] = m.TextModel.SlidingWindow
|
||||
kv["gemma3n.attention.sliding_window_pattern"] = slices.Collect(func(yield func(bool) bool) {
|
||||
for _, t := range m.TextModel.LayerTypes {
|
||||
if !yield(t == "sliding_attention") {
|
||||
break
|
||||
}
|
||||
}
|
||||
})
|
||||
kv["gemma3n.attention.shared_kv_layers"] = m.TextModel.NumKVSharedLayers
|
||||
kv["gemma3n.block_count"] = m.TextModel.NumHiddenLayers
|
||||
kv["gemma3n.context_length"] = m.TextModel.MaxPositionEmbeddings
|
||||
kv["gemma3n.embedding_length_per_layer_input"] = m.TextModel.HiddenSizePerLayerInput
|
||||
kv["gemma3n.embedding_length"] = m.TextModel.HiddenSize
|
||||
kv["gemma3n.feed_forward_length"] = m.TextModel.IntermediateSize
|
||||
kv["gemma3n.head_dim"] = m.TextModel.HeadDim
|
||||
kv["gemma3n.rope.freq_base_local"] = m.TextModel.RopeLocalBaseFreq
|
||||
kv["gemma3n.rope.freq_base"] = m.TextModel.RopeTheta
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
out, ts := mergeTensors(ts,
|
||||
merge{"altup_proj.*.weight", "altup_proj.weight"},
|
||||
merge{"altup_unembd_proj.*.weight", "altup_unembd_proj.weight"},
|
||||
)
|
||||
|
||||
for _, t := range ts {
|
||||
switch {
|
||||
case strings.Contains(t.Name(), "audio_tower"),
|
||||
strings.Contains(t.Name(), "embed_audio"),
|
||||
strings.Contains(t.Name(), "vision_tower"),
|
||||
strings.Contains(t.Name(), "embed_vision"):
|
||||
// TODO: handle audio and vision towers
|
||||
continue
|
||||
case strings.Contains(t.Name(), "altup_predict_coef"),
|
||||
strings.Contains(t.Name(), "altup_correct_coef"):
|
||||
if m.TextModel.AltupCoefClip > 0 {
|
||||
t.SetRepacker(func(name string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
t, err = tensor.Clamp(t, -m.TextModel.AltupCoefClip, m.TextModel.AltupCoefClip)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (m *gemma3nModel) Replacements() []string {
|
||||
return []string{
|
||||
"model.language_model.embed_tokens_per_layer", "per_layer_token_embd",
|
||||
"model.language_model.embed_tokens", "token_embd",
|
||||
"model.language_model.per_layer_model_projection", "per_layer_model_proj",
|
||||
"model.language_model.per_layer_projection_norm", "per_layer_proj_norm", "model.language_model.altup_projections", "altup_proj",
|
||||
"model.language_model.altup_unembed_projections", "altup_unembd_proj",
|
||||
"model.language_model.norm", "output_norm",
|
||||
"model.language_model.layers", "blk",
|
||||
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.q_norm", "attn_q_norm",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.k_norm", "attn_k_norm",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"post_attention_layernorm", "post_attention_norm",
|
||||
"pre_feedforward_layernorm", "ffn_norm",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"post_feedforward_layernorm", "post_ffw_norm",
|
||||
"per_layer_input_gate", "inp_gate",
|
||||
"per_layer_projection", "proj",
|
||||
"post_per_layer_input_norm", "post_norm",
|
||||
"altup.", "altup_",
|
||||
"modality_router", "router",
|
||||
"prediction_coefs", "predict_coef",
|
||||
"correction_coefs", "correct_coef",
|
||||
"correct_output_scale", "correct_scale.weight",
|
||||
"laurel.", "laurel_",
|
||||
"linear_left", "l",
|
||||
"linear_right", "r",
|
||||
"post_laurel_norm", "post_norm",
|
||||
}
|
||||
}
|
||||
266
convert/convert_gptoss.go
Normal file
266
convert/convert_gptoss.go
Normal file
@@ -0,0 +1,266 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type gptossModel struct {
|
||||
ModelParameters
|
||||
HiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
AttentionHeads uint32 `json:"num_attention_heads"`
|
||||
KeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
Experts uint32 `json:"num_experts"`
|
||||
LocalExperts uint32 `json:"num_local_experts"`
|
||||
ExpertsPerToken uint32 `json:"experts_per_token"`
|
||||
RMSNormEpsilon float32 `json:"rms_norm_eps"`
|
||||
InitialContextLength uint32 `json:"initial_context_length"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScalingFactor float32 `json:"rope_scaling_factor"`
|
||||
RopeScaling struct {
|
||||
Factor float32 `json:"factor"`
|
||||
} `json:"rope_scaling"`
|
||||
SlidingWindow uint32 `json:"sliding_window"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*gptossModel)(nil)
|
||||
|
||||
func (m *gptossModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "gptoss"
|
||||
kv["general.file_type"] = uint32(4)
|
||||
kv["gptoss.context_length"] = cmp.Or(m.MaxPositionEmbeddings, uint32(m.RopeScalingFactor*float32(m.InitialContextLength)))
|
||||
kv["gptoss.block_count"] = m.HiddenLayers
|
||||
kv["gptoss.embedding_length"] = m.HiddenSize
|
||||
kv["gptoss.feed_forward_length"] = m.IntermediateSize
|
||||
kv["gptoss.expert_count"] = cmp.Or(m.Experts, m.LocalExperts)
|
||||
kv["gptoss.expert_used_count"] = m.ExpertsPerToken
|
||||
kv["gptoss.attention.head_count"] = m.AttentionHeads
|
||||
kv["gptoss.attention.head_count_kv"] = m.KeyValueHeads
|
||||
kv["gptoss.attention.key_length"] = m.HeadDim
|
||||
kv["gptoss.attention.value_length"] = m.HeadDim
|
||||
kv["gptoss.attention.layer_norm_rms_epsilon"] = cmp.Or(m.RMSNormEpsilon, 1e-5)
|
||||
kv["gptoss.attention.sliding_window"] = m.SlidingWindow
|
||||
kv["gptoss.rope.freq_base"] = m.RopeTheta
|
||||
kv["gptoss.rope.scaling.factor"] = cmp.Or(m.RopeScalingFactor, m.RopeScaling.Factor)
|
||||
kv["gptoss.rope.scaling.original_context_length"] = m.InitialContextLength
|
||||
kv["tokenizer.ggml.bos_token_id"] = uint32(199998) // <|startoftext|>
|
||||
kv["tokenizer.ggml.add_bos_token"] = false
|
||||
kv["tokenizer.ggml.eos_token_id"] = uint32(199999) // <|endoftext|>
|
||||
kv["tokenizer.ggml.eos_token_ids"] = []int32{
|
||||
199999, /* <|endoftext|> */
|
||||
200002, /* <|return|> */
|
||||
200012, /* <|call|> */
|
||||
}
|
||||
kv["tokenizer.ggml.add_eos_token"] = false
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *gptossModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
mxfp4s := make(map[string]*mxfp4)
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), ".blocks") || strings.HasSuffix(t.Name(), ".scales") {
|
||||
dot := strings.LastIndex(t.Name(), ".")
|
||||
name, suffix := t.Name()[:dot], t.Name()[dot+1:]
|
||||
if _, ok := mxfp4s[name]; !ok {
|
||||
mxfp4s[name] = &mxfp4{}
|
||||
}
|
||||
|
||||
switch suffix {
|
||||
case "blocks":
|
||||
mxfp4s[name].blocks = t
|
||||
case "scales":
|
||||
mxfp4s[name].scales = t
|
||||
}
|
||||
} else if strings.HasSuffix(t.Name(), "gate_up_exps.bias") {
|
||||
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
|
||||
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
|
||||
out = append(out, slices.Collect(splitDim(t, 1,
|
||||
split{
|
||||
Replacer: strings.NewReplacer("gate_up_exps", "gate_exps"),
|
||||
slices: []tensor.Slice{nil, tensor.S(0, int(t.Shape()[1]), 2)},
|
||||
},
|
||||
split{
|
||||
Replacer: strings.NewReplacer("gate_up_exps", "up_exps"),
|
||||
slices: []tensor.Slice{nil, tensor.S(1, int(t.Shape()[1]), 2)},
|
||||
},
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
for name, mxfp4 := range mxfp4s {
|
||||
dims := mxfp4.blocks.Shape()
|
||||
if strings.Contains(name, "ffn_down_exps") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name + ".weight",
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1], dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4,
|
||||
})
|
||||
} else if strings.Contains(name, "ffn_gate_up_exps") {
|
||||
// gate_up_exps is interleaved, need to split into gate_exps and up_exps
|
||||
// e.g. gate_exps, up_exps = gate_up_exps[:, 0::2, ...], gate_up_exps[:, 1::2, ...]
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: strings.Replace(name, "gate_up", "gate", 1) + ".weight",
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4.slice(1, 0, int(dims[1]), 2),
|
||||
}, &ggml.Tensor{
|
||||
Name: strings.Replace(name, "gate_up", "up", 1) + ".weight",
|
||||
Kind: uint32(ggml.TensorTypeMXFP4),
|
||||
Shape: []uint64{dims[0], dims[1] / 2, dims[2] * dims[3] * 2},
|
||||
WriterTo: mxfp4.slice(1, 1, int(dims[1]), 2),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (m *gptossModel) Replacements() []string {
|
||||
var replacements []string
|
||||
if m.MaxPositionEmbeddings > 0 {
|
||||
// hf flavored model
|
||||
replacements = []string{
|
||||
"lm_head", "output",
|
||||
"model.embed_tokens", "token_embd",
|
||||
"model.layers", "blk",
|
||||
"input_layernorm", "attn_norm",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_out",
|
||||
"self_attn.sinks", "attn_sinks",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"mlp.router", "ffn_gate_inp",
|
||||
"mlp.experts.gate_up_proj_", "ffn_gate_up_exps.",
|
||||
"mlp.experts.down_proj_", "ffn_down_exps.",
|
||||
"model.norm", "output_norm",
|
||||
}
|
||||
} else {
|
||||
replacements = []string{
|
||||
// noop replacements so other replacements will not be applied
|
||||
".blocks", ".blocks",
|
||||
".scales", ".scales",
|
||||
// real replacements
|
||||
"block", "blk",
|
||||
"attn.norm", "attn_norm",
|
||||
"attn.qkv", "attn_qkv",
|
||||
"attn.sinks", "attn_sinks",
|
||||
"attn.out", "attn_out",
|
||||
"mlp.norm", "ffn_norm",
|
||||
"mlp.gate", "ffn_gate_inp",
|
||||
"mlp.mlp1_", "ffn_gate_up_exps.",
|
||||
"mlp.mlp2_", "ffn_down_exps.",
|
||||
"embedding", "token_embd",
|
||||
"norm", "output_norm",
|
||||
"unembedding", "output",
|
||||
"scale", "weight",
|
||||
}
|
||||
}
|
||||
return replacements
|
||||
}
|
||||
|
||||
type mxfp4 struct {
|
||||
slices []tensor.Slice
|
||||
|
||||
blocks, scales Tensor
|
||||
}
|
||||
|
||||
func (m *mxfp4) slice(dim, start, end, step int) *mxfp4 {
|
||||
slice := slices.Repeat([]tensor.Slice{nil}, len(m.blocks.Shape()))
|
||||
slice[dim] = tensor.S(start, end, step)
|
||||
return &mxfp4{
|
||||
slices: slice,
|
||||
blocks: m.blocks,
|
||||
scales: m.scales,
|
||||
}
|
||||
}
|
||||
|
||||
func (m *mxfp4) WriteTo(w io.Writer) (int64, error) {
|
||||
var b bytes.Buffer
|
||||
if _, err := m.blocks.WriteTo(&b); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
blocksDims := make([]int, len(m.blocks.Shape()))
|
||||
for i, d := range m.blocks.Shape() {
|
||||
blocksDims[i] = int(d)
|
||||
}
|
||||
|
||||
bts := b.Bytes()
|
||||
var tmp [16]byte
|
||||
for i := 0; i < b.Len(); i += 16 {
|
||||
for j := range 8 {
|
||||
// transform a1b2c3 ... x7y8z9 -> 71xa82yb93zc
|
||||
a, b := bts[i+j], bts[i+j+8]
|
||||
tmp[2*j+0] = (a & 0x0F) | (b << 4)
|
||||
tmp[2*j+1] = (a >> 4) | (b & 0xF0)
|
||||
}
|
||||
|
||||
copy(bts[i:i+16], tmp[:])
|
||||
}
|
||||
|
||||
var blocks tensor.Tensor = tensor.New(tensor.WithShape(blocksDims...), tensor.WithBacking(bts))
|
||||
|
||||
var s bytes.Buffer
|
||||
if _, err := m.scales.WriteTo(&s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
scalesDims := slices.Repeat([]int{1}, len(m.blocks.Shape()))
|
||||
for i, d := range m.scales.Shape() {
|
||||
scalesDims[i] = int(d)
|
||||
}
|
||||
|
||||
var scales tensor.Tensor = tensor.New(tensor.WithShape(scalesDims...), tensor.WithBacking(s.Bytes()))
|
||||
|
||||
out, err := tensor.Concat(3, scales, blocks)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
if len(m.slices) > 0 {
|
||||
out, err = out.Slice(m.slices...)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
out = tensor.Materialize(out)
|
||||
|
||||
if err := out.Reshape(out.Shape().TotalSize()); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
u8s, err := native.VectorU8(out.(*tensor.Dense))
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, u8s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return int64(len(u8s)), nil
|
||||
}
|
||||
@@ -28,12 +28,12 @@ type llamaModel struct {
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RopeScaling struct {
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
|
||||
Type string `json:"type"`
|
||||
RopeType string `json:"rope_type"`
|
||||
Factor float32 `json:"factor"`
|
||||
LowFrequencyFactor float32 `json:"low_freq_factor"`
|
||||
HighFrequencyFactor float32 `json:"high_freq_factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
|
||||
factors ropeFactor
|
||||
} `json:"rope_scaling"`
|
||||
@@ -42,6 +42,8 @@ type llamaModel struct {
|
||||
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
|
||||
NormEpsilon float32 `json:"norm_epsilon"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
|
||||
skipRepack bool
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*llamaModel)(nil)
|
||||
@@ -70,6 +72,10 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
|
||||
}
|
||||
|
||||
if p.HeadDim > 0 {
|
||||
kv["llama.attention.head_dim"] = p.HeadDim
|
||||
}
|
||||
|
||||
if p.RopeTheta > 0 {
|
||||
kv["llama.rope.freq_base"] = p.RopeTheta
|
||||
}
|
||||
@@ -84,7 +90,7 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
|
||||
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
|
||||
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
|
||||
original := cmp.Or(p.RopeScaling.OriginalMaxPositionEmbeddings, 8192)
|
||||
lambdaLow := float32(original) / factorLow
|
||||
lambdaHigh := float32(original) / factorHigh
|
||||
|
||||
@@ -120,11 +126,11 @@ func (p *llamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *llamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
if p.RopeScaling.factors != nil {
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: "rope_freqs.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
|
||||
@@ -133,12 +139,14 @@ func (p *llamaModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
}
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") ||
|
||||
strings.HasSuffix(t.Name(), "attn_q_proj.weight") || strings.HasSuffix(t.Name(), "attn_k_proj.weight") {
|
||||
if !p.skipRepack {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -174,9 +182,9 @@ func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]floa
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, "attn_q.weight") {
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_q_proj.weight") {
|
||||
heads = p.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") {
|
||||
} else if strings.HasSuffix(name, "attn_k.weight") || strings.HasSuffix(name, "attn_k_proj.weight") {
|
||||
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
|
||||
169
convert/convert_llama4.go
Normal file
169
convert/convert_llama4.go
Normal file
@@ -0,0 +1,169 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type llama4Model struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
|
||||
NumLocalExperts uint32 `json:"num_local_experts"`
|
||||
InterleaveMOELayerStep uint32 `json:"interleave_moe_layer_step"`
|
||||
UseQKNorm bool `json:"use_qk_norm"`
|
||||
IntermediateSizeMLP uint32 `json:"intermediate_size_mlp"`
|
||||
AttentionChunkSize uint32 `json:"attention_chunk_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
PixelShuffleRatio float32 `json:"pixel_shuffle_ratio"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
// KV implements ModelConverter.
|
||||
func (p *llama4Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "llama4"
|
||||
|
||||
for k, v := range p.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "llama4.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["llama4.feed_forward_length"] = p.TextModel.IntermediateSizeMLP
|
||||
kv["llama4.expert_feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
|
||||
kv["llama4.expert_count"] = p.TextModel.NumLocalExperts
|
||||
kv["llama4.expert_used_count"] = p.TextModel.NumExpertsPerToken
|
||||
kv["llama4.interleave_moe_layer_step"] = p.TextModel.InterleaveMOELayerStep
|
||||
kv["llama4.use_qk_norm"] = p.TextModel.UseQKNorm
|
||||
kv["llama4.attention.chunk_size"] = p.TextModel.AttentionChunkSize
|
||||
|
||||
kv["llama4.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["llama4.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["llama4.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["llama4.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["llama4.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["llama4.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["llama4.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
kv["llama4.vision.layer_norm_epsilon"] = p.VisionModel.NormEpsilon
|
||||
kv["llama4.vision.pixel_shuffle_ratio"] = p.VisionModel.PixelShuffleRatio
|
||||
return kv
|
||||
}
|
||||
|
||||
// Replacements implements ModelConverter.
|
||||
func (p *llama4Model) Replacements() []string {
|
||||
return append(
|
||||
p.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"vision_model", "v",
|
||||
"multi_modal_projector", "mm",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.", "ffn_",
|
||||
"shared_expert.down_proj", "down_shexp",
|
||||
"shared_expert.gate_proj", "gate_shexp",
|
||||
"shared_expert.up_proj", "up_shexp",
|
||||
"experts.down_proj", "down_exps.weight",
|
||||
"experts.gate_up_proj", "gate_up_exps.weight",
|
||||
"router", "gate_inp",
|
||||
"patch_embedding.linear", "patch_embedding",
|
||||
)
|
||||
}
|
||||
|
||||
// Tensors implements ModelConverter.
|
||||
func (p *llama4Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
var textTensors []Tensor
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "v.") || strings.HasPrefix(t.Name(), "mm.") {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
} else if strings.Contains(t.Name(), "ffn_gate_up_exps") {
|
||||
// gate and up projectors are fused
|
||||
// dims[1], dims[2] must be swapped
|
||||
// [experts, hidden_size, intermediate_size * 2] --> [experts, intermediate_size, hidden_size]
|
||||
halfDim := int(t.Shape()[2]) / 2
|
||||
|
||||
newShape := slices.Clone(t.Shape())
|
||||
newShape[1], newShape[2] = newShape[2]/2, newShape[1]
|
||||
for i, name := range []string{"ffn_gate_exps", "ffn_up_exps"} {
|
||||
// clone tensor since we need separate repackers
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(p.repack(nil, nil, tensor.S(i*halfDim, (i+1)*halfDim)))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: strings.ReplaceAll(tt.Name(), "ffn_gate_up_exps", name),
|
||||
Kind: tt.Kind(),
|
||||
Shape: newShape,
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "ffn_down_exps") {
|
||||
// dims[1], dims[2] must be swapped
|
||||
// [experts, intermediate_size, hidden_size] --> [experts, hidden_size, intermediate_size]
|
||||
t.SetRepacker(p.repack())
|
||||
newShape := slices.Clone(t.Shape())
|
||||
newShape[1], newShape[2] = newShape[2], newShape[1]
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: newShape,
|
||||
WriterTo: t,
|
||||
})
|
||||
} else {
|
||||
textTensors = append(textTensors, t)
|
||||
}
|
||||
}
|
||||
|
||||
p.TextModel.skipRepack = true
|
||||
out = append(out, p.TextModel.Tensors(textTensors)...)
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *llama4Model) repack(slice ...tensor.Slice) Repacker {
|
||||
return func(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
t, err := t.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.T(0, 2, 1); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
||||
@@ -29,8 +29,8 @@ func (p *llamaAdapter) KV(baseKV ggml.KV) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (p *llamaAdapter) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
shape := t.Shape()
|
||||
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
|
||||
@@ -41,7 +41,7 @@ func (p *llamaAdapter) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
|
||||
190
convert/convert_mistral.go
Normal file
190
convert/convert_mistral.go
Normal file
@@ -0,0 +1,190 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"fmt"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type mistral3Model struct {
|
||||
ModelParameters
|
||||
ImageTokenIndex uint32 `json:"image_token_index"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
VisionFeatureLayer int32 `json:"vision_feature_layer"`
|
||||
TextModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
SlidingWindow *uint32 `json:"sliding_window"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
VocabSize uint32 `json:"vocab_size"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumAttentionHeads uint32 `json:"num_attention_heads"`
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
HeadDim uint32 `json:"head_dim"`
|
||||
HiddenAct string `json:"hidden_act"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
} `json:"vision_config"`
|
||||
MultiModalProjectorBias bool `json:"multimodal_projector_bias"`
|
||||
ProjectorHiddenAct string `json:"projector_hidden_act"`
|
||||
}
|
||||
|
||||
func (p *mistral3Model) KV(t *Tokenizer) ggml.KV {
|
||||
kv := p.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mistral3"
|
||||
kv["mistral3.vocab_size"] = p.TextModel.VocabSize
|
||||
|
||||
// Text configuration
|
||||
kv["mistral3.block_count"] = p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.context_length"] = p.TextModel.MaxPositionEmbeddings
|
||||
kv["mistral3.embedding_length"] = p.TextModel.HiddenSize
|
||||
kv["mistral3.feed_forward_length"] = p.TextModel.IntermediateSize
|
||||
kv["mistral3.attention.head_count"] = p.TextModel.NumAttentionHeads
|
||||
kv["mistral3.attention.head_count_kv"] = p.TextModel.NumKeyValueHeads
|
||||
kv["mistral3.attention.layer_norm_rms_epsilon"] = p.TextModel.RMSNormEPS
|
||||
kv["mistral3.attention.key_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.attention.value_length"] = p.TextModel.HeadDim
|
||||
kv["mistral3.rope.dimension_count"] = p.TextModel.HiddenSize / p.TextModel.NumHiddenLayers
|
||||
kv["mistral3.rope.freq_base"] = p.TextModel.RopeTheta
|
||||
|
||||
// Vision configuration
|
||||
kv["mistral3.vision.block_count"] = p.VisionModel.NumHiddenLayers
|
||||
kv["mistral3.vision.embedding_length"] = p.VisionModel.HiddenSize
|
||||
kv["mistral3.vision.feed_forward_length"] = p.VisionModel.IntermediateSize
|
||||
kv["mistral3.vision.attention.head_count"] = p.VisionModel.NumAttentionHeads
|
||||
kv["mistral3.vision.attention.key_length"] = p.VisionModel.HeadDim
|
||||
kv["mistral3.vision.image_size"] = p.VisionModel.ImageSize
|
||||
kv["mistral3.vision.patch_size"] = p.VisionModel.PatchSize
|
||||
kv["mistral3.vision.num_channels"] = p.VisionModel.NumChannels
|
||||
// kv["mistral3.vision.attention.layer_norm_epsilon"] = 1e-05 // Default value
|
||||
kv["mistral3.vision.rope.freq_base"] = p.VisionModel.RopeTheta
|
||||
|
||||
// Multimodal configuration
|
||||
kv["mistral3.image_token_index"] = p.ImageTokenIndex
|
||||
kv["mistral3.spatial_merge_size"] = p.SpatialMergeSize
|
||||
|
||||
kv["mistral3.mm.projector_bias"] = p.MultiModalProjectorBias
|
||||
|
||||
if p.ProjectorHiddenAct != "" {
|
||||
kv["mistral3.mm.projector_hidden_act"] = p.ProjectorHiddenAct
|
||||
}
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") {
|
||||
if strings.HasSuffix(t.Name(), ".attn_q.weight") ||
|
||||
strings.HasSuffix(t.Name(), ".attn_k.weight") {
|
||||
t.SetRepacker(p.repack)
|
||||
}
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *mistral3Model) Replacements() []string {
|
||||
return []string{
|
||||
"language_model.model.norm", "output_norm",
|
||||
"language_model.model.", "",
|
||||
"language_model.", "",
|
||||
"layers", "blk",
|
||||
"transformer.layers", "blk",
|
||||
"vision_tower", "v",
|
||||
"ln_pre", "encoder_norm",
|
||||
"input_layernorm", "attn_norm",
|
||||
"post_attention_layernorm", "ffn_norm",
|
||||
"embed_tokens", "token_embd",
|
||||
"self_attn.q_proj", "attn_q",
|
||||
"self_attn.k_proj", "attn_k",
|
||||
"self_attn.v_proj", "attn_v",
|
||||
"self_attn.o_proj", "attn_output",
|
||||
"mlp.down_proj", "ffn_down",
|
||||
"mlp.gate_proj", "ffn_gate",
|
||||
"mlp.up_proj", "ffn_up",
|
||||
"attention.q_proj", "attn_q",
|
||||
"attention.k_proj", "attn_k",
|
||||
"attention.v_proj", "attn_v",
|
||||
"attention.o_proj", "attn_output",
|
||||
"attention_norm", "attn_norm",
|
||||
"feed_forward.gate_proj", "ffn_gate",
|
||||
"feed_forward.down_proj", "ffn_down",
|
||||
"feed_forward.up_proj", "ffn_up",
|
||||
"multi_modal_projector", "mm",
|
||||
"ffn_norm", "ffn_norm",
|
||||
"lm_head", "output",
|
||||
}
|
||||
}
|
||||
|
||||
func (p *mistral3Model) repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
||||
var dims []int
|
||||
for _, dim := range shape {
|
||||
dims = append(dims, int(dim))
|
||||
}
|
||||
|
||||
var heads uint32
|
||||
if strings.HasSuffix(name, ".attn_q.weight") {
|
||||
heads = p.TextModel.NumAttentionHeads
|
||||
} else if strings.HasSuffix(name, ".attn_k.weight") {
|
||||
heads = cmp.Or(p.TextModel.NumKeyValueHeads, p.TextModel.NumAttentionHeads)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown tensor for repack: %s", name)
|
||||
}
|
||||
|
||||
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ts, err := native.SelectF32(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
for _, t := range ts {
|
||||
f32s = append(f32s, t...)
|
||||
}
|
||||
|
||||
return f32s, nil
|
||||
}
|
||||
@@ -2,9 +2,6 @@ package convert
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
@@ -29,66 +26,39 @@ func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
oldnew := []string{
|
||||
"model.layers", "blk",
|
||||
"w1", "ffn_gate_exps",
|
||||
"w2", "ffn_down_exps",
|
||||
"w3", "ffn_up_exps",
|
||||
}
|
||||
|
||||
for i := range p.NumLocalExperts {
|
||||
oldnew = append(oldnew, fmt.Sprintf(".block_sparse_moe.experts.%d.", i), ".")
|
||||
}
|
||||
|
||||
// group experts of the same layer (model.layers.%d) and type (w[123]) into a single tensor
|
||||
namer := strings.NewReplacer(oldnew...)
|
||||
experts := make(map[string]experts)
|
||||
|
||||
// merge experts into a single tensor while removing them from ts
|
||||
ts = slices.DeleteFunc(ts, func(t Tensor) bool {
|
||||
if !strings.Contains(t.Name(), ".block_sparse_moe.experts.") {
|
||||
return false
|
||||
}
|
||||
|
||||
name := namer.Replace(t.Name())
|
||||
experts[name] = append(experts[name], t)
|
||||
return true
|
||||
})
|
||||
|
||||
var out []ggml.Tensor
|
||||
for n, e := range experts {
|
||||
// TODO(mxyng): sanity check experts
|
||||
out = append(out, ggml.Tensor{
|
||||
Name: n,
|
||||
Kind: e[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),
|
||||
WriterTo: e,
|
||||
func (p *mixtralModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
merges := make([]merge, 0, p.NumHiddenLayers*6)
|
||||
for i := range p.NumHiddenLayers {
|
||||
merges = append(merges, merge{
|
||||
fmt.Sprintf("blk.%d.*.w1.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_gate_exps.weight", i),
|
||||
}, merge{
|
||||
fmt.Sprintf("blk.%d.*.w1.bias", i),
|
||||
fmt.Sprintf("blk.%d.ffn_gate_exps.bias", i),
|
||||
}, merge{
|
||||
fmt.Sprintf("blk.%d.*.w2.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_up_exps.weight", i),
|
||||
}, merge{
|
||||
fmt.Sprintf("blk.%d.*.w2.bias", i),
|
||||
fmt.Sprintf("blk.%d.ffn_up_exps.bias", i),
|
||||
}, merge{
|
||||
fmt.Sprintf("blk.%d.*.w3.weight", i),
|
||||
fmt.Sprintf("blk.%d.ffn_down_exps.weight", i),
|
||||
}, merge{
|
||||
fmt.Sprintf("blk.%d.*.w3.bias", i),
|
||||
fmt.Sprintf("blk.%d.ffn_down_exps.bias", i),
|
||||
})
|
||||
}
|
||||
|
||||
out, ts := mergeTensors(ts, merges...)
|
||||
return append(out, p.llamaModel.Tensors(ts)...)
|
||||
}
|
||||
|
||||
func (p *mixtralModel) Replacements() []string {
|
||||
return append(
|
||||
p.llamaModel.Replacements(),
|
||||
"model.layers", "blk",
|
||||
"block_sparse_moe.gate", "ffn_gate_inp",
|
||||
"block_sparse_moe.experts.", ".",
|
||||
)
|
||||
}
|
||||
|
||||
type experts []Tensor
|
||||
|
||||
func (e experts) WriteTo(w io.Writer) (int64, error) {
|
||||
// TODO(mxyng): experts _should_ be numerically sorted by expert but this should check
|
||||
for _, t := range e {
|
||||
// the canonical merged experts tensor stacks all experts along a new, 0 axis,
|
||||
// e.g. `tensor.Stack(0, e[0], e[1:]...)`, which requires allocating temporary buffers
|
||||
// this accomplishes the same thing by writing each expert tensor in sequence
|
||||
if _, err := t.WriteTo(w); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
179
convert/convert_mllama.go
Normal file
179
convert/convert_mllama.go
Normal file
@@ -0,0 +1,179 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
)
|
||||
|
||||
type mllamaModel struct {
|
||||
ModelParameters
|
||||
TextModel struct {
|
||||
llamaModel
|
||||
|
||||
CrossAttentionLayers []int32 `json:"cross_attention_layers"`
|
||||
} `json:"text_config"`
|
||||
VisionModel struct {
|
||||
NumHiddenLayers uint32 `json:"num_hidden_layers"`
|
||||
NumGlobalLayers uint32 `json:"num_global_layers"`
|
||||
IntermediateLayersIndices []int32 `json:"intermediate_layers_indices"`
|
||||
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
IntermediateSize uint32 `json:"intermediate_size"`
|
||||
|
||||
AttentionHeads uint32 `json:"attention_heads"`
|
||||
|
||||
ImageSize uint32 `json:"image_size"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
NumChannels uint32 `json:"num_channels"`
|
||||
MaxNumTiles uint32 `json:"max_num_tiles"`
|
||||
NormEpsilon float32 `json:"norm_eps"`
|
||||
RopeTheta float32 `json:"rope.freq_base"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
func (m *mllamaModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := m.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "mllama"
|
||||
|
||||
for k, v := range m.TextModel.KV(t) {
|
||||
if strings.HasPrefix(k, "llama.") {
|
||||
kv[strings.ReplaceAll(k, "llama.", "mllama.")] = v
|
||||
}
|
||||
}
|
||||
|
||||
kv["mllama.attention.cross_attention_layers"] = m.TextModel.CrossAttentionLayers
|
||||
|
||||
kv["mllama.vision.block_count"] = m.VisionModel.NumHiddenLayers
|
||||
kv["mllama.vision.global.block_count"] = m.VisionModel.NumGlobalLayers
|
||||
kv["mllama.vision.intermediate_layers_indices"] = m.VisionModel.IntermediateLayersIndices
|
||||
|
||||
kv["mllama.vision.embedding_length"] = m.VisionModel.HiddenSize
|
||||
kv["mllama.vision.feed_forward_length"] = m.VisionModel.IntermediateSize
|
||||
|
||||
kv["mllama.vision.attention.head_count"] = m.VisionModel.AttentionHeads
|
||||
kv["mllama.vision.attention.layer_norm_epsilon"] = m.VisionModel.NormEpsilon
|
||||
|
||||
kv["mllama.vision.image_size"] = m.VisionModel.ImageSize
|
||||
kv["mllama.vision.patch_size"] = m.VisionModel.PatchSize
|
||||
kv["mllama.vision.max_num_tiles"] = m.VisionModel.MaxNumTiles
|
||||
kv["mllama.vision.num_channels"] = m.VisionModel.NumChannels
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Replacements() []string {
|
||||
return append(
|
||||
m.TextModel.Replacements(),
|
||||
"language_model.", "",
|
||||
"gate_attn", "attn_gate",
|
||||
"gate_ffn", "ffn_gate",
|
||||
"cross_attn.", "cross_attn_",
|
||||
"vision_model", "v",
|
||||
"class_embedding", "class_embd",
|
||||
"patch_embedding", "patch_embd",
|
||||
"gated_positional_embedding.tile_embedding", "tile_position_embd",
|
||||
"gated_positional_embedding.embedding", "position_embd.weight",
|
||||
"gated_positional_embedding", "position_embd",
|
||||
"embedding.weight", "weight",
|
||||
"pre_tile_positional_embedding", "pre_tile_position_embd",
|
||||
"post_tile_positional_embedding", "post_tile_position_embd",
|
||||
"layernorm_pre", "pre_ln",
|
||||
"layernorm_post", "post_ln",
|
||||
"global_transformer.layers", "global.blk",
|
||||
"transformer.layers", "blk",
|
||||
"mlp.fc1", "ffn_up",
|
||||
"mlp.fc2", "ffn_down",
|
||||
"multi_modal_projector", "mm.0",
|
||||
)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
var text []Tensor
|
||||
for _, t := range ts {
|
||||
if !strings.HasPrefix(t.Name(), "v.") && !strings.HasPrefix(t.Name(), "mm.") {
|
||||
text = append(text, t)
|
||||
} else if t.Name() == "v.position_embd.gate" {
|
||||
for _, name := range []string{"v.position_embd.gate", "v.tile_position_embd.gate"} {
|
||||
tt := t.Clone()
|
||||
tt.SetRepacker(m.repack(name))
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: name,
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: tt,
|
||||
})
|
||||
}
|
||||
} else {
|
||||
if t.Name() == "v.pre_tile_position_embd.gate" || t.Name() == "v.post_tile_position_embd.gate" {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
} else if strings.HasSuffix(t.Name(), "attn_gate") || strings.HasSuffix(t.Name(), "ffn_gate") {
|
||||
t.SetRepacker(m.repack(t.Name()))
|
||||
}
|
||||
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return append(out, m.TextModel.Tensors(text)...)
|
||||
}
|
||||
|
||||
func (m *mllamaModel) repack(name string) Repacker {
|
||||
return func(_ string, data []float32, shape []uint64) (_ []float32, err error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i, dim := range shape {
|
||||
dims[i] = int(dim)
|
||||
}
|
||||
|
||||
var t tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
|
||||
if strings.HasSuffix(name, "attn_q.weight") || strings.HasSuffix(name, "attn_k.weight") {
|
||||
heads := m.VisionModel.AttentionHeads
|
||||
if err := t.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Reshape(dims...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := t.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
t, err = tensor.Tanh(t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if name == "v.position_embd.gate" {
|
||||
t, err = tensor.Sub(float32(1), t)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t = tensor.Materialize(t)
|
||||
// flatten tensor so it can be return as a vector
|
||||
if err := t.Reshape(t.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(t.(*tensor.Dense))
|
||||
}
|
||||
}
|
||||
@@ -68,19 +68,19 @@ func (p *phi3Model) KV(t *Tokenizer) ggml.KV {
|
||||
return kv
|
||||
}
|
||||
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
func (p *phi3Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var addRopeFactors sync.Once
|
||||
|
||||
out := make([]ggml.Tensor, 0, len(ts)+2)
|
||||
out := make([]*ggml.Tensor, 0, len(ts)+2)
|
||||
for _, t := range ts {
|
||||
if strings.HasPrefix(t.Name(), "blk.0.") {
|
||||
addRopeFactors.Do(func() {
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: "rope_factors_long.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))},
|
||||
WriterTo: p.RopeScaling.LongFactor,
|
||||
}, ggml.Tensor{
|
||||
}, &ggml.Tensor{
|
||||
Name: "rope_factors_short.weight",
|
||||
Kind: 0,
|
||||
Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))},
|
||||
@@ -89,7 +89,7 @@ func (p *phi3Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
})
|
||||
}
|
||||
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
@@ -118,6 +118,5 @@ func (p *phi3Model) Replacements() []string {
|
||||
type ropeFactor []float32
|
||||
|
||||
func (r ropeFactor) WriteTo(w io.Writer) (int64, error) {
|
||||
err := binary.Write(w, binary.LittleEndian, r)
|
||||
return 0, err
|
||||
return 0, binary.Write(w, binary.LittleEndian, r)
|
||||
}
|
||||
|
||||
@@ -15,6 +15,7 @@ type qwen2Model struct {
|
||||
Type string `json:"type"`
|
||||
Factor ropeFactor `json:"factor"`
|
||||
OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"`
|
||||
MropeSection []int32 `json:"mrope_section"`
|
||||
} `json:"rope_scaling"`
|
||||
RMSNormEPS float32 `json:"rms_norm_eps"`
|
||||
}
|
||||
@@ -39,16 +40,18 @@ func (q *qwen2Model) KV(t *Tokenizer) ggml.KV {
|
||||
case "yarn":
|
||||
kv["qwen2.rope.scaling.type"] = q.RopeScaling.Type
|
||||
kv["qwen2.rope.scaling.factor"] = q.RopeScaling.Factor
|
||||
case "mrope", "default":
|
||||
kv["qwen2.rope.mrope_section"] = q.RopeScaling.MropeSection
|
||||
default:
|
||||
panic("unknown rope scaling type")
|
||||
}
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []ggml.Tensor {
|
||||
var out []ggml.Tensor
|
||||
func (q *qwen2Model) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
for _, t := range ts {
|
||||
out = append(out, ggml.Tensor{
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
|
||||
102
convert/convert_qwen25vl.go
Normal file
102
convert/convert_qwen25vl.go
Normal file
@@ -0,0 +1,102 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type qwen25VLModel struct {
|
||||
qwen2Model
|
||||
|
||||
VisionModel struct {
|
||||
Depth uint32 `json:"depth"`
|
||||
HiddenSize uint32 `json:"hidden_size"`
|
||||
NumHeads uint32 `json:"num_heads"`
|
||||
InChannels uint32 `json:"in_chans"`
|
||||
PatchSize uint32 `json:"patch_size"`
|
||||
SpatialMergeSize uint32 `json:"spatial_merge_size"`
|
||||
SpatialPatchSize uint32 `json:"spatial_patch_size"`
|
||||
WindowSize uint32 `json:"window_size"`
|
||||
RMSNormEps float32 `json:"layer_norm_epsilon"`
|
||||
RopeTheta float32 `json:"rope_theta"`
|
||||
FullAttentionBlocks []int32 `json:"fullatt_block_indexes"`
|
||||
TemporalPatchSize uint32 `json:"temporal_patch_size"`
|
||||
} `json:"vision_config"`
|
||||
}
|
||||
|
||||
var _ ModelConverter = (*qwen25VLModel)(nil)
|
||||
|
||||
func (q *qwen25VLModel) KV(t *Tokenizer) ggml.KV {
|
||||
kv := q.ModelParameters.KV(t)
|
||||
kv["general.architecture"] = "qwen25vl"
|
||||
|
||||
for k, v := range q.qwen2Model.KV(t) {
|
||||
if strings.HasPrefix(k, "qwen2.") {
|
||||
kv[strings.Replace(k, "qwen2.", "qwen25vl.", 1)] = v
|
||||
}
|
||||
}
|
||||
|
||||
if q.VisionModel.FullAttentionBlocks == nil {
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = []int32{7, 15, 23, 31}
|
||||
}
|
||||
|
||||
kv["qwen25vl.vision.block_count"] = cmp.Or(q.VisionModel.Depth, 32)
|
||||
kv["qwen25vl.vision.embedding_length"] = q.VisionModel.HiddenSize
|
||||
kv["qwen25vl.vision.attention.head_count"] = cmp.Or(q.VisionModel.NumHeads, 16)
|
||||
kv["qwen25vl.vision.num_channels"] = q.VisionModel.InChannels
|
||||
kv["qwen25vl.vision.patch_size"] = cmp.Or(q.VisionModel.PatchSize, 14)
|
||||
kv["qwen25vl.vision.spatial_merge_size"] = cmp.Or(q.VisionModel.SpatialMergeSize, 2)
|
||||
kv["qwen25vl.vision.spatial_patch_size"] = q.VisionModel.SpatialPatchSize
|
||||
kv["qwen25vl.vision.window_size"] = cmp.Or(q.VisionModel.WindowSize, 112)
|
||||
kv["qwen25vl.vision.attention.layer_norm_epsilon"] = cmp.Or(q.VisionModel.RMSNormEps, 1e-6)
|
||||
kv["qwen25vl.vision.rope.freq_base"] = cmp.Or(q.VisionModel.RopeTheta, 1e4)
|
||||
kv["qwen25vl.vision.fullatt_block_indexes"] = q.VisionModel.FullAttentionBlocks
|
||||
kv["qwen25vl.vision.temporal_patch_size"] = cmp.Or(q.VisionModel.TemporalPatchSize, 2)
|
||||
|
||||
return kv
|
||||
}
|
||||
|
||||
func (q *qwen25VLModel) Tensors(ts []Tensor) []*ggml.Tensor {
|
||||
var out []*ggml.Tensor
|
||||
|
||||
for _, t := range ts {
|
||||
if strings.Contains(t.Name(), "patch_embed.proj") {
|
||||
for t := range splitDim(t, 2,
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_0")},
|
||||
split{Replacer: strings.NewReplacer("patch_embed.proj", "patch_embd_1")},
|
||||
) {
|
||||
t.Shape = slices.DeleteFunc(t.Shape, func(i uint64) bool { return i == 1 })
|
||||
out = append(out, t)
|
||||
}
|
||||
} else if strings.Contains(t.Name(), "attn.qkv") {
|
||||
out = append(out, slices.Collect(splitDim(t, 0,
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_q")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_k")},
|
||||
split{Replacer: strings.NewReplacer("attn.qkv", "attn_v")},
|
||||
))...)
|
||||
} else {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: t.Name(),
|
||||
Kind: t.Kind(),
|
||||
Shape: t.Shape(),
|
||||
WriterTo: t,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
func (p *qwen25VLModel) Replacements() []string {
|
||||
return append(
|
||||
p.qwen2Model.Replacements(),
|
||||
"visual", "v",
|
||||
"blocks", "blk",
|
||||
"attn.proj", "attn_out",
|
||||
"norm1", "ln1",
|
||||
"norm2", "ln2",
|
||||
)
|
||||
}
|
||||
@@ -11,15 +11,13 @@ import (
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"math"
|
||||
"maps"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
@@ -48,7 +46,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, ggml.KV, ggml.Tensors) {
|
||||
}
|
||||
t.Cleanup(func() { r.Close() })
|
||||
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
m, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -131,15 +129,14 @@ func TestConvertModel(t *testing.T) {
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer expectFile.Close()
|
||||
|
||||
var expect map[string]string
|
||||
if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
keys := maps.Keys(expect)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
for _, k := range slices.Sorted(maps.Keys(expect)) {
|
||||
if v, ok := actual[k]; !ok {
|
||||
t.Errorf("missing %s", k)
|
||||
} else if v != expect[k] {
|
||||
@@ -332,7 +329,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
m, _, err := ggml.Decode(r, math.MaxInt)
|
||||
m, err := ggml.Decode(r, -1)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
@@ -343,9 +340,7 @@ func TestConvertAdapter(t *testing.T) {
|
||||
|
||||
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
|
||||
|
||||
keys := maps.Keys(c.Expected)
|
||||
slices.Sort(keys)
|
||||
for _, k := range keys {
|
||||
for _, k := range slices.Sorted(maps.Keys(c.Expected)) {
|
||||
if v, ok := actual[k]; !ok {
|
||||
t.Errorf("missing %s", k)
|
||||
} else if v != c.Expected[k] {
|
||||
|
||||
@@ -1,58 +0,0 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"archive/zip"
|
||||
"errors"
|
||||
"io"
|
||||
"io/fs"
|
||||
"os"
|
||||
"path/filepath"
|
||||
)
|
||||
|
||||
type ZipReader struct {
|
||||
r *zip.Reader
|
||||
p string
|
||||
|
||||
// limit is the maximum size of a file that can be read directly
|
||||
// from the zip archive. Files larger than this size will be extracted
|
||||
limit int64
|
||||
}
|
||||
|
||||
func NewZipReader(r *zip.Reader, p string, limit int64) fs.FS {
|
||||
return &ZipReader{r, p, limit}
|
||||
}
|
||||
|
||||
func (z *ZipReader) Open(name string) (fs.File, error) {
|
||||
r, err := z.r.Open(name)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer r.Close()
|
||||
|
||||
if fi, err := r.Stat(); err != nil {
|
||||
return nil, err
|
||||
} else if fi.Size() < z.limit {
|
||||
return r, nil
|
||||
}
|
||||
|
||||
if !filepath.IsLocal(name) {
|
||||
return nil, zip.ErrInsecurePath
|
||||
}
|
||||
|
||||
n := filepath.Join(z.p, name)
|
||||
if _, err := os.Stat(n); errors.Is(err, os.ErrNotExist) {
|
||||
w, err := os.Create(n)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer w.Close()
|
||||
|
||||
if _, err := io.Copy(w, r); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return os.Open(n)
|
||||
}
|
||||
@@ -11,14 +11,15 @@ type Tensor interface {
|
||||
Name() string
|
||||
Shape() []uint64
|
||||
Kind() uint32
|
||||
SetRepacker(repacker)
|
||||
SetRepacker(Repacker)
|
||||
WriteTo(io.Writer) (int64, error)
|
||||
Clone() Tensor
|
||||
}
|
||||
|
||||
type tensorBase struct {
|
||||
name string
|
||||
shape []uint64
|
||||
repacker
|
||||
name string
|
||||
shape []uint64
|
||||
repacker Repacker
|
||||
}
|
||||
|
||||
func (t tensorBase) Name() string {
|
||||
@@ -30,42 +31,46 @@ func (t tensorBase) Shape() []uint64 {
|
||||
}
|
||||
|
||||
const (
|
||||
tensorKindF32 uint32 = iota
|
||||
tensorKindF16
|
||||
tensorKindFP32 uint32 = iota
|
||||
tensorKindFP16
|
||||
tensorKindBF16 = 30
|
||||
tensorKindMXFP4 = 39
|
||||
)
|
||||
|
||||
func (t tensorBase) Kind() uint32 {
|
||||
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
|
||||
t.name == "token_types.weight" {
|
||||
strings.HasSuffix(t.name, ".bias") ||
|
||||
t.name == "token_types.weight" ||
|
||||
t.name == "v.positional_embedding_vlm" ||
|
||||
t.name == "v.tile_position_embd.weight" ||
|
||||
t.name == "v.pre_tile_position_embd.weight" ||
|
||||
t.name == "v.post_tile_position_embd.weight" {
|
||||
// these tensors are always F32
|
||||
return 0
|
||||
return tensorKindFP32
|
||||
}
|
||||
|
||||
switch len(t.shape) {
|
||||
case 0:
|
||||
panic("invalid tensor shape")
|
||||
case 1:
|
||||
return tensorKindF32
|
||||
return tensorKindFP32
|
||||
default:
|
||||
return tensorKindF16
|
||||
return tensorKindFP16
|
||||
}
|
||||
}
|
||||
|
||||
func (t *tensorBase) SetRepacker(fn repacker) {
|
||||
func (t *tensorBase) SetRepacker(fn Repacker) {
|
||||
t.repacker = fn
|
||||
}
|
||||
|
||||
type repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
type Repacker func(string, []float32, []uint64) ([]float32, error)
|
||||
|
||||
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
|
||||
patterns := []struct {
|
||||
Pattern string
|
||||
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
|
||||
}{
|
||||
{"model-*-of-*.safetensors", parseSafetensors},
|
||||
{"model.safetensors", parseSafetensors},
|
||||
{"adapters.safetensors", parseSafetensors},
|
||||
{"adapter_model.safetensors", parseSafetensors},
|
||||
{"*.safetensors", parseSafetensors},
|
||||
{"pytorch_model-*-of-*.bin", parseTorch},
|
||||
{"pytorch_model.bin", parseTorch},
|
||||
{"consolidated.*.pth", parseTorch},
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
@@ -8,12 +9,12 @@ import (
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"maps"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/x448/float16"
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
type safetensorMetadata struct {
|
||||
@@ -46,8 +47,7 @@ func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]T
|
||||
return nil, err
|
||||
}
|
||||
|
||||
keys := maps.Keys(headers)
|
||||
slices.Sort(keys)
|
||||
keys := slices.Sorted(maps.Keys(headers))
|
||||
|
||||
names := make(map[string]struct{}, len(keys))
|
||||
|
||||
@@ -94,6 +94,30 @@ type safetensor struct {
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (st safetensor) Kind() uint32 {
|
||||
kind := st.tensorBase.Kind()
|
||||
if !strings.HasPrefix(st.name, "v.") && st.dtype == "BF16" && kind != tensorKindFP32 {
|
||||
kind = tensorKindBF16
|
||||
}
|
||||
|
||||
return kind
|
||||
}
|
||||
|
||||
func (st safetensor) Clone() Tensor {
|
||||
return &safetensor{
|
||||
fs: st.fs,
|
||||
path: st.path,
|
||||
dtype: st.dtype,
|
||||
offset: st.offset,
|
||||
size: st.size,
|
||||
tensorBase: &tensorBase{
|
||||
name: st.name,
|
||||
repacker: st.repacker,
|
||||
shape: slices.Clone(st.shape),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
f, err := st.fs.Open(st.path)
|
||||
if err != nil {
|
||||
@@ -101,26 +125,41 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if seeker, ok := f.(io.Seeker); ok {
|
||||
if _, err := seeker.Seek(st.offset, io.SeekStart); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
} else {
|
||||
if _, err := io.CopyN(io.Discard, f, st.offset); err != nil {
|
||||
return 0, err
|
||||
r, err := func() (io.Reader, error) {
|
||||
if readerAt, ok := f.(io.ReaderAt); ok {
|
||||
return io.NewSectionReader(readerAt, st.offset, st.size), nil
|
||||
} else if seeker, ok := f.(io.Seeker); ok {
|
||||
_, err := seeker.Seek(st.offset, io.SeekStart)
|
||||
return f, err
|
||||
} else {
|
||||
_, err := io.CopyN(io.Discard, f, st.offset)
|
||||
return f, err
|
||||
}
|
||||
}()
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
br := bufio.NewReaderSize(r, min(32<<10, int(st.size)))
|
||||
// special case when input and output are same type and the
|
||||
// tensor doesn't need repacking
|
||||
if (st.repacker == nil) &&
|
||||
((st.dtype == "F32" && st.Kind() == tensorKindFP32) ||
|
||||
(st.dtype == "F16" && st.Kind() == tensorKindFP16) ||
|
||||
(st.dtype == "U8")) {
|
||||
return io.CopyN(w, br, st.size)
|
||||
}
|
||||
|
||||
var f32s []float32
|
||||
switch st.dtype {
|
||||
case "F32":
|
||||
f32s = make([]float32, st.size/4)
|
||||
if err = binary.Read(f, binary.LittleEndian, f32s); err != nil {
|
||||
if err = binary.Read(br, binary.LittleEndian, f32s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case "F16":
|
||||
u16s := make([]uint16, st.size/2)
|
||||
if err = binary.Read(f, binary.LittleEndian, u16s); err != nil {
|
||||
if err = binary.Read(br, binary.LittleEndian, u16s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
@@ -131,7 +170,7 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
|
||||
case "BF16":
|
||||
u8s := make([]uint8, st.size)
|
||||
if err = binary.Read(f, binary.LittleEndian, u8s); err != nil {
|
||||
if err = binary.Read(br, binary.LittleEndian, u8s); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
@@ -148,15 +187,18 @@ func (st safetensor) WriteTo(w io.Writer) (int64, error) {
|
||||
}
|
||||
|
||||
switch st.Kind() {
|
||||
case tensorKindF32:
|
||||
return 0, binary.Write(w, binary.LittleEndian, f32s)
|
||||
case tensorKindF16:
|
||||
case tensorKindFP32:
|
||||
return int64(len(f32s) * 4), binary.Write(w, binary.LittleEndian, f32s)
|
||||
case tensorKindFP16:
|
||||
f16s := make([]uint16, len(f32s))
|
||||
for i := range f32s {
|
||||
f16s[i] = float16.Fromfloat32(f32s[i]).Bits()
|
||||
}
|
||||
|
||||
return 0, binary.Write(w, binary.LittleEndian, f16s)
|
||||
return int64(len(f16s) * 2), binary.Write(w, binary.LittleEndian, f16s)
|
||||
case tensorKindBF16:
|
||||
u8s := bfloat16.EncodeFloat32(f32s)
|
||||
return int64(len(u8s)), binary.Write(w, binary.LittleEndian, u8s)
|
||||
default:
|
||||
return 0, fmt.Errorf("unknown storage type: %d", st.Kind())
|
||||
}
|
||||
|
||||
294
convert/reader_test.go
Normal file
294
convert/reader_test.go
Normal file
@@ -0,0 +1,294 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"testing"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/x448/float16"
|
||||
)
|
||||
|
||||
func TestSafetensors(t *testing.T) {
|
||||
t.Parallel()
|
||||
|
||||
root, err := os.OpenRoot(t.TempDir())
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer root.Close()
|
||||
|
||||
cases := []struct {
|
||||
name,
|
||||
dtype string
|
||||
offset,
|
||||
size int64
|
||||
shape []uint64
|
||||
setup func(*testing.T, *os.File)
|
||||
want []byte
|
||||
}{
|
||||
{
|
||||
name: "fp32-fp32",
|
||||
dtype: "F32",
|
||||
size: 32 * 4, // 32 floats, each 4 bytes
|
||||
shape: []uint64{32},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
f32s := make([]float32, 32)
|
||||
for i := range f32s {
|
||||
f32s[i] = float32(i)
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
|
||||
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
|
||||
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
|
||||
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
|
||||
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
|
||||
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
|
||||
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
|
||||
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "fp32-fp16",
|
||||
dtype: "F32",
|
||||
size: 32 * 4, // 32 floats, each 4 bytes
|
||||
shape: []uint64{16, 2},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
f32s := make([]float32, 32)
|
||||
for i := range f32s {
|
||||
f32s[i] = float32(i)
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
|
||||
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
|
||||
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
|
||||
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "fp16-fp16",
|
||||
dtype: "F16",
|
||||
size: 32 * 2, // 32 floats, each 2 bytes
|
||||
shape: []uint64{16, 2},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
u16s := make([]uint16, 32)
|
||||
for i := range u16s {
|
||||
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x00, 0x3c, 0x00, 0x40, 0x00, 0x42, 0x00, 0x44, 0x00, 0x45, 0x00, 0x46, 0x00, 0x47,
|
||||
0x00, 0x48, 0x80, 0x48, 0x00, 0x49, 0x80, 0x49, 0x00, 0x4a, 0x80, 0x4a, 0x00, 0x4b, 0x80, 0x4b,
|
||||
0x00, 0x4c, 0x40, 0x4c, 0x80, 0x4c, 0xc0, 0x4c, 0x00, 0x4d, 0x40, 0x4d, 0x80, 0x4d, 0xc0, 0x4d,
|
||||
0x00, 0x4e, 0x40, 0x4e, 0x80, 0x4e, 0xc0, 0x4e, 0x00, 0x4f, 0x40, 0x4f, 0x80, 0x4f, 0xc0, 0x4f,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "fp16-fp32",
|
||||
dtype: "F16",
|
||||
size: 32 * 2, // 32 floats, each 2 bytes
|
||||
shape: []uint64{32},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
u16s := make([]uint16, 32)
|
||||
for i := range u16s {
|
||||
u16s[i] = float16.Fromfloat32(float32(i)).Bits()
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, u16s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
|
||||
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
|
||||
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
|
||||
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
|
||||
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
|
||||
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
|
||||
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
|
||||
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "bf16-bf16",
|
||||
dtype: "BF16",
|
||||
size: 32 * 2, // 32 brain floats, each 2 bytes
|
||||
shape: []uint64{16, 2},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
f32s := make([]float32, 32)
|
||||
for i := range f32s {
|
||||
f32s[i] = float32(i)
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x80, 0x3f, 0x00, 0x40, 0x40, 0x40, 0x80, 0x40, 0xa0, 0x40, 0xc0, 0x40, 0xe0, 0x40,
|
||||
0x00, 0x41, 0x10, 0x41, 0x20, 0x41, 0x30, 0x41, 0x40, 0x41, 0x50, 0x41, 0x60, 0x41, 0x70, 0x41,
|
||||
0x80, 0x41, 0x88, 0x41, 0x90, 0x41, 0x98, 0x41, 0xa0, 0x41, 0xa8, 0x41, 0xb0, 0x41, 0xb8, 0x41,
|
||||
0xc0, 0x41, 0xc8, 0x41, 0xd0, 0x41, 0xd8, 0x41, 0xe0, 0x41, 0xe8, 0x41, 0xf0, 0x41, 0xf8, 0x41,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "bf16-fp32",
|
||||
dtype: "BF16",
|
||||
size: 32 * 2, // 32 brain floats, each 2 bytes
|
||||
shape: []uint64{32},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
f32s := make([]float32, 32)
|
||||
for i := range f32s {
|
||||
f32s[i] = float32(i)
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, bfloat16.EncodeFloat32(f32s)); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x3f, 0x00, 0x00, 0x00, 0x40, 0x00, 0x00, 0x40, 0x40,
|
||||
0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0xa0, 0x40, 0x00, 0x00, 0xc0, 0x40, 0x00, 0x00, 0xe0, 0x40,
|
||||
0x00, 0x00, 0x00, 0x41, 0x00, 0x00, 0x10, 0x41, 0x00, 0x00, 0x20, 0x41, 0x00, 0x00, 0x30, 0x41,
|
||||
0x00, 0x00, 0x40, 0x41, 0x00, 0x00, 0x50, 0x41, 0x00, 0x00, 0x60, 0x41, 0x00, 0x00, 0x70, 0x41,
|
||||
0x00, 0x00, 0x80, 0x41, 0x00, 0x00, 0x88, 0x41, 0x00, 0x00, 0x90, 0x41, 0x00, 0x00, 0x98, 0x41,
|
||||
0x00, 0x00, 0xa0, 0x41, 0x00, 0x00, 0xa8, 0x41, 0x00, 0x00, 0xb0, 0x41, 0x00, 0x00, 0xb8, 0x41,
|
||||
0x00, 0x00, 0xc0, 0x41, 0x00, 0x00, 0xc8, 0x41, 0x00, 0x00, 0xd0, 0x41, 0x00, 0x00, 0xd8, 0x41,
|
||||
0x00, 0x00, 0xe0, 0x41, 0x00, 0x00, 0xe8, 0x41, 0x00, 0x00, 0xf0, 0x41, 0x00, 0x00, 0xf8, 0x41,
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "u8-u8",
|
||||
dtype: "U8",
|
||||
size: 32, // 32 brain floats, each 1 bytes
|
||||
shape: []uint64{32},
|
||||
setup: func(t *testing.T, f *os.File) {
|
||||
u8s := make([]uint8, 32)
|
||||
for i := range u8s {
|
||||
u8s[i] = uint8(i)
|
||||
}
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, u8s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
},
|
||||
want: []byte{
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
||||
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
path := filepath.Base(t.Name())
|
||||
st := safetensor{
|
||||
fs: root.FS(),
|
||||
path: path,
|
||||
dtype: tt.dtype,
|
||||
offset: tt.offset,
|
||||
size: tt.size,
|
||||
tensorBase: &tensorBase{
|
||||
name: tt.name,
|
||||
shape: tt.shape,
|
||||
},
|
||||
}
|
||||
|
||||
f, err := root.Create(path)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
tt.setup(t, f)
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := st.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.want, b.Bytes()); diff != "" {
|
||||
t.Errorf("safetensor.WriteTo() mismatch (-want +got):\n%s", diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestSafetensorKind(t *testing.T) {
|
||||
tests := []struct {
|
||||
name string
|
||||
st safetensor
|
||||
expected uint32
|
||||
}{
|
||||
{
|
||||
name: "BF16 dtype with non-v. prefix and non-FP32 base kind should return BF16",
|
||||
st: safetensor{
|
||||
tensorBase: &tensorBase{
|
||||
name: "weight.matrix",
|
||||
shape: []uint64{10, 10}, // will default to FP16
|
||||
},
|
||||
dtype: "BF16",
|
||||
},
|
||||
expected: tensorKindBF16,
|
||||
},
|
||||
{
|
||||
name: "BF16 dtype with v. prefix should return base kind",
|
||||
st: safetensor{
|
||||
tensorBase: &tensorBase{
|
||||
name: "v.weight.matrix",
|
||||
shape: []uint64{10, 10}, // will default to FP16
|
||||
},
|
||||
dtype: "BF16",
|
||||
},
|
||||
expected: tensorKindFP16,
|
||||
},
|
||||
{
|
||||
name: "BF16 dtype with FP32 base kind should return FP32",
|
||||
st: safetensor{
|
||||
tensorBase: &tensorBase{
|
||||
name: "weight.matrix",
|
||||
shape: []uint64{10}, // will default to FP32
|
||||
},
|
||||
dtype: "BF16",
|
||||
},
|
||||
expected: tensorKindFP32,
|
||||
},
|
||||
{
|
||||
name: "Non-BF16 dtype should return base kind",
|
||||
st: safetensor{
|
||||
tensorBase: &tensorBase{
|
||||
name: "weight.matrix",
|
||||
shape: []uint64{10, 10}, // will default to FP16
|
||||
},
|
||||
dtype: "FP16",
|
||||
},
|
||||
expected: tensorKindFP16,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
result := tt.st.Kind()
|
||||
if result != tt.expected {
|
||||
t.Errorf("Kind() = %d, expected %d", result, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -43,6 +43,17 @@ type torch struct {
|
||||
*tensorBase
|
||||
}
|
||||
|
||||
func (t torch) Clone() Tensor {
|
||||
return torch{
|
||||
storage: t.storage,
|
||||
tensorBase: &tensorBase{
|
||||
name: t.name,
|
||||
shape: t.shape,
|
||||
repacker: t.repacker,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func (pt torch) WriteTo(w io.Writer) (int64, error) {
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
@@ -1360,7 +1360,7 @@ func file_sentencepiece_model_proto_rawDescGZIP() []byte {
|
||||
|
||||
var file_sentencepiece_model_proto_enumTypes = make([]protoimpl.EnumInfo, 2)
|
||||
var file_sentencepiece_model_proto_msgTypes = make([]protoimpl.MessageInfo, 6)
|
||||
var file_sentencepiece_model_proto_goTypes = []interface{}{
|
||||
var file_sentencepiece_model_proto_goTypes = []any{
|
||||
(TrainerSpec_ModelType)(0), // 0: sentencepiece.TrainerSpec.ModelType
|
||||
(ModelProto_SentencePiece_Type)(0), // 1: sentencepiece.ModelProto.SentencePiece.Type
|
||||
(*TrainerSpec)(nil), // 2: sentencepiece.TrainerSpec
|
||||
@@ -1392,7 +1392,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return
|
||||
}
|
||||
if !protoimpl.UnsafeEnabled {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[0].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*TrainerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1406,7 +1406,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[1].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*NormalizerSpec); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1420,7 +1420,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[2].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1434,7 +1434,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[3].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1448,7 +1448,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[4].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*SelfTestData_Sample); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
@@ -1460,7 +1460,7 @@ func file_sentencepiece_model_proto_init() {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v interface{}, i int) interface{} {
|
||||
file_sentencepiece_model_proto_msgTypes[5].Exporter = func(v any, i int) any {
|
||||
switch v := v.(*ModelProto_SentencePiece); i {
|
||||
case 0:
|
||||
return &v.state
|
||||
|
||||
133
convert/tensor.go
Normal file
133
convert/tensor.go
Normal file
@@ -0,0 +1,133 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"io"
|
||||
"iter"
|
||||
"path"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
type split struct {
|
||||
*strings.Replacer
|
||||
dim int
|
||||
slices []tensor.Slice
|
||||
|
||||
// fn is an optional function to apply to the tensor after slicing
|
||||
fn func(tensor.Tensor) (tensor.Tensor, error)
|
||||
}
|
||||
|
||||
// splitDim splits a tensor along a specified dimension into multiple tensors. The dimension
|
||||
// is split evenly based on the number of replacers provided unless a specific count is given.
|
||||
func splitDim(t Tensor, dim int, splits ...split) iter.Seq[*ggml.Tensor] {
|
||||
return func(yield func(*ggml.Tensor) bool) {
|
||||
var offset int
|
||||
for _, split := range splits {
|
||||
t := t.Clone()
|
||||
shape := slices.Clone(t.Shape())
|
||||
shape[dim] = cmp.Or(uint64(split.dim), shape[dim]/uint64(len(splits)))
|
||||
|
||||
slice := split.slices
|
||||
if len(slice) == 0 {
|
||||
slice = slices.Repeat([]tensor.Slice{nil}, len(shape))
|
||||
slice[dim] = tensor.S(offset, offset+int(shape[dim]))
|
||||
offset += int(shape[dim])
|
||||
}
|
||||
|
||||
t.SetRepacker(func(_ string, data []float32, shape []uint64) ([]float32, error) {
|
||||
dims := make([]int, len(shape))
|
||||
for i := range shape {
|
||||
dims[i] = int(shape[i])
|
||||
}
|
||||
|
||||
var tt tensor.Tensor = tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
||||
tt, err := tt.Slice(slice...)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
tt = tensor.Materialize(tt)
|
||||
|
||||
if split.fn != nil {
|
||||
tt, err = split.fn(tt)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
// flatten tensor so it can be written as a vector
|
||||
if err := tt.Reshape(tt.Shape().TotalSize()); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return native.VectorF32(tt.(*tensor.Dense))
|
||||
})
|
||||
|
||||
if !yield(&ggml.Tensor{
|
||||
Name: split.Replace(t.Name()),
|
||||
Kind: t.Kind(),
|
||||
Shape: shape,
|
||||
WriterTo: t,
|
||||
}) {
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type merge struct {
|
||||
pattern, name string
|
||||
}
|
||||
|
||||
// mergeTensors merges tensors that match a given pattern into a single tensor.
|
||||
func mergeTensors(unmatched []Tensor, merges ...merge) (out []*ggml.Tensor, _ []Tensor) {
|
||||
var matched []Tensor
|
||||
for i := range merges {
|
||||
matched, unmatched = slicesSplitFunc(unmatched, func(t Tensor) bool {
|
||||
matched, _ := path.Match(merges[i].pattern, t.Name())
|
||||
return matched
|
||||
})
|
||||
|
||||
if len(matched) > 0 {
|
||||
out = append(out, &ggml.Tensor{
|
||||
Name: merges[i].name,
|
||||
Kind: matched[0].Kind(),
|
||||
Shape: append([]uint64{uint64(len(matched))}, matched[0].Shape()...),
|
||||
WriterTo: mergeGroup(matched),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
return out, unmatched
|
||||
}
|
||||
|
||||
// slicesSplitFunc splits a slice into two slices based on a predicate function.
|
||||
func slicesSplitFunc[S ~[]E, E comparable](s S, fn func(e E) bool) (matched, unmatched S) {
|
||||
for _, e := range s {
|
||||
if fn(e) {
|
||||
matched = append(matched, e)
|
||||
} else {
|
||||
unmatched = append(unmatched, e)
|
||||
}
|
||||
}
|
||||
|
||||
return matched, unmatched
|
||||
}
|
||||
|
||||
type mergeGroup []Tensor
|
||||
|
||||
func (g mergeGroup) WriteTo(w io.Writer) (int64, error) {
|
||||
for _, t := range g {
|
||||
if _, err := t.WriteTo(w); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
return 0, nil
|
||||
}
|
||||
953
convert/tensor_test.go
Normal file
953
convert/tensor_test.go
Normal file
@@ -0,0 +1,953 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"io"
|
||||
"iter"
|
||||
"slices"
|
||||
"strings"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/pdevine/tensor"
|
||||
)
|
||||
|
||||
type fakeTensor struct {
|
||||
name string
|
||||
shape []uint64
|
||||
data []float32
|
||||
|
||||
repacker Repacker
|
||||
}
|
||||
|
||||
func (f fakeTensor) Name() string {
|
||||
return f.name
|
||||
}
|
||||
|
||||
func (f fakeTensor) Shape() []uint64 {
|
||||
return f.shape
|
||||
}
|
||||
|
||||
func (f fakeTensor) Kind() uint32 {
|
||||
return 0
|
||||
}
|
||||
|
||||
func (f *fakeTensor) SetRepacker(fn Repacker) {
|
||||
f.repacker = fn
|
||||
}
|
||||
|
||||
func (f fakeTensor) Clone() Tensor {
|
||||
return &fakeTensor{
|
||||
name: f.name,
|
||||
shape: slices.Clone(f.shape),
|
||||
data: slices.Clone(f.data),
|
||||
repacker: f.repacker,
|
||||
}
|
||||
}
|
||||
|
||||
func (f fakeTensor) WriteTo(w io.Writer) (n int64, err error) {
|
||||
data := f.data
|
||||
if f.repacker != nil {
|
||||
data, err = f.repacker(f.name, data, f.shape)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, data); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
return int64(len(data) * 4), nil
|
||||
}
|
||||
|
||||
func mul(shape []uint64) int {
|
||||
n := 1
|
||||
for _, dim := range shape {
|
||||
n *= int(dim)
|
||||
}
|
||||
return n
|
||||
}
|
||||
|
||||
func TestSplitDim(t *testing.T) {
|
||||
t.Run("2d", func(t *testing.T) {
|
||||
r := fakeTensor{
|
||||
name: "a.b",
|
||||
shape: []uint64{3, 4},
|
||||
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11},
|
||||
}
|
||||
|
||||
t.Run("no split", func(t *testing.T) {
|
||||
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatalf("expected name 'x', got '%s'", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("even split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y")},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{2, 3, 6, 7, 10, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{2, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("three way split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.z" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven three way split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{2, 6, 10}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.z" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 1}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{3, 7, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("split with transpose", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), fn: func(tt tensor.Tensor) (tensor.Tensor, error) {
|
||||
return tensor.Transpose(tt, 1, 0)
|
||||
}},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 4, 5, 8, 9}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{2, 6, 10, 3, 7, 11}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
t.Run("3d", func(t *testing.T) {
|
||||
r := fakeTensor{
|
||||
name: "a.b",
|
||||
shape: []uint64{3, 4, 2},
|
||||
data: []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23},
|
||||
}
|
||||
|
||||
t.Run("no split", func(t *testing.T) {
|
||||
for tt := range splitDim(&r, 0, split{Replacer: strings.NewReplacer("a", "x")}) {
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatalf("expected name 'x', got '%s'", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("even split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x")},
|
||||
split{Replacer: strings.NewReplacer("b", "y")},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{2, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'a.y', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("three way split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 0,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 4, 5, 6, 7}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{8, 9, 10, 11, 12, 13, 14, 15}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.z" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{1, 4, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{16, 17, 18, 19, 20, 21, 22, 23}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
t.Run("uneven three way split", func(t *testing.T) {
|
||||
next, stop := iter.Pull(splitDim(&r, 1,
|
||||
split{Replacer: strings.NewReplacer("a", "x"), dim: 2},
|
||||
split{Replacer: strings.NewReplacer("b", "y"), dim: 1},
|
||||
split{Replacer: strings.NewReplacer("b", "z"), dim: 1},
|
||||
))
|
||||
defer stop()
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "x.b" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 2, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.y" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{4, 5, 12, 13, 20, 21}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
tt, ok := next()
|
||||
if !ok {
|
||||
t.Fatal("expected at least one split")
|
||||
}
|
||||
|
||||
if tt.Name != "a.z" {
|
||||
t.Fatal("expected name 'x.b', got", tt.Name)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(tt.Shape, []uint64{3, 1, 2}); diff != "" {
|
||||
t.Errorf("unexpected shape (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := tt.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, mul(tt.Shape))
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(f32s, []float32{6, 7, 14, 15, 22, 23}); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
})
|
||||
})
|
||||
}
|
||||
|
||||
func TestMerge(t *testing.T) {
|
||||
unmatched := []Tensor{
|
||||
&fakeTensor{
|
||||
name: "a.0.b",
|
||||
shape: []uint64{5, 2},
|
||||
data: []float32{10, 11, 12, 13, 14, 15, 16, 17, 18, 19},
|
||||
},
|
||||
&fakeTensor{
|
||||
name: "a.1.b",
|
||||
shape: []uint64{5, 2},
|
||||
data: []float32{20, 21, 22, 23, 24, 25, 26, 27, 28, 29},
|
||||
},
|
||||
&fakeTensor{
|
||||
name: "c.0.d",
|
||||
shape: []uint64{5, 2},
|
||||
data: []float32{30, 31, 32, 33, 34, 35, 36, 37, 38, 39},
|
||||
},
|
||||
&fakeTensor{
|
||||
name: "c.1.d",
|
||||
shape: []uint64{5, 2},
|
||||
data: []float32{40, 41, 42, 43, 44, 45, 46, 47, 48, 49},
|
||||
},
|
||||
&fakeTensor{
|
||||
name: "e.0.f",
|
||||
shape: []uint64{5, 2},
|
||||
data: []float32{50, 51, 52, 53, 54, 55, 56, 57, 58, 59},
|
||||
},
|
||||
}
|
||||
|
||||
checkMatched := func(t *testing.T, n int, matched []*ggml.Tensor) {
|
||||
for i := range n {
|
||||
got := matched[i]
|
||||
if diff := cmp.Diff([]uint64{2, 5, 2}, got.Shape); diff != "" {
|
||||
t.Errorf("unexpected (-want +got):\n%s", diff)
|
||||
}
|
||||
|
||||
var b bytes.Buffer
|
||||
if _, err := got.WriteTo(&b); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
f32s := make([]float32, 20)
|
||||
if err := binary.Read(&b, binary.LittleEndian, &f32s); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
|
||||
offset := 10 + (i * 20)
|
||||
want := make([]float32, 20)
|
||||
for j := range 20 {
|
||||
want[j] = float32(offset + j)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(want, f32s); diff != "" {
|
||||
t.Errorf("unexpected data (-want +got):\n%s", diff)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
t.Run("single merge", func(t *testing.T) {
|
||||
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"})
|
||||
if len(unmatched) != 3 {
|
||||
t.Error("expected 3 remaining tensors, got", len(unmatched))
|
||||
}
|
||||
|
||||
if len(matched) != 1 {
|
||||
t.Error("expected 1 merged tensor, got", len(matched))
|
||||
}
|
||||
|
||||
checkMatched(t, 1, matched)
|
||||
})
|
||||
|
||||
t.Run("multiple merges", func(t *testing.T) {
|
||||
matched, unmatched := mergeTensors(unmatched, merge{"a.*.b", "a.b"}, merge{"c.*.d", "c.d"})
|
||||
if len(unmatched) != 1 {
|
||||
t.Error("expected 1 remaining tensors, got", len(unmatched))
|
||||
}
|
||||
|
||||
if len(matched) != 2 {
|
||||
t.Error("expected 2 merged tensor, got", len(matched))
|
||||
}
|
||||
|
||||
checkMatched(t, 2, matched)
|
||||
})
|
||||
|
||||
t.Run("no match", func(t *testing.T) {
|
||||
matched, unmatched := mergeTensors(unmatched, merge{"x.*.y", "x.y"})
|
||||
if len(unmatched) != 5 {
|
||||
t.Error("expected 5 remaining tensors, got", len(unmatched))
|
||||
}
|
||||
|
||||
if len(matched) != 0 {
|
||||
t.Error("expected no merged tensors, got", len(matched))
|
||||
}
|
||||
})
|
||||
}
|
||||
@@ -8,11 +8,10 @@ import (
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/exp/maps"
|
||||
)
|
||||
|
||||
const (
|
||||
@@ -110,6 +109,7 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("tokenizer_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
// noop
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
@@ -171,6 +171,34 @@ func parseTokenizer(fsys fs.FS, specialTokenTypes []string) (*Tokenizer, error)
|
||||
}
|
||||
}
|
||||
|
||||
if f, err := fsys.Open("generation_config.json"); errors.Is(err, os.ErrNotExist) {
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
} else {
|
||||
defer f.Close()
|
||||
|
||||
var p map[string]json.RawMessage
|
||||
if err := json.NewDecoder(f).Decode(&p); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
for _, st := range specialTokenTypes {
|
||||
if bts, ok := p[fmt.Sprintf("%s_token_id", st)]; ok {
|
||||
var ids []int32
|
||||
if err := json.Unmarshal(bts, &ids); err != nil {
|
||||
// value is not a list so the existing ID is used
|
||||
continue
|
||||
}
|
||||
|
||||
if i := slices.IndexFunc(t.SpecialVocabulary, func(sv *SpecialVocabulary) bool {
|
||||
return sv.Type == st
|
||||
}); i >= 0 {
|
||||
t.SpecialVocabulary[i].IDs = ids
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return t, nil
|
||||
}
|
||||
|
||||
@@ -231,11 +259,8 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
|
||||
tokens[token.ID] = token
|
||||
}
|
||||
|
||||
keys := maps.Keys(tokens)
|
||||
slices.Sort(keys)
|
||||
|
||||
v := Vocabulary{Model: "gpt2"}
|
||||
for _, k := range keys {
|
||||
for _, k := range slices.Sorted(maps.Keys(tokens)) {
|
||||
token := tokens[k]
|
||||
v.Tokens = append(v.Tokens, token.Content)
|
||||
v.Scores = append(v.Scores, float32(token.ID))
|
||||
@@ -280,6 +305,9 @@ type SpecialVocabulary struct {
|
||||
ID int
|
||||
Content string
|
||||
AddToken bool
|
||||
|
||||
// IDs is populated by generation_config.json
|
||||
IDs []int32
|
||||
}
|
||||
|
||||
func (sv SpecialVocabulary) Key() string {
|
||||
|
||||
@@ -6,7 +6,9 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"reflect"
|
||||
"slices"
|
||||
|
||||
"google.golang.org/protobuf/proto"
|
||||
@@ -15,6 +17,8 @@ import (
|
||||
)
|
||||
|
||||
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
slog.Debug("using spm vocabulary")
|
||||
|
||||
ast, err := parseAdditionalSpecialTokens(fsys)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -43,10 +47,19 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
v.Types = append(v.Types, int32(t))
|
||||
default:
|
||||
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
|
||||
if slices.Contains(ast, piece.GetPiece()) {
|
||||
|
||||
// temporary fix to handle gemma3 broken configs
|
||||
if slices.Contains([]string{"<end_of_turn>", "<start_of_turn>"}, piece.GetPiece()) {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
}
|
||||
|
||||
for _, t := range ast {
|
||||
if t.Content == piece.GetPiece() {
|
||||
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
v.Types = append(v.Types, tt)
|
||||
}
|
||||
}
|
||||
@@ -78,10 +91,16 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return cmp.Compare(i.id, j.id)
|
||||
})
|
||||
|
||||
n := len(v.Tokens)
|
||||
for i, t := range ts {
|
||||
if t.id != i+n {
|
||||
return nil, fmt.Errorf("invalid token id: %d", t.id)
|
||||
for _, t := range ts {
|
||||
if t.id < len(v.Tokens) {
|
||||
if v.Tokens[t.id] == t.content {
|
||||
slog.Warn("tokenizer", "duplicate token", t.content, "id", t.id)
|
||||
continue
|
||||
}
|
||||
return nil, fmt.Errorf("token mismatch: %s != %s at pos [%d]", t.content, v.Tokens[t.id], t.id)
|
||||
}
|
||||
if t.id != len(v.Tokens) {
|
||||
return nil, fmt.Errorf("invalid token id: [%d] as pos [%d]", t.id, len(v.Tokens))
|
||||
}
|
||||
|
||||
v.Tokens = append(v.Tokens, t.content)
|
||||
@@ -92,7 +111,15 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
|
||||
return &v, nil
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
type specialToken struct {
|
||||
Content string `json:"content"`
|
||||
Lstrip bool `json:"lstrip"`
|
||||
Normalized bool `json:"normalized"`
|
||||
Rstrip bool `json:"rstrip"`
|
||||
SingleWord bool `json:"single_word"`
|
||||
}
|
||||
|
||||
func parseAdditionalSpecialTokens(fsys fs.FS) ([]specialToken, error) {
|
||||
f, err := fsys.Open("special_tokens_map.json")
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
return nil, nil
|
||||
@@ -102,12 +129,43 @@ func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
|
||||
defer f.Close()
|
||||
|
||||
var m struct {
|
||||
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
|
||||
AdditionalSpecialTokens any `json:"additional_special_tokens"`
|
||||
}
|
||||
|
||||
if err := json.NewDecoder(f).Decode(&m); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.AdditionalSpecialTokens, nil
|
||||
var ast []specialToken
|
||||
|
||||
switch st := m.AdditionalSpecialTokens.(type) {
|
||||
case []string:
|
||||
for _, s := range st {
|
||||
ast = append(ast, specialToken{Content: s})
|
||||
}
|
||||
case []any:
|
||||
for _, s := range st {
|
||||
// marshal and unmarshal the object to get the special token
|
||||
tMap := s.(map[string]any)
|
||||
data, err := json.Marshal(tMap)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var token specialToken
|
||||
err = json.Unmarshal(data, &token)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
ast = append(ast, token)
|
||||
}
|
||||
|
||||
default:
|
||||
slog.Warn("special token", "unknown token", reflect.TypeOf(st))
|
||||
}
|
||||
|
||||
slog.Debug("spm tokenizer", "additional tokens", ast)
|
||||
|
||||
return ast, nil
|
||||
}
|
||||
|
||||
@@ -247,6 +247,67 @@ func TestParseTokenizer(t *testing.T) {
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
{
|
||||
name: "generation config eos token ids",
|
||||
fsys: createTokenizerFS(t, t.TempDir(), map[string]io.Reader{
|
||||
"tokenizer.json": strings.NewReader(`{
|
||||
"added_tokens": [
|
||||
{
|
||||
"id": 0,
|
||||
"content": "<bos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"content": "<eos>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"content": "<eot>",
|
||||
"special": true
|
||||
},
|
||||
{
|
||||
"id": 3,
|
||||
"content": "<eom>",
|
||||
"special": true
|
||||
}
|
||||
],
|
||||
"model": {
|
||||
"vocab": {
|
||||
"<bos>": 0,
|
||||
"<eos>": 1,
|
||||
"<eot>": 2,
|
||||
"<eom>": 3
|
||||
}
|
||||
}
|
||||
}`),
|
||||
"tokenizer_config.json": strings.NewReader(`{
|
||||
"add_bos_token": true,
|
||||
"add_eos_token": false,
|
||||
"bos_token": "<bos>",
|
||||
"eos_token": "<eos>"
|
||||
}`),
|
||||
"generation_config.json": strings.NewReader(`{
|
||||
"bos_token_id": 0,
|
||||
"eos_token_id": [1, 2, 3]
|
||||
}`),
|
||||
}),
|
||||
specialTokenTypes: []string{"pad", "eos", "bos", "unk"},
|
||||
want: &Tokenizer{
|
||||
Vocabulary: &Vocabulary{
|
||||
Model: "gpt2",
|
||||
Tokens: []string{"<bos>", "<eos>", "<eot>", "<eom>"},
|
||||
Scores: []float32{0, 1, 2, 3},
|
||||
Types: []int32{3, 3, 3, 3},
|
||||
},
|
||||
SpecialVocabulary: []*SpecialVocabulary{
|
||||
{Type: "eos", Content: "<eos>", ID: 1, IDs: []int32{1, 2, 3}, AddToken: false},
|
||||
{Type: "bos", Content: "<bos>", ID: 0, AddToken: true},
|
||||
},
|
||||
Pre: "default",
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
|
||||
@@ -1,83 +0,0 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// Determine if the given ROCm lib directory is usable by checking for existence of some glob patterns
|
||||
func rocmLibUsable(libDir string) bool {
|
||||
slog.Debug("evaluating potential rocm lib dir " + libDir)
|
||||
for _, g := range ROCmLibGlobs {
|
||||
res, _ := filepath.Glob(filepath.Join(libDir, g))
|
||||
if len(res) == 0 {
|
||||
return false
|
||||
}
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
func GetSupportedGFX(libDir string) ([]string, error) {
|
||||
var ret []string
|
||||
files, err := filepath.Glob(filepath.Join(libDir, "rocblas", "library", "TensileLibrary_lazy_gfx*.dat"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
for _, file := range files {
|
||||
ret = append(ret, strings.TrimSuffix(strings.TrimPrefix(filepath.Base(file), "TensileLibrary_lazy_"), ".dat"))
|
||||
}
|
||||
return ret, nil
|
||||
}
|
||||
|
||||
func commonAMDValidateLibDir() (string, error) {
|
||||
// Favor our bundled version
|
||||
|
||||
// Installer payload location if we're running the installed binary
|
||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
|
||||
// Prefer explicit HIP env var
|
||||
hipPath := os.Getenv("HIP_PATH")
|
||||
if hipPath != "" {
|
||||
hipLibDir := filepath.Join(hipPath, "bin")
|
||||
if rocmLibUsable(hipLibDir) {
|
||||
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
|
||||
return hipLibDir, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Scan the LD_LIBRARY_PATH or PATH
|
||||
pathEnv := "LD_LIBRARY_PATH"
|
||||
if runtime.GOOS == "windows" {
|
||||
pathEnv = "PATH"
|
||||
}
|
||||
|
||||
paths := os.Getenv(pathEnv)
|
||||
for _, path := range filepath.SplitList(paths) {
|
||||
d, err := filepath.Abs(path)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
if rocmLibUsable(d) {
|
||||
return d, nil
|
||||
}
|
||||
}
|
||||
|
||||
// Well known location(s)
|
||||
for _, path := range RocmStandardLocations {
|
||||
if rocmLibUsable(path) {
|
||||
return path, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", errors.New("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
@@ -1,147 +0,0 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"syscall"
|
||||
"unsafe"
|
||||
|
||||
"golang.org/x/sys/windows"
|
||||
)
|
||||
|
||||
const (
|
||||
hipSuccess = 0
|
||||
hipErrorNoDevice = 100
|
||||
)
|
||||
|
||||
type hipDevicePropMinimal struct {
|
||||
Name [256]byte
|
||||
unused1 [140]byte
|
||||
GcnArchName [256]byte // gfx####
|
||||
iGPU int // Doesn't seem to actually report correctly
|
||||
unused2 [128]byte
|
||||
}
|
||||
|
||||
// Wrap the amdhip64.dll library for GPU discovery
|
||||
type HipLib struct {
|
||||
dll windows.Handle
|
||||
hipGetDeviceCount uintptr
|
||||
hipGetDeviceProperties uintptr
|
||||
hipMemGetInfo uintptr
|
||||
hipSetDevice uintptr
|
||||
hipDriverGetVersion uintptr
|
||||
}
|
||||
|
||||
func NewHipLib() (*HipLib, error) {
|
||||
// At runtime we depend on v6, so discover GPUs with the same library for a consistent set of GPUs
|
||||
h, err := windows.LoadLibrary("amdhip64_6.dll")
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("unable to load amdhip64_6.dll, please make sure to upgrade to the latest amd driver: %w", err)
|
||||
}
|
||||
hl := &HipLib{}
|
||||
hl.dll = h
|
||||
hl.hipGetDeviceCount, err = windows.GetProcAddress(hl.dll, "hipGetDeviceCount")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
hl.hipGetDeviceProperties, err = windows.GetProcAddress(hl.dll, "hipGetDeviceProperties")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
hl.hipMemGetInfo, err = windows.GetProcAddress(hl.dll, "hipMemGetInfo")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
hl.hipSetDevice, err = windows.GetProcAddress(hl.dll, "hipSetDevice")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
hl.hipDriverGetVersion, err = windows.GetProcAddress(hl.dll, "hipDriverGetVersion")
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return hl, nil
|
||||
}
|
||||
|
||||
// The hip library only evaluates the ROCR_VISIBLE_DEVICES variable at startup
|
||||
// so we have to unload/reset the library after we do our initial discovery
|
||||
// to make sure our updates to that variable are processed by llama.cpp
|
||||
func (hl *HipLib) Release() {
|
||||
err := windows.FreeLibrary(hl.dll)
|
||||
if err != nil {
|
||||
slog.Warn("failed to unload amdhip64.dll", "error", err)
|
||||
}
|
||||
hl.dll = 0
|
||||
}
|
||||
|
||||
func (hl *HipLib) AMDDriverVersion() (driverMajor, driverMinor int, err error) {
|
||||
if hl.dll == 0 {
|
||||
return 0, 0, errors.New("dll has been unloaded")
|
||||
}
|
||||
var version int
|
||||
status, _, err := syscall.SyscallN(hl.hipDriverGetVersion, uintptr(unsafe.Pointer(&version)))
|
||||
if status != hipSuccess {
|
||||
return 0, 0, fmt.Errorf("failed call to hipDriverGetVersion: %d %s", status, err)
|
||||
}
|
||||
|
||||
slog.Debug("hipDriverGetVersion", "version", version)
|
||||
driverMajor = version / 10000000
|
||||
driverMinor = (version - (driverMajor * 10000000)) / 100000
|
||||
|
||||
return driverMajor, driverMinor, nil
|
||||
}
|
||||
|
||||
func (hl *HipLib) HipGetDeviceCount() int {
|
||||
if hl.dll == 0 {
|
||||
slog.Error("dll has been unloaded")
|
||||
return 0
|
||||
}
|
||||
var count int
|
||||
status, _, err := syscall.SyscallN(hl.hipGetDeviceCount, uintptr(unsafe.Pointer(&count)))
|
||||
if status == hipErrorNoDevice {
|
||||
slog.Info("AMD ROCm reports no devices found")
|
||||
return 0
|
||||
}
|
||||
if status != hipSuccess {
|
||||
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
func (hl *HipLib) HipSetDevice(device int) error {
|
||||
if hl.dll == 0 {
|
||||
return errors.New("dll has been unloaded")
|
||||
}
|
||||
status, _, err := syscall.SyscallN(hl.hipSetDevice, uintptr(device))
|
||||
if status != hipSuccess {
|
||||
return fmt.Errorf("failed call to hipSetDevice: %d %s", status, err)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (hl *HipLib) HipGetDeviceProperties(device int) (*hipDevicePropMinimal, error) {
|
||||
if hl.dll == 0 {
|
||||
return nil, errors.New("dll has been unloaded")
|
||||
}
|
||||
var props hipDevicePropMinimal
|
||||
status, _, err := syscall.SyscallN(hl.hipGetDeviceProperties, uintptr(unsafe.Pointer(&props)), uintptr(device))
|
||||
if status != hipSuccess {
|
||||
return nil, fmt.Errorf("failed call to hipGetDeviceProperties: %d %s", status, err)
|
||||
}
|
||||
return &props, nil
|
||||
}
|
||||
|
||||
// free, total, err
|
||||
func (hl *HipLib) HipMemGetInfo() (uint64, uint64, error) {
|
||||
if hl.dll == 0 {
|
||||
return 0, 0, errors.New("dll has been unloaded")
|
||||
}
|
||||
var totalMemory uint64
|
||||
var freeMemory uint64
|
||||
status, _, err := syscall.SyscallN(hl.hipMemGetInfo, uintptr(unsafe.Pointer(&freeMemory)), uintptr(unsafe.Pointer(&totalMemory)))
|
||||
if status != hipSuccess {
|
||||
return 0, 0, fmt.Errorf("failed call to hipMemGetInfo: %d %s", status, err)
|
||||
}
|
||||
return freeMemory, totalMemory, nil
|
||||
}
|
||||
@@ -1,538 +0,0 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
// Discovery logic for AMD/ROCm GPUs
|
||||
|
||||
const (
|
||||
DriverVersionFile = "/sys/module/amdgpu/version"
|
||||
AMDNodesSysfsDir = "/sys/class/kfd/kfd/topology/nodes/"
|
||||
GPUPropertiesFileGlob = AMDNodesSysfsDir + "*/properties"
|
||||
|
||||
// Prefix with the node dir
|
||||
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
|
||||
|
||||
// Direct Rendering Manager sysfs location
|
||||
DRMDeviceDirGlob = "/sys/class/drm/card*/device"
|
||||
DRMTotalMemoryFile = "mem_info_vram_total"
|
||||
DRMUsedMemoryFile = "mem_info_vram_used"
|
||||
|
||||
// In hex; properties file is in decimal
|
||||
DRMUniqueIDFile = "unique_id"
|
||||
DRMVendorFile = "vendor"
|
||||
DRMDeviceFile = "device"
|
||||
)
|
||||
|
||||
var (
|
||||
// Used to validate if the given ROCm lib is usable
|
||||
ROCmLibGlobs = []string{"libhipblas.so.2*", "rocblas"} // TODO - probably include more coverage of files here...
|
||||
RocmStandardLocations = []string{"/opt/rocm/lib", "/usr/lib64"}
|
||||
)
|
||||
|
||||
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
if !AMDDetected() {
|
||||
return resp, fmt.Errorf("AMD GPUs not detected")
|
||||
}
|
||||
|
||||
// Opportunistic logging of driver version to aid in troubleshooting
|
||||
driverMajor, driverMinor, err := AMDDriverVersion()
|
||||
if err != nil {
|
||||
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
|
||||
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
|
||||
}
|
||||
|
||||
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
|
||||
var visibleDevices []string
|
||||
hipVD := envconfig.HipVisibleDevices() // zero based index only
|
||||
rocrVD := envconfig.RocrVisibleDevices() // zero based index or UUID
|
||||
gpuDO := envconfig.GpuDeviceOrdinal() // zero based index
|
||||
switch {
|
||||
case rocrVD != "":
|
||||
visibleDevices = strings.Split(rocrVD, ",")
|
||||
case hipVD != "":
|
||||
visibleDevices = strings.Split(hipVD, ",")
|
||||
case gpuDO != "":
|
||||
visibleDevices = strings.Split(gpuDO, ",")
|
||||
}
|
||||
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||
var supported []string
|
||||
var libDir string
|
||||
|
||||
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
|
||||
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
|
||||
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
|
||||
sort.Slice(matches, func(i, j int) bool {
|
||||
// /sys/class/kfd/kfd/topology/nodes/<number>/properties
|
||||
a, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[i])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
b, err := strconv.ParseInt(filepath.Base(filepath.Dir(matches[j])), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("parse err", "error", err, "match", matches[i])
|
||||
return false
|
||||
}
|
||||
return a < b
|
||||
})
|
||||
gpuCount := 0
|
||||
for _, match := range matches {
|
||||
slog.Debug("evaluating amdgpu node " + match)
|
||||
fp, err := os.Open(match)
|
||||
if err != nil {
|
||||
slog.Debug("failed to open sysfs node", "file", match, "error", err)
|
||||
continue
|
||||
}
|
||||
defer fp.Close()
|
||||
|
||||
scanner := bufio.NewScanner(fp)
|
||||
isCPU := false
|
||||
var major, minor, patch uint64
|
||||
var vendor, device, uniqueID uint64
|
||||
for scanner.Scan() {
|
||||
line := strings.TrimSpace(scanner.Text())
|
||||
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
|
||||
if strings.HasPrefix(line, "gfx_target_version") {
|
||||
ver := strings.Fields(line)
|
||||
|
||||
// Detect CPUs
|
||||
if len(ver) == 2 && ver[1] == "0" {
|
||||
slog.Debug("detected CPU " + match)
|
||||
isCPU = true
|
||||
break
|
||||
}
|
||||
|
||||
if len(ver) != 2 || len(ver[1]) < 5 {
|
||||
slog.Warn("malformed "+match, "gfx_target_version", line)
|
||||
// If this winds up being a CPU, our offsets may be wrong
|
||||
continue
|
||||
}
|
||||
l := len(ver[1])
|
||||
var err1, err2, err3 error
|
||||
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
|
||||
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
|
||||
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
|
||||
if err1 != nil || err2 != nil || err3 != nil {
|
||||
slog.Debug("malformed int " + line)
|
||||
continue
|
||||
}
|
||||
} else if strings.HasPrefix(line, "vendor_id") {
|
||||
ver := strings.Fields(line)
|
||||
if len(ver) != 2 {
|
||||
slog.Debug("malformed", "vendor_id", line)
|
||||
continue
|
||||
}
|
||||
vendor, err = strconv.ParseUint(ver[1], 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("malformed", "vendor_id", line, "error", err)
|
||||
}
|
||||
} else if strings.HasPrefix(line, "device_id") {
|
||||
ver := strings.Fields(line)
|
||||
if len(ver) != 2 {
|
||||
slog.Debug("malformed", "device_id", line)
|
||||
continue
|
||||
}
|
||||
device, err = strconv.ParseUint(ver[1], 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("malformed", "device_id", line, "error", err)
|
||||
}
|
||||
} else if strings.HasPrefix(line, "unique_id") {
|
||||
ver := strings.Fields(line)
|
||||
if len(ver) != 2 {
|
||||
slog.Debug("malformed", "unique_id", line)
|
||||
continue
|
||||
}
|
||||
uniqueID, err = strconv.ParseUint(ver[1], 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("malformed", "unique_id", line, "error", err)
|
||||
}
|
||||
}
|
||||
// TODO - any other properties we want to extract and record?
|
||||
// vendor_id + device_id -> pci lookup for "Name"
|
||||
// Other metrics that may help us understand relative performance between multiple GPUs
|
||||
}
|
||||
|
||||
// Note: while ./mem_banks/*/used_memory exists, it doesn't appear to take other VRAM consumers
|
||||
// into consideration, so we instead map the device over to the DRM driver sysfs nodes which
|
||||
// do reliably report VRAM usage.
|
||||
|
||||
if isCPU {
|
||||
continue
|
||||
}
|
||||
|
||||
// Skip over any GPUs that are masked
|
||||
if major == 0 && minor == 0 && patch == 0 {
|
||||
slog.Debug("skipping gpu with gfx000")
|
||||
continue
|
||||
}
|
||||
|
||||
// Keep track of numeric IDs based on valid GPUs
|
||||
gpuID := gpuCount
|
||||
gpuCount += 1
|
||||
|
||||
// Look up the memory for the current node
|
||||
totalMemory := uint64(0)
|
||||
usedMemory := uint64(0)
|
||||
var usedFile string
|
||||
mapping := []struct {
|
||||
id uint64
|
||||
filename string
|
||||
}{
|
||||
{vendor, DRMVendorFile},
|
||||
{device, DRMDeviceFile},
|
||||
{uniqueID, DRMUniqueIDFile}, // Not all devices will report this
|
||||
}
|
||||
slog.Debug("mapping amdgpu to drm sysfs nodes", "amdgpu", match, "vendor", vendor, "device", device, "unique_id", uniqueID)
|
||||
// Map over to DRM location to find the total/free memory
|
||||
drmMatches, _ := filepath.Glob(DRMDeviceDirGlob)
|
||||
for _, devDir := range drmMatches {
|
||||
matched := true
|
||||
for _, m := range mapping {
|
||||
if m.id == 0 {
|
||||
// Null ID means it didn't populate, so we can't use it to match
|
||||
continue
|
||||
}
|
||||
filename := filepath.Join(devDir, m.filename)
|
||||
buf, err := os.ReadFile(filename)
|
||||
if err != nil {
|
||||
slog.Debug("failed to read sysfs node", "file", filename, "error", err)
|
||||
matched = false
|
||||
break
|
||||
}
|
||||
// values here are in hex, strip off the lead 0x and parse so we can compare the numeric (decimal) values in amdgpu
|
||||
cmp, err := strconv.ParseUint(strings.TrimPrefix(strings.TrimSpace(string(buf)), "0x"), 16, 64)
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse sysfs node", "file", filename, "error", err)
|
||||
matched = false
|
||||
break
|
||||
}
|
||||
if cmp != m.id {
|
||||
matched = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if !matched {
|
||||
continue
|
||||
}
|
||||
|
||||
// Found the matching DRM directory
|
||||
slog.Debug("matched", "amdgpu", match, "drm", devDir)
|
||||
totalFile := filepath.Join(devDir, DRMTotalMemoryFile)
|
||||
buf, err := os.ReadFile(totalFile)
|
||||
if err != nil {
|
||||
slog.Debug("failed to read sysfs node", "file", totalFile, "error", err)
|
||||
break
|
||||
}
|
||||
totalMemory, err = strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse sysfs node", "file", totalFile, "error", err)
|
||||
break
|
||||
}
|
||||
|
||||
usedFile = filepath.Join(devDir, DRMUsedMemoryFile)
|
||||
usedMemory, err = getFreeMemory(usedFile)
|
||||
if err != nil {
|
||||
slog.Debug("failed to update used memory", "error", err)
|
||||
}
|
||||
break
|
||||
}
|
||||
|
||||
var name string
|
||||
// TODO - PCI ID lookup
|
||||
if vendor > 0 && device > 0 {
|
||||
name = fmt.Sprintf("%04x:%04x", vendor, device)
|
||||
}
|
||||
|
||||
// Favor UUIDs if available to reduce possibility of getting the numeric IDs wrong
|
||||
var ID string
|
||||
if uniqueID != 0 {
|
||||
ID = fmt.Sprintf("GPU-%016x", uniqueID)
|
||||
} else {
|
||||
ID = strconv.Itoa(gpuID)
|
||||
}
|
||||
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
memInfo: memInfo{
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: (totalMemory - usedMemory),
|
||||
},
|
||||
ID: ID,
|
||||
Name: name,
|
||||
Compute: fmt.Sprintf("gfx%d%x%x", major, minor, patch),
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
DriverMajor: driverMajor,
|
||||
DriverMinor: driverMinor,
|
||||
},
|
||||
usedFilepath: usedFile,
|
||||
index: gpuID,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
minVer, err := strconv.Atoi(RocmComputeMajorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid RocmComputeMajorMin setting", "value", RocmComputeMajorMin, "error", err)
|
||||
}
|
||||
// if int(major) < minVer {
|
||||
// reason := fmt.Sprintf("amdgpu too old gfx%d%x%x", major, minor, patch)
|
||||
// slog.Warn(reason, "gpu", gpuID)
|
||||
// unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
// GpuInfo: gpuInfo.GpuInfo,
|
||||
// Reason: reason,
|
||||
// })
|
||||
|
||||
// continue
|
||||
//}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
|
||||
|
||||
// If the user wants to filter to a subset of devices, filter out if we aren't a match
|
||||
if len(visibleDevices) > 0 {
|
||||
include := false
|
||||
for _, visible := range visibleDevices {
|
||||
if visible == gpuInfo.ID || visible == strconv.Itoa(gpuInfo.index) {
|
||||
include = true
|
||||
break
|
||||
}
|
||||
}
|
||||
if !include {
|
||||
reason := "filtering out device per user request"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "visible_devices", visibleDevices)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
continue
|
||||
}
|
||||
}
|
||||
|
||||
// Final validation is gfx compatibility - load the library if we haven't already loaded it
|
||||
// even if the user overrides, we still need to validate the library
|
||||
if libDir == "" {
|
||||
libDir, err = AMDValidateLibDir()
|
||||
if err != nil {
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
gpuInfo.DependencyPath = []string{libDir}
|
||||
|
||||
if gfxOverride == "" {
|
||||
// Only load supported list once
|
||||
if len(supported) == 0 {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: err.Error(),
|
||||
})
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug("rocm supported GPUs", "types", supported)
|
||||
}
|
||||
gfx := gpuInfo.Compute
|
||||
if !slices.Contains[[]string, string](supported, gfx) {
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
|
||||
// TODO - consider discrete markdown just for ROCM troubleshooting?
|
||||
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
|
||||
continue
|
||||
} else {
|
||||
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
|
||||
}
|
||||
} else {
|
||||
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
|
||||
}
|
||||
|
||||
// Check for env var workarounds
|
||||
if name == "1002:687f" { // Vega RX 56
|
||||
gpuInfo.EnvWorkarounds = append(gpuInfo.EnvWorkarounds, [2]string{"HSA_ENABLE_SDMA", "0"})
|
||||
}
|
||||
|
||||
// The GPU has passed all the verification steps and is supported
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
if len(resp) == 0 {
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
if err := verifyKFDDriverAccess(); err != nil {
|
||||
err = fmt.Errorf("amdgpu devices detected but permission problems block access: %w", err)
|
||||
slog.Error(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
// Quick check for AMD driver so we can skip amdgpu discovery if not present
|
||||
func AMDDetected() bool {
|
||||
// Some driver versions (older?) don't have a version file, so just lookup the parent dir
|
||||
sysfsDir := filepath.Dir(DriverVersionFile)
|
||||
_, err := os.Stat(sysfsDir)
|
||||
if errors.Is(err, os.ErrNotExist) {
|
||||
slog.Debug("amdgpu driver not detected " + sysfsDir)
|
||||
return false
|
||||
} else if err != nil {
|
||||
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
|
||||
return false
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
|
||||
// failing that, tell the user how to download it on their own
|
||||
func AMDValidateLibDir() (string, error) {
|
||||
libDir, err := commonAMDValidateLibDir()
|
||||
if err == nil {
|
||||
return libDir, nil
|
||||
}
|
||||
|
||||
// Well known ollama installer path
|
||||
installedRocmDir := "/usr/share/ollama/lib/rocm"
|
||||
if rocmLibUsable(installedRocmDir) {
|
||||
return installedRocmDir, nil
|
||||
}
|
||||
|
||||
// If we still haven't found a usable rocm, the user will have to install it on their own
|
||||
slog.Warn("amdgpu detected, but no compatible rocm library found. Either install rocm v6, or follow manual install instructions at https://github.com/ollama/ollama/blob/main/docs/linux.md#manual-install")
|
||||
return "", errors.New("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
|
||||
func AMDDriverVersion() (driverMajor, driverMinor int, err error) {
|
||||
_, err = os.Stat(DriverVersionFile)
|
||||
if err != nil {
|
||||
return 0, 0, fmt.Errorf("amdgpu version file missing: %s %w", DriverVersionFile, err)
|
||||
}
|
||||
fp, err := os.Open(DriverVersionFile)
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
defer fp.Close()
|
||||
verString, err := io.ReadAll(fp)
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
|
||||
pattern := `\A(\d+)\.(\d+).*`
|
||||
regex := regexp.MustCompile(pattern)
|
||||
match := regex.FindStringSubmatch(string(verString))
|
||||
if len(match) < 2 {
|
||||
return 0, 0, fmt.Errorf("malformed version string %s", string(verString))
|
||||
}
|
||||
driverMajor, err = strconv.Atoi(match[1])
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
driverMinor, err = strconv.Atoi(match[2])
|
||||
if err != nil {
|
||||
return 0, 0, err
|
||||
}
|
||||
return driverMajor, driverMinor, nil
|
||||
}
|
||||
|
||||
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||
if len(gpus) == 0 {
|
||||
return nil
|
||||
}
|
||||
for i := range gpus {
|
||||
usedMemory, err := getFreeMemory(gpus[i].usedFilepath)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(gpus[i].TotalMemory-usedMemory))
|
||||
gpus[i].FreeMemory = gpus[i].TotalMemory - usedMemory
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func getFreeMemory(usedFile string) (uint64, error) {
|
||||
buf, err := os.ReadFile(usedFile)
|
||||
if err != nil {
|
||||
return 0, fmt.Errorf("failed to read sysfs node %s %w", usedFile, err)
|
||||
}
|
||||
usedMemory, err := strconv.ParseUint(strings.TrimSpace(string(buf)), 10, 64)
|
||||
if err != nil {
|
||||
slog.Debug("failed to parse sysfs node", "file", usedFile, "error", err)
|
||||
return 0, fmt.Errorf("failed to parse sysfs node %s %w", usedFile, err)
|
||||
}
|
||||
return usedMemory, nil
|
||||
}
|
||||
|
||||
func verifyKFDDriverAccess() error {
|
||||
// Verify we have permissions - either running as root, or we have group access to the driver
|
||||
fd, err := os.OpenFile("/dev/kfd", os.O_RDWR, 0o666)
|
||||
if err != nil {
|
||||
if errors.Is(err, fs.ErrPermission) {
|
||||
return fmt.Errorf("permissions not set up properly. Either run ollama as root, or add you user account to the render group. %w", err)
|
||||
} else if errors.Is(err, fs.ErrNotExist) {
|
||||
// Container runtime failure?
|
||||
return fmt.Errorf("kfd driver not loaded. If running in a container, remember to include '--device /dev/kfd --device /dev/dri'")
|
||||
}
|
||||
return fmt.Errorf("failed to check permission on /dev/kfd: %w", err)
|
||||
}
|
||||
fd.Close()
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric so is our preferred on linux
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
return "ROCR_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
@@ -1,218 +0,0 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"path/filepath"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
const (
|
||||
|
||||
// TODO We're lookinng for this exact name to detect iGPUs since hipGetDeviceProperties never reports integrated==true
|
||||
iGPUName = "AMD 2099 Graphics"
|
||||
)
|
||||
|
||||
var (
|
||||
// Used to validate if the given ROCm lib is usable
|
||||
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // This is not sufficient to discern v5 vs v6
|
||||
RocmStandardLocations = []string{"C:\\Program Files\\AMD\\ROCm\\6.1\\bin"} // TODO glob?
|
||||
)
|
||||
|
||||
// Only called once during bootstrap
|
||||
func AMDGetGPUInfo() ([]RocmGPUInfo, error) {
|
||||
resp := []RocmGPUInfo{}
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
driverMajor, driverMinor, err := hl.AMDDriverVersion()
|
||||
if err != nil {
|
||||
// For now this is benign, but we may eventually need to fail compatibility checks
|
||||
slog.Debug("error looking up amd driver version", "error", err)
|
||||
}
|
||||
|
||||
// Note: the HIP library automatically handles subsetting to any *_VISIBLE_DEVICES the user specified
|
||||
count := hl.HipGetDeviceCount()
|
||||
if count == 0 {
|
||||
err := fmt.Errorf("no compatible amdgpu devices detected")
|
||||
slog.Info(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
libDir, err := AMDValidateLibDir()
|
||||
if err != nil {
|
||||
err = fmt.Errorf("unable to verify rocm library: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var supported []string
|
||||
gfxOverride := envconfig.HsaOverrideGfxVersion()
|
||||
if gfxOverride == "" {
|
||||
supported, err = GetSupportedGFX(libDir)
|
||||
if err != nil {
|
||||
err = fmt.Errorf("failed to lookup supported GFX types: %w", err)
|
||||
slog.Warn(err.Error())
|
||||
return nil, err
|
||||
}
|
||||
} else {
|
||||
slog.Info("skipping rocm gfx compatibility check", "HSA_OVERRIDE_GFX_VERSION", gfxOverride)
|
||||
}
|
||||
|
||||
slog.Debug("detected hip devices", "count", count)
|
||||
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
|
||||
for i := range count {
|
||||
err = hl.HipSetDevice(i)
|
||||
if err != nil {
|
||||
slog.Warn("set device", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
props, err := hl.HipGetDeviceProperties(i)
|
||||
if err != nil {
|
||||
slog.Warn("get properties", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
n := bytes.IndexByte(props.Name[:], 0)
|
||||
name := string(props.Name[:n])
|
||||
// TODO is UUID actually populated on windows?
|
||||
// Can luid be used on windows for setting visible devices (and is it actually set?)
|
||||
n = bytes.IndexByte(props.GcnArchName[:], 0)
|
||||
gfx := string(props.GcnArchName[:n])
|
||||
slog.Debug("hip device", "id", i, "name", name, "gfx", gfx)
|
||||
// slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
|
||||
// TODO Why isn't props.iGPU accurate!?
|
||||
|
||||
freeMemory, totalMemory, err := hl.HipMemGetInfo()
|
||||
if err != nil {
|
||||
slog.Warn("get mem info", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
gpuInfo := RocmGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "rocm",
|
||||
memInfo: memInfo{
|
||||
TotalMemory: totalMemory,
|
||||
FreeMemory: freeMemory,
|
||||
},
|
||||
// Free memory reporting on Windows is not reliable until we bump to ROCm v6.2
|
||||
UnreliableFreeMemory: true,
|
||||
|
||||
ID: strconv.Itoa(i), // TODO this is probably wrong if we specify visible devices
|
||||
DependencyPath: []string{libDir},
|
||||
MinimumMemory: rocmMinimumMemory,
|
||||
Name: name,
|
||||
Compute: gfx,
|
||||
DriverMajor: driverMajor,
|
||||
DriverMinor: driverMinor,
|
||||
},
|
||||
index: i,
|
||||
}
|
||||
|
||||
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
|
||||
if strings.EqualFold(name, iGPUName) || totalMemory < IGPUMemLimit {
|
||||
reason := "unsupported Radeon iGPU detected skipping"
|
||||
slog.Info(reason, "id", gpuInfo.ID, "total", format.HumanBytes2(totalMemory))
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
continue
|
||||
}
|
||||
|
||||
// Strip off Target Features when comparing
|
||||
if !slices.Contains[[]string, string](supported, strings.Split(gfx, ":")[0]) {
|
||||
reason := fmt.Sprintf("amdgpu is not supported (supported types:%s)", supported)
|
||||
slog.Warn(reason, "gpu_type", gfx, "gpu", gpuInfo.ID, "library", libDir)
|
||||
unsupportedGPUs = append(unsupportedGPUs, UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
Reason: reason,
|
||||
})
|
||||
// HSA_OVERRIDE_GFX_VERSION not supported on windows
|
||||
continue
|
||||
} else {
|
||||
slog.Debug("amdgpu is supported", "gpu", i, "gpu_type", gfx)
|
||||
}
|
||||
|
||||
slog.Debug("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
|
||||
slog.Debug("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
|
||||
|
||||
resp = append(resp, gpuInfo)
|
||||
}
|
||||
|
||||
return resp, nil
|
||||
}
|
||||
|
||||
func AMDValidateLibDir() (string, error) {
|
||||
libDir, err := commonAMDValidateLibDir()
|
||||
if err == nil {
|
||||
return libDir, nil
|
||||
}
|
||||
|
||||
// Installer payload (if we're running from some other location)
|
||||
rocmTargetDir := filepath.Join(LibOllamaPath, "rocm")
|
||||
if rocmLibUsable(rocmTargetDir) {
|
||||
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
|
||||
return rocmTargetDir, nil
|
||||
}
|
||||
|
||||
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
|
||||
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
|
||||
return "", errors.New("no suitable rocm found, falling back to CPU")
|
||||
}
|
||||
|
||||
func (gpus RocmGPUInfoList) RefreshFreeMemory() error {
|
||||
if len(gpus) == 0 {
|
||||
return nil
|
||||
}
|
||||
hl, err := NewHipLib()
|
||||
if err != nil {
|
||||
slog.Debug(err.Error())
|
||||
return err
|
||||
}
|
||||
defer hl.Release()
|
||||
|
||||
for i := range gpus {
|
||||
err := hl.HipSetDevice(gpus[i].index)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
freeMemory, _, err := hl.HipMemGetInfo()
|
||||
if err != nil {
|
||||
slog.Warn("get mem info", "id", i, "error", err)
|
||||
continue
|
||||
}
|
||||
slog.Debug("updating rocm free memory", "gpu", gpus[i].ID, "name", gpus[i].Name, "before", format.HumanBytes2(gpus[i].FreeMemory), "now", format.HumanBytes2(freeMemory))
|
||||
gpus[i].FreeMemory = freeMemory
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "rocm" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"os"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func IsNUMA() bool {
|
||||
if runtime.GOOS != "linux" {
|
||||
// numa support in llama.cpp is linux only
|
||||
return false
|
||||
}
|
||||
ids := map[string]interface{}{}
|
||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||
for _, packageId := range packageIds {
|
||||
id, err := os.ReadFile(packageId)
|
||||
if err == nil {
|
||||
ids[strings.TrimSpace(string(id))] = struct{}{}
|
||||
}
|
||||
}
|
||||
return len(ids) > 1
|
||||
}
|
||||
@@ -4,7 +4,9 @@ import (
|
||||
"bufio"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"reflect"
|
||||
"regexp"
|
||||
"sort"
|
||||
@@ -13,47 +15,6 @@ import (
|
||||
"github.com/ollama/ollama/format"
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"/usr/local/cuda/lib64/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/x86_64-linux-gnu/libcudart.so*",
|
||||
"/usr/lib/wsl/lib/libcudart.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcudart.so*",
|
||||
"/opt/cuda/lib64/libcudart.so*",
|
||||
"/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*",
|
||||
"/usr/lib/aarch64-linux-gnu/libcudart.so*",
|
||||
"/usr/local/cuda/lib*/libcudart.so*",
|
||||
"/usr/lib*/libcudart.so*",
|
||||
"/usr/local/lib*/libcudart.so*",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"/usr/local/cuda*/targets/*/lib/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/nvidia/current/libcuda.so*",
|
||||
"/usr/lib/*-linux-gnu/libcuda.so*",
|
||||
"/usr/lib/wsl/lib/libcuda.so*",
|
||||
"/usr/lib/wsl/drivers/*/libcuda.so*",
|
||||
"/opt/cuda/lib*/libcuda.so*",
|
||||
"/usr/local/cuda/lib*/libcuda.so*",
|
||||
"/usr/lib*/libcuda.so*",
|
||||
"/usr/local/lib*/libcuda.so*",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"/usr/lib/x86_64-linux-gnu/libze_intel_gpu.so*",
|
||||
"/usr/lib*/libze_intel_gpu.so*",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "libcudart.so*"
|
||||
NvcudaMgmtName = "libcuda.so*"
|
||||
NvmlMgmtName = "" // not currently wired on linux
|
||||
OneapiMgmtName = "libze_intel_gpu.so*"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
var mem memInfo
|
||||
var total, available, free, buffers, cached, freeSwap uint64
|
||||
@@ -106,15 +67,17 @@ type linuxCpuInfo struct {
|
||||
CoreID string `cpuinfo:"core id"`
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
func GetCPUDetails() []CPU {
|
||||
file, err := os.Open(CpuInfoFilename)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
slog.Warn("failed to get CPU details", "error", err)
|
||||
return nil
|
||||
}
|
||||
defer file.Close()
|
||||
return linuxCPUDetails(file)
|
||||
}
|
||||
|
||||
func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
func linuxCPUDetails(file io.Reader) []CPU {
|
||||
reColumns := regexp.MustCompile("\t+: ")
|
||||
scanner := bufio.NewScanner(file)
|
||||
cpuInfos := []linuxCpuInfo{}
|
||||
@@ -168,13 +131,11 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
for id, s := range socketByID {
|
||||
s.CoreCount = len(coreBySocket[id])
|
||||
s.ThreadCount = 0
|
||||
for _, tc := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += tc
|
||||
}
|
||||
|
||||
// This only works if HT is enabled, consider a more reliable model, maybe cache size comparisons?
|
||||
efficiencyCoreCount := 0
|
||||
for _, threads := range threadsByCoreBySocket[id] {
|
||||
s.ThreadCount += threads
|
||||
if threads == 1 {
|
||||
efficiencyCoreCount++
|
||||
}
|
||||
@@ -195,5 +156,17 @@ func linuxCPUDetails(file io.Reader) ([]CPU, error) {
|
||||
for _, k := range keys {
|
||||
result = append(result, *socketByID[k])
|
||||
}
|
||||
return result, nil
|
||||
return result
|
||||
}
|
||||
|
||||
func IsNUMA() bool {
|
||||
ids := map[string]any{}
|
||||
packageIds, _ := filepath.Glob("/sys/devices/system/cpu/cpu*/topology/physical_package_id")
|
||||
for _, packageId := range packageIds {
|
||||
id, err := os.ReadFile(packageId)
|
||||
if err == nil {
|
||||
ids[strings.TrimSpace(string(id))] = struct{}{}
|
||||
}
|
||||
}
|
||||
return len(ids) > 1
|
||||
}
|
||||
@@ -2062,10 +2062,7 @@ power management:
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
buf := bytes.NewBufferString(v.input)
|
||||
cpus, err := linuxCPUDetails(buf)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
cpus := linuxCPUDetails(buf)
|
||||
|
||||
slog.Info("example", "scenario", k, "cpus", cpus)
|
||||
si := SystemInfo{
|
||||
@@ -26,29 +26,6 @@ var (
|
||||
GetLogicalProcessorInformationEx = k32.NewProc("GetLogicalProcessorInformationEx")
|
||||
)
|
||||
|
||||
var CudartGlobs = []string{
|
||||
"c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll",
|
||||
}
|
||||
|
||||
var NvmlGlobs = []string{
|
||||
"c:\\Windows\\System32\\nvml.dll",
|
||||
}
|
||||
|
||||
var NvcudaGlobs = []string{
|
||||
"c:\\windows\\system*\\nvcuda.dll",
|
||||
}
|
||||
|
||||
var OneapiGlobs = []string{
|
||||
"c:\\Windows\\System32\\DriverStore\\FileRepository\\*\\ze_intel_gpu64.dll",
|
||||
}
|
||||
|
||||
var (
|
||||
CudartMgmtName = "cudart64_*.dll"
|
||||
NvcudaMgmtName = "nvcuda.dll"
|
||||
NvmlMgmtName = "nvml.dll"
|
||||
OneapiMgmtName = "ze_intel_gpu64.dll"
|
||||
)
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
memStatus := MEMORYSTATUSEX{length: sizeofMemoryStatusEx}
|
||||
r1, _, err := globalMemoryStatusExProc.Call(uintptr(unsafe.Pointer(&memStatus)))
|
||||
@@ -122,27 +99,22 @@ func (pkg *winPackage) IsMember(target *GROUP_AFFINITY) bool {
|
||||
}
|
||||
|
||||
func getLogicalProcessorInformationEx() ([]byte, error) {
|
||||
buf := make([]byte, 1)
|
||||
buf := make([]byte, 1024)
|
||||
bufSize := len(buf)
|
||||
ret, _, err := GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret != 0 {
|
||||
return nil, fmt.Errorf("failed to determine size info ret:%d %w", ret, err)
|
||||
var err error
|
||||
for range 3 {
|
||||
var ret uintptr
|
||||
ret, _, err = GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret == 1 && bufSize <= len(buf) {
|
||||
return buf, nil
|
||||
}
|
||||
buf = make([]byte, bufSize)
|
||||
}
|
||||
|
||||
buf = make([]byte, bufSize)
|
||||
ret, _, err = GetLogicalProcessorInformationEx.Call(
|
||||
uintptr(RelationAll),
|
||||
uintptr(unsafe.Pointer(&buf[0])),
|
||||
uintptr(unsafe.Pointer(&bufSize)),
|
||||
)
|
||||
if ret == 0 {
|
||||
return nil, fmt.Errorf("failed to gather processor information ret:%d buflen:%d %w", ret, bufSize, err)
|
||||
}
|
||||
return buf, nil
|
||||
return nil, fmt.Errorf("unable to determine CPU details: %w", err)
|
||||
}
|
||||
|
||||
func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
|
||||
@@ -217,10 +189,11 @@ func processSystemLogicalProcessorInforationList(buf []byte) []*winPackage {
|
||||
return packages
|
||||
}
|
||||
|
||||
func GetCPUDetails() ([]CPU, error) {
|
||||
func GetCPUDetails() []CPU {
|
||||
buf, err := getLogicalProcessorInformationEx()
|
||||
if err != nil {
|
||||
return nil, err
|
||||
slog.Warn("failed to get CPU details", "error", err)
|
||||
return nil
|
||||
}
|
||||
packages := processSystemLogicalProcessorInforationList(buf)
|
||||
cpus := make([]CPU, len(packages))
|
||||
@@ -230,5 +203,10 @@ func GetCPUDetails() ([]CPU, error) {
|
||||
cpus[i].EfficiencyCoreCount = pkg.efficiencyCoreCount
|
||||
cpus[i].ThreadCount = pkg.threadCount
|
||||
}
|
||||
return cpus, nil
|
||||
return cpus
|
||||
}
|
||||
|
||||
func IsNUMA() bool {
|
||||
// numa support in ggml is linux only
|
||||
return false
|
||||
}
|
||||
@@ -1,65 +0,0 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"os"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
|
||||
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
|
||||
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
||||
|
||||
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "cuda" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
func cudaVariant(gpuInfo CudaGPUInfo) string {
|
||||
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
|
||||
if CudaTegra != "" {
|
||||
ver := strings.Split(CudaTegra, ".")
|
||||
if len(ver) > 0 {
|
||||
return "jetpack" + ver[0]
|
||||
}
|
||||
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
|
||||
r := regexp.MustCompile(` R(\d+) `)
|
||||
m := r.FindSubmatch(data)
|
||||
if len(m) != 2 {
|
||||
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
|
||||
} else {
|
||||
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
|
||||
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
|
||||
// https://developer.nvidia.com/embedded/jetpack-archive
|
||||
switch l4t {
|
||||
case 35:
|
||||
return "jetpack5"
|
||||
case 36:
|
||||
return "jetpack6"
|
||||
default:
|
||||
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// driver 12.0 has problems with the cuda v12 library, so run v11 on those older drivers
|
||||
if gpuInfo.DriverMajor < 12 || (gpuInfo.DriverMajor == 12 && gpuInfo.DriverMinor == 0) {
|
||||
return "v11"
|
||||
}
|
||||
return "v12"
|
||||
}
|
||||
841
discover/gpu.go
841
discover/gpu.go
@@ -1,718 +1,207 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package discover
|
||||
|
||||
/*
|
||||
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
|
||||
#cgo windows LDFLAGS: -lpthread
|
||||
|
||||
#include "gpu_info.h"
|
||||
*/
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"context"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
type cudaHandles struct {
|
||||
deviceCount int
|
||||
cudart *C.cudart_handle_t
|
||||
nvcuda *C.nvcuda_handle_t
|
||||
nvml *C.nvml_handle_t
|
||||
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
|
||||
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
|
||||
var CudaTegra string = os.Getenv("JETSON_JETPACK")
|
||||
|
||||
func GetCPUInfo() GpuInfo {
|
||||
mem, err := GetCPUMem()
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
}
|
||||
|
||||
return GpuInfo{
|
||||
memInfo: mem,
|
||||
DeviceID: ml.DeviceID{
|
||||
Library: "cpu",
|
||||
ID: "0",
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
type oneapiHandles struct {
|
||||
oneapi *C.oneapi_handle_t
|
||||
deviceCount int
|
||||
func GetGPUInfo(ctx context.Context, runners []FilteredRunnerDiscovery) GpuInfoList {
|
||||
devs := GPUDevices(ctx, runners)
|
||||
return devInfoToInfoList(devs)
|
||||
}
|
||||
|
||||
const (
|
||||
cudaMinimumMemory = 457 * format.MebiByte
|
||||
rocmMinimumMemory = 457 * format.MebiByte
|
||||
// TODO OneAPI minimum memory
|
||||
)
|
||||
|
||||
var (
|
||||
gpuMutex sync.Mutex
|
||||
bootstrapped bool
|
||||
cpus []CPUInfo
|
||||
cudaGPUs []CudaGPUInfo
|
||||
nvcudaLibPath string
|
||||
cudartLibPath string
|
||||
oneapiLibPath string
|
||||
nvmlLibPath string
|
||||
rocmGPUs []RocmGPUInfo
|
||||
oneapiGPUs []OneapiGPUInfo
|
||||
|
||||
// If any discovered GPUs are incompatible, report why
|
||||
unsupportedGPUs []UnsupportedGPUInfo
|
||||
|
||||
// Keep track of errors during bootstrapping so that if GPUs are missing
|
||||
// they expected to be present this may explain why
|
||||
bootstrapErrors []error
|
||||
)
|
||||
|
||||
// With our current CUDA compile flags, older than 5.0 will not work properly
|
||||
// (string values used to allow ldflags overrides at build time)
|
||||
var (
|
||||
CudaComputeMajorMin = "5"
|
||||
CudaComputeMinorMin = "0"
|
||||
)
|
||||
//change valute from 9 to 8 would release the gfx version limits ,refer to https://github.com/likelovewant/ollama-for-amd/issues/51
|
||||
var RocmComputeMajorMin = "8"
|
||||
|
||||
// TODO find a better way to detect iGPU instead of minimum memory
|
||||
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
|
||||
|
||||
// Note: gpuMutex must already be held
|
||||
func initCudaHandles() *cudaHandles {
|
||||
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
|
||||
|
||||
cHandles := &cudaHandles{}
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if nvmlLibPath != "" {
|
||||
cHandles.nvml, _, _ = loadNVMLMgmt([]string{nvmlLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if nvcudaLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.nvcuda, _, _ = loadNVCUDAMgmt([]string{nvcudaLibPath})
|
||||
return cHandles
|
||||
}
|
||||
if cudartLibPath != "" {
|
||||
cHandles.deviceCount, cHandles.cudart, _, _ = loadCUDARTMgmt([]string{cudartLibPath})
|
||||
return cHandles
|
||||
}
|
||||
|
||||
slog.Debug("searching for GPU discovery libraries for NVIDIA")
|
||||
var cudartMgmtPatterns []string
|
||||
|
||||
// Aligned with driver, we can't carry as payloads
|
||||
nvcudaMgmtPatterns := NvcudaGlobs
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, filepath.Join(LibOllamaPath, "cuda_v*", CudartMgmtName))
|
||||
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)
|
||||
|
||||
if len(NvmlGlobs) > 0 {
|
||||
nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
|
||||
if len(nvmlLibPaths) > 0 {
|
||||
nvml, libPath, err := loadNVMLMgmt(nvmlLibPaths)
|
||||
if nvml != nil {
|
||||
slog.Debug("nvidia-ml loaded", "library", libPath)
|
||||
cHandles.nvml = nvml
|
||||
nvmlLibPath = libPath
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
|
||||
if len(nvcudaLibPaths) > 0 {
|
||||
deviceCount, nvcuda, libPath, err := loadNVCUDAMgmt(nvcudaLibPaths)
|
||||
if nvcuda != nil {
|
||||
slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
|
||||
cHandles.nvcuda = nvcuda
|
||||
cHandles.deviceCount = deviceCount
|
||||
nvcudaLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
|
||||
if len(cudartLibPaths) > 0 {
|
||||
deviceCount, cudart, libPath, err := loadCUDARTMgmt(cudartLibPaths)
|
||||
if cudart != nil {
|
||||
slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
|
||||
cHandles.cudart = cudart
|
||||
cHandles.deviceCount = deviceCount
|
||||
cudartLibPath = libPath
|
||||
return cHandles
|
||||
}
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return cHandles
|
||||
}
|
||||
|
||||
// Note: gpuMutex must already be held
|
||||
func initOneAPIHandles() *oneapiHandles {
|
||||
oHandles := &oneapiHandles{}
|
||||
|
||||
// Short Circuit if we already know which library to use
|
||||
// ignore bootstrap errors in this case since we already recorded them
|
||||
if oneapiLibPath != "" {
|
||||
oHandles.deviceCount, oHandles.oneapi, _, _ = loadOneapiMgmt([]string{oneapiLibPath})
|
||||
return oHandles
|
||||
}
|
||||
|
||||
oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
|
||||
if len(oneapiLibPaths) > 0 {
|
||||
var err error
|
||||
oHandles.deviceCount, oHandles.oneapi, oneapiLibPath, err = loadOneapiMgmt(oneapiLibPaths)
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
}
|
||||
|
||||
return oHandles
|
||||
}
|
||||
|
||||
func GetCPUInfo() GpuInfoList {
|
||||
gpuMutex.Lock()
|
||||
if !bootstrapped {
|
||||
gpuMutex.Unlock()
|
||||
GetGPUInfo()
|
||||
} else {
|
||||
gpuMutex.Unlock()
|
||||
}
|
||||
return GpuInfoList{cpus[0].GpuInfo}
|
||||
}
|
||||
|
||||
func GetGPUInfo() GpuInfoList {
|
||||
// TODO - consider exploring lspci (and equivalent on windows) to check for
|
||||
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
|
||||
gpuMutex.Lock()
|
||||
defer gpuMutex.Unlock()
|
||||
needRefresh := true
|
||||
var cHandles *cudaHandles
|
||||
var oHandles *oneapiHandles
|
||||
defer func() {
|
||||
if cHandles != nil {
|
||||
if cHandles.cudart != nil {
|
||||
C.cudart_release(*cHandles.cudart)
|
||||
}
|
||||
if cHandles.nvcuda != nil {
|
||||
C.nvcuda_release(*cHandles.nvcuda)
|
||||
}
|
||||
if cHandles.nvml != nil {
|
||||
C.nvml_release(*cHandles.nvml)
|
||||
}
|
||||
}
|
||||
if oHandles != nil {
|
||||
if oHandles.oneapi != nil {
|
||||
// TODO - is this needed?
|
||||
C.oneapi_release(*oHandles.oneapi)
|
||||
}
|
||||
}
|
||||
}()
|
||||
|
||||
if !bootstrapped {
|
||||
slog.Info("looking for compatible GPUs")
|
||||
cudaComputeMajorMin, err := strconv.Atoi(CudaComputeMajorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid CudaComputeMajorMin setting", "value", CudaComputeMajorMin, "error", err)
|
||||
}
|
||||
cudaComputeMinorMin, err := strconv.Atoi(CudaComputeMinorMin)
|
||||
if err != nil {
|
||||
slog.Error("invalid CudaComputeMinorMin setting", "value", CudaComputeMinorMin, "error", err)
|
||||
}
|
||||
bootstrapErrors = []error{}
|
||||
needRefresh = false
|
||||
var memInfo C.mem_info_t
|
||||
|
||||
mem, err := GetCPUMem()
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
}
|
||||
|
||||
details, err := GetCPUDetails()
|
||||
if err != nil {
|
||||
slog.Warn("failed to lookup CPU details", "error", err)
|
||||
}
|
||||
cpus = []CPUInfo{
|
||||
{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
Library: "cpu",
|
||||
ID: "0",
|
||||
},
|
||||
CPUs: details,
|
||||
},
|
||||
}
|
||||
|
||||
// Load ALL libraries
|
||||
cHandles = initCudaHandles()
|
||||
|
||||
// NVIDIA
|
||||
for i := range cHandles.deviceCount {
|
||||
if cHandles.cudart != nil || cHandles.nvcuda != nil {
|
||||
gpuInfo := CudaGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "cuda",
|
||||
},
|
||||
index: i,
|
||||
}
|
||||
var driverMajor int
|
||||
var driverMinor int
|
||||
if cHandles.cudart != nil {
|
||||
C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
|
||||
} else {
|
||||
C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
|
||||
driverMajor = int(cHandles.nvcuda.driver_major)
|
||||
driverMinor = int(cHandles.nvcuda.driver_minor)
|
||||
}
|
||||
if memInfo.err != nil {
|
||||
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
continue
|
||||
}
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
|
||||
gpuInfo.computeMajor = int(memInfo.major)
|
||||
gpuInfo.computeMinor = int(memInfo.minor)
|
||||
gpuInfo.MinimumMemory = cudaMinimumMemory
|
||||
gpuInfo.DriverMajor = driverMajor
|
||||
gpuInfo.DriverMinor = driverMinor
|
||||
variant := cudaVariant(gpuInfo)
|
||||
|
||||
// Start with our bundled libraries
|
||||
if variant != "" {
|
||||
variantPath := filepath.Join(LibOllamaPath, "cuda_"+variant)
|
||||
if _, err := os.Stat(variantPath); err == nil {
|
||||
// Put the variant directory first in the search path to avoid runtime linking to the wrong library
|
||||
gpuInfo.DependencyPath = append([]string{variantPath}, gpuInfo.DependencyPath...)
|
||||
}
|
||||
}
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.Variant = variant
|
||||
|
||||
if int(memInfo.major) < cudaComputeMajorMin || (int(memInfo.major) == cudaComputeMajorMin && int(memInfo.minor) < cudaComputeMinorMin) {
|
||||
unsupportedGPUs = append(unsupportedGPUs,
|
||||
UnsupportedGPUInfo{
|
||||
GpuInfo: gpuInfo.GpuInfo,
|
||||
})
|
||||
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
|
||||
continue
|
||||
}
|
||||
|
||||
// query the management library as well so we can record any skew between the two
|
||||
// which represents overhead on the GPU we must set aside on subsequent updates
|
||||
if cHandles.nvml != nil {
|
||||
uuid := C.CString(gpuInfo.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
} else {
|
||||
if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
|
||||
gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
|
||||
slog.Info("detected OS VRAM overhead",
|
||||
"id", gpuInfo.ID,
|
||||
"library", gpuInfo.Library,
|
||||
"compute", gpuInfo.Compute,
|
||||
"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
|
||||
"name", gpuInfo.Name,
|
||||
"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
|
||||
cudaGPUs = append(cudaGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
|
||||
// Intel
|
||||
if envconfig.IntelGPU() {
|
||||
oHandles = initOneAPIHandles()
|
||||
if oHandles != nil && oHandles.oneapi != nil {
|
||||
for d := range oHandles.oneapi.num_drivers {
|
||||
if oHandles.oneapi == nil {
|
||||
// shouldn't happen
|
||||
slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
|
||||
continue
|
||||
}
|
||||
devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
|
||||
for i := range devCount {
|
||||
gpuInfo := OneapiGPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
Library: "oneapi",
|
||||
},
|
||||
driverIndex: int(d),
|
||||
gpuIndex: int(i),
|
||||
}
|
||||
// TODO - split bootstrapping from updating free memory
|
||||
C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
|
||||
// TODO - convert this to MinimumMemory based on testing...
|
||||
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
||||
memInfo.free = C.uint64_t(totalFreeMem)
|
||||
gpuInfo.TotalMemory = uint64(memInfo.total)
|
||||
gpuInfo.FreeMemory = uint64(memInfo.free)
|
||||
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
|
||||
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
|
||||
gpuInfo.DependencyPath = []string{LibOllamaPath}
|
||||
oneapiGPUs = append(oneapiGPUs, gpuInfo)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
rocmGPUs, err = AMDGetGPUInfo()
|
||||
if err != nil {
|
||||
bootstrapErrors = append(bootstrapErrors, err)
|
||||
}
|
||||
bootstrapped = true
|
||||
if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
|
||||
slog.Info("no compatible GPUs were discovered")
|
||||
}
|
||||
|
||||
// TODO verify we have runners for the discovered GPUs, filter out any that aren't supported with good error messages
|
||||
}
|
||||
|
||||
// For detected GPUs, load library if not loaded
|
||||
|
||||
// Refresh free memory usage
|
||||
if needRefresh {
|
||||
mem, err := GetCPUMem()
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
} else {
|
||||
slog.Debug("updating system memory data",
|
||||
slog.Group(
|
||||
"before",
|
||||
"total", format.HumanBytes2(cpus[0].TotalMemory),
|
||||
"free", format.HumanBytes2(cpus[0].FreeMemory),
|
||||
"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
|
||||
),
|
||||
slog.Group(
|
||||
"now",
|
||||
"total", format.HumanBytes2(mem.TotalMemory),
|
||||
"free", format.HumanBytes2(mem.FreeMemory),
|
||||
"free_swap", format.HumanBytes2(mem.FreeSwap),
|
||||
),
|
||||
)
|
||||
cpus[0].FreeMemory = mem.FreeMemory
|
||||
cpus[0].FreeSwap = mem.FreeSwap
|
||||
}
|
||||
|
||||
var memInfo C.mem_info_t
|
||||
if cHandles == nil && len(cudaGPUs) > 0 {
|
||||
cHandles = initCudaHandles()
|
||||
}
|
||||
for i, gpu := range cudaGPUs {
|
||||
if cHandles.nvml != nil {
|
||||
uuid := C.CString(gpu.ID)
|
||||
defer C.free(unsafe.Pointer(uuid))
|
||||
C.nvml_get_free(*cHandles.nvml, uuid, &memInfo.free, &memInfo.total, &memInfo.used)
|
||||
} else if cHandles.cudart != nil {
|
||||
C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
|
||||
} else if cHandles.nvcuda != nil {
|
||||
C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
|
||||
memInfo.used = memInfo.total - memInfo.free
|
||||
} else {
|
||||
// shouldn't happen
|
||||
slog.Warn("no valid cuda library loaded to refresh vram usage")
|
||||
break
|
||||
}
|
||||
if memInfo.err != nil {
|
||||
slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
|
||||
C.free(unsafe.Pointer(memInfo.err))
|
||||
continue
|
||||
}
|
||||
if memInfo.free == 0 {
|
||||
slog.Warn("error looking up nvidia GPU memory")
|
||||
continue
|
||||
}
|
||||
if cHandles.nvml != nil && gpu.OSOverhead > 0 {
|
||||
// When using the management library update based on recorded overhead
|
||||
memInfo.free -= C.uint64_t(gpu.OSOverhead)
|
||||
}
|
||||
slog.Debug("updating cuda memory data",
|
||||
"gpu", gpu.ID,
|
||||
"name", gpu.Name,
|
||||
"overhead", format.HumanBytes2(gpu.OSOverhead),
|
||||
slog.Group(
|
||||
"before",
|
||||
"total", format.HumanBytes2(gpu.TotalMemory),
|
||||
"free", format.HumanBytes2(gpu.FreeMemory),
|
||||
),
|
||||
slog.Group(
|
||||
"now",
|
||||
"total", format.HumanBytes2(uint64(memInfo.total)),
|
||||
"free", format.HumanBytes2(uint64(memInfo.free)),
|
||||
"used", format.HumanBytes2(uint64(memInfo.used)),
|
||||
),
|
||||
)
|
||||
cudaGPUs[i].FreeMemory = uint64(memInfo.free)
|
||||
}
|
||||
|
||||
if oHandles == nil && len(oneapiGPUs) > 0 {
|
||||
oHandles = initOneAPIHandles()
|
||||
}
|
||||
for i, gpu := range oneapiGPUs {
|
||||
if oHandles.oneapi == nil {
|
||||
// shouldn't happen
|
||||
slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
|
||||
continue
|
||||
}
|
||||
C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
|
||||
// TODO - convert this to MinimumMemory based on testing...
|
||||
var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
|
||||
memInfo.free = C.uint64_t(totalFreeMem)
|
||||
oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
|
||||
}
|
||||
|
||||
err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
|
||||
if err != nil {
|
||||
slog.Debug("problem refreshing ROCm free memory", "error", err)
|
||||
}
|
||||
}
|
||||
|
||||
func devInfoToInfoList(devs []ml.DeviceInfo) GpuInfoList {
|
||||
resp := []GpuInfo{}
|
||||
for _, gpu := range cudaGPUs {
|
||||
resp = append(resp, gpu.GpuInfo)
|
||||
// Our current packaging model places ggml-hip in the main directory
|
||||
// but keeps rocm in an isolated directory. We have to add it to
|
||||
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
|
||||
rocmDir := filepath.Join(LibOllamaPath, "rocm")
|
||||
if _, err := os.Stat(rocmDir); err != nil {
|
||||
rocmDir = ""
|
||||
}
|
||||
for _, gpu := range rocmGPUs {
|
||||
resp = append(resp, gpu.GpuInfo)
|
||||
}
|
||||
for _, gpu := range oneapiGPUs {
|
||||
resp = append(resp, gpu.GpuInfo)
|
||||
|
||||
for _, dev := range devs {
|
||||
info := GpuInfo{
|
||||
DeviceID: dev.DeviceID,
|
||||
filterID: dev.FilteredID,
|
||||
Name: dev.Description,
|
||||
memInfo: memInfo{
|
||||
TotalMemory: dev.TotalMemory,
|
||||
FreeMemory: dev.FreeMemory,
|
||||
},
|
||||
// TODO can we avoid variant
|
||||
DependencyPath: dev.LibraryPath,
|
||||
DriverMajor: dev.DriverMajor,
|
||||
DriverMinor: dev.DriverMinor,
|
||||
ComputeMajor: dev.ComputeMajor,
|
||||
ComputeMinor: dev.ComputeMinor,
|
||||
}
|
||||
if dev.Library == "CUDA" || dev.Library == "ROCm" {
|
||||
info.MinimumMemory = 457 * format.MebiByte
|
||||
}
|
||||
if dev.Library == "ROCm" && rocmDir != "" {
|
||||
info.DependencyPath = append(info.DependencyPath, rocmDir)
|
||||
}
|
||||
// TODO any special processing of Vulkan devices?
|
||||
resp = append(resp, info)
|
||||
}
|
||||
if len(resp) == 0 {
|
||||
resp = append(resp, cpus[0].GpuInfo)
|
||||
mem, err := GetCPUMem()
|
||||
if err != nil {
|
||||
slog.Warn("error looking up system memory", "error", err)
|
||||
}
|
||||
|
||||
resp = append(resp, GpuInfo{
|
||||
memInfo: mem,
|
||||
DeviceID: ml.DeviceID{
|
||||
Library: "cpu",
|
||||
ID: "0",
|
||||
},
|
||||
})
|
||||
}
|
||||
return resp
|
||||
}
|
||||
|
||||
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
|
||||
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
|
||||
gpuLibPaths := []string{}
|
||||
slog.Debug("Searching for GPU library", "name", baseLibName)
|
||||
|
||||
// search our bundled libraries first
|
||||
patterns := []string{filepath.Join(LibOllamaPath, baseLibName)}
|
||||
|
||||
var ldPaths []string
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
ldPaths = strings.Split(os.Getenv("PATH"), string(os.PathListSeparator))
|
||||
case "linux":
|
||||
ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), string(os.PathListSeparator))
|
||||
}
|
||||
|
||||
// then search the system's LD_LIBRARY_PATH
|
||||
for _, p := range ldPaths {
|
||||
p, err := filepath.Abs(p)
|
||||
if err != nil {
|
||||
continue
|
||||
}
|
||||
patterns = append(patterns, filepath.Join(p, baseLibName))
|
||||
}
|
||||
|
||||
// finally, search the default patterns provided by the caller
|
||||
patterns = append(patterns, defaultPatterns...)
|
||||
slog.Debug("gpu library search", "globs", patterns)
|
||||
for _, pattern := range patterns {
|
||||
// Nvidia PhysX known to return bogus results
|
||||
if strings.Contains(pattern, "PhysX") {
|
||||
slog.Debug("skipping PhysX cuda library path", "path", pattern)
|
||||
continue
|
||||
}
|
||||
// Ignore glob discovery errors
|
||||
matches, _ := filepath.Glob(pattern)
|
||||
for _, match := range matches {
|
||||
// Resolve any links so we don't try the same lib multiple times
|
||||
// and weed out any dups across globs
|
||||
libPath := match
|
||||
tmp := match
|
||||
var err error
|
||||
for ; err == nil; tmp, err = os.Readlink(libPath) {
|
||||
if !filepath.IsAbs(tmp) {
|
||||
tmp = filepath.Join(filepath.Dir(libPath), tmp)
|
||||
}
|
||||
libPath = tmp
|
||||
}
|
||||
new := true
|
||||
for _, cmp := range gpuLibPaths {
|
||||
if cmp == libPath {
|
||||
new = false
|
||||
break
|
||||
}
|
||||
}
|
||||
if new {
|
||||
gpuLibPaths = append(gpuLibPaths, libPath)
|
||||
}
|
||||
}
|
||||
}
|
||||
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
|
||||
return gpuLibPaths
|
||||
}
|
||||
|
||||
// Bootstrap the runtime library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string, error) {
|
||||
var resp C.cudart_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range cudartLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.cudart_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
// Bootstrap the driver library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string, error) {
|
||||
var resp C.nvcuda_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvcudaLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvcuda_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
// Decide what log level based on the type of error message to help users understand why
|
||||
switch resp.cudaErr {
|
||||
case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
|
||||
err = fmt.Errorf("version mismatch between driver and cuda driver library - reboot or upgrade may be required: library %s", libPath)
|
||||
slog.Warn(err.Error())
|
||||
case C.CUDA_ERROR_NO_DEVICE:
|
||||
err = fmt.Errorf("no nvidia devices detected by library %s", libPath)
|
||||
slog.Info(err.Error())
|
||||
case C.CUDA_ERROR_UNKNOWN:
|
||||
err = fmt.Errorf("unknown error initializing cuda driver library %s: %s. see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information", libPath, C.GoString(resp.err))
|
||||
slog.Warn(err.Error())
|
||||
default:
|
||||
msg := C.GoString(resp.err)
|
||||
if strings.Contains(msg, "wrong ELF class") {
|
||||
slog.Debug("skipping 32bit library", "library", libPath)
|
||||
} else {
|
||||
err = fmt.Errorf("Unable to load cudart library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
}
|
||||
}
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
return int(resp.num_devices), &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
// Bootstrap the management library
|
||||
// Returns: handle, libPath, error
|
||||
func loadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string, error) {
|
||||
var resp C.nvml_init_resp_t
|
||||
resp.ch.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range nvmlLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.nvml_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
err = fmt.Errorf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Info(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
return &resp.ch, libPath, err
|
||||
}
|
||||
}
|
||||
return nil, "", err
|
||||
}
|
||||
|
||||
// bootstrap the Intel GPU library
|
||||
// Returns: num devices, handle, libPath, error
|
||||
func loadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string, error) {
|
||||
var resp C.oneapi_init_resp_t
|
||||
num_devices := 0
|
||||
resp.oh.verbose = getVerboseState()
|
||||
var err error
|
||||
for _, libPath := range oneapiLibPaths {
|
||||
lib := C.CString(libPath)
|
||||
defer C.free(unsafe.Pointer(lib))
|
||||
C.oneapi_init(lib, &resp)
|
||||
if resp.err != nil {
|
||||
err = fmt.Errorf("Unable to load oneAPI management library %s: %s", libPath, C.GoString(resp.err))
|
||||
slog.Debug(err.Error())
|
||||
C.free(unsafe.Pointer(resp.err))
|
||||
} else {
|
||||
err = nil
|
||||
for i := range resp.oh.num_drivers {
|
||||
num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
|
||||
}
|
||||
return num_devices, &resp.oh, libPath, err
|
||||
}
|
||||
}
|
||||
return 0, nil, "", err
|
||||
}
|
||||
|
||||
func getVerboseState() C.uint16_t {
|
||||
if envconfig.Debug() {
|
||||
return C.uint16_t(1)
|
||||
}
|
||||
return C.uint16_t(0)
|
||||
}
|
||||
|
||||
// Given the list of GPUs this instantiation is targeted for,
|
||||
// figure out the visible devices environment variable
|
||||
//
|
||||
// If different libraries are detected, the first one is what we use
|
||||
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
func (l GpuInfoList) GetVisibleDevicesEnv() []string {
|
||||
if len(l) == 0 {
|
||||
return "", ""
|
||||
return nil
|
||||
}
|
||||
switch l[0].Library {
|
||||
case "cuda":
|
||||
return cudaGetVisibleDevicesEnv(l)
|
||||
case "rocm":
|
||||
return rocmGetVisibleDevicesEnv(l)
|
||||
case "oneapi":
|
||||
return oneapiGetVisibleDevicesEnv(l)
|
||||
default:
|
||||
slog.Debug("no filter required for library " + l[0].Library)
|
||||
return "", ""
|
||||
res := []string{}
|
||||
envVar := rocmGetVisibleDevicesEnv(l)
|
||||
if envVar != "" {
|
||||
res = append(res, envVar)
|
||||
}
|
||||
envVar = vkGetVisibleDevicesEnv(l)
|
||||
if envVar != "" {
|
||||
res = append(res, envVar)
|
||||
}
|
||||
return res
|
||||
}
|
||||
|
||||
func GetSystemInfo() SystemInfo {
|
||||
gpus := GetGPUInfo()
|
||||
gpuMutex.Lock()
|
||||
defer gpuMutex.Unlock()
|
||||
discoveryErrors := []string{}
|
||||
for _, err := range bootstrapErrors {
|
||||
discoveryErrors = append(discoveryErrors, err.Error())
|
||||
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "ROCm" {
|
||||
continue
|
||||
}
|
||||
// If the devices requires a numeric ID, for filtering purposes, we use the unfiltered ID number
|
||||
if info.filterID != "" {
|
||||
ids = append(ids, info.filterID)
|
||||
} else {
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
}
|
||||
if len(ids) == 0 {
|
||||
return ""
|
||||
}
|
||||
envVar := "ROCR_VISIBLE_DEVICES="
|
||||
if runtime.GOOS != "linux" {
|
||||
envVar = "HIP_VISIBLE_DEVICES="
|
||||
}
|
||||
// There are 3 potential env vars to use to select GPUs.
|
||||
// ROCR_VISIBLE_DEVICES supports UUID or numeric but does not work on Windows
|
||||
// HIP_VISIBLE_DEVICES supports numeric IDs only
|
||||
// GPU_DEVICE_ORDINAL supports numeric IDs only
|
||||
return envVar + strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
func vkGetVisibleDevicesEnv(gpuInfo []GpuInfo) string {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "Vulkan" {
|
||||
continue
|
||||
}
|
||||
if info.filterID != "" {
|
||||
ids = append(ids, info.filterID)
|
||||
} else {
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
}
|
||||
if len(ids) == 0 {
|
||||
return ""
|
||||
}
|
||||
envVar := "GGML_VK_VISIBLE_DEVICES="
|
||||
return envVar + strings.Join(ids, ",")
|
||||
}
|
||||
|
||||
// GetSystemInfo returns the last cached state of the GPUs on the system
|
||||
func GetSystemInfo() SystemInfo {
|
||||
deviceMu.Lock()
|
||||
defer deviceMu.Unlock()
|
||||
gpus := devInfoToInfoList(devices)
|
||||
if len(gpus) == 1 && gpus[0].Library == "cpu" {
|
||||
gpus = []GpuInfo{}
|
||||
}
|
||||
|
||||
return SystemInfo{
|
||||
System: cpus[0],
|
||||
GPUs: gpus,
|
||||
UnsupportedGPUs: unsupportedGPUs,
|
||||
DiscoveryErrors: discoveryErrors,
|
||||
System: CPUInfo{
|
||||
CPUs: GetCPUDetails(),
|
||||
GpuInfo: GetCPUInfo(),
|
||||
},
|
||||
GPUs: gpus,
|
||||
}
|
||||
}
|
||||
|
||||
func cudaJetpack() string {
|
||||
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
|
||||
if CudaTegra != "" {
|
||||
ver := strings.Split(CudaTegra, ".")
|
||||
if len(ver) > 0 {
|
||||
return "jetpack" + ver[0]
|
||||
}
|
||||
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
|
||||
r := regexp.MustCompile(` R(\d+) `)
|
||||
m := r.FindSubmatch(data)
|
||||
if len(m) != 2 {
|
||||
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
|
||||
} else {
|
||||
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
|
||||
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
|
||||
// https://developer.nvidia.com/embedded/jetpack-archive
|
||||
switch l4t {
|
||||
case 35:
|
||||
return "jetpack5"
|
||||
case 36:
|
||||
return "jetpack6"
|
||||
default:
|
||||
// Newer Jetson systems use the SBSU runtime
|
||||
slog.Debug("unrecognized L4T version", "nv_tegra_release", string(data))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return ""
|
||||
}
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
//go:build darwin
|
||||
|
||||
package discover
|
||||
|
||||
/*
|
||||
@@ -11,7 +9,6 @@ import "C"
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"runtime"
|
||||
"syscall"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
@@ -21,39 +18,6 @@ const (
|
||||
metalMinimumMemory = 512 * format.MebiByte
|
||||
)
|
||||
|
||||
func GetGPUInfo() GpuInfoList {
|
||||
mem, _ := GetCPUMem()
|
||||
if runtime.GOARCH == "amd64" {
|
||||
return []GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
memInfo: mem,
|
||||
},
|
||||
}
|
||||
}
|
||||
info := GpuInfo{
|
||||
Library: "metal",
|
||||
ID: "0",
|
||||
}
|
||||
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
|
||||
|
||||
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
|
||||
info.FreeMemory = info.TotalMemory
|
||||
|
||||
info.MinimumMemory = metalMinimumMemory
|
||||
return []GpuInfo{info}
|
||||
}
|
||||
|
||||
func GetCPUInfo() GpuInfoList {
|
||||
mem, _ := GetCPUMem()
|
||||
return []GpuInfo{
|
||||
{
|
||||
Library: "cpu",
|
||||
memInfo: mem,
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
func GetCPUMem() (memInfo, error) {
|
||||
return memInfo{
|
||||
TotalMemory: uint64(C.getPhysicalMemory()),
|
||||
@@ -62,13 +26,7 @@ func GetCPUMem() (memInfo, error) {
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
|
||||
// No-op on darwin
|
||||
return "", ""
|
||||
}
|
||||
|
||||
func GetSystemInfo() SystemInfo {
|
||||
mem, _ := GetCPUMem()
|
||||
func GetCPUDetails() []CPU {
|
||||
query := "hw.perflevel0.physicalcpu"
|
||||
perfCores, err := syscall.SysctlUint32(query)
|
||||
if err != nil {
|
||||
@@ -81,19 +39,16 @@ func GetSystemInfo() SystemInfo {
|
||||
query = "hw.logicalcpu"
|
||||
logicalCores, _ := syscall.SysctlUint32(query)
|
||||
|
||||
return SystemInfo{
|
||||
System: CPUInfo{
|
||||
GpuInfo: GpuInfo{
|
||||
memInfo: mem,
|
||||
},
|
||||
CPUs: []CPU{
|
||||
{
|
||||
CoreCount: int(perfCores + efficiencyCores),
|
||||
EfficiencyCoreCount: int(efficiencyCores),
|
||||
ThreadCount: int(logicalCores),
|
||||
},
|
||||
},
|
||||
return []CPU{
|
||||
{
|
||||
CoreCount: int(perfCores + efficiencyCores),
|
||||
EfficiencyCoreCount: int(efficiencyCores),
|
||||
ThreadCount: int(logicalCores),
|
||||
},
|
||||
GPUs: GetGPUInfo(),
|
||||
}
|
||||
}
|
||||
|
||||
func IsNUMA() bool {
|
||||
// numa support in ggml is linux only
|
||||
return false
|
||||
}
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_H__
|
||||
#define __GPU_INFO_H__
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#ifndef _WIN32
|
||||
#include <dlfcn.h>
|
||||
#define LOAD_LIBRARY(lib, flags) dlopen(lib, flags)
|
||||
#define LOAD_SYMBOL(handle, sym) dlsym(handle, sym)
|
||||
#define LOAD_ERR() strdup(dlerror())
|
||||
#define UNLOAD_LIBRARY(handle) dlclose(handle)
|
||||
#else
|
||||
#include <windows.h>
|
||||
#define LOAD_LIBRARY(lib, flags) LoadLibrary(lib)
|
||||
#define LOAD_SYMBOL(handle, sym) GetProcAddress(handle, sym)
|
||||
#define UNLOAD_LIBRARY(handle) FreeLibrary(handle)
|
||||
#define LOAD_ERR() ({\
|
||||
LPSTR messageBuffer = NULL; \
|
||||
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, \
|
||||
NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&messageBuffer, 0, NULL); \
|
||||
char *resp = strdup(messageBuffer); \
|
||||
LocalFree(messageBuffer); \
|
||||
resp; \
|
||||
})
|
||||
|
||||
#endif
|
||||
|
||||
#define LOG(verbose, ...) \
|
||||
do { \
|
||||
if (verbose) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GPU_ID_LEN 64
|
||||
#define GPU_NAME_LEN 96
|
||||
|
||||
typedef struct mem_info {
|
||||
char *err; // If non-nill, caller responsible for freeing
|
||||
char gpu_id[GPU_ID_LEN];
|
||||
char gpu_name[GPU_NAME_LEN];
|
||||
uint64_t total;
|
||||
uint64_t free;
|
||||
uint64_t used;
|
||||
|
||||
// Compute Capability
|
||||
int major;
|
||||
int minor;
|
||||
int patch;
|
||||
} mem_info_t;
|
||||
|
||||
void cpu_check_ram(mem_info_t *resp);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#include "gpu_info_cudart.h"
|
||||
#include "gpu_info_nvcuda.h"
|
||||
#include "gpu_info_nvml.h"
|
||||
#include "gpu_info_oneapi.h"
|
||||
|
||||
#endif // __GPU_INFO_H__
|
||||
#endif // __APPLE__
|
||||
@@ -1,183 +0,0 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include "gpu_info_cudart.h"
|
||||
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
|
||||
cudartReturn_t ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
{"cudaSetDevice", (void *)&resp->ch.cudaSetDevice},
|
||||
{"cudaDeviceSynchronize", (void *)&resp->ch.cudaDeviceSynchronize},
|
||||
{"cudaDeviceReset", (void *)&resp->ch.cudaDeviceReset},
|
||||
{"cudaMemGetInfo", (void *)&resp->ch.cudaMemGetInfo},
|
||||
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
|
||||
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
|
||||
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
|
||||
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
resp->ch.handle = LOAD_LIBRARY(cudart_lib_path, RTLD_LAZY);
|
||||
if (!resp->ch.handle) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "library %s load err: %s\n", cudart_lib_path, msg);
|
||||
snprintf(buf, buflen,
|
||||
"Unable to load %s library to query for Nvidia GPUs: %s",
|
||||
cudart_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||
if (!*(l[i].p)) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
|
||||
msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
ret = (*resp->ch.cudaSetDevice)(0);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cudaSetDevice err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
|
||||
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
|
||||
return;
|
||||
}
|
||||
snprintf(buf, buflen, "cudart init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
int version = 0;
|
||||
cudartDriverVersion_t driverVersion;
|
||||
driverVersion.major = 0;
|
||||
driverVersion.minor = 0;
|
||||
|
||||
// Report driver version if we're in verbose mode, ignore errors
|
||||
ret = (*resp->ch.cudaDriverGetVersion)(&version);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cudaDriverGetVersion failed: %d\n", ret);
|
||||
} else {
|
||||
driverVersion.major = version / 1000;
|
||||
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
|
||||
}
|
||||
|
||||
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void cudart_bootstrap(cudart_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->err = NULL;
|
||||
cudartMemory_t memInfo = {0,0,0};
|
||||
cudartReturn_t ret;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("cudart handle isn't initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cudaSetDevice)(i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
cudaDeviceProp_t props;
|
||||
ret = (*h.cudaGetDeviceProperties)(&props, i);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
|
||||
resp->major = 0;
|
||||
resp->minor = 0;
|
||||
} else {
|
||||
int allNull = 1;
|
||||
for (int j = 0; j < 16; j++) {
|
||||
if (props.uuid.bytes[j] != 0) {
|
||||
allNull = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (allNull != 0) {
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
|
||||
} else {
|
||||
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
|
||||
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
||||
props.uuid.bytes[0],
|
||||
props.uuid.bytes[1],
|
||||
props.uuid.bytes[2],
|
||||
props.uuid.bytes[3],
|
||||
props.uuid.bytes[4],
|
||||
props.uuid.bytes[5],
|
||||
props.uuid.bytes[6],
|
||||
props.uuid.bytes[7],
|
||||
props.uuid.bytes[8],
|
||||
props.uuid.bytes[9],
|
||||
props.uuid.bytes[10],
|
||||
props.uuid.bytes[11],
|
||||
props.uuid.bytes[12],
|
||||
props.uuid.bytes[13],
|
||||
props.uuid.bytes[14],
|
||||
props.uuid.bytes[15]
|
||||
);
|
||||
}
|
||||
resp->major = props.major;
|
||||
resp->minor = props.minor;
|
||||
|
||||
// TODO add other useful properties from props
|
||||
}
|
||||
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
|
||||
if (ret != CUDART_SUCCESS) {
|
||||
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total = memInfo.total;
|
||||
resp->free = memInfo.free;
|
||||
resp->used = memInfo.used;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
|
||||
LOG(h.verbose, "[%s] CUDA usedMem %lu\n", resp->gpu_id, resp->used);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
}
|
||||
|
||||
void cudart_release(cudart_handle_t h) {
|
||||
LOG(h.verbose, "releasing cudart library\n");
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
@@ -1,148 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_CUDART_H__
|
||||
#define __GPU_INFO_CUDART_H__
|
||||
#include "gpu_info.h"
|
||||
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum cudartReturn_enum {
|
||||
CUDART_SUCCESS = 0,
|
||||
CUDART_ERROR_INVALID_VALUE = 1,
|
||||
CUDART_ERROR_MEMORY_ALLOCATION = 2,
|
||||
CUDART_ERROR_INSUFFICIENT_DRIVER = 35,
|
||||
// Other values omitted for now...
|
||||
} cudartReturn_t;
|
||||
|
||||
typedef enum cudartDeviceAttr_enum {
|
||||
cudartDevAttrComputeCapabilityMajor = 75,
|
||||
cudartDevAttrComputeCapabilityMinor = 76,
|
||||
|
||||
// TODO - not yet wired up but may be useful for Jetson or other
|
||||
// integrated GPU scenarios with shared memory
|
||||
cudaDevAttrIntegrated = 18
|
||||
|
||||
} cudartDeviceAttr_t;
|
||||
|
||||
typedef void *cudartDevice_t; // Opaque is sufficient
|
||||
typedef struct cudartMemory_st {
|
||||
size_t total;
|
||||
size_t free;
|
||||
size_t used;
|
||||
} cudartMemory_t;
|
||||
|
||||
typedef struct cudartDriverVersion {
|
||||
int major;
|
||||
int minor;
|
||||
} cudartDriverVersion_t;
|
||||
|
||||
typedef struct cudaUUID {
|
||||
unsigned char bytes[16];
|
||||
} cudaUUID_t;
|
||||
typedef struct cudaDeviceProp {
|
||||
char name[256]; /**< ASCII string identifying device */
|
||||
cudaUUID_t uuid; /**< 16-byte unique identifier */
|
||||
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
|
||||
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
|
||||
size_t totalGlobalMem; /**< Global memory available on device in bytes */
|
||||
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
|
||||
int regsPerBlock; /**< 32-bit registers available per block */
|
||||
int warpSize; /**< Warp size in threads */
|
||||
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
|
||||
int maxThreadsPerBlock; /**< Maximum number of threads per block */
|
||||
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
|
||||
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
|
||||
int clockRate; /**< Clock frequency in kilohertz */
|
||||
size_t totalConstMem; /**< Constant memory available on device in bytes */
|
||||
int major; /**< Major compute capability */
|
||||
int minor; /**< Minor compute capability */
|
||||
size_t textureAlignment; /**< Alignment requirement for textures */
|
||||
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
|
||||
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
|
||||
int multiProcessorCount; /**< Number of multiprocessors on device */
|
||||
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
|
||||
int integrated; /**< Device is integrated as opposed to discrete */
|
||||
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
|
||||
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
|
||||
int maxTexture1D; /**< Maximum 1D texture size */
|
||||
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
|
||||
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
|
||||
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
|
||||
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
|
||||
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
|
||||
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
|
||||
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
|
||||
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
|
||||
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
|
||||
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
|
||||
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
|
||||
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
|
||||
int maxSurface1D; /**< Maximum 1D surface size */
|
||||
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
|
||||
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
|
||||
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
|
||||
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
|
||||
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
|
||||
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
|
||||
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
|
||||
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
|
||||
int ECCEnabled; /**< Device has ECC support enabled */
|
||||
int pciBusID; /**< PCI bus ID of the device */
|
||||
int pciDeviceID; /**< PCI device ID of the device */
|
||||
int pciDomainID; /**< PCI domain ID of the device */
|
||||
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
|
||||
int asyncEngineCount; /**< Number of asynchronous engines */
|
||||
int unifiedAddressing; /**< Device shares a unified address space with the host */
|
||||
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
|
||||
int memoryBusWidth; /**< Global memory bus width in bits */
|
||||
int l2CacheSize; /**< Size of L2 cache in bytes */
|
||||
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
|
||||
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
|
||||
int streamPrioritiesSupported; /**< Device supports stream priorities */
|
||||
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
|
||||
int localL1CacheSupported; /**< Device supports caching locals in L1 */
|
||||
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
|
||||
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
|
||||
int managedMemory; /**< Device supports allocating managed memory on this system */
|
||||
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
|
||||
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
|
||||
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
|
||||
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
|
||||
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
|
||||
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
|
||||
int computePreemptionSupported; /**< Device supports Compute Preemption */
|
||||
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
|
||||
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
|
||||
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
|
||||
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
|
||||
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
|
||||
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
|
||||
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
|
||||
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
|
||||
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
|
||||
} cudaDeviceProp_t;
|
||||
|
||||
typedef struct cudart_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
cudartReturn_t (*cudaSetDevice)(int device);
|
||||
cudartReturn_t (*cudaDeviceSynchronize)(void);
|
||||
cudartReturn_t (*cudaDeviceReset)(void);
|
||||
cudartReturn_t (*cudaMemGetInfo)(size_t *, size_t *);
|
||||
cudartReturn_t (*cudaGetDeviceCount)(int *);
|
||||
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
|
||||
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
|
||||
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
|
||||
} cudart_handle_t;
|
||||
|
||||
typedef struct cudart_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
cudart_handle_t ch;
|
||||
int num_devices;
|
||||
} cudart_init_resp_t;
|
||||
|
||||
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
|
||||
void cudart_bootstrap(cudart_handle_t ch, int device_id, mem_info_t *resp);
|
||||
// TODO - if we keep this library longer term, add cudart_get_free
|
||||
void cudart_release(cudart_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_CUDART_H__
|
||||
#endif // __APPLE__
|
||||
@@ -1,250 +0,0 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
#include "gpu_info_nvcuda.h"
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp) {
|
||||
LOG(resp->ch.verbose, "initializing %s\n", nvcuda_lib_path);
|
||||
CUresult ret;
|
||||
resp->err = NULL;
|
||||
resp->num_devices = 0;
|
||||
resp->cudaErr = CUDA_SUCCESS;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
|
||||
{"cuInit", (void *)&resp->ch.cuInit},
|
||||
{"cuDriverGetVersion", (void *)&resp->ch.cuDriverGetVersion},
|
||||
{"cuDeviceGetCount", (void *)&resp->ch.cuDeviceGetCount},
|
||||
{"cuDeviceGet", (void *)&resp->ch.cuDeviceGet},
|
||||
{"cuDeviceGetAttribute", (void *)&resp->ch.cuDeviceGetAttribute},
|
||||
{"cuDeviceGetUuid", (void *)&resp->ch.cuDeviceGetUuid},
|
||||
{"cuDeviceGetName", (void *)&resp->ch.cuDeviceGetName},
|
||||
{"cuCtxCreate_v3", (void *)&resp->ch.cuCtxCreate_v3},
|
||||
{"cuMemGetInfo_v2", (void *)&resp->ch.cuMemGetInfo_v2},
|
||||
{"cuCtxDestroy", (void *)&resp->ch.cuCtxDestroy},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
resp->ch.handle = LOAD_LIBRARY(nvcuda_lib_path, RTLD_LAZY);
|
||||
if (!resp->ch.handle) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "library %s load err: %s\n", nvcuda_lib_path, msg);
|
||||
snprintf(buf, buflen,
|
||||
"Unable to load %s library to query for Nvidia GPUs: %s",
|
||||
nvcuda_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||
if (!*(l[i].p)) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
|
||||
msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = -1;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "dlsym: %s - %p\n", l[i].s, *l[i].p);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuInit\n");
|
||||
ret = (*resp->ch.cuInit)(0);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuInit err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "cuda driver library init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
|
||||
int version = 0;
|
||||
resp->ch.driver_major = 0;
|
||||
resp->ch.driver_minor = 0;
|
||||
|
||||
// Report driver version if we're in verbose mode, ignore errors
|
||||
LOG(resp->ch.verbose, "calling cuDriverGetVersion\n");
|
||||
ret = (*resp->ch.cuDriverGetVersion)(&version);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDriverGetVersion failed: %d\n", ret);
|
||||
} else {
|
||||
LOG(resp->ch.verbose, "raw version 0x%x\n", version);
|
||||
resp->ch.driver_major = version / 1000;
|
||||
resp->ch.driver_minor = (version - (resp->ch.driver_major * 1000)) / 10;
|
||||
LOG(resp->ch.verbose, "CUDA driver version: %d.%d\n", resp->ch.driver_major, resp->ch.driver_minor);
|
||||
}
|
||||
|
||||
LOG(resp->ch.verbose, "calling cuDeviceGetCount\n");
|
||||
ret = (*resp->ch.cuDeviceGetCount)(&resp->num_devices);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "cuDeviceGetCount err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "unable to get device count: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
resp->cudaErr = ret;
|
||||
return;
|
||||
}
|
||||
LOG(resp->ch.verbose, "device count %d\n", resp->num_devices);
|
||||
}
|
||||
|
||||
const int buflen = 256;
|
||||
void nvcuda_bootstrap(nvcuda_handle_t h, int i, mem_info_t *resp) {
|
||||
resp->err = NULL;
|
||||
nvcudaMemory_t memInfo = {0,0};
|
||||
CUresult ret;
|
||||
CUdevice device = -1;
|
||||
CUcontext ctx = NULL;
|
||||
char buf[buflen + 1];
|
||||
CUuuid uuid = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("cuda driver library handle isn't initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuDeviceGet)(&device, i);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "cuda driver library device failed to initialize");
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
int major = 0;
|
||||
int minor = 0;
|
||||
ret = (*h.cuDeviceGetAttribute)(&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device major lookup failure: %d\n", i, ret);
|
||||
} else {
|
||||
ret = (*h.cuDeviceGetAttribute)(&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device minor lookup failure: %d\n", i, ret);
|
||||
} else {
|
||||
resp->minor = minor;
|
||||
resp->major = major;
|
||||
}
|
||||
}
|
||||
|
||||
ret = (*h.cuDeviceGetUuid)(&uuid, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device uuid lookup failure: %d\n", i, ret);
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
|
||||
} else {
|
||||
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
|
||||
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
|
||||
uuid.bytes[0],
|
||||
uuid.bytes[1],
|
||||
uuid.bytes[2],
|
||||
uuid.bytes[3],
|
||||
uuid.bytes[4],
|
||||
uuid.bytes[5],
|
||||
uuid.bytes[6],
|
||||
uuid.bytes[7],
|
||||
uuid.bytes[8],
|
||||
uuid.bytes[9],
|
||||
uuid.bytes[10],
|
||||
uuid.bytes[11],
|
||||
uuid.bytes[12],
|
||||
uuid.bytes[13],
|
||||
uuid.bytes[14],
|
||||
uuid.bytes[15]
|
||||
);
|
||||
}
|
||||
|
||||
ret = (*h.cuDeviceGetName)(&resp->gpu_name[0], GPU_NAME_LEN, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(h.verbose, "[%d] device name lookup failure: %d\n", i, ret);
|
||||
resp->gpu_name[0] = '\0';
|
||||
}
|
||||
|
||||
// To get memory we have to set (and release) a context
|
||||
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "cuda driver library failed to get device context %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuMemGetInfo_v2)(&memInfo.free, &memInfo.total);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
snprintf(buf, buflen, "cuda driver library device memory info lookup failure %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
// Best effort on failure...
|
||||
(*h.cuCtxDestroy)(ctx);
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total = memInfo.total;
|
||||
resp->free = memInfo.free;
|
||||
|
||||
LOG(h.verbose, "[%s] CUDA totalMem %lu mb\n", resp->gpu_id, resp->total / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] CUDA freeMem %lu mb\n", resp->gpu_id, resp->free / 1024 / 1024);
|
||||
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
|
||||
|
||||
|
||||
|
||||
ret = (*h.cuCtxDestroy)(ctx);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "cuda driver library failed to release device context %d", ret);
|
||||
}
|
||||
}
|
||||
|
||||
void nvcuda_get_free(nvcuda_handle_t h, int i, uint64_t *free, uint64_t *total) {
|
||||
CUresult ret;
|
||||
CUcontext ctx = NULL;
|
||||
CUdevice device = -1;
|
||||
*free = 0;
|
||||
*total = 0;
|
||||
|
||||
ret = (*h.cuDeviceGet)(&device, i);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "cuda driver library device failed to initialize");
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// To get memory we have to set (and release) a context
|
||||
ret = (*h.cuCtxCreate_v3)(&ctx, NULL, 0, 0, device);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "cuda driver library failed to get device context %d", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuMemGetInfo_v2)(free, total);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "cuda driver library device memory info lookup failure %d", ret);
|
||||
// Best effort on failure...
|
||||
(*h.cuCtxDestroy)(ctx);
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.cuCtxDestroy)(ctx);
|
||||
if (ret != CUDA_SUCCESS) {
|
||||
LOG(1, "cuda driver library failed to release device context %d", ret);
|
||||
}
|
||||
}
|
||||
|
||||
void nvcuda_release(nvcuda_handle_t h) {
|
||||
LOG(h.verbose, "releasing cuda driver library\n");
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
// TODO and other context release logic?
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
@@ -1,79 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_NVCUDA_H__
|
||||
#define __GPU_INFO_NVCUDA_H__
|
||||
#include "gpu_info.h"
|
||||
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum cudaError_enum {
|
||||
CUDA_SUCCESS = 0,
|
||||
CUDA_ERROR_INVALID_VALUE = 1,
|
||||
CUDA_ERROR_OUT_OF_MEMORY = 2,
|
||||
CUDA_ERROR_NOT_INITIALIZED = 3,
|
||||
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
|
||||
CUDA_ERROR_NO_DEVICE = 100,
|
||||
CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803,
|
||||
CUDA_ERROR_UNKNOWN = 999,
|
||||
// Other values omitted for now...
|
||||
} CUresult;
|
||||
|
||||
typedef enum CUdevice_attribute_enum {
|
||||
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR = 75,
|
||||
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR = 76,
|
||||
|
||||
// TODO - not yet wired up but may be useful for Jetson or other
|
||||
// integrated GPU scenarios with shared memory
|
||||
CU_DEVICE_ATTRIBUTE_INTEGRATED = 18
|
||||
|
||||
} CUdevice_attribute;
|
||||
|
||||
typedef void *nvcudaDevice_t; // Opaque is sufficient
|
||||
typedef struct nvcudaMemory_st {
|
||||
uint64_t total;
|
||||
uint64_t free;
|
||||
} nvcudaMemory_t;
|
||||
|
||||
typedef struct nvcudaDriverVersion {
|
||||
int major;
|
||||
int minor;
|
||||
} nvcudaDriverVersion_t;
|
||||
|
||||
typedef struct CUuuid_st {
|
||||
unsigned char bytes[16];
|
||||
} CUuuid;
|
||||
|
||||
typedef int CUdevice;
|
||||
typedef void* CUcontext;
|
||||
|
||||
typedef struct nvcuda_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
int driver_major;
|
||||
int driver_minor;
|
||||
CUresult (*cuInit)(unsigned int Flags);
|
||||
CUresult (*cuDriverGetVersion)(int *driverVersion);
|
||||
CUresult (*cuDeviceGetCount)(int *);
|
||||
CUresult (*cuDeviceGet)(CUdevice* device, int ordinal);
|
||||
CUresult (*cuDeviceGetAttribute)(int* pi, CUdevice_attribute attrib, CUdevice dev);
|
||||
CUresult (*cuDeviceGetUuid)(CUuuid* uuid, CUdevice dev); // signature compatible with cuDeviceGetUuid_v2
|
||||
CUresult (*cuDeviceGetName)(char *name, int len, CUdevice dev);
|
||||
|
||||
// Context specific aspects
|
||||
CUresult (*cuCtxCreate_v3)(CUcontext* pctx, void *params, int len, unsigned int flags, CUdevice dev);
|
||||
CUresult (*cuMemGetInfo_v2)(uint64_t* free, uint64_t* total);
|
||||
CUresult (*cuCtxDestroy)(CUcontext ctx);
|
||||
} nvcuda_handle_t;
|
||||
|
||||
typedef struct nvcuda_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
nvcuda_handle_t ch;
|
||||
int num_devices;
|
||||
CUresult cudaErr;
|
||||
} nvcuda_init_resp_t;
|
||||
|
||||
void nvcuda_init(char *nvcuda_lib_path, nvcuda_init_resp_t *resp);
|
||||
void nvcuda_bootstrap(nvcuda_handle_t ch, int device_id, mem_info_t *resp);
|
||||
void nvcuda_get_free(nvcuda_handle_t ch, int device_id, uint64_t *free, uint64_t *total);
|
||||
void nvcuda_release(nvcuda_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_NVCUDA_H__
|
||||
#endif // __APPLE__
|
||||
@@ -1,104 +0,0 @@
|
||||
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include "gpu_info_nvml.h"
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
|
||||
nvmlReturn_t ret;
|
||||
resp->err = NULL;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i;
|
||||
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
|
||||
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
|
||||
{"nvmlDeviceGetHandleByUUID", (void *)&resp->ch.nvmlDeviceGetHandleByUUID},
|
||||
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
|
||||
if (!resp->ch.handle) {
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
|
||||
snprintf(buf, buflen,
|
||||
"Unable to load %s library to query for Nvidia GPUs: %s",
|
||||
nvml_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
// LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
// LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
|
||||
|
||||
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
|
||||
if (!*(l[i].p)) {
|
||||
resp->ch.handle = NULL;
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
|
||||
msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
ret = (*resp->ch.nvmlInit_v2)();
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
|
||||
UNLOAD_LIBRARY(resp->ch.handle);
|
||||
resp->ch.handle = NULL;
|
||||
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void nvml_get_free(nvml_handle_t h, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used) {
|
||||
nvmlDevice_t device;
|
||||
nvmlMemory_t memInfo = {0};
|
||||
nvmlReturn_t ret;
|
||||
ret = (*h.nvmlDeviceGetHandleByUUID)((const char *)(uuid), &device);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "unable to get device handle %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "device memory info lookup failure %s: %d", uuid, ret);
|
||||
*free = 0;
|
||||
return;
|
||||
}
|
||||
*free = memInfo.free;
|
||||
*total = memInfo.total;
|
||||
*used = memInfo.used;
|
||||
}
|
||||
|
||||
|
||||
void nvml_release(nvml_handle_t h) {
|
||||
LOG(h.verbose, "releasing nvml library\n");
|
||||
nvmlReturn_t ret;
|
||||
ret = (*h.nvmlShutdown)();
|
||||
if (ret != NVML_SUCCESS) {
|
||||
LOG(1, "error during nvmlShutdown %d", ret);
|
||||
}
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
@@ -1,48 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_NVML_H__
|
||||
#define __GPU_INFO_NVML_H__
|
||||
#include "gpu_info.h"
|
||||
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum nvmlReturn_enum {
|
||||
NVML_SUCCESS = 0,
|
||||
// Other values omitted for now...
|
||||
} nvmlReturn_t;
|
||||
typedef void *nvmlDevice_t; // Opaque is sufficient
|
||||
typedef struct nvmlMemory_st {
|
||||
unsigned long long total;
|
||||
unsigned long long free;
|
||||
unsigned long long used;
|
||||
} nvmlMemory_t;
|
||||
|
||||
typedef enum nvmlBrandType_enum
|
||||
{
|
||||
NVML_BRAND_UNKNOWN = 0,
|
||||
} nvmlBrandType_t;
|
||||
|
||||
typedef struct nvml_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
nvmlReturn_t (*nvmlInit_v2)(void);
|
||||
nvmlReturn_t (*nvmlShutdown)(void);
|
||||
nvmlReturn_t (*nvmlDeviceGetHandleByUUID)(const char *, nvmlDevice_t *);
|
||||
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
|
||||
} nvml_handle_t;
|
||||
|
||||
typedef struct nvml_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
nvml_handle_t ch;
|
||||
} nvml_init_resp_t;
|
||||
|
||||
typedef struct nvml_compute_capability {
|
||||
char *err;
|
||||
int major;
|
||||
int minor;
|
||||
} nvml_compute_capability_t;
|
||||
|
||||
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
|
||||
void nvml_get_free(nvml_handle_t ch, char *uuid, uint64_t *free, uint64_t *total, uint64_t *used);
|
||||
void nvml_release(nvml_handle_t ch);
|
||||
|
||||
#endif // __GPU_INFO_NVML_H__
|
||||
#endif // __APPLE__
|
||||
@@ -1,259 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
|
||||
#include "gpu_info_oneapi.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp) {
|
||||
ze_result_t ret;
|
||||
resp->err = NULL;
|
||||
resp->oh.devices = NULL;
|
||||
resp->oh.num_devices = NULL;
|
||||
resp->oh.drivers = NULL;
|
||||
resp->oh.num_drivers = 0;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i, d;
|
||||
struct lookup {
|
||||
char *s;
|
||||
void **p;
|
||||
} l[] = {
|
||||
{"zesInit", (void *)&resp->oh.zesInit},
|
||||
{"zesDriverGet", (void *)&resp->oh.zesDriverGet},
|
||||
{"zesDeviceGet", (void *)&resp->oh.zesDeviceGet},
|
||||
{"zesDeviceGetProperties", (void *)&resp->oh.zesDeviceGetProperties},
|
||||
{"zesDeviceEnumMemoryModules",
|
||||
(void *)&resp->oh.zesDeviceEnumMemoryModules},
|
||||
{"zesMemoryGetProperties", (void *)&resp->oh.zesMemoryGetProperties},
|
||||
{"zesMemoryGetState", (void *)&resp->oh.zesMemoryGetState},
|
||||
{NULL, NULL},
|
||||
};
|
||||
|
||||
resp->oh.handle = LOAD_LIBRARY(oneapi_lib_path, RTLD_LAZY);
|
||||
if (!resp->oh.handle) {
|
||||
char *msg = LOAD_ERR();
|
||||
snprintf(buf, buflen,
|
||||
"Unable to load %s library to query for Intel GPUs: %s\n",
|
||||
oneapi_lib_path, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->oh.verbose,
|
||||
"wiring Level-Zero management library functions in %s\n",
|
||||
oneapi_lib_path);
|
||||
|
||||
for (i = 0; l[i].s != NULL; i++) {
|
||||
// TODO once we've squashed the remaining corner cases remove this log
|
||||
LOG(resp->oh.verbose, "dlsym: %s\n", l[i].s);
|
||||
|
||||
*l[i].p = LOAD_SYMBOL(resp->oh.handle, l[i].s);
|
||||
if (!*(l[i].p)) {
|
||||
resp->oh.handle = NULL;
|
||||
char *msg = LOAD_ERR();
|
||||
LOG(resp->oh.verbose, "dlerr: %s\n", msg);
|
||||
UNLOAD_LIBRARY(resp->oh.handle);
|
||||
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s, msg);
|
||||
free(msg);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
LOG(resp->oh.verbose, "calling zesInit\n");
|
||||
|
||||
ret = (*resp->oh.zesInit)(0);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
LOG(resp->oh.verbose, "zesInit err: %x\n", ret);
|
||||
snprintf(buf, buflen, "oneapi vram init failure: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
oneapi_release(resp->oh);
|
||||
return;
|
||||
}
|
||||
|
||||
LOG(resp->oh.verbose, "calling zesDriverGet\n");
|
||||
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, NULL);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
|
||||
snprintf(buf, buflen, "unable to get driver count: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
oneapi_release(resp->oh);
|
||||
return;
|
||||
}
|
||||
LOG(resp->oh.verbose, "oneapi driver count: %d\n", resp->oh.num_drivers);
|
||||
resp->oh.drivers = malloc(resp->oh.num_drivers * sizeof(zes_driver_handle_t));
|
||||
resp->oh.num_devices = malloc(resp->oh.num_drivers * sizeof(uint32_t));
|
||||
memset(&resp->oh.num_devices[0], 0, resp->oh.num_drivers * sizeof(uint32_t));
|
||||
resp->oh.devices =
|
||||
malloc(resp->oh.num_drivers * sizeof(zes_device_handle_t *));
|
||||
ret = (*resp->oh.zesDriverGet)(&resp->oh.num_drivers, &resp->oh.drivers[0]);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
LOG(resp->oh.verbose, "zesDriverGet err: %x\n", ret);
|
||||
snprintf(buf, buflen, "unable to get driver count: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
oneapi_release(resp->oh);
|
||||
return;
|
||||
}
|
||||
|
||||
for (d = 0; d < resp->oh.num_drivers; d++) {
|
||||
LOG(resp->oh.verbose, "calling zesDeviceGet count %d: %p\n", d, resp->oh.drivers[d]);
|
||||
ret = (*resp->oh.zesDeviceGet)(resp->oh.drivers[d],
|
||||
&resp->oh.num_devices[d], NULL);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
|
||||
snprintf(buf, buflen, "unable to get device count: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
oneapi_release(resp->oh);
|
||||
return;
|
||||
}
|
||||
resp->oh.devices[d] =
|
||||
malloc(resp->oh.num_devices[d] * sizeof(zes_device_handle_t));
|
||||
ret = (*resp->oh.zesDeviceGet)(
|
||||
resp->oh.drivers[d], &resp->oh.num_devices[d], resp->oh.devices[d]);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
LOG(resp->oh.verbose, "zesDeviceGet err: %x\n", ret);
|
||||
snprintf(buf, buflen, "unable to get device count: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
oneapi_release(resp->oh);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
|
||||
mem_info_t *resp) {
|
||||
ze_result_t ret;
|
||||
resp->err = NULL;
|
||||
uint64_t totalMem = 0;
|
||||
uint64_t usedMem = 0;
|
||||
const int buflen = 256;
|
||||
char buf[buflen + 1];
|
||||
int i, d, m;
|
||||
|
||||
if (h.handle == NULL) {
|
||||
resp->err = strdup("Level-Zero handle not initialized");
|
||||
return;
|
||||
}
|
||||
|
||||
if (driver > h.num_drivers || device > h.num_devices[driver]) {
|
||||
resp->err = strdup("driver of device index out of bounds");
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total = 0;
|
||||
resp->free = 0;
|
||||
|
||||
zes_device_ext_properties_t ext_props;
|
||||
ext_props.stype = ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES;
|
||||
ext_props.pNext = NULL;
|
||||
|
||||
zes_device_properties_t props;
|
||||
props.stype = ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES;
|
||||
props.pNext = &ext_props;
|
||||
|
||||
ret = (*h.zesDeviceGetProperties)(h.devices[driver][device], &props);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get device properties: %d", ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
snprintf(&resp->gpu_name[0], GPU_NAME_LEN, "%s", props.modelName);
|
||||
|
||||
// TODO this needs to map to ONEAPI_DEVICE_SELECTOR syntax
|
||||
// (this is probably wrong...)
|
||||
// TODO - the driver isn't included - what if there are multiple drivers?
|
||||
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", device);
|
||||
|
||||
if (h.verbose) {
|
||||
// When in verbose mode, report more information about
|
||||
// the card we discover.
|
||||
LOG(h.verbose, "[%d:%d] oneAPI device name: %s\n", driver, device,
|
||||
props.modelName);
|
||||
LOG(h.verbose, "[%d:%d] oneAPI brand: %s\n", driver, device,
|
||||
props.brandName);
|
||||
LOG(h.verbose, "[%d:%d] oneAPI vendor: %s\n", driver, device,
|
||||
props.vendorName);
|
||||
LOG(h.verbose, "[%d:%d] oneAPI S/N: %s\n", driver, device,
|
||||
props.serialNumber);
|
||||
LOG(h.verbose, "[%d:%d] oneAPI board number: %s\n", driver, device,
|
||||
props.boardNumber);
|
||||
}
|
||||
|
||||
// TODO
|
||||
// Compute Capability equivalent in resp->major, resp->minor, resp->patch
|
||||
|
||||
uint32_t memCount = 0;
|
||||
ret = (*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount,
|
||||
NULL);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to enumerate Level-Zero memory modules: %x",
|
||||
ret);
|
||||
resp->err = strdup(buf);
|
||||
return;
|
||||
}
|
||||
|
||||
LOG(h.verbose, "discovered %d Level-Zero memory modules\n", memCount);
|
||||
|
||||
zes_mem_handle_t *mems = malloc(memCount * sizeof(zes_mem_handle_t));
|
||||
(*h.zesDeviceEnumMemoryModules)(h.devices[driver][device], &memCount, mems);
|
||||
|
||||
for (m = 0; m < memCount; m++) {
|
||||
zes_mem_state_t state;
|
||||
state.stype = ZES_STRUCTURE_TYPE_MEM_STATE;
|
||||
state.pNext = NULL;
|
||||
ret = (*h.zesMemoryGetState)(mems[m], &state);
|
||||
if (ret != ZE_RESULT_SUCCESS) {
|
||||
snprintf(buf, buflen, "unable to get memory state: %x", ret);
|
||||
resp->err = strdup(buf);
|
||||
free(mems);
|
||||
return;
|
||||
}
|
||||
|
||||
resp->total += state.size;
|
||||
resp->free += state.free;
|
||||
}
|
||||
|
||||
free(mems);
|
||||
}
|
||||
|
||||
void oneapi_release(oneapi_handle_t h) {
|
||||
int d;
|
||||
LOG(h.verbose, "releasing oneapi library\n");
|
||||
for (d = 0; d < h.num_drivers; d++) {
|
||||
if (h.devices != NULL && h.devices[d] != NULL) {
|
||||
free(h.devices[d]);
|
||||
}
|
||||
}
|
||||
if (h.devices != NULL) {
|
||||
free(h.devices);
|
||||
h.devices = NULL;
|
||||
}
|
||||
if (h.num_devices != NULL) {
|
||||
free(h.num_devices);
|
||||
h.num_devices = NULL;
|
||||
}
|
||||
if (h.drivers != NULL) {
|
||||
free(h.drivers);
|
||||
h.drivers = NULL;
|
||||
}
|
||||
h.num_drivers = 0;
|
||||
UNLOAD_LIBRARY(h.handle);
|
||||
h.handle = NULL;
|
||||
}
|
||||
|
||||
int oneapi_get_device_count(oneapi_handle_t h, int driver) {
|
||||
if (h.handle == NULL || h.num_devices == NULL) {
|
||||
return 0;
|
||||
}
|
||||
if (driver > h.num_drivers) {
|
||||
return 0;
|
||||
}
|
||||
return (int)h.num_devices[driver];
|
||||
}
|
||||
|
||||
#endif // __APPLE__
|
||||
@@ -1,203 +0,0 @@
|
||||
#ifndef __APPLE__
|
||||
#ifndef __GPU_INFO_ONEAPI_H__
|
||||
#define __GPU_INFO_ONEAPI_H__
|
||||
#include "gpu_info.h"
|
||||
|
||||
#define ZE_MAX_DEVICE_NAME 256
|
||||
#define ZE_MAX_DEVICE_UUID_SIZE 16
|
||||
#define ZES_STRING_PROPERTY_SIZE 64
|
||||
#define ZE_BIT(_i) (1 << _i)
|
||||
|
||||
// Just enough typedef's to dlopen/dlsym for memory information
|
||||
typedef enum ze_result_t {
|
||||
ZE_RESULT_SUCCESS = 0,
|
||||
// Other values omitted for now...
|
||||
} ze_result_t;
|
||||
|
||||
typedef uint8_t ze_bool_t;
|
||||
typedef struct _zes_driver_handle_t *zes_driver_handle_t;
|
||||
typedef struct _zes_device_handle_t *zes_device_handle_t;
|
||||
typedef struct _zes_mem_handle_t *zes_mem_handle_t;
|
||||
|
||||
typedef enum _ze_structure_type_t {
|
||||
ZE_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||
} ze_structure_type_t;
|
||||
|
||||
typedef enum _zes_structure_type_t {
|
||||
ZES_STRUCTURE_TYPE_DEVICE_PROPERTIES = 0x1,
|
||||
ZES_STRUCTURE_TYPE_MEM_PROPERTIES = 0xb,
|
||||
ZES_STRUCTURE_TYPE_MEM_STATE = 0x1e,
|
||||
ZES_STRUCTURE_TYPE_DEVICE_EXT_PROPERTIES = 0x2d,
|
||||
ZES_STRUCTURE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_structure_type_t;
|
||||
|
||||
typedef enum _zes_mem_type_t {
|
||||
ZES_MEM_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_mem_type_t;
|
||||
|
||||
typedef enum _zes_mem_loc_t {
|
||||
ZES_MEM_LOC_SYSTEM = 0,
|
||||
ZES_MEM_LOC_DEVICE = 1,
|
||||
ZES_MEM_LOC_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_mem_loc_t;
|
||||
|
||||
typedef enum _zes_mem_health_t {
|
||||
ZES_MEM_HEALTH_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_mem_health_t;
|
||||
|
||||
typedef struct _ze_device_uuid_t {
|
||||
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
||||
} ze_device_uuid_t;
|
||||
|
||||
typedef struct _zes_uuid_t {
|
||||
uint8_t id[ZE_MAX_DEVICE_UUID_SIZE];
|
||||
} zes_uuid_t;
|
||||
|
||||
typedef enum _ze_device_type_t {
|
||||
ZE_DEVICE_TYPE_GPU = 1,
|
||||
ZE_DEVICE_TYPE_CPU = 2,
|
||||
ZE_DEVICE_TYPE_FPGA = 3,
|
||||
ZE_DEVICE_TYPE_MCA = 4,
|
||||
ZE_DEVICE_TYPE_VPU = 5,
|
||||
ZE_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||
} ze_device_type_t;
|
||||
|
||||
typedef enum _zes_device_type_t {
|
||||
ZES_DEVICE_TYPE_GPU = 1,
|
||||
ZES_DEVICE_TYPE_CPU = 2,
|
||||
ZES_DEVICE_TYPE_FPGA = 3,
|
||||
ZES_DEVICE_TYPE_MCA = 4,
|
||||
ZES_DEVICE_TYPE_VPU = 5,
|
||||
ZES_DEVICE_TYPE_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_device_type_t;
|
||||
|
||||
typedef uint32_t ze_device_property_flags_t;
|
||||
typedef enum _ze_device_property_flag_t {
|
||||
ZE_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
||||
ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
||||
ZE_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
||||
ZE_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
|
||||
ZE_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
|
||||
} ze_device_property_flag_t;
|
||||
|
||||
typedef uint32_t zes_device_property_flags_t;
|
||||
typedef enum _zes_device_property_flag_t {
|
||||
ZES_DEVICE_PROPERTY_FLAG_INTEGRATED = ZE_BIT(0),
|
||||
ZES_DEVICE_PROPERTY_FLAG_SUBDEVICE = ZE_BIT(1),
|
||||
ZES_DEVICE_PROPERTY_FLAG_ECC = ZE_BIT(2),
|
||||
ZES_DEVICE_PROPERTY_FLAG_ONDEMANDPAGING = ZE_BIT(3),
|
||||
ZES_DEVICE_PROPERTY_FLAG_FORCE_UINT32 = 0x7fffffff
|
||||
} zes_device_property_flag_t;
|
||||
|
||||
typedef struct _ze_device_properties_t {
|
||||
ze_structure_type_t stype;
|
||||
void *pNext;
|
||||
ze_device_type_t type;
|
||||
uint32_t vendorId;
|
||||
uint32_t deviceId;
|
||||
ze_device_property_flags_t flags;
|
||||
uint32_t subdeviceId;
|
||||
uint32_t coreClockRate;
|
||||
uint64_t maxMemAllocSize;
|
||||
uint32_t maxHardwareContexts;
|
||||
uint32_t maxCommandQueuePriority;
|
||||
uint32_t numThreadsPerEU;
|
||||
uint32_t physicalEUSimdWidth;
|
||||
uint32_t numEUsPerSubslice;
|
||||
uint32_t numSubslicesPerSlice;
|
||||
uint32_t numSlices;
|
||||
uint64_t timerResolution;
|
||||
uint32_t timestampValidBits;
|
||||
uint32_t kernelTimestampValidBits;
|
||||
ze_device_uuid_t uuid;
|
||||
char name[ZE_MAX_DEVICE_NAME];
|
||||
} ze_device_properties_t;
|
||||
|
||||
typedef struct _zes_device_properties_t {
|
||||
zes_structure_type_t stype;
|
||||
void *pNext;
|
||||
ze_device_properties_t core;
|
||||
uint32_t numSubdevices;
|
||||
char serialNumber[ZES_STRING_PROPERTY_SIZE];
|
||||
char boardNumber[ZES_STRING_PROPERTY_SIZE];
|
||||
char brandName[ZES_STRING_PROPERTY_SIZE];
|
||||
char modelName[ZES_STRING_PROPERTY_SIZE];
|
||||
char vendorName[ZES_STRING_PROPERTY_SIZE];
|
||||
char driverVersion[ZES_STRING_PROPERTY_SIZE];
|
||||
} zes_device_properties_t;
|
||||
|
||||
typedef struct _zes_device_ext_properties_t {
|
||||
zes_structure_type_t stype;
|
||||
void *pNext;
|
||||
zes_uuid_t uuid;
|
||||
zes_device_type_t type;
|
||||
zes_device_property_flags_t flags;
|
||||
} zes_device_ext_properties_t;
|
||||
|
||||
typedef struct _zes_mem_properties_t {
|
||||
zes_structure_type_t stype;
|
||||
void *pNext;
|
||||
zes_mem_type_t type;
|
||||
ze_bool_t onSubdevice;
|
||||
uint32_t subdeviceId;
|
||||
zes_mem_loc_t location;
|
||||
uint64_t physicalSize;
|
||||
int32_t busWidth;
|
||||
int32_t numChannels;
|
||||
} zes_mem_properties_t;
|
||||
|
||||
typedef struct _zes_mem_state_t {
|
||||
zes_structure_type_t stype;
|
||||
const void *pNext;
|
||||
zes_mem_health_t health;
|
||||
uint64_t free;
|
||||
uint64_t size;
|
||||
} zes_mem_state_t;
|
||||
|
||||
typedef struct oneapi_handle {
|
||||
void *handle;
|
||||
uint16_t verbose;
|
||||
|
||||
uint32_t num_drivers;
|
||||
zes_driver_handle_t *drivers;
|
||||
uint32_t *num_devices;
|
||||
zes_device_handle_t **devices;
|
||||
|
||||
// TODO Driver major, minor information
|
||||
// int driver_major;
|
||||
// int driver_minor;
|
||||
|
||||
ze_result_t (*zesInit)(int);
|
||||
ze_result_t (*zesDriverGet)(uint32_t *pCount, zes_driver_handle_t *phDrivers);
|
||||
ze_result_t (*zesDeviceGet)(zes_driver_handle_t hDriver, uint32_t *pCount,
|
||||
zes_device_handle_t *phDevices);
|
||||
ze_result_t (*zesDeviceGetProperties)(zes_device_handle_t hDevice,
|
||||
zes_device_properties_t *pProperties);
|
||||
ze_result_t (*zesDeviceEnumMemoryModules)(zes_device_handle_t hDevice,
|
||||
uint32_t *pCount,
|
||||
zes_mem_handle_t *phMemory);
|
||||
ze_result_t (*zesMemoryGetProperties)(zes_mem_handle_t hMemory,
|
||||
zes_mem_properties_t *pProperties);
|
||||
ze_result_t (*zesMemoryGetState)(zes_mem_handle_t hMemory,
|
||||
zes_mem_state_t *pState);
|
||||
|
||||
} oneapi_handle_t;
|
||||
|
||||
typedef struct oneapi_init_resp {
|
||||
char *err; // If err is non-null handle is invalid
|
||||
oneapi_handle_t oh;
|
||||
} oneapi_init_resp_t;
|
||||
|
||||
typedef struct oneapi_version_resp {
|
||||
ze_result_t status;
|
||||
char *str; // Contains version or error string if status != 0
|
||||
} oneapi_version_resp_t;
|
||||
|
||||
void oneapi_init(char *oneapi_lib_path, oneapi_init_resp_t *resp);
|
||||
void oneapi_check_vram(oneapi_handle_t h, int driver, int device,
|
||||
mem_info_t *resp);
|
||||
void oneapi_release(oneapi_handle_t h);
|
||||
int oneapi_get_device_count(oneapi_handle_t h, int driver);
|
||||
|
||||
#endif // __GPU_INFO_INTEL_H__
|
||||
#endif // __APPLE__
|
||||
@@ -1,21 +0,0 @@
|
||||
//go:build linux || windows
|
||||
|
||||
package discover
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func oneapiGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
|
||||
ids := []string{}
|
||||
for _, info := range gpuInfo {
|
||||
if info.Library != "oneapi" {
|
||||
// TODO shouldn't happen if things are wired correctly...
|
||||
slog.Debug("oneapiGetVisibleDevicesEnv skipping over non-sycl device", "library", info.Library)
|
||||
continue
|
||||
}
|
||||
ids = append(ids, info.ID)
|
||||
}
|
||||
return "ONEAPI_DEVICE_SELECTOR", "level_zero:" + strings.Join(ids, ",")
|
||||
}
|
||||
@@ -1,60 +0,0 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"runtime"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/assert"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestBasicGetGPUInfo(t *testing.T) {
|
||||
info := GetGPUInfo()
|
||||
assert.NotEmpty(t, len(info))
|
||||
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
|
||||
if info[0].Library != "cpu" {
|
||||
assert.Greater(t, info[0].TotalMemory, uint64(0))
|
||||
assert.Greater(t, info[0].FreeMemory, uint64(0))
|
||||
}
|
||||
}
|
||||
|
||||
func TestCPUMemInfo(t *testing.T) {
|
||||
info, err := GetCPUMem()
|
||||
require.NoError(t, err)
|
||||
switch runtime.GOOS {
|
||||
case "darwin":
|
||||
t.Skip("CPU memory not populated on darwin")
|
||||
case "linux", "windows":
|
||||
assert.Greater(t, info.TotalMemory, uint64(0))
|
||||
assert.Greater(t, info.FreeMemory, uint64(0))
|
||||
default:
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
func TestByLibrary(t *testing.T) {
|
||||
type testCase struct {
|
||||
input []GpuInfo
|
||||
expect int
|
||||
}
|
||||
|
||||
testCases := map[string]*testCase{
|
||||
"empty": {input: []GpuInfo{}, expect: 0},
|
||||
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
|
||||
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
|
||||
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
|
||||
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
|
||||
}
|
||||
|
||||
for k, v := range testCases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
resp := (GpuInfoList)(v.input).ByLibrary()
|
||||
if len(resp) != v.expect {
|
||||
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected
|
||||
@@ -12,7 +12,7 @@ import (
|
||||
// '../lib/ollama' on Linux and the executable's directory on macOS
|
||||
// note: distribution builds, additional GPU-specific libraries are
|
||||
// found in subdirectories of the returned path, such as
|
||||
// 'cuda_v11', 'cuda_v12', 'rocm', etc.
|
||||
// 'cuda_v12', 'rocm', etc.
|
||||
var LibOllamaPath string = func() string {
|
||||
exe, err := os.Executable()
|
||||
if err != nil {
|
||||
|
||||
600
discover/runner.go
Normal file
600
discover/runner.go
Normal file
@@ -0,0 +1,600 @@
|
||||
package discover
|
||||
|
||||
// Runner based GPU discovery
|
||||
|
||||
import (
|
||||
"context"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math/rand"
|
||||
"net"
|
||||
"net/http"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
var (
|
||||
deviceMu sync.Mutex
|
||||
devices []ml.DeviceInfo
|
||||
libDirs map[string]struct{}
|
||||
rocmDir string
|
||||
exe string
|
||||
bootstrapped bool
|
||||
)
|
||||
|
||||
func GPUDevices(ctx context.Context, runners []FilteredRunnerDiscovery) []ml.DeviceInfo {
|
||||
deviceMu.Lock()
|
||||
defer deviceMu.Unlock()
|
||||
startDiscovery := time.Now()
|
||||
msg := "overall device VRAM discovery took"
|
||||
defer func() {
|
||||
slog.Debug(msg, "duration", time.Since(startDiscovery))
|
||||
}()
|
||||
|
||||
if !bootstrapped {
|
||||
msg = "GPU bootstrap discovery took"
|
||||
libDirs = make(map[string]struct{})
|
||||
var err error
|
||||
exe, err = os.Executable()
|
||||
if err != nil {
|
||||
slog.Error("unable to lookup executable path", "error", err)
|
||||
return nil
|
||||
}
|
||||
if eval, err := filepath.EvalSymlinks(exe); err == nil {
|
||||
exe = eval
|
||||
}
|
||||
files, err := filepath.Glob(filepath.Join(LibOllamaPath, "*", "*ggml-*"))
|
||||
if err != nil {
|
||||
slog.Debug("unable to lookup runner library directories", "error", err)
|
||||
}
|
||||
for _, file := range files {
|
||||
libDirs[filepath.Dir(file)] = struct{}{}
|
||||
}
|
||||
|
||||
// Our current packaging model places ggml-hip in the main directory
|
||||
// but keeps rocm in an isolated directory. We have to add it to
|
||||
// the [LD_LIBRARY_]PATH so ggml-hip will load properly
|
||||
rocmDir = filepath.Join(LibOllamaPath, "rocm")
|
||||
if _, err := os.Stat(rocmDir); err != nil {
|
||||
rocmDir = ""
|
||||
}
|
||||
|
||||
if len(libDirs) == 0 {
|
||||
libDirs[""] = struct{}{}
|
||||
}
|
||||
|
||||
slog.Info("discovering available GPUs...")
|
||||
requested := envconfig.LLMLibrary()
|
||||
jetpack := cudaJetpack()
|
||||
|
||||
// For our initial discovery pass, we gather all the known GPUs through
|
||||
// all the libraries that were detected. This pass may include GPUs that
|
||||
// are enumerated, but not actually supported.
|
||||
// We run this in serial to avoid potentially initializing a GPU multiple
|
||||
// times concurrently leading to memory contention
|
||||
// TODO refactor so we group the lib dirs and do serial per version, but parallel for different libs
|
||||
for dir := range libDirs {
|
||||
var dirs []string
|
||||
if dir != "" {
|
||||
if requested != "" && filepath.Base(dir) != requested {
|
||||
slog.Debug("skipping available library at users request", "requested", requested, "libDir", dir)
|
||||
continue
|
||||
} else if jetpack != "" && filepath.Base(dir) != "cuda_"+jetpack {
|
||||
continue
|
||||
}
|
||||
}
|
||||
if dir == "" {
|
||||
dirs = []string{LibOllamaPath}
|
||||
} else {
|
||||
dirs = []string{LibOllamaPath, dir}
|
||||
}
|
||||
// Typically bootstrapping takes < 1s, but on some systems, with devices
|
||||
// in low power/idle mode, initialization can take multiple seconds. We
|
||||
// set a long timeout just for bootstrap discovery to reduce the chance
|
||||
// of giving up too quickly
|
||||
ctx1stPass, cancel := context.WithTimeout(ctx, 30*time.Second)
|
||||
defer cancel()
|
||||
|
||||
// For this pass, we retain duplicates in case any are incompatible with some libraries
|
||||
devices = append(devices, bootstrapDevices(ctx1stPass, dirs, nil)...)
|
||||
}
|
||||
|
||||
// In the second pass, we more deeply initialize the GPUs to weed out devices that
|
||||
// aren't supported by a given library. We run this phase in parallel to speed up discovery.
|
||||
slog.Debug("filtering out unsupported or overlapping GPU library combinations", "count", len(devices))
|
||||
ctx2ndPass, cancel := context.WithTimeout(ctx, 30*time.Second)
|
||||
defer cancel()
|
||||
var wg sync.WaitGroup
|
||||
needsDelete := make([]bool, len(devices))
|
||||
supportedMu := sync.Mutex{}
|
||||
supported := make(map[string]map[string]map[string]int) // [Library][libDir][ID] = pre-deletion devices index
|
||||
for i := range devices {
|
||||
libDir := devices[i].LibraryPath[len(devices[i].LibraryPath)-1]
|
||||
if devices[i].Library == "Metal" {
|
||||
continue
|
||||
}
|
||||
slog.Debug("verifying GPU is supported", "library", libDir, "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
|
||||
wg.Add(1)
|
||||
go func(i int) {
|
||||
defer wg.Done()
|
||||
var envVar string
|
||||
id := devices[i].ID
|
||||
if devices[i].Library == "ROCm" {
|
||||
if runtime.GOOS != "linux" {
|
||||
envVar = "HIP_VISIBLE_DEVICES"
|
||||
} else {
|
||||
envVar = "ROCR_VISIBLE_DEVICES"
|
||||
}
|
||||
} else if devices[i].Library == "CUDA" {
|
||||
envVar = "CUDA_VISIBLE_DEVICES"
|
||||
} else if devices[i].Library == "Vulkan" {
|
||||
id = devices[i].FilteredID
|
||||
envVar = "GGML_VK_VISIBLE_DEVICES"
|
||||
} else {
|
||||
slog.Error("Unknown Library:" + devices[i].Library)
|
||||
}
|
||||
|
||||
extraEnvs := []string{
|
||||
"GGML_CUDA_INIT=1", // force deep initialization to trigger crash on unsupported GPUs
|
||||
envVar + "=" + id, // Filter to just this one GPU
|
||||
}
|
||||
if len(bootstrapDevices(ctx2ndPass, devices[i].LibraryPath, extraEnvs)) == 0 {
|
||||
needsDelete[i] = true
|
||||
} else {
|
||||
supportedMu.Lock()
|
||||
if _, ok := supported[devices[i].Library]; !ok {
|
||||
supported[devices[i].Library] = make(map[string]map[string]int)
|
||||
}
|
||||
if _, ok := supported[devices[i].Library][libDir]; !ok {
|
||||
supported[devices[i].Library][libDir] = make(map[string]int)
|
||||
}
|
||||
supported[devices[i].Library][libDir][devices[i].ID] = i
|
||||
supportedMu.Unlock()
|
||||
}
|
||||
}(i)
|
||||
}
|
||||
wg.Wait()
|
||||
logutil.Trace("supported GPU library combinations", "supported", supported)
|
||||
|
||||
filterOutVulkanThatAreSupportedByOtherGPU(needsDelete)
|
||||
|
||||
// Mark for deletion any overlaps - favoring the library version that can cover all GPUs if possible
|
||||
filterOverlapByLibrary(supported, needsDelete)
|
||||
|
||||
// TODO if we ever support multiple ROCm library versions this algorithm will need to be adjusted to keep the rocmID numeric value correct
|
||||
rocmID := 0
|
||||
for i := 0; i < len(needsDelete); i++ {
|
||||
if needsDelete[i] {
|
||||
logutil.Trace("removing unsupported or overlapping GPU combination", "libDir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1], "description", devices[i].Description, "compute", devices[i].Compute(), "pci_id", devices[i].PCIID)
|
||||
devices = append(devices[:i], devices[i+1:]...)
|
||||
needsDelete = append(needsDelete[:i], needsDelete[i+1:]...)
|
||||
i--
|
||||
} else if devices[i].Library == "ROCm" {
|
||||
if _, err := strconv.Atoi(devices[i].ID); err == nil {
|
||||
// Replace the numeric ID with the post-filtered IDs
|
||||
devices[i].FilteredID = devices[i].ID
|
||||
devices[i].ID = strconv.Itoa(rocmID)
|
||||
}
|
||||
rocmID++
|
||||
}
|
||||
}
|
||||
|
||||
// Now filter out any overlap with different libraries (favor CUDA/HIP over others)
|
||||
for i := 0; i < len(devices); i++ {
|
||||
for j := i + 1; j < len(devices); j++ {
|
||||
// For this pass, we only drop exact duplicates
|
||||
switch devices[i].Compare(devices[j]) {
|
||||
case ml.SameBackendDevice:
|
||||
// Same library and device, skip it
|
||||
devices = append(devices[:j], devices[j+1:]...)
|
||||
j--
|
||||
continue
|
||||
case ml.DuplicateDevice:
|
||||
// Different library, choose based on priority
|
||||
var droppedDevice ml.DeviceInfo
|
||||
if devices[i].Library == "CUDA" || devices[i].Library == "ROCm" {
|
||||
droppedDevice = devices[j]
|
||||
} else {
|
||||
droppedDevice = devices[i]
|
||||
devices[i] = devices[j]
|
||||
}
|
||||
devices = append(devices[:j], devices[j+1:]...)
|
||||
j--
|
||||
|
||||
typeStr := "discrete"
|
||||
if droppedDevice.Integrated {
|
||||
typeStr = "iGPU"
|
||||
}
|
||||
slog.Debug("dropping duplicate device",
|
||||
"id", droppedDevice.ID,
|
||||
"library", droppedDevice.Library,
|
||||
"compute", droppedDevice.Compute(),
|
||||
"name", droppedDevice.Name,
|
||||
"description", droppedDevice.Description,
|
||||
"libdirs", strings.Join(droppedDevice.LibraryPath, ","),
|
||||
"driver", droppedDevice.Driver(),
|
||||
"pci_id", droppedDevice.PCIID,
|
||||
"type", typeStr,
|
||||
"total", format.HumanBytes2(droppedDevice.TotalMemory),
|
||||
"available", format.HumanBytes2(droppedDevice.FreeMemory),
|
||||
)
|
||||
continue
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Reset the libDirs to what we actually wind up using for future refreshes
|
||||
libDirs = make(map[string]struct{})
|
||||
for _, dev := range devices {
|
||||
dir := dev.LibraryPath[len(dev.LibraryPath)-1]
|
||||
if dir != LibOllamaPath {
|
||||
libDirs[dir] = struct{}{}
|
||||
}
|
||||
}
|
||||
if len(libDirs) == 0 {
|
||||
libDirs[""] = struct{}{}
|
||||
}
|
||||
|
||||
bootstrapped = true
|
||||
} else {
|
||||
if runtime.GOOS == "darwin" && runtime.GOARCH == "arm64" {
|
||||
// metal never updates free VRAM
|
||||
return devices
|
||||
}
|
||||
|
||||
slog.Debug("refreshing free memory")
|
||||
updated := make([]bool, len(devices))
|
||||
allDone := func() bool {
|
||||
allDone := true
|
||||
for _, done := range updated {
|
||||
if !done {
|
||||
allDone = false
|
||||
break
|
||||
}
|
||||
}
|
||||
return allDone
|
||||
}
|
||||
|
||||
// First try to use existing runners to refresh VRAM since they're already
|
||||
// active on GPU(s)
|
||||
for _, runner := range runners {
|
||||
if runner == nil {
|
||||
continue
|
||||
}
|
||||
deviceIDs := runner.GetActiveDeviceIDs()
|
||||
if len(deviceIDs) == 0 {
|
||||
// Skip this runner since it doesn't have active GPU devices
|
||||
continue
|
||||
}
|
||||
|
||||
// Check to see if this runner is active on any devices that need a refresh
|
||||
skip := true
|
||||
devCheck:
|
||||
for _, dev := range deviceIDs {
|
||||
for i := range devices {
|
||||
if dev == devices[i].DeviceID {
|
||||
if !updated[i] {
|
||||
skip = false
|
||||
break devCheck
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if skip {
|
||||
continue
|
||||
}
|
||||
|
||||
// Typical refresh on existing runner is ~500ms but allow longer if the system
|
||||
// is under stress before giving up and using stale data.
|
||||
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
|
||||
defer cancel()
|
||||
start := time.Now()
|
||||
updatedDevices := runner.GetDeviceInfos(ctx)
|
||||
slog.Debug("existing runner discovery took", "duration", time.Since(start))
|
||||
for _, u := range updatedDevices {
|
||||
for i := range devices {
|
||||
if u.DeviceID == devices[i].DeviceID {
|
||||
updated[i] = true
|
||||
devices[i].FreeMemory = u.FreeMemory
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
// Short circuit if we've updated all the devices
|
||||
if allDone() {
|
||||
break
|
||||
}
|
||||
}
|
||||
if !allDone() {
|
||||
slog.Debug("unable to refresh all GPUs with existing runners, performing bootstrap discovery")
|
||||
|
||||
// Bootstrapping may take longer in some cases (AMD windows), but we
|
||||
// would rather use stale free data to get the model running sooner
|
||||
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
|
||||
defer cancel()
|
||||
|
||||
for dir := range libDirs {
|
||||
updatedDevices := bootstrapDevices(ctx, []string{LibOllamaPath, dir}, nil)
|
||||
for _, u := range updatedDevices {
|
||||
for i := range devices {
|
||||
if u.DeviceID == devices[i].DeviceID {
|
||||
updated[i] = true
|
||||
devices[i].FreeMemory = u.FreeMemory
|
||||
break
|
||||
}
|
||||
}
|
||||
// TODO - consider evaluating if new devices have appeared (e.g. hotplug)
|
||||
}
|
||||
if allDone() {
|
||||
break
|
||||
}
|
||||
}
|
||||
if !allDone() {
|
||||
slog.Warn("unable to refresh free memory, using old values")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return devices
|
||||
}
|
||||
|
||||
func filterOutVulkanThatAreSupportedByOtherGPU(needsDelete []bool) {
|
||||
// Filter out Vulkan devices that share a PCI ID with a non-Vulkan device that is not marked for deletion
|
||||
for i := range devices {
|
||||
if devices[i].Library != "Vulkan" || needsDelete[i] {
|
||||
continue
|
||||
}
|
||||
if devices[i].PCIID == "" {
|
||||
continue
|
||||
}
|
||||
for j := range devices {
|
||||
if i == j {
|
||||
continue
|
||||
}
|
||||
if devices[j].PCIID == "" {
|
||||
continue
|
||||
}
|
||||
if devices[j].PCIID == devices[i].PCIID && devices[j].Library != "Vulkan" && !needsDelete[j] {
|
||||
needsDelete[i] = true
|
||||
slog.Debug("dropping Vulkan duplicate by PCI ID",
|
||||
"vulkan_id", devices[i].ID,
|
||||
"vulkan_libdir", devices[i].LibraryPath[len(devices[i].LibraryPath)-1],
|
||||
"pci_id", devices[i].PCIID,
|
||||
"kept_library", devices[j].Library,
|
||||
"kept_id", devices[j].ID,
|
||||
)
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func filterOverlapByLibrary(supported map[string]map[string]map[string]int, needsDelete []bool) {
|
||||
// For multi-GPU systems, use the newest version that supports all the GPUs
|
||||
for _, byLibDirs := range supported {
|
||||
libDirs := make([]string, 0, len(byLibDirs))
|
||||
for libDir := range byLibDirs {
|
||||
libDirs = append(libDirs, libDir)
|
||||
}
|
||||
sort.Sort(sort.Reverse(sort.StringSlice(libDirs)))
|
||||
anyMissing := false
|
||||
var newest string
|
||||
for _, newest = range libDirs {
|
||||
for _, libDir := range libDirs {
|
||||
if libDir == newest {
|
||||
continue
|
||||
}
|
||||
if len(byLibDirs[newest]) != len(byLibDirs[libDir]) {
|
||||
anyMissing = true
|
||||
break
|
||||
}
|
||||
for dev := range byLibDirs[newest] {
|
||||
if _, found := byLibDirs[libDir][dev]; !found {
|
||||
anyMissing = true
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
if !anyMissing {
|
||||
break
|
||||
}
|
||||
}
|
||||
// Now we can mark overlaps for deletion
|
||||
for _, libDir := range libDirs {
|
||||
if libDir == newest {
|
||||
continue
|
||||
}
|
||||
for dev, i := range byLibDirs[libDir] {
|
||||
if _, found := byLibDirs[newest][dev]; found {
|
||||
needsDelete[i] = true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type bootstrapRunner struct {
|
||||
port int
|
||||
cmd *exec.Cmd
|
||||
}
|
||||
|
||||
func (r *bootstrapRunner) GetPort() int {
|
||||
return r.port
|
||||
}
|
||||
|
||||
func (r *bootstrapRunner) HasExited() bool {
|
||||
if r.cmd != nil && r.cmd.ProcessState != nil {
|
||||
return true
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func bootstrapDevices(ctx context.Context, ollamaLibDirs []string, extraEnvs []string) []ml.DeviceInfo {
|
||||
// TODO DRY out with llm/server.go
|
||||
slog.Debug("spawning runner with", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
|
||||
start := time.Now()
|
||||
defer func() {
|
||||
slog.Debug("bootstrap discovery took", "duration", time.Since(start), "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs)
|
||||
}()
|
||||
port := 0
|
||||
if a, err := net.ResolveTCPAddr("tcp", "localhost:0"); err == nil {
|
||||
var l *net.TCPListener
|
||||
if l, err = net.ListenTCP("tcp", a); err == nil {
|
||||
port = l.Addr().(*net.TCPAddr).Port
|
||||
l.Close()
|
||||
}
|
||||
}
|
||||
if port == 0 {
|
||||
slog.Debug("ResolveTCPAddr failed, using random port")
|
||||
port = rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
|
||||
}
|
||||
params := []string{"runner", "--ollama-engine", "--port", strconv.Itoa(port)}
|
||||
var pathEnv string
|
||||
switch runtime.GOOS {
|
||||
case "windows":
|
||||
pathEnv = "PATH"
|
||||
case "darwin":
|
||||
pathEnv = "DYLD_LIBRARY_PATH"
|
||||
default:
|
||||
pathEnv = "LD_LIBRARY_PATH"
|
||||
}
|
||||
libraryPaths := append([]string{LibOllamaPath}, ollamaLibDirs...)
|
||||
if rocmDir != "" {
|
||||
libraryPaths = append(libraryPaths, rocmDir)
|
||||
}
|
||||
// Note: we always put our dependency paths first
|
||||
// since these are the exact version we compiled/linked against
|
||||
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
|
||||
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
|
||||
}
|
||||
|
||||
cmd := exec.Command(exe, params...)
|
||||
cmd.Env = os.Environ()
|
||||
if envconfig.LogLevel() == logutil.LevelTrace {
|
||||
cmd.Stdout = os.Stdout
|
||||
cmd.Stderr = os.Stderr
|
||||
}
|
||||
|
||||
// cmd.SysProcAttr = llm.LlamaServerSysProcAttr // circular dependency - bring back once refactored
|
||||
pathEnvVal := strings.Join(libraryPaths, string(filepath.ListSeparator))
|
||||
pathNeeded := true
|
||||
ollamaPathNeeded := true
|
||||
extraDone := make([]bool, len(extraEnvs))
|
||||
for i := range cmd.Env {
|
||||
cmp := strings.SplitN(cmd.Env[i], "=", 2)
|
||||
if strings.EqualFold(cmp[0], pathEnv) {
|
||||
cmd.Env[i] = pathEnv + "=" + pathEnvVal
|
||||
pathNeeded = false
|
||||
} else if strings.EqualFold(cmp[0], "OLLAMA_LIBRARY_PATH") {
|
||||
cmd.Env[i] = "OLLAMA_LIBRARY_PATH=" + strings.Join(ollamaLibDirs, string(filepath.ListSeparator))
|
||||
ollamaPathNeeded = false
|
||||
} else {
|
||||
for j := range extraEnvs {
|
||||
if extraDone[j] {
|
||||
continue
|
||||
}
|
||||
extra := strings.SplitN(extraEnvs[j], "=", 2)
|
||||
if cmp[0] == extra[0] {
|
||||
cmd.Env[i] = extraEnvs[j]
|
||||
extraDone[j] = true
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if pathNeeded {
|
||||
cmd.Env = append(cmd.Env, pathEnv+"="+pathEnvVal)
|
||||
}
|
||||
if ollamaPathNeeded {
|
||||
cmd.Env = append(cmd.Env, "OLLAMA_LIBRARY_PATH="+strings.Join(ollamaLibDirs, string(filepath.ListSeparator)))
|
||||
}
|
||||
for i := range extraDone {
|
||||
if !extraDone[i] {
|
||||
cmd.Env = append(cmd.Env, extraEnvs[i])
|
||||
}
|
||||
}
|
||||
logutil.Trace("starting runner for device discovery", "env", cmd.Env, "cmd", cmd)
|
||||
if err := cmd.Start(); err != nil {
|
||||
slog.Warn("unable to start discovery subprocess", "cmd", cmd, "error", err)
|
||||
return nil
|
||||
}
|
||||
go func() {
|
||||
cmd.Wait() // exit status ignored
|
||||
}()
|
||||
|
||||
defer cmd.Process.Kill()
|
||||
devices, err := GetDevicesFromRunner(ctx, &bootstrapRunner{port: port, cmd: cmd})
|
||||
if err != nil {
|
||||
if cmd.ProcessState != nil && cmd.ProcessState.ExitCode() >= 0 {
|
||||
// Expected during bootstrapping while we filter out unsupported AMD GPUs
|
||||
logutil.Trace("runner exited", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "code", cmd.ProcessState.ExitCode())
|
||||
} else {
|
||||
slog.Info("failure during GPU discovery", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "extra_envs", extraEnvs, "error", err)
|
||||
}
|
||||
}
|
||||
logutil.Trace("runner enumerated devices", "OLLAMA_LIBRARY_PATH", ollamaLibDirs, "devices", devices)
|
||||
|
||||
return devices
|
||||
}
|
||||
|
||||
func GetDevicesFromRunner(ctx context.Context, runner BaseRunner) ([]ml.DeviceInfo, error) {
|
||||
var moreDevices []ml.DeviceInfo
|
||||
port := runner.GetPort()
|
||||
tick := time.Tick(10 * time.Millisecond)
|
||||
for {
|
||||
select {
|
||||
case <-ctx.Done():
|
||||
return nil, fmt.Errorf("failed to finish discovery before timeout")
|
||||
case <-tick:
|
||||
r, err := http.NewRequestWithContext(ctx, http.MethodGet, fmt.Sprintf("http://127.0.0.1:%d/info", port), nil)
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("failed to create request: %w", err)
|
||||
}
|
||||
r.Header.Set("Content-Type", "application/json")
|
||||
|
||||
resp, err := http.DefaultClient.Do(r)
|
||||
if err != nil {
|
||||
// slog.Warn("failed to send request", "error", err)
|
||||
if runner.HasExited() {
|
||||
return nil, fmt.Errorf("runner crashed")
|
||||
}
|
||||
continue
|
||||
}
|
||||
defer resp.Body.Close()
|
||||
|
||||
if resp.StatusCode == http.StatusNotFound {
|
||||
// old runner, fall back to bootstrapping model
|
||||
return nil, fmt.Errorf("llamarunner free vram reporting not supported")
|
||||
}
|
||||
|
||||
body, err := io.ReadAll(resp.Body)
|
||||
if err != nil {
|
||||
slog.Warn("failed to read response", "error", err)
|
||||
continue
|
||||
}
|
||||
if resp.StatusCode != 200 {
|
||||
logutil.Trace("runner failed to discover free VRAM", "status", resp.StatusCode, "response", body)
|
||||
return nil, fmt.Errorf("runner error: %s", string(body))
|
||||
}
|
||||
|
||||
if err := json.Unmarshal(body, &moreDevices); err != nil {
|
||||
slog.Warn("unmarshal encode response", "error", err)
|
||||
continue
|
||||
}
|
||||
return moreDevices, nil
|
||||
}
|
||||
}
|
||||
}
|
||||
108
discover/runner_test.go
Normal file
108
discover/runner_test.go
Normal file
@@ -0,0 +1,108 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/app/lifecycle"
|
||||
)
|
||||
|
||||
func init() {
|
||||
lifecycle.InitLogging()
|
||||
}
|
||||
|
||||
func TestFilterOverlapByLibrary(t *testing.T) {
|
||||
type testcase struct {
|
||||
name string
|
||||
inp map[string]map[string]map[string]int
|
||||
exp []bool
|
||||
}
|
||||
for _, tc := range []testcase{
|
||||
{
|
||||
name: "empty",
|
||||
inp: map[string]map[string]map[string]int{},
|
||||
exp: []bool{}, // needs deletion
|
||||
},
|
||||
{
|
||||
name: "single no overlap",
|
||||
inp: map[string]map[string]map[string]int{
|
||||
"CUDA": {
|
||||
"cuda_v12": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
|
||||
},
|
||||
},
|
||||
},
|
||||
exp: []bool{false},
|
||||
},
|
||||
{
|
||||
name: "100% overlap pick 2nd",
|
||||
inp: map[string]map[string]map[string]int{
|
||||
"CUDA": {
|
||||
"cuda_v12": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
|
||||
},
|
||||
"cuda_v13": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
|
||||
},
|
||||
},
|
||||
},
|
||||
exp: []bool{true, true, false, false},
|
||||
},
|
||||
{
|
||||
name: "100% overlap pick 1st",
|
||||
inp: map[string]map[string]map[string]int{
|
||||
"CUDA": {
|
||||
"cuda_v13": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
|
||||
},
|
||||
"cuda_v12": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 2,
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 3,
|
||||
},
|
||||
},
|
||||
},
|
||||
exp: []bool{false, false, true, true},
|
||||
},
|
||||
{
|
||||
name: "partial overlap pick older",
|
||||
inp: map[string]map[string]map[string]int{
|
||||
"CUDA": {
|
||||
"cuda_v13": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
|
||||
},
|
||||
"cuda_v12": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 1,
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 2,
|
||||
},
|
||||
},
|
||||
},
|
||||
exp: []bool{true, false, false},
|
||||
},
|
||||
{
|
||||
name: "no overlap",
|
||||
inp: map[string]map[string]map[string]int{
|
||||
"CUDA": {
|
||||
"cuda_v13": {
|
||||
"GPU-d7b00605-c0c8-152d-529d-e03726d5dc52": 0,
|
||||
},
|
||||
"cuda_v12": {
|
||||
"GPU-cd6c3216-03d2-a8eb-8235-2ffbf571712e": 1,
|
||||
},
|
||||
},
|
||||
},
|
||||
exp: []bool{false, false},
|
||||
},
|
||||
} {
|
||||
t.Run(tc.name, func(t *testing.T) {
|
||||
needsDelete := make([]bool, len(tc.exp))
|
||||
filterOverlapByLibrary(tc.inp, needsDelete)
|
||||
for i, exp := range tc.exp {
|
||||
if needsDelete[i] != exp {
|
||||
t.Fatalf("expected: %v\ngot: %v", tc.exp, needsDelete)
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -1,10 +1,14 @@
|
||||
package discover
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"context"
|
||||
"log/slog"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
type memInfo struct {
|
||||
@@ -15,8 +19,8 @@ type memInfo struct {
|
||||
|
||||
// Beginning of an `ollama info` command
|
||||
type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
ml.DeviceID
|
||||
memInfo
|
||||
Library string `json:"library,omitempty"`
|
||||
|
||||
// Optional variant to select (e.g. versions, cpu feature flags)
|
||||
Variant string `json:"variant"`
|
||||
@@ -27,18 +31,16 @@ type GpuInfo struct { // TODO better name maybe "InferenceProcessor"?
|
||||
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
|
||||
DependencyPath []string `json:"lib_path,omitempty"`
|
||||
|
||||
// Extra environment variables specific to the GPU as list of [key,value]
|
||||
EnvWorkarounds [][2]string `json:"envs,omitempty"`
|
||||
|
||||
// Set to true if we can NOT reliably discover FreeMemory. A value of true indicates
|
||||
// the FreeMemory is best effort, and may over or under report actual memory usage
|
||||
// False indicates FreeMemory can generally be trusted on this GPU
|
||||
UnreliableFreeMemory bool
|
||||
|
||||
// GPU information
|
||||
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
|
||||
Name string `json:"name"` // user friendly name if available
|
||||
Compute string `json:"compute"` // Compute Capability or gfx
|
||||
filterID string // AMD/Vulkan Workaround: The numeric ID of the device used to filter out other devices
|
||||
Name string `json:"name"` // user friendly name if available
|
||||
ComputeMajor int `json:"compute_major"` // Compute Capability or gfx
|
||||
ComputeMinor int `json:"compute_minor"`
|
||||
|
||||
// Driver Information - TODO no need to put this on each GPU
|
||||
DriverMajor int `json:"driver_major,omitempty"`
|
||||
@@ -69,37 +71,8 @@ type CPU struct {
|
||||
ThreadCount int
|
||||
}
|
||||
|
||||
type CudaGPUInfo struct {
|
||||
GpuInfo
|
||||
OSOverhead uint64 // Memory overhead between the driver library and management library
|
||||
index int //nolint:unused,nolintlint
|
||||
computeMajor int //nolint:unused,nolintlint
|
||||
computeMinor int //nolint:unused,nolintlint
|
||||
}
|
||||
type CudaGPUInfoList []CudaGPUInfo
|
||||
|
||||
type RocmGPUInfo struct {
|
||||
GpuInfo
|
||||
usedFilepath string //nolint:unused,nolintlint
|
||||
index int //nolint:unused,nolintlint
|
||||
}
|
||||
type RocmGPUInfoList []RocmGPUInfo
|
||||
|
||||
type OneapiGPUInfo struct {
|
||||
GpuInfo
|
||||
driverIndex int //nolint:unused,nolintlint
|
||||
gpuIndex int //nolint:unused,nolintlint
|
||||
}
|
||||
type OneapiGPUInfoList []OneapiGPUInfo
|
||||
|
||||
type GpuInfoList []GpuInfo
|
||||
|
||||
type UnsupportedGPUInfo struct {
|
||||
GpuInfo
|
||||
Reason string `json:"reason"`
|
||||
}
|
||||
|
||||
// Split up the set of gpu info's by Library and variant
|
||||
func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
resp := []GpuInfoList{}
|
||||
libs := []string{}
|
||||
@@ -124,18 +97,47 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
|
||||
return resp
|
||||
}
|
||||
|
||||
// Report the GPU information into the log an Info level
|
||||
func (l GpuInfoList) LogDetails() {
|
||||
for _, g := range l {
|
||||
func LogDetails(devices []ml.DeviceInfo) {
|
||||
for _, dev := range devices {
|
||||
var libs []string
|
||||
for _, dir := range dev.LibraryPath {
|
||||
if strings.Contains(dir, filepath.Join("lib", "ollama")) {
|
||||
libs = append(libs, filepath.Base(dir))
|
||||
}
|
||||
}
|
||||
typeStr := "discrete"
|
||||
if dev.Integrated {
|
||||
typeStr = "iGPU"
|
||||
}
|
||||
slog.Info("inference compute",
|
||||
"id", g.ID,
|
||||
"library", g.Library,
|
||||
"variant", g.Variant,
|
||||
"compute", g.Compute,
|
||||
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
|
||||
"name", g.Name,
|
||||
"total", format.HumanBytes2(g.TotalMemory),
|
||||
"available", format.HumanBytes2(g.FreeMemory),
|
||||
"id", dev.ID,
|
||||
"library", dev.Library,
|
||||
"compute", dev.Compute(),
|
||||
"name", dev.Name,
|
||||
"description", dev.Description,
|
||||
"libdirs", strings.Join(libs, ","),
|
||||
"driver", dev.Driver(),
|
||||
"pci_id", dev.PCIID,
|
||||
"type", typeStr,
|
||||
"total", format.HumanBytes2(dev.TotalMemory),
|
||||
"available", format.HumanBytes2(dev.FreeMemory),
|
||||
)
|
||||
}
|
||||
// CPU inference
|
||||
if len(devices) == 0 {
|
||||
dev, _ := GetCPUMem()
|
||||
slog.Info("inference compute",
|
||||
"id", "cpu",
|
||||
"library", "cpu",
|
||||
"compute", "",
|
||||
"name", "cpu",
|
||||
"description", "cpu",
|
||||
"libdirs", "ollama",
|
||||
"driver", "",
|
||||
"pci_id", "",
|
||||
"type", "",
|
||||
"total", format.HumanBytes2(dev.TotalMemory),
|
||||
"available", format.HumanBytes2(dev.FreeMemory),
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -148,16 +150,15 @@ func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
||||
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
|
||||
|
||||
type SystemInfo struct {
|
||||
System CPUInfo `json:"system"`
|
||||
GPUs []GpuInfo `json:"gpus"`
|
||||
UnsupportedGPUs []UnsupportedGPUInfo `json:"unsupported_gpus"`
|
||||
DiscoveryErrors []string `json:"discovery_errors"`
|
||||
System CPUInfo `json:"system"`
|
||||
GPUs []GpuInfo `json:"gpus"`
|
||||
}
|
||||
|
||||
// Return the optimal number of threads to use for inference
|
||||
func (si SystemInfo) GetOptimalThreadCount() int {
|
||||
if len(si.System.CPUs) == 0 {
|
||||
return 0
|
||||
// Fall back to Go's num CPU
|
||||
return runtime.NumCPU()
|
||||
}
|
||||
|
||||
coreCount := 0
|
||||
@@ -171,9 +172,11 @@ func (si SystemInfo) GetOptimalThreadCount() int {
|
||||
// For each GPU, check if it does NOT support flash attention
|
||||
func (l GpuInfoList) FlashAttentionSupported() bool {
|
||||
for _, gpu := range l {
|
||||
supportsFA := gpu.Library == "metal" ||
|
||||
(gpu.Library == "cuda" && gpu.DriverMajor >= 7) ||
|
||||
gpu.Library == "rocm"
|
||||
supportsFA := gpu.Library == "cpu" ||
|
||||
gpu.Name == "Metal" || gpu.Library == "Metal" ||
|
||||
(gpu.Library == "CUDA" && gpu.DriverMajor >= 7 && !(gpu.ComputeMajor == 7 && gpu.ComputeMinor == 2)) || // We don't have kernels for Jetson Xavier
|
||||
gpu.Library == "ROCm" ||
|
||||
gpu.Library == "Vulkan"
|
||||
|
||||
if !supportsFA {
|
||||
return false
|
||||
@@ -181,3 +184,31 @@ func (l GpuInfoList) FlashAttentionSupported() bool {
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
type BaseRunner interface {
|
||||
// GetPort returns the localhost port number the runner is running on
|
||||
GetPort() int
|
||||
|
||||
// HasExited indicates if the runner is no longer running. This can be used during
|
||||
// bootstrap to detect if a given filtered device is incompatible and triggered an assert
|
||||
HasExited() bool
|
||||
}
|
||||
|
||||
type RunnerDiscovery interface {
|
||||
BaseRunner
|
||||
|
||||
// GetDeviceInfos will perform a query of the underlying device libraries
|
||||
// for device identification and free VRAM information
|
||||
// During bootstrap scenarios, this routine may take seconds to complete
|
||||
GetDeviceInfos(ctx context.Context) []ml.DeviceInfo
|
||||
}
|
||||
|
||||
type FilteredRunnerDiscovery interface {
|
||||
RunnerDiscovery
|
||||
|
||||
// GetActiveDeviceIDs returns the filtered set of devices actively in
|
||||
// use by this runner for running models. If the runner is a bootstrap runner, no devices
|
||||
// will be active yet so no device IDs are returned.
|
||||
// This routine will not query the underlying device and will return immediately
|
||||
GetActiveDeviceIDs() []ml.DeviceID
|
||||
}
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
* [Quickstart](../README.md#quickstart)
|
||||
* [Examples](./examples.md)
|
||||
* [Importing models](./import.md)
|
||||
* [MacOS Documentation](./macos.md)
|
||||
* [Linux Documentation](./linux.md)
|
||||
* [Windows Documentation](./windows.md)
|
||||
* [Docker Documentation](./docker.md)
|
||||
|
||||
337
docs/api.md
337
docs/api.md
@@ -19,7 +19,7 @@
|
||||
|
||||
### Model names
|
||||
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q8_0` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
|
||||
|
||||
### Durations
|
||||
|
||||
@@ -43,6 +43,7 @@ Generate a response for a given prompt with a provided model. This is a streamin
|
||||
- `prompt`: the prompt to generate a response for
|
||||
- `suffix`: the text after the model response
|
||||
- `images`: (optional) a list of base64-encoded images (for multimodal models such as `llava`)
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -173,7 +174,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
```json5
|
||||
{
|
||||
"model": "codellama:code",
|
||||
"created_at": "2024-07-22T20:47:51.147561Z",
|
||||
@@ -394,9 +395,6 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"repeat_penalty": 1.2,
|
||||
"presence_penalty": 1.5,
|
||||
"frequency_penalty": 1.0,
|
||||
"mirostat": 1,
|
||||
"mirostat_tau": 0.8,
|
||||
"mirostat_eta": 0.6,
|
||||
"penalize_newline": true,
|
||||
"stop": ["\n", "user:"],
|
||||
"numa": false,
|
||||
@@ -404,10 +402,7 @@ curl http://localhost:11434/api/generate -d '{
|
||||
"num_batch": 2,
|
||||
"num_gpu": 1,
|
||||
"main_gpu": 0,
|
||||
"low_vram": false,
|
||||
"vocab_only": false,
|
||||
"use_mmap": true,
|
||||
"use_mlock": false,
|
||||
"num_thread": 8
|
||||
}
|
||||
}'
|
||||
@@ -496,13 +491,16 @@ Generate the next message in a chat with a provided model. This is a streaming e
|
||||
- `model`: (required) the [model name](#model-names)
|
||||
- `messages`: the messages of the chat, this can be used to keep a chat memory
|
||||
- `tools`: list of tools in JSON for the model to use if supported
|
||||
- `think`: (for thinking models) should the model think before responding?
|
||||
|
||||
The `message` object has the following fields:
|
||||
|
||||
- `role`: the role of the message, either `system`, `user`, `assistant`, or `tool`
|
||||
- `content`: the content of the message
|
||||
- `thinking`: (for thinking models) the model's thinking process
|
||||
- `images` (optional): a list of images to include in the message (for multimodal models such as `llava`)
|
||||
- `tool_calls` (optional): a list of tools in JSON that the model wants to use
|
||||
- `tool_name` (optional): add the name of the tool that was executed to inform the model of the result
|
||||
|
||||
Advanced parameters (optional):
|
||||
|
||||
@@ -511,13 +509,21 @@ Advanced parameters (optional):
|
||||
- `stream`: if `false` the response will be returned as a single response object, rather than a stream of objects
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
|
||||
### Tool calling
|
||||
|
||||
Tool calling is supported by providing a list of tools in the `tools` parameter. The model will generate a response that includes a list of tool calls. See the [Chat request (Streaming with tools)](#chat-request-streaming-with-tools) example below.
|
||||
|
||||
Models can also explain the result of the tool call in the response. See the [Chat request (With history, with tools)](#chat-request-with-history-with-tools) example below.
|
||||
|
||||
[See models with tool calling capabilities](https://ollama.com/search?c=tool).
|
||||
|
||||
### Structured outputs
|
||||
|
||||
Structured outputs are supported by providing a JSON schema in the `format` parameter. The model will generate a response that matches the schema. See the [Chat request (Structured outputs)](#chat-request-structured-outputs) example below.
|
||||
|
||||
### Examples
|
||||
|
||||
#### Chat Request (Streaming)
|
||||
#### Chat request (Streaming)
|
||||
|
||||
##### Request
|
||||
|
||||
@@ -558,6 +564,10 @@ Final response:
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2023-08-04T19:22:45.499127Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": ""
|
||||
},
|
||||
"done": true,
|
||||
"total_duration": 4883583458,
|
||||
"load_duration": 1334875,
|
||||
@@ -568,6 +578,88 @@ Final response:
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (Streaming with tools)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what is the weather in tokyo?"
|
||||
}
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the weather in a given city",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "The city to get the weather for"
|
||||
}
|
||||
},
|
||||
"required": ["city"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"stream": true
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
A stream of JSON objects is returned:
|
||||
```json
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2025-07-07T20:22:19.184789Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {
|
||||
"city": "Tokyo"
|
||||
}
|
||||
},
|
||||
}
|
||||
]
|
||||
},
|
||||
"done": false
|
||||
}
|
||||
```
|
||||
|
||||
Final response:
|
||||
|
||||
```json
|
||||
{
|
||||
"model":"llama3.2",
|
||||
"created_at":"2025-07-07T20:22:19.19314Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": ""
|
||||
},
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 182242375,
|
||||
"load_duration": 41295167,
|
||||
"prompt_eval_count": 169,
|
||||
"prompt_eval_duration": 24573166,
|
||||
"eval_count": 15,
|
||||
"eval_duration": 115959084
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (No streaming)
|
||||
|
||||
##### Request
|
||||
@@ -605,6 +697,74 @@ curl http://localhost:11434/api/chat -d '{
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (No streaming, with tools)
|
||||
|
||||
##### Request
|
||||
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what is the weather in tokyo?"
|
||||
}
|
||||
],
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the weather in a given city",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "The city to get the weather for"
|
||||
}
|
||||
},
|
||||
"required": ["city"]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"stream": false
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2025-07-07T20:32:53.844124Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": {
|
||||
"city": "Tokyo"
|
||||
}
|
||||
},
|
||||
}
|
||||
]
|
||||
},
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 3244883583,
|
||||
"load_duration": 2969184542,
|
||||
"prompt_eval_count": 169,
|
||||
"prompt_eval_duration": 141656333,
|
||||
"eval_count": 18,
|
||||
"eval_duration": 133293625
|
||||
}
|
||||
```
|
||||
|
||||
#### Chat request (Structured outputs)
|
||||
|
||||
##### Request
|
||||
@@ -711,6 +871,87 @@ Final response:
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
#### Chat request (With history, with tools)
|
||||
|
||||
##### Request
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/chat -d '{
|
||||
"model": "llama3.2",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "what is the weather in Toronto?"
|
||||
},
|
||||
// the message from the model appended to history
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"name": "get_temperature",
|
||||
"arguments": {
|
||||
"city": "Toronto"
|
||||
}
|
||||
},
|
||||
}
|
||||
]
|
||||
},
|
||||
// the tool call result appended to history
|
||||
{
|
||||
"role": "tool",
|
||||
"content": "11 degrees celsius",
|
||||
"tool_name": "get_temperature",
|
||||
}
|
||||
],
|
||||
"stream": false,
|
||||
"tools": [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"description": "Get the weather in a given city",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"city": {
|
||||
"type": "string",
|
||||
"description": "The city to get the weather for"
|
||||
}
|
||||
},
|
||||
"required": ["city"]
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
||||
}'
|
||||
```
|
||||
|
||||
##### Response
|
||||
|
||||
```json
|
||||
{
|
||||
"model": "llama3.2",
|
||||
"created_at": "2025-07-07T20:43:37.688511Z",
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": "The current temperature in Toronto is 11°C."
|
||||
},
|
||||
"done_reason": "stop",
|
||||
"done": true,
|
||||
"total_duration": 890771750,
|
||||
"load_duration": 707634750,
|
||||
"prompt_eval_count": 94,
|
||||
"prompt_eval_duration": 91703208,
|
||||
"eval_count": 11,
|
||||
"eval_duration": 90282125
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
#### Chat request (with images)
|
||||
|
||||
##### Request
|
||||
@@ -954,19 +1195,8 @@ If you are creating a model from a safetensors directory or from a GGUF file, yo
|
||||
|
||||
| Type | Recommended |
|
||||
| --- | :-: |
|
||||
| q2_K | |
|
||||
| q3_K_L | |
|
||||
| q3_K_M | |
|
||||
| q3_K_S | |
|
||||
| q4_0 | |
|
||||
| q4_1 | |
|
||||
| q4_K_M | * |
|
||||
| q4_K_S | |
|
||||
| q5_0 | |
|
||||
| q5_1 | |
|
||||
| q5_K_M | |
|
||||
| q5_K_S | |
|
||||
| q6_K | |
|
||||
| q8_0 | * |
|
||||
|
||||
### Examples
|
||||
@@ -1011,8 +1241,8 @@ Quantize a non-quantized model.
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/create -d '{
|
||||
"model": "llama3.1:quantized",
|
||||
"from": "llama3.1:8b-instruct-fp16",
|
||||
"model": "llama3.2:quantized",
|
||||
"from": "llama3.2:3b-instruct-fp16",
|
||||
"quantize": "q4_K_M"
|
||||
}'
|
||||
```
|
||||
@@ -1022,12 +1252,14 @@ curl http://localhost:11434/api/create -d '{
|
||||
A stream of JSON objects is returned:
|
||||
|
||||
```json
|
||||
{"status":"quantizing F16 model to Q4_K_M"}
|
||||
{"status":"creating new layer sha256:667b0c1932bc6ffc593ed1d03f895bf2dc8dc6df21db3042284a6f4416b06a29"}
|
||||
{"status":"using existing layer sha256:11ce4ee3e170f6adebac9a991c22e22ab3f8530e154ee669954c4bc73061c258"}
|
||||
{"status":"using existing layer sha256:0ba8f0e314b4264dfd19df045cde9d4c394a52474bf92ed6a3de22a4ca31a177"}
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":12302}
|
||||
{"status":"quantizing F16 model to Q4_K_M","digest":"0","total":6433687776,"completed":6433687552}
|
||||
{"status":"verifying conversion"}
|
||||
{"status":"creating new layer sha256:fb7f4f211b89c6c4928ff4ddb73db9f9c0cfca3e000c3e40d6cf27ddc6ca72eb"}
|
||||
{"status":"using existing layer sha256:966de95ca8a62200913e3f8bfbf84c8494536f1b94b49166851e76644e966396"}
|
||||
{"status":"using existing layer sha256:fcc5a6bec9daf9b561a68827b67ab6088e1dba9d1fa2a50d7bbcc8384e0a265d"}
|
||||
{"status":"using existing layer sha256:a70ff7e570d97baaf4e62ac6e6ad9975e04caa6d900d3742d37698494479e0cd"}
|
||||
{"status":"using existing layer sha256:56bb8bd477a519ffa694fc449c2413c6f0e1d3b1c88fa7e3c9d88d3ae49d4dcb"}
|
||||
{"status":"creating new layer sha256:455f34728c9b5dd3376378bfb809ee166c145b0b4c1f1a6feca069055066ef9a"}
|
||||
{"status":"writing manifest"}
|
||||
{"status":"success"}
|
||||
```
|
||||
@@ -1165,29 +1397,37 @@ A single JSON object will be returned.
|
||||
{
|
||||
"models": [
|
||||
{
|
||||
"name": "codellama:13b",
|
||||
"modified_at": "2023-11-04T14:56:49.277302595-07:00",
|
||||
"size": 7365960935,
|
||||
"digest": "9f438cb9cd581fc025612d27f7c1a6669ff83a8bb0ed86c94fcf4c5440555697",
|
||||
"name": "deepseek-r1:latest",
|
||||
"model": "deepseek-r1:latest",
|
||||
"modified_at": "2025-05-10T08:06:48.639712648-07:00",
|
||||
"size": 4683075271,
|
||||
"digest": "0a8c266910232fd3291e71e5ba1e058cc5af9d411192cf88b6d30e92b6e73163",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "13B",
|
||||
"quantization_level": "Q4_0"
|
||||
"family": "qwen2",
|
||||
"families": [
|
||||
"qwen2"
|
||||
],
|
||||
"parameter_size": "7.6B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "llama3:latest",
|
||||
"modified_at": "2023-12-07T09:32:18.757212583-08:00",
|
||||
"size": 3825819519,
|
||||
"digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
|
||||
"name": "llama3.2:latest",
|
||||
"model": "llama3.2:latest",
|
||||
"modified_at": "2025-05-04T17:37:44.706015396-07:00",
|
||||
"size": 2019393189,
|
||||
"digest": "a80c4f17acd55265feec403c7aef86be0c25983ab279d83f3bcd3abbcb5b8b72",
|
||||
"details": {
|
||||
"parent_model": "",
|
||||
"format": "gguf",
|
||||
"family": "llama",
|
||||
"families": null,
|
||||
"parameter_size": "7B",
|
||||
"quantization_level": "Q4_0"
|
||||
"families": [
|
||||
"llama"
|
||||
],
|
||||
"parameter_size": "3.2B",
|
||||
"quantization_level": "Q4_K_M"
|
||||
}
|
||||
}
|
||||
]
|
||||
@@ -1213,13 +1453,13 @@ Show information about a model including details, modelfile, template, parameter
|
||||
|
||||
```shell
|
||||
curl http://localhost:11434/api/show -d '{
|
||||
"model": "llama3.2"
|
||||
"model": "llava"
|
||||
}'
|
||||
```
|
||||
|
||||
#### Response
|
||||
|
||||
```json
|
||||
```json5
|
||||
{
|
||||
"modelfile": "# Modelfile generated by \"ollama show\"\n# To build a new Modelfile based on this one, replace the FROM line with:\n# FROM llava:latest\n\nFROM /Users/matt/.ollama/models/blobs/sha256:200765e1283640ffbd013184bf496e261032fa75b99498a9613be4e94d63ad52\nTEMPLATE \"\"\"{{ .System }}\nUSER: {{ .Prompt }}\nASSISTANT: \"\"\"\nPARAMETER num_ctx 4096\nPARAMETER stop \"\u003c/s\u003e\"\nPARAMETER stop \"USER:\"\nPARAMETER stop \"ASSISTANT:\"",
|
||||
"parameters": "num_keep 24\nstop \"<|start_header_id|>\"\nstop \"<|end_header_id|>\"\nstop \"<|eot_id|>\"",
|
||||
@@ -1256,7 +1496,11 @@ curl http://localhost:11434/api/show -d '{
|
||||
"tokenizer.ggml.pre": "llama-bpe",
|
||||
"tokenizer.ggml.token_type": [], // populates if `verbose=true`
|
||||
"tokenizer.ggml.tokens": [] // populates if `verbose=true`
|
||||
}
|
||||
},
|
||||
"capabilities": [
|
||||
"completion",
|
||||
"vision"
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
@@ -1349,7 +1593,7 @@ Then there is a series of downloading responses. Until any of the download is co
|
||||
|
||||
```json
|
||||
{
|
||||
"status": "downloading digestname",
|
||||
"status": "pulling digestname",
|
||||
"digest": "digestname",
|
||||
"total": 2142590208,
|
||||
"completed": 241970
|
||||
@@ -1464,6 +1708,7 @@ Advanced parameters:
|
||||
- `truncate`: truncates the end of each input to fit within context length. Returns error if `false` and context length is exceeded. Defaults to `true`
|
||||
- `options`: additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`
|
||||
- `keep_alive`: controls how long the model will stay loaded into memory following the request (default: `5m`)
|
||||
- `dimensions`: number of dimensions for the embedding
|
||||
|
||||
### Examples
|
||||
|
||||
|
||||
40
docs/cloud.md
Normal file
40
docs/cloud.md
Normal file
@@ -0,0 +1,40 @@
|
||||
# Cloud
|
||||
|
||||
| Ollama's cloud is currently in preview. For full documentation, see [Ollama's documentation](https://docs.ollama.com/cloud).
|
||||
|
||||
## Cloud Models
|
||||
|
||||
[Cloud models](https://ollama.com/cloud) are a new kind of model in Ollama that can run without a powerful GPU. Instead, cloud models are automatically offloaded to Ollama's cloud while offering the same capabilities as local models, making it possible to keep using your local tools while running larger models that wouldn’t fit on a personal computer.
|
||||
|
||||
Ollama currently supports the following cloud models, with more coming soon:
|
||||
|
||||
- `gpt-oss:20b-cloud`
|
||||
- `gpt-oss:120b-cloud`
|
||||
- `deepseek-v3.1:671b-cloud`
|
||||
- `qwen3-coder:480b-cloud`
|
||||
|
||||
### Get started
|
||||
|
||||
To run a cloud model, open the terminal and run:
|
||||
|
||||
```
|
||||
ollama run gpt-oss:120b-cloud
|
||||
```
|
||||
|
||||
To run cloud models with integrations that work with Ollama, first download the cloud model:
|
||||
|
||||
```
|
||||
ollama pull qwen3-coder:480b-cloud
|
||||
```
|
||||
|
||||
Then sign in to Ollama:
|
||||
|
||||
```
|
||||
ollama signin
|
||||
```
|
||||
|
||||
Finally, access the model using the model name `qwen3-coder:480b-cloud` via Ollama's local API or tooling.
|
||||
|
||||
## Cloud API access
|
||||
|
||||
Cloud models can also be accessed directly on ollama.com's API. For more information, see the [docs](https://docs.ollama.com/cloud).
|
||||
@@ -11,6 +11,10 @@ Then build and run Ollama from the root directory of the repository:
|
||||
go run . serve
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> Ollama includes native code compiled with CGO. From time to time these data structures can change and CGO can get out of sync resulting in unexpected crashes. You can force a full build of the native code by running `go clean -cache` first.
|
||||
|
||||
|
||||
## macOS (Apple Silicon)
|
||||
|
||||
macOS Apple Silicon supports Metal which is built-in to the Ollama binary. No additional steps are required.
|
||||
@@ -118,6 +122,35 @@ To run tests, use `go test`:
|
||||
go test ./...
|
||||
```
|
||||
|
||||
> NOTE: In rare circumstances, you may need to change a package using the new
|
||||
> "synctest" package in go1.24.
|
||||
>
|
||||
> If you do not have the "synctest" package enabled, you will not see build or
|
||||
> test failures resulting from your change(s), if any, locally, but CI will
|
||||
> break.
|
||||
>
|
||||
> If you see failures in CI, you can either keep pushing changes to see if the
|
||||
> CI build passes, or you can enable the "synctest" package locally to see the
|
||||
> failures before pushing.
|
||||
>
|
||||
> To enable the "synctest" package for testing, run the following command:
|
||||
>
|
||||
> ```shell
|
||||
> GOEXPERIMENT=synctest go test ./...
|
||||
> ```
|
||||
>
|
||||
> If you wish to enable synctest for all go commands, you can set the
|
||||
> `GOEXPERIMENT` environment variable in your shell profile or by using:
|
||||
>
|
||||
> ```shell
|
||||
> go env -w GOEXPERIMENT=synctest
|
||||
> ```
|
||||
>
|
||||
> Which will enable the "synctest" package for all go commands without needing
|
||||
> to set it for all shell sessions.
|
||||
>
|
||||
> The synctest package is not required for production builds.
|
||||
|
||||
## Library detection
|
||||
|
||||
Ollama looks for acceleration libraries in the following paths relative to the `ollama` executable:
|
||||
|
||||
44
docs/faq.md
44
docs/faq.md
@@ -20,7 +20,13 @@ Please refer to the [GPU docs](./gpu.md).
|
||||
|
||||
## How can I specify the context window size?
|
||||
|
||||
By default, Ollama uses a context window size of 2048 tokens.
|
||||
By default, Ollama uses a context window size of 4096 tokens for most models. The `gpt-oss` model has a default context window size of 8192 tokens.
|
||||
|
||||
This can be overridden in Settings in the Windows and macOS App, or with the `OLLAMA_CONTEXT_LENGTH` environment variable. For example, to set the default context window to 8K, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_CONTEXT_LENGTH=8192 ollama serve
|
||||
```
|
||||
|
||||
To change this when using `ollama run`, use `/set parameter`:
|
||||
|
||||
@@ -40,6 +46,8 @@ curl http://localhost:11434/api/generate -d '{
|
||||
}'
|
||||
```
|
||||
|
||||
Setting the context length higher may cause the model to not be able to fit onto the GPU which make the model run more slowly.
|
||||
|
||||
## How can I tell if my model was loaded onto the GPU?
|
||||
|
||||
Use the `ollama ps` command to see what models are currently loaded into memory.
|
||||
@@ -51,8 +59,8 @@ ollama ps
|
||||
> **Output**:
|
||||
>
|
||||
> ```
|
||||
> NAME ID SIZE PROCESSOR UNTIL
|
||||
> llama3:70b bcfb190ca3a7 42 GB 100% GPU 4 minutes from now
|
||||
> NAME ID SIZE PROCESSOR CONTEXT UNTIL
|
||||
> gpt-oss:20b 05afbac4bad6 16 GB 100% GPU 8192 4 minutes from now
|
||||
> ```
|
||||
|
||||
The `Processor` column will show which memory the model was loaded in to:
|
||||
@@ -142,9 +150,11 @@ docker build -t ollama-with-ca .
|
||||
docker run -d -e HTTPS_PROXY=https://my.proxy.example.com -p 11434:11434 ollama-with-ca
|
||||
```
|
||||
|
||||
## Does Ollama send my prompts and answers back to ollama.com?
|
||||
## Does Ollama send my prompts and responses back to ollama.com?
|
||||
|
||||
No. Ollama runs locally, and conversation data does not leave your machine.
|
||||
If you're running a model locally, your prompts and responses will always stay on your machine. Ollama Turbo in the App allows you to run your queries on Ollama's servers if you don't have a powerful enough GPU. Web search lets a model query the web, giving you more accurate and up-to-date information. Both Turbo and web search require sending your prompts and responses to Ollama.com. This data is neither logged nor stored.
|
||||
|
||||
If you don't want to see the Turbo and web search options in the app, you can disable them in Settings by turning on Airplane mode. In Airplane mode, all models will run locally, and your prompts and responses will stay on your machine.
|
||||
|
||||
## How can I expose Ollama on my network?
|
||||
|
||||
@@ -187,6 +197,13 @@ cloudflared tunnel --url http://localhost:11434 --http-host-header="localhost:11
|
||||
|
||||
Ollama allows cross-origin requests from `127.0.0.1` and `0.0.0.0` by default. Additional origins can be configured with `OLLAMA_ORIGINS`.
|
||||
|
||||
For browser extensions, you'll need to explicitly allow the extension's origin pattern. Set `OLLAMA_ORIGINS` to include `chrome-extension://*`, `moz-extension://*`, and `safari-web-extension://*` if you wish to allow all browser extensions access, or specific extensions as needed:
|
||||
|
||||
```
|
||||
# Allow all Chrome, Firefox, and Safari extensions
|
||||
OLLAMA_ORIGINS=chrome-extension://*,moz-extension://*,safari-web-extension://* ollama serve
|
||||
```
|
||||
|
||||
Refer to the section [above](#how-do-i-configure-ollama-server) for how to set environment variables on your platform.
|
||||
|
||||
## Where are models stored?
|
||||
@@ -279,7 +296,7 @@ If too many requests are sent to the server, it will respond with a 503 error in
|
||||
|
||||
## How does Ollama handle concurrent requests?
|
||||
|
||||
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it is configured to allow parallel request processing.
|
||||
Ollama supports two levels of concurrent processing. If your system has sufficient available memory (system memory when using CPU inference, or VRAM for GPU inference) then multiple models can be loaded at the same time. For a given model, if there is sufficient available memory when the model is loaded, it can be configured to allow parallel request processing.
|
||||
|
||||
If there is insufficient available memory to load a new model request while one or more models are already loaded, all new requests will be queued until the new model can be loaded. As prior models become idle, one or more will be unloaded to make room for the new model. Queued requests will be processed in order. When using GPU inference new models must be able to completely fit in VRAM to allow concurrent model loads.
|
||||
|
||||
@@ -288,7 +305,7 @@ Parallel request processing for a given model results in increasing the context
|
||||
The following server settings may be used to adjust how Ollama handles concurrent requests on most platforms:
|
||||
|
||||
- `OLLAMA_MAX_LOADED_MODELS` - The maximum number of models that can be loaded concurrently provided they fit in available memory. The default is 3 * the number of GPUs or 3 for CPU inference.
|
||||
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default will auto-select either 4 or 1 based on available memory.
|
||||
- `OLLAMA_NUM_PARALLEL` - The maximum number of parallel requests each model will process at the same time. The default is 1, and will handle 1 request per model at a time.
|
||||
- `OLLAMA_MAX_QUEUE` - The maximum number of requests Ollama will queue when busy before rejecting additional requests. The default is 512
|
||||
|
||||
Note: Windows with Radeon GPUs currently default to 1 model maximum due to limitations in ROCm v5.7 for available VRAM reporting. Once ROCm v6.2 is available, Windows Radeon will follow the defaults above. You may enable concurrent model loads on Radeon on Windows, but ensure you don't load more models than will fit into your GPUs VRAM.
|
||||
@@ -320,3 +337,16 @@ The currently available K/V cache quantization types are:
|
||||
How much the cache quantization impacts the model's response quality will depend on the model and the task. Models that have a high GQA count (e.g. Qwen2) may see a larger impact on precision from quantization than models with a low GQA count.
|
||||
|
||||
You may need to experiment with different quantization types to find the best balance between memory usage and quality.
|
||||
|
||||
## How can I stop Ollama from starting when I login to my computer
|
||||
|
||||
Ollama for Windows and macOS register as a login item during installation. You can disable this if you prefer not to have Ollama automatically start. Ollama will respect this setting across upgrades, unless you uninstall the application.
|
||||
|
||||
**Windows**
|
||||
- Remove `%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\Ollama.lnk`
|
||||
|
||||
**MacOS Monterey (v12)**
|
||||
- Open `Settings` -> `Users & Groups` -> `Login Items` and find the `Ollama` entry, then click the `-` (minus) to remove
|
||||
|
||||
**MacOS Ventura (v13) and later**
|
||||
- Open `Settings` and search for "Login Items", find the `Ollama` entry under "Allow in the Background`, then click the slider to disable.
|
||||
|
||||
28
docs/gpu.md
28
docs/gpu.md
@@ -1,21 +1,28 @@
|
||||
# GPU
|
||||
## Nvidia
|
||||
Ollama supports Nvidia GPUs with compute capability 5.0+.
|
||||
Ollama supports Nvidia GPUs with compute capability 5.0+ and driver version 531 and newer.
|
||||
|
||||
Check your compute compatibility to see if your card is supported:
|
||||
[https://developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus)
|
||||
|
||||
| Compute Capability | Family | Cards |
|
||||
| ------------------ | ------------------- | ----------------------------------------------------------------------------------------------------------- |
|
||||
| 9.0 | NVIDIA | `H200` `H100` |
|
||||
| 12.0 | GeForce RTX 50xx | `RTX 5060` `RTX 5060 Ti` `RTX 5070` `RTX 5070 Ti` `RTX 5080` `RTX 5090` |
|
||||
| | NVIDIA Professioal | `RTX PRO 4000 Blackwell` `RTX PRO 4500 Blackwell` `RTX PRO 5000 Blackwell` `RTX PRO 6000 Blackwell` |
|
||||
| 11.0 | Jetson | `T4000` `T5000` (Requires driver 580 or newer) |
|
||||
| 10.3 | NVIDIA Professioal | `B300` `GB300` (Requires driver 580 or newer) |
|
||||
| 10.0 | NVIDIA Professioal | `B200` `GB200` (Requires driver 580 or newer) |
|
||||
| 9.0 | NVIDIA | `H200` `H100` `GH200` |
|
||||
| 8.9 | GeForce RTX 40xx | `RTX 4090` `RTX 4080 SUPER` `RTX 4080` `RTX 4070 Ti SUPER` `RTX 4070 Ti` `RTX 4070 SUPER` `RTX 4070` `RTX 4060 Ti` `RTX 4060` |
|
||||
| | NVIDIA Professional | `L4` `L40` `RTX 6000` |
|
||||
| 8.7 | Jetson | `Orin Nano` `Orin NX` `AGX Orin` |
|
||||
| 8.6 | GeForce RTX 30xx | `RTX 3090 Ti` `RTX 3090` `RTX 3080 Ti` `RTX 3080` `RTX 3070 Ti` `RTX 3070` `RTX 3060 Ti` `RTX 3060` `RTX 3050 Ti` `RTX 3050` |
|
||||
| | NVIDIA Professional | `A40` `RTX A6000` `RTX A5000` `RTX A4000` `RTX A3000` `RTX A2000` `A10` `A16` `A2` |
|
||||
| 8.0 | NVIDIA | `A100` `A30` |
|
||||
| 7.5 | GeForce GTX/RTX | `GTX 1650 Ti` `TITAN RTX` `RTX 2080 Ti` `RTX 2080` `RTX 2070` `RTX 2060` |
|
||||
| | NVIDIA Professional | `T4` `RTX 5000` `RTX 4000` `RTX 3000` `T2000` `T1200` `T1000` `T600` `T500` |
|
||||
| | Quadro | `RTX 8000` `RTX 6000` `RTX 5000` `RTX 4000` |
|
||||
| 7.2 | Jetson | `Xavier NX` `AGX Xavier` (Jetpack 5) |
|
||||
| 7.0 | NVIDIA | `TITAN V` `V100` `Quadro GV100` |
|
||||
| 6.1 | NVIDIA TITAN | `TITAN Xp` `TITAN X` |
|
||||
| | GeForce GTX | `GTX 1080 Ti` `GTX 1080` `GTX 1070 Ti` `GTX 1070` `GTX 1060` `GTX 1050 Ti` `GTX 1050` |
|
||||
@@ -49,20 +56,23 @@ sudo modprobe nvidia_uvm`
|
||||
Ollama supports the following AMD GPUs:
|
||||
|
||||
### Linux Support
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` `Vega 64` `Vega 56` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` `Vega II Duo` `Vega II` `VII` `SSG` |
|
||||
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` `MI60` `MI50` |
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` `V420` `V340` `V320` |
|
||||
| AMD Instinct | `MI300X` `MI300A` `MI300` `MI250X` `MI250` `MI210` `MI200` `MI100` |
|
||||
|
||||
### Windows Support
|
||||
With ROCm v6.1, the following GPUs are supported on Windows.
|
||||
With ROCm v6.2, the following GPUs are supported on Windows.
|
||||
|
||||
| Family | Cards and accelerators |
|
||||
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| AMD Radeon RX | `7900 XTX` `7900 XT` `7900 GRE` `7800 XT` `7700 XT` `7600 XT` `7600` `6950 XT` `6900 XTX` `6900XT` `6800 XT` `6800` |
|
||||
| AMD Radeon PRO | `W7900` `W7800` `W7700` `W7600` `W7500` `W6900X` `W6800X Duo` `W6800X` `W6800` `V620` |
|
||||
|
||||
### Known Workarounds
|
||||
|
||||
- The RX Vega 56 requires `HSA_ENABLE_SDMA=0` to disable SDMA
|
||||
|
||||
### Overrides on Linux
|
||||
Ollama leverages the AMD ROCm library, which does not support all AMD GPUs. In
|
||||
@@ -83,8 +93,6 @@ At this time, the known supported GPU types on linux are the following LLVM Targ
|
||||
This table shows some example GPUs that map to these LLVM targets:
|
||||
| **LLVM Target** | **An Example GPU** |
|
||||
|-----------------|---------------------|
|
||||
| gfx900 | Radeon RX Vega 56 |
|
||||
| gfx906 | Radeon Instinct MI50 |
|
||||
| gfx908 | Radeon Instinct MI100 |
|
||||
| gfx90a | Radeon Instinct MI210 |
|
||||
| gfx940 | Radeon Instinct MI300 |
|
||||
|
||||
@@ -53,6 +53,8 @@ FROM /path/to/safetensors/directory
|
||||
|
||||
If you create the Modelfile in the same directory as the weights, you can use the command `FROM .`.
|
||||
|
||||
If you do not create the Modelfile, ollama will act as if there was a Modelfile with the command `FROM .`.
|
||||
|
||||
Now run the `ollama create` command from the directory where you created the `Modelfile`:
|
||||
|
||||
```shell
|
||||
@@ -132,22 +134,12 @@ success
|
||||
|
||||
### Supported Quantizations
|
||||
|
||||
- `q4_0`
|
||||
- `q4_1`
|
||||
- `q5_0`
|
||||
- `q5_1`
|
||||
- `q8_0`
|
||||
|
||||
#### K-means Quantizations
|
||||
|
||||
- `q3_K_S`
|
||||
- `q3_K_M`
|
||||
- `q3_K_L`
|
||||
- `q4_K_S`
|
||||
- `q4_K_M`
|
||||
- `q5_K_S`
|
||||
- `q5_K_M`
|
||||
- `q6_K`
|
||||
|
||||
|
||||
## Sharing your model on ollama.com
|
||||
|
||||
@@ -11,12 +11,13 @@ curl -fsSL https://ollama.com/install.sh | sh
|
||||
## Manual install
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
|
||||
> If you are upgrading from a prior version, you **MUST** remove the old libraries with `sudo rm -rf /usr/lib/ollama` first.
|
||||
|
||||
Download and extract the package:
|
||||
|
||||
```shell
|
||||
curl -L https://ollama.com/download/ollama-linux-amd64.tgz -o ollama-linux-amd64.tgz
|
||||
curl -LO https://ollama.com/download/ollama-linux-amd64.tgz
|
||||
sudo rm -rf /usr/lib/ollama
|
||||
sudo tar -C /usr -xzf ollama-linux-amd64.tgz
|
||||
```
|
||||
|
||||
@@ -34,7 +35,11 @@ ollama -v
|
||||
|
||||
### AMD GPU install
|
||||
|
||||
If you have an AMD GPU, also download and extract the additional ROCm package:
|
||||
If you have an AMD GPU, **also** download and extract the additional ROCm package:
|
||||
|
||||
> [!IMPORTANT]
|
||||
> The ROCm tgz contains only AMD dependent libraries. You must extract **both** `ollama-linux-amd64.tgz` and `ollama-linux-amd64-rocm.tgz` into the same location.
|
||||
|
||||
|
||||
```shell
|
||||
curl -L https://ollama.com/download/ollama-linux-amd64-rocm.tgz -o ollama-linux-amd64-rocm.tgz
|
||||
@@ -75,7 +80,7 @@ RestartSec=3
|
||||
Environment="PATH=$PATH"
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
WantedBy=multi-user.target
|
||||
```
|
||||
|
||||
Then start the service:
|
||||
@@ -112,8 +117,8 @@ sudo systemctl status ollama
|
||||
> While AMD has contributed the `amdgpu` driver upstream to the official linux
|
||||
> kernel source, the version is older and may not support all ROCm features. We
|
||||
> recommend you install the latest driver from
|
||||
> https://www.amd.com/en/support/linux-drivers for best support of your Radeon
|
||||
> GPU.
|
||||
> [AMD](https://www.amd.com/en/support/download/linux-drivers.html) for best support
|
||||
> of your Radeon GPU.
|
||||
|
||||
## Customizing
|
||||
|
||||
|
||||
42
docs/macos.md
Normal file
42
docs/macos.md
Normal file
@@ -0,0 +1,42 @@
|
||||
# Ollama for macOS
|
||||
|
||||
## System Requirements
|
||||
|
||||
* MacOS Sonoma (v14) or newer
|
||||
* Apple M series (CPU and GPU support) or x86 (CPU only)
|
||||
|
||||
|
||||
## Filesystem Requirements
|
||||
|
||||
The preferred method of installation is to mount the `ollama.dmg` and drag-and-drop the Ollama application to the system-wide `Applications` folder. Upon startup, the Ollama app will verify the `ollama` CLI is present in your PATH, and if not detected, will prompt for permission to create a link in `/usr/local/bin`
|
||||
|
||||
Once you've installed Ollama, you'll need additional space for storing the Large Language models, which can be tens to hundreds of GB in size. If your home directory doesn't have enough space, you can change where the binaries are installed, and where the models are stored.
|
||||
|
||||
### Changing Install Location
|
||||
|
||||
To install the Ollama application somewhere other than `Applications`, place the Ollama application in the desired location, and ensure the CLI `Ollama.app/Contents/Resources/ollama` or a sym-link to the CLI can be found in your path. Upon first start decline the "Move to Applications?" request.
|
||||
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
Ollama on MacOS stores files in a few different locations.
|
||||
- `~/.ollama` contains models and configuration
|
||||
- `~/.ollama/logs` contains logs
|
||||
- *app.log* contains most recent logs from the GUI application
|
||||
- *server.log* contains the most recent server logs
|
||||
- `<install location>/Ollama.app/Contents/Resources/ollama` the CLI binary
|
||||
|
||||
## Uninstall
|
||||
|
||||
To fully remove Ollama from your system, remove the following files and folders:
|
||||
|
||||
```
|
||||
sudo rm -rf /Applications/Ollama.app
|
||||
sudo rm /usr/local/bin/ollama
|
||||
rm -rf "~/Library/Application Support/Ollama"
|
||||
rm -rf "~/Library/Saved Application State/com.electron.ollama.savedState"
|
||||
rm -rf ~/Library/Caches/com.electron.ollama/
|
||||
rm -rf ~/Library/Caches/ollama
|
||||
rm -rf ~/Library/WebKit/com.electron.ollama
|
||||
rm -rf ~/.ollama
|
||||
```
|
||||
@@ -150,10 +150,7 @@ PARAMETER <parameter> <parametervalue>
|
||||
|
||||
| Parameter | Description | Value Type | Example Usage |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- |
|
||||
| mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 |
|
||||
| mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 |
|
||||
| mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 |
|
||||
| num_ctx | Sets the size of the context window used to generate the next token. (Default: 4096) | int | num_ctx 4096 |
|
||||
| repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 |
|
||||
| repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 |
|
||||
| temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 |
|
||||
|
||||
@@ -12,7 +12,7 @@ A basic Go template consists of three main parts:
|
||||
|
||||
Here's an example of a simple chat template:
|
||||
|
||||
```gotmpl
|
||||
```go
|
||||
{{- range .Messages }}
|
||||
{{ .Role }}: {{ .Content }}
|
||||
{{- end }}
|
||||
@@ -162,6 +162,6 @@ CodeLlama [7B](https://ollama.com/library/codellama:7b-code) and [13B](https://o
|
||||
|
||||
Codestral [22B](https://ollama.com/library/codestral:22b) supports fill-in-middle.
|
||||
|
||||
```gotmpl
|
||||
```go
|
||||
[SUFFIX]{{ .Suffix }}[PREFIX] {{ .Prompt }}
|
||||
```
|
||||
|
||||
@@ -9,7 +9,7 @@ cat ~/.ollama/logs/server.log
|
||||
On **Linux** systems with systemd, the logs can be found with this command:
|
||||
|
||||
```shell
|
||||
journalctl -u ollama --no-pager
|
||||
journalctl -u ollama --no-pager --follow --pager-end
|
||||
```
|
||||
|
||||
When you run Ollama in a **container**, the logs go to stdout/stderr in the container:
|
||||
@@ -26,7 +26,6 @@ When you run Ollama on **Windows**, there are a few different locations. You can
|
||||
- `explorer %LOCALAPPDATA%\Ollama` to view logs. The most recent server logs will be in `server.log` and older logs will be in `server-#.log`
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` to browse the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` to browse where models and configuration is stored
|
||||
- `explorer %TEMP%` where temporary executable files are stored in one or more `ollama*` directories
|
||||
|
||||
To enable additional debug logging to help troubleshoot problems, first **Quit the running app from the tray menu** then in a powershell terminal
|
||||
|
||||
@@ -39,26 +38,14 @@ Join the [Discord](https://discord.gg/ollama) for help interpreting the logs.
|
||||
|
||||
## LLM libraries
|
||||
|
||||
Ollama includes multiple LLM libraries compiled for different GPUs and CPU vector features. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library. `cpu_avx2` will perform the best, followed by `cpu_avx` an the slowest but most compatible is `cpu`. Rosetta emulation under MacOS will work with the `cpu` library.
|
||||
|
||||
In the server log, you will see a message that looks something like this (varies from release to release):
|
||||
|
||||
```
|
||||
Dynamic LLM libraries [rocm_v6 cpu cpu_avx cpu_avx2 cuda_v11 rocm_v5]
|
||||
```
|
||||
Ollama includes multiple LLM libraries compiled for different GPU libraries and versions. Ollama tries to pick the best one based on the capabilities of your system. If this autodetection has problems, or you run into other problems (e.g. crashes in your GPU) you can workaround this by forcing a specific LLM library.
|
||||
|
||||
**Experimental LLM Library Override**
|
||||
|
||||
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to bypass autodetection, so for example, if you have a CUDA card, but want to force the CPU LLM library with AVX2 vector support, use:
|
||||
You can set OLLAMA_LLM_LIBRARY to any of the available LLM libraries to limit autodetection, so for example, if you have both CUDA and AMD GPUs, but want to force the CUDA v13 only, use:
|
||||
|
||||
```shell
|
||||
OLLAMA_LLM_LIBRARY="cpu_avx2" ollama serve
|
||||
```
|
||||
|
||||
You can see what features your CPU has with the following.
|
||||
|
||||
```shell
|
||||
cat /proc/cpuinfo| grep flags | head -1
|
||||
OLLAMA_LLM_LIBRARY="cuda_v13" ollama serve
|
||||
```
|
||||
|
||||
## Installing older or pre-release versions on Linux
|
||||
@@ -69,10 +56,6 @@ If you run into problems on Linux and want to install an older version, or you'd
|
||||
curl -fsSL https://ollama.com/install.sh | OLLAMA_VERSION=0.5.7 sh
|
||||
```
|
||||
|
||||
## Linux tmp noexec
|
||||
|
||||
If your system is configured with the "noexec" flag where Ollama stores its temporary executable files, you can specify an alternate location by setting OLLAMA_TMPDIR to a location writable by the user ollama runs as. For example OLLAMA_TMPDIR=/usr/share/ollama/
|
||||
|
||||
## Linux docker
|
||||
|
||||
If Ollama initially works on the GPU in a docker container, but then switches to running on CPU after some period of time with errors in the server log reporting GPU discovery failures, this can be resolved by disabling systemd cgroup management in Docker. Edit `/etc/docker/daemon.json` on the host and add `"exec-opts": ["native.cgroupdriver=cgroupfs"]` to the docker configuration.
|
||||
@@ -97,6 +80,9 @@ If none of those resolve the problem, gather additional information and file an
|
||||
- Set `CUDA_ERROR_LEVEL=50` and try again to get more diagnostic logs
|
||||
- Check dmesg for any errors `sudo dmesg | grep -i nvrm` and `sudo dmesg | grep -i nvidia`
|
||||
|
||||
You may get more details for initialization failures by enabling debug prints in the uvm driver. You should only use this temporarily while troubleshooting
|
||||
- `sudo rmmod nvidia_uvm` then `sudo modprobe nvidia_uvm uvm_debug_prints=1`
|
||||
|
||||
|
||||
## AMD GPU Discovery
|
||||
|
||||
|
||||
@@ -30,20 +30,6 @@ To install the Ollama application in a location different than your home directo
|
||||
OllamaSetup.exe /DIR="d:\some\location"
|
||||
```
|
||||
|
||||
### Changing Model Location
|
||||
|
||||
To change where Ollama stores the downloaded models instead of using your home directory, set the environment variable `OLLAMA_MODELS` in your user account.
|
||||
|
||||
1. Start the Settings (Windows 11) or Control Panel (Windows 10) application and search for _environment variables_.
|
||||
|
||||
2. Click on _Edit environment variables for your account_.
|
||||
|
||||
3. Edit or create a new variable for your user account for `OLLAMA_MODELS` where you want the models stored
|
||||
|
||||
4. Click OK/Apply to save.
|
||||
|
||||
If Ollama is already running, Quit the tray application and relaunch it from the Start menu, or a new terminal started after you saved the environment variables.
|
||||
|
||||
## API Access
|
||||
|
||||
Here's a quick example showing API access from `powershell`
|
||||
@@ -62,7 +48,6 @@ the explorer window by hitting `<Ctrl>+R` and type in:
|
||||
- *upgrade.log* contains log output for upgrades
|
||||
- `explorer %LOCALAPPDATA%\Programs\Ollama` contains the binaries (The installer adds this to your user PATH)
|
||||
- `explorer %HOMEPATH%\.ollama` contains models and configuration
|
||||
- `explorer %TEMP%` contains temporary executable files in one or more `ollama*` directories
|
||||
|
||||
## Uninstall
|
||||
|
||||
@@ -81,9 +66,11 @@ help you keep up to date.
|
||||
|
||||
If you'd like to install or integrate Ollama as a service, a standalone
|
||||
`ollama-windows-amd64.zip` zip file is available containing only the Ollama CLI
|
||||
and GPU library dependencies for Nvidia and AMD. This allows for embedding
|
||||
Ollama in existing applications, or running it as a system service via `ollama
|
||||
serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
and GPU library dependencies for Nvidia. If you have an AMD GPU, also download
|
||||
and extract the additional ROCm package `ollama-windows-amd64-rocm.zip` into the
|
||||
same directory. Both zip files are necessary for a complete AMD installation.
|
||||
This allows for embedding Ollama in existing applications, or running it as a
|
||||
system service via `ollama serve` with tools such as [NSSM](https://nssm.cc/).
|
||||
|
||||
> [!NOTE]
|
||||
> If you are upgrading from a prior version, you should remove the old directories first.
|
||||
|
||||
@@ -24,6 +24,9 @@ func Host() *url.URL {
|
||||
switch {
|
||||
case !ok:
|
||||
scheme, hostport = "http", s
|
||||
if s == "ollama.com" {
|
||||
scheme, hostport = "https", "ollama.com:443"
|
||||
}
|
||||
case scheme == "http":
|
||||
defaultPort = "80"
|
||||
case scheme == "https":
|
||||
@@ -134,8 +137,19 @@ func LoadTimeout() (loadTimeout time.Duration) {
|
||||
return loadTimeout
|
||||
}
|
||||
|
||||
func Bool(k string) func() bool {
|
||||
return func() bool {
|
||||
func Remotes() []string {
|
||||
var r []string
|
||||
raw := strings.TrimSpace(Var("OLLAMA_REMOTES"))
|
||||
if raw == "" {
|
||||
r = []string{"ollama.com"}
|
||||
} else {
|
||||
r = strings.Split(raw, ",")
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func BoolWithDefault(k string) func(defaultValue bool) bool {
|
||||
return func(defaultValue bool) bool {
|
||||
if s := Var(k); s != "" {
|
||||
b, err := strconv.ParseBool(s)
|
||||
if err != nil {
|
||||
@@ -145,15 +159,35 @@ func Bool(k string) func() bool {
|
||||
return b
|
||||
}
|
||||
|
||||
return false
|
||||
return defaultValue
|
||||
}
|
||||
}
|
||||
|
||||
func Bool(k string) func() bool {
|
||||
withDefault := BoolWithDefault(k)
|
||||
return func() bool {
|
||||
return withDefault(false)
|
||||
}
|
||||
}
|
||||
|
||||
// LogLevel returns the log level for the application.
|
||||
// Values are 0 or false INFO (Default), 1 or true DEBUG, 2 TRACE
|
||||
func LogLevel() slog.Level {
|
||||
level := slog.LevelInfo
|
||||
if s := Var("OLLAMA_DEBUG"); s != "" {
|
||||
if b, _ := strconv.ParseBool(s); b {
|
||||
level = slog.LevelDebug
|
||||
} else if i, _ := strconv.ParseInt(s, 10, 64); i != 0 {
|
||||
level = slog.Level(i * -4)
|
||||
}
|
||||
}
|
||||
|
||||
return level
|
||||
}
|
||||
|
||||
var (
|
||||
// Debug enabled additional debug information.
|
||||
Debug = Bool("OLLAMA_DEBUG")
|
||||
// FlashAttention enables the experimental flash attention feature.
|
||||
FlashAttention = Bool("OLLAMA_FLASH_ATTENTION")
|
||||
FlashAttention = BoolWithDefault("OLLAMA_FLASH_ATTENTION")
|
||||
// KvCacheType is the quantization type for the K/V cache.
|
||||
KvCacheType = String("OLLAMA_KV_CACHE_TYPE")
|
||||
// NoHistory disables readline history.
|
||||
@@ -169,7 +203,9 @@ var (
|
||||
// Enable the new Ollama engine
|
||||
NewEngine = Bool("OLLAMA_NEW_ENGINE")
|
||||
// ContextLength sets the default context length
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 2048)
|
||||
ContextLength = Uint("OLLAMA_CONTEXT_LENGTH", 4096)
|
||||
// Auth enables authentication between the Ollama client and server
|
||||
UseAuth = Bool("OLLAMA_AUTH")
|
||||
)
|
||||
|
||||
func String(s string) func() string {
|
||||
@@ -184,6 +220,7 @@ var (
|
||||
CudaVisibleDevices = String("CUDA_VISIBLE_DEVICES")
|
||||
HipVisibleDevices = String("HIP_VISIBLE_DEVICES")
|
||||
RocrVisibleDevices = String("ROCR_VISIBLE_DEVICES")
|
||||
VkVisibleDevices = String("GGML_VK_VISIBLE_DEVICES")
|
||||
GpuDeviceOrdinal = String("GPU_DEVICE_ORDINAL")
|
||||
HsaOverrideGfxVersion = String("HSA_OVERRIDE_GFX_VERSION")
|
||||
)
|
||||
@@ -204,13 +241,11 @@ func Uint(key string, defaultValue uint) func() uint {
|
||||
|
||||
var (
|
||||
// NumParallel sets the number of parallel model requests. NumParallel can be configured via the OLLAMA_NUM_PARALLEL environment variable.
|
||||
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 0)
|
||||
NumParallel = Uint("OLLAMA_NUM_PARALLEL", 1)
|
||||
// MaxRunners sets the maximum number of loaded models. MaxRunners can be configured via the OLLAMA_MAX_LOADED_MODELS environment variable.
|
||||
MaxRunners = Uint("OLLAMA_MAX_LOADED_MODELS", 0)
|
||||
// MaxQueue sets the maximum number of queued requests. MaxQueue can be configured via the OLLAMA_MAX_QUEUE environment variable.
|
||||
MaxQueue = Uint("OLLAMA_MAX_QUEUE", 512)
|
||||
// MaxVRAM sets a maximum VRAM override in bytes. MaxVRAM can be configured via the OLLAMA_MAX_VRAM environment variable.
|
||||
MaxVRAM = Uint("OLLAMA_MAX_VRAM", 0)
|
||||
)
|
||||
|
||||
func Uint64(key string, defaultValue uint64) func() uint64 {
|
||||
@@ -238,8 +273,8 @@ type EnvVar struct {
|
||||
|
||||
func AsMap() map[string]EnvVar {
|
||||
ret := map[string]EnvVar{
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", Debug(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(), "Enabled flash attention"},
|
||||
"OLLAMA_DEBUG": {"OLLAMA_DEBUG", LogLevel(), "Show additional debug information (e.g. OLLAMA_DEBUG=1)"},
|
||||
"OLLAMA_FLASH_ATTENTION": {"OLLAMA_FLASH_ATTENTION", FlashAttention(false), "Enabled flash attention"},
|
||||
"OLLAMA_KV_CACHE_TYPE": {"OLLAMA_KV_CACHE_TYPE", KvCacheType(), "Quantization type for the K/V cache (default: f16)"},
|
||||
"OLLAMA_GPU_OVERHEAD": {"OLLAMA_GPU_OVERHEAD", GpuOverhead(), "Reserve a portion of VRAM per GPU (bytes)"},
|
||||
"OLLAMA_HOST": {"OLLAMA_HOST", Host(), "IP Address for the ollama server (default 127.0.0.1:11434)"},
|
||||
@@ -255,8 +290,9 @@ func AsMap() map[string]EnvVar {
|
||||
"OLLAMA_ORIGINS": {"OLLAMA_ORIGINS", AllowedOrigins(), "A comma separated list of allowed origins"},
|
||||
"OLLAMA_SCHED_SPREAD": {"OLLAMA_SCHED_SPREAD", SchedSpread(), "Always schedule model across all GPUs"},
|
||||
"OLLAMA_MULTIUSER_CACHE": {"OLLAMA_MULTIUSER_CACHE", MultiUserCache(), "Optimize prompt caching for multi-user scenarios"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 2048)"},
|
||||
"OLLAMA_CONTEXT_LENGTH": {"OLLAMA_CONTEXT_LENGTH", ContextLength(), "Context length to use unless otherwise specified (default: 4096)"},
|
||||
"OLLAMA_NEW_ENGINE": {"OLLAMA_NEW_ENGINE", NewEngine(), "Enable the new Ollama engine"},
|
||||
"OLLAMA_REMOTES": {"OLLAMA_REMOTES", Remotes(), "Allowed hosts for remote models (default \"ollama.com\")"},
|
||||
|
||||
// Informational
|
||||
"HTTP_PROXY": {"HTTP_PROXY", String("HTTP_PROXY")(), "HTTP proxy"},
|
||||
@@ -275,6 +311,7 @@ func AsMap() map[string]EnvVar {
|
||||
ret["CUDA_VISIBLE_DEVICES"] = EnvVar{"CUDA_VISIBLE_DEVICES", CudaVisibleDevices(), "Set which NVIDIA devices are visible"}
|
||||
ret["HIP_VISIBLE_DEVICES"] = EnvVar{"HIP_VISIBLE_DEVICES", HipVisibleDevices(), "Set which AMD devices are visible by numeric ID"}
|
||||
ret["ROCR_VISIBLE_DEVICES"] = EnvVar{"ROCR_VISIBLE_DEVICES", RocrVisibleDevices(), "Set which AMD devices are visible by UUID or numeric ID"}
|
||||
ret["GGML_VK_VISIBLE_DEVICES"] = EnvVar{"GGML_VK_VISIBLE_DEVICES", VkVisibleDevices(), "Set which Vulkan devices are visible by numeric ID"}
|
||||
ret["GPU_DEVICE_ORDINAL"] = EnvVar{"GPU_DEVICE_ORDINAL", GpuDeviceOrdinal(), "Set which AMD devices are visible by numeric ID"}
|
||||
ret["HSA_OVERRIDE_GFX_VERSION"] = EnvVar{"HSA_OVERRIDE_GFX_VERSION", HsaOverrideGfxVersion(), "Override the gfx used for all detected AMD GPUs"}
|
||||
ret["OLLAMA_INTEL_GPU"] = EnvVar{"OLLAMA_INTEL_GPU", IntelGPU(), "Enable experimental Intel GPU detection"}
|
||||
|
||||
@@ -1,11 +1,13 @@
|
||||
package envconfig
|
||||
|
||||
import (
|
||||
"log/slog"
|
||||
"math"
|
||||
"testing"
|
||||
"time"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
"github.com/ollama/ollama/logutil"
|
||||
)
|
||||
|
||||
func TestHost(t *testing.T) {
|
||||
@@ -35,6 +37,7 @@ func TestHost(t *testing.T) {
|
||||
"https": {"https://1.2.3.4", "https://1.2.3.4:443"},
|
||||
"https port": {"https://1.2.3.4:4321", "https://1.2.3.4:4321"},
|
||||
"proxy path": {"https://example.com/ollama", "https://example.com:443/ollama"},
|
||||
"ollama.com": {"ollama.com", "https://ollama.com:443"},
|
||||
}
|
||||
|
||||
for name, tt := range cases {
|
||||
@@ -279,8 +282,8 @@ func TestVar(t *testing.T) {
|
||||
|
||||
func TestContextLength(t *testing.T) {
|
||||
cases := map[string]uint{
|
||||
"": 2048,
|
||||
"4096": 4096,
|
||||
"": 4096,
|
||||
"2048": 2048,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
@@ -292,3 +295,34 @@ func TestContextLength(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLogLevel(t *testing.T) {
|
||||
cases := map[string]slog.Level{
|
||||
// Default to INFO
|
||||
"": slog.LevelInfo,
|
||||
"false": slog.LevelInfo,
|
||||
"f": slog.LevelInfo,
|
||||
"0": slog.LevelInfo,
|
||||
|
||||
// True values enable Debug
|
||||
"true": slog.LevelDebug,
|
||||
"t": slog.LevelDebug,
|
||||
|
||||
// Positive values increase verbosity
|
||||
"1": slog.LevelDebug,
|
||||
"2": logutil.LevelTrace,
|
||||
|
||||
// Negative values decrease verbosity
|
||||
"-1": slog.LevelWarn,
|
||||
"-2": slog.LevelError,
|
||||
}
|
||||
|
||||
for k, v := range cases {
|
||||
t.Run(k, func(t *testing.T) {
|
||||
t.Setenv("OLLAMA_DEBUG", k)
|
||||
if i := LogLevel(); i != v {
|
||||
t.Errorf("%s: expected %d, got %d", k, v, i)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,7 +5,7 @@ import (
|
||||
"time"
|
||||
)
|
||||
|
||||
func assertEqual(t *testing.T, a interface{}, b interface{}) {
|
||||
func assertEqual(t *testing.T, a any, b any) {
|
||||
if a != b {
|
||||
t.Errorf("Assert failed, expected %v, got %v", b, a)
|
||||
}
|
||||
|
||||
14
fs/config.go
Normal file
14
fs/config.go
Normal file
@@ -0,0 +1,14 @@
|
||||
package fs
|
||||
|
||||
type Config interface {
|
||||
Architecture() string
|
||||
String(string, ...string) string
|
||||
Uint(string, ...uint32) uint32
|
||||
Float(string, ...float32) float32
|
||||
Bool(string, ...bool) bool
|
||||
|
||||
Strings(string, ...[]string) []string
|
||||
Ints(string, ...[]int32) []int32
|
||||
Floats(string, ...[]float32) []float32
|
||||
Bools(string, ...[]bool) []bool
|
||||
}
|
||||
563
fs/ggml/ggml.go
563
fs/ggml/ggml.go
@@ -1,20 +1,24 @@
|
||||
package ggml
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"math"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/util/bufioutil"
|
||||
)
|
||||
|
||||
type GGML struct {
|
||||
container
|
||||
model
|
||||
Length int64
|
||||
}
|
||||
|
||||
type model interface {
|
||||
@@ -33,15 +37,16 @@ func (kv KV) Kind() string {
|
||||
}
|
||||
|
||||
func (kv KV) ParameterCount() uint64 {
|
||||
return keyValue[uint64](kv, "general.parameter_count")
|
||||
val, _ := keyValue(kv, "general.parameter_count", uint64(0))
|
||||
return val
|
||||
}
|
||||
|
||||
func (kv KV) FileType() fileType {
|
||||
func (kv KV) FileType() FileType {
|
||||
if t := kv.Uint("general.file_type"); t > 0 {
|
||||
return fileType(t)
|
||||
return FileType(t)
|
||||
}
|
||||
|
||||
return fileTypeUnknown
|
||||
return FileTypeUnknown
|
||||
}
|
||||
|
||||
func (kv KV) BlockCount() uint64 {
|
||||
@@ -52,16 +57,66 @@ func (kv KV) EmbeddingLength() uint64 {
|
||||
return uint64(kv.Uint("embedding_length"))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCount() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count"))
|
||||
func (kv KV) HeadCount() []uint64 {
|
||||
headCountDefault := uint32(1)
|
||||
headCount := kv.UintOrArrayValueAsArray("attention.head_count", headCountDefault)
|
||||
if len(headCount) == 1 {
|
||||
headCountDefault = headCount[0]
|
||||
}
|
||||
nLayers := int(kv.BlockCount())
|
||||
if len(headCount) > nLayers {
|
||||
slog.Warn("got more elements of attention.head_count than layers", "len(headCount)", len(headCount), "layers", nLayers)
|
||||
}
|
||||
out := make([]uint64, nLayers)
|
||||
for i := range nLayers {
|
||||
if i >= len(headCount) {
|
||||
out[i] = uint64(headCountDefault)
|
||||
} else {
|
||||
out[i] = uint64(headCount[i])
|
||||
}
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() uint64 {
|
||||
return uint64(kv.Uint("attention.head_count_kv", 1))
|
||||
func (kv KV) HeadCountMax() uint64 {
|
||||
return uint64(kv.UintOrMaxArrayValue("attention.head_count", 1))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCount() uint64 {
|
||||
if heads := kv.HeadCount(); heads > 0 {
|
||||
func (kv KV) HeadCountMin() uint64 {
|
||||
return uint64(kv.UintOrMinArrayValue("attention.head_count", 1))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKV() []uint64 {
|
||||
headCountKVDefault := uint32(1)
|
||||
headCountKV := kv.UintOrArrayValueAsArray("attention.head_count_kv", headCountKVDefault)
|
||||
if len(headCountKV) == 1 {
|
||||
headCountKVDefault = headCountKV[0]
|
||||
}
|
||||
nLayers := int(kv.BlockCount())
|
||||
if len(headCountKV) > nLayers {
|
||||
slog.Warn("got more elements of attention.head_count than layers", "len(headCountKV)", len(headCountKV), "layers", nLayers)
|
||||
}
|
||||
out := make([]uint64, nLayers)
|
||||
for i := range nLayers {
|
||||
if i >= len(headCountKV) {
|
||||
out[i] = uint64(headCountKVDefault)
|
||||
} else {
|
||||
out[i] = uint64(headCountKV[i])
|
||||
}
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKVMax() uint64 {
|
||||
return uint64(kv.UintOrMaxArrayValue("attention.head_count_kv", 1))
|
||||
}
|
||||
|
||||
func (kv KV) HeadCountKVMin() uint64 {
|
||||
return uint64(kv.UintOrMinArrayValue("attention.head_count_kv", 1))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountMax() uint64 {
|
||||
if heads := kv.HeadCountMin(); heads > 0 {
|
||||
return kv.EmbeddingLength() / heads
|
||||
}
|
||||
|
||||
@@ -69,15 +124,11 @@ func (kv KV) EmbeddingHeadCount() uint64 {
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountK() uint64 {
|
||||
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
|
||||
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCountMax())))
|
||||
}
|
||||
|
||||
func (kv KV) EmbeddingHeadCountV() uint64 {
|
||||
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
|
||||
}
|
||||
|
||||
func (kv KV) GQA() uint64 {
|
||||
return kv.HeadCount() / kv.HeadCountKV()
|
||||
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCountMax())))
|
||||
}
|
||||
|
||||
func (kv KV) ContextLength() uint64 {
|
||||
@@ -88,53 +139,142 @@ func (kv KV) ChatTemplate() string {
|
||||
return kv.String("tokenizer.chat_template")
|
||||
}
|
||||
|
||||
// ssm architecture parameters
|
||||
|
||||
func (kv KV) SSMConvKernel() uint64 {
|
||||
return uint64(kv.Uint("ssm.conv_kernel"))
|
||||
}
|
||||
|
||||
func (kv KV) SSMInnerSize() uint64 {
|
||||
return uint64(kv.Uint("ssm.inner_size"))
|
||||
}
|
||||
|
||||
func (kv KV) SSMStateSize() uint64 {
|
||||
return uint64(kv.Uint("ssm.state_size"))
|
||||
}
|
||||
|
||||
func (kv KV) SSMGroupCount() uint64 {
|
||||
return uint64(kv.Uint("ssm.group_count"))
|
||||
}
|
||||
|
||||
// general types
|
||||
|
||||
func (kv KV) String(key string, defaultValue ...string) string {
|
||||
return keyValue(kv, key, append(defaultValue, "")...)
|
||||
val, _ := keyValue(kv, key, append(defaultValue, "")...)
|
||||
return val
|
||||
}
|
||||
|
||||
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
|
||||
return val
|
||||
}
|
||||
|
||||
func (kv KV) Float(key string, defaultValue ...float32) float32 {
|
||||
return keyValue(kv, key, append(defaultValue, 0)...)
|
||||
val, _ := keyValue(kv, key, append(defaultValue, 0)...)
|
||||
return val
|
||||
}
|
||||
|
||||
func (kv KV) Bool(key string, defaultValue ...bool) bool {
|
||||
return keyValue(kv, key, append(defaultValue, false)...)
|
||||
val, _ := keyValue(kv, key, append(defaultValue, false)...)
|
||||
return val
|
||||
}
|
||||
|
||||
func (kv KV) UintOrMaxArrayValue(key string, defaultValue uint32) uint32 {
|
||||
_, max := kv.UintOrArrayValue(key, defaultValue)
|
||||
return max
|
||||
}
|
||||
|
||||
func (kv KV) UintOrMinArrayValue(key string, defaultValue uint32) uint32 {
|
||||
min, _ := kv.UintOrArrayValue(key, defaultValue)
|
||||
return min
|
||||
}
|
||||
|
||||
func (kv KV) UintOrArrayValue(key string, defaultValue uint32) (uint32, uint32) {
|
||||
arrVal := kv.UintOrArrayValueAsArray(key, defaultValue)
|
||||
return slices.Min(arrVal), slices.Max(arrVal)
|
||||
}
|
||||
|
||||
func (kv KV) UintOrArrayValueAsArray(key string, defaultValue uint32) []uint32 {
|
||||
if u32, ok := keyValue(kv, key, uint32(0)); ok {
|
||||
return []uint32{u32}
|
||||
} else if u32s, ok := keyValue(kv, key, &array[uint32]{}); ok {
|
||||
return u32s.values
|
||||
} else if i32s, ok := keyValue(kv, key, &array[int32]{}); ok {
|
||||
dst := make([]uint32, len(i32s.values))
|
||||
for i, v := range i32s.values {
|
||||
if v < 0 {
|
||||
slog.Warn("array values are unexpectedly negative", "key", key, "i", i, "v", v)
|
||||
}
|
||||
dst[i] = uint32(v)
|
||||
}
|
||||
return dst
|
||||
}
|
||||
|
||||
return []uint32{defaultValue}
|
||||
}
|
||||
|
||||
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]string, r.size)
|
||||
for i := range r.size {
|
||||
s[i] = r.values[i].(string)
|
||||
}
|
||||
val, _ := keyValue(kv, key, &array[string]{values: append(defaultValue, []string(nil))[0]})
|
||||
return val.values
|
||||
}
|
||||
|
||||
return s
|
||||
func (kv KV) Ints(key string, defaultValue ...[]int32) []int32 {
|
||||
val, _ := keyValue(kv, key, &array[int32]{values: append(defaultValue, []int32(nil))[0]})
|
||||
return val.values
|
||||
}
|
||||
|
||||
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
|
||||
r := keyValue(kv, key, &array{})
|
||||
s := make([]uint32, r.size)
|
||||
for i := range r.size {
|
||||
s[i] = uint32(r.values[i].(int32))
|
||||
}
|
||||
|
||||
return s
|
||||
val, _ := keyValue(kv, key, &array[uint32]{values: append(defaultValue, []uint32(nil))[0]})
|
||||
return val.values
|
||||
}
|
||||
|
||||
func keyValue[T string | uint32 | uint64 | float32 | *array | bool](kv KV, key string, defaultValue ...T) T {
|
||||
func (kv KV) Floats(key string, defaultValue ...[]float32) []float32 {
|
||||
val, _ := keyValue(kv, key, &array[float32]{values: append(defaultValue, []float32(nil))[0]})
|
||||
return val.values
|
||||
}
|
||||
|
||||
func (kv KV) Bools(key string, defaultValue ...[]bool) []bool {
|
||||
val, _ := keyValue(kv, key, &array[bool]{values: append(defaultValue, []bool(nil))[0]})
|
||||
return val.values
|
||||
}
|
||||
|
||||
func (kv KV) OllamaEngineRequired() bool {
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"gemma3n",
|
||||
"mistral3",
|
||||
"qwen3",
|
||||
"qwen3moe",
|
||||
"llama4",
|
||||
"mllama",
|
||||
"qwen25vl",
|
||||
"gptoss", "gpt-oss",
|
||||
}, kv.Architecture())
|
||||
}
|
||||
|
||||
type valueTypes interface {
|
||||
uint8 | int8 | uint16 | int16 |
|
||||
uint32 | int32 | uint64 | int64 |
|
||||
string | float32 | float64 | bool
|
||||
}
|
||||
|
||||
type arrayValueTypes interface {
|
||||
*array[uint8] | *array[int8] | *array[uint16] | *array[int16] |
|
||||
*array[uint32] | *array[int32] | *array[uint64] | *array[int64] |
|
||||
*array[string] | *array[float32] | *array[float64] | *array[bool]
|
||||
}
|
||||
|
||||
func keyValue[T valueTypes | arrayValueTypes](kv KV, key string, defaultValue ...T) (T, bool) {
|
||||
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
|
||||
key = kv.Architecture() + "." + key
|
||||
}
|
||||
|
||||
if val, ok := kv[key]; ok {
|
||||
return val.(T)
|
||||
if val, ok := kv[key].(T); ok {
|
||||
return val, true
|
||||
}
|
||||
|
||||
slog.Warn("key not found", "key", key, "default", defaultValue[0])
|
||||
return defaultValue[0]
|
||||
slog.Debug("key with type not found", "key", key, "default", defaultValue[0])
|
||||
return defaultValue[0], false
|
||||
}
|
||||
|
||||
type Tensors struct {
|
||||
@@ -203,32 +343,37 @@ type Tensor struct {
|
||||
|
||||
func (t Tensor) block() (n int) {
|
||||
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
|
||||
return -1
|
||||
return math.MaxInt
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (t Tensor) blockSize() uint64 {
|
||||
switch t.Kind {
|
||||
return TensorType(t.Kind).BlockSize()
|
||||
}
|
||||
|
||||
func (t TensorType) BlockSize() uint64 {
|
||||
switch t {
|
||||
case
|
||||
0, // F32
|
||||
1, // F16
|
||||
24, // I8
|
||||
25, // I16
|
||||
26, // I32
|
||||
27, // I64
|
||||
28, // F64
|
||||
30: // BF16
|
||||
TensorTypeF32,
|
||||
TensorTypeF16,
|
||||
TensorTypeI8,
|
||||
TensorTypeI16,
|
||||
TensorTypeI32,
|
||||
TensorTypeI64,
|
||||
TensorTypeF64,
|
||||
TensorTypeBF16:
|
||||
return 1
|
||||
case
|
||||
2, // Q4_0
|
||||
3, // Q4_1
|
||||
6, // Q5_0
|
||||
7, // Q5_1
|
||||
8, // Q8_0
|
||||
9, // Q8_1
|
||||
20: // IQ4_NL
|
||||
TensorTypeQ4_0,
|
||||
TensorTypeQ4_1,
|
||||
TensorTypeQ5_0,
|
||||
TensorTypeQ5_1,
|
||||
TensorTypeQ8_0,
|
||||
TensorTypeQ8_1,
|
||||
tensorTypeIQ4_NL,
|
||||
4, TensorTypeMXFP4:
|
||||
return 32
|
||||
default:
|
||||
return 256
|
||||
@@ -236,73 +381,79 @@ func (t Tensor) blockSize() uint64 {
|
||||
}
|
||||
|
||||
func (t Tensor) typeSize() uint64 {
|
||||
blockSize := t.blockSize()
|
||||
return TensorType(t.Kind).TypeSize()
|
||||
}
|
||||
|
||||
switch t.Kind {
|
||||
case 0: // FP32
|
||||
func (t TensorType) TypeSize() uint64 {
|
||||
blockSize := t.BlockSize()
|
||||
|
||||
switch t {
|
||||
case TensorTypeF32:
|
||||
return 4
|
||||
case 1: // FP16
|
||||
case TensorTypeF16:
|
||||
return 2
|
||||
case 2: // Q4_0
|
||||
case TensorTypeQ4_0:
|
||||
return 2 + blockSize/2
|
||||
case 3: // Q4_1
|
||||
case TensorTypeQ4_1:
|
||||
return 2 + 2 + blockSize/2
|
||||
case 6: // Q5_0
|
||||
case TensorTypeQ5_0:
|
||||
return 2 + 4 + blockSize/2
|
||||
case 7: // Q5_1
|
||||
case TensorTypeQ5_1:
|
||||
return 2 + 2 + 4 + blockSize/2
|
||||
case 8: // Q8_0
|
||||
case TensorTypeQ8_0:
|
||||
return 2 + blockSize
|
||||
case 9: // Q8_1
|
||||
case TensorTypeQ8_1:
|
||||
return 2 + 2 + blockSize
|
||||
case 10: // Q2_K
|
||||
case TensorTypeQ2_K:
|
||||
return blockSize/16 + blockSize/4 + 2 + 2
|
||||
case 11: // Q3_K
|
||||
case TensorTypeQ3_K:
|
||||
return blockSize/8 + blockSize/4 + 12 + 2
|
||||
case 12: // Q4_K
|
||||
case TensorTypeQ4_K:
|
||||
return 2 + 2 + 12 + blockSize/2
|
||||
case 13: // Q5_K
|
||||
case TensorTypeQ5_K:
|
||||
return 2 + 2 + 12 + blockSize/8 + blockSize/2
|
||||
case 14: // Q6_K
|
||||
case TensorTypeQ6_K:
|
||||
return blockSize/2 + blockSize/4 + blockSize/16 + 2
|
||||
case 15: // Q8_K
|
||||
case TensorTypeQ8_K:
|
||||
return 4 + blockSize + 2*blockSize/16
|
||||
case 16: // IQ2_XXS
|
||||
case tensorTypeIQ2_XXS:
|
||||
return 2 + 2*blockSize/8
|
||||
case 17: // IQ2_XS
|
||||
case tensorTypeIQ2_XS:
|
||||
return 2 + 2*blockSize/8 + blockSize/32
|
||||
case 18: // IQ3_XXS
|
||||
case tensorTypeIQ3_XXS:
|
||||
return 2 + blockSize/4 + blockSize/8
|
||||
case 19: // IQ1_S
|
||||
case tensorTypeIQ1_S:
|
||||
return 2 + blockSize/8 + blockSize/16
|
||||
case 20: // IQ4_NL
|
||||
case tensorTypeIQ4_NL:
|
||||
return 2 + blockSize/2
|
||||
case 21: // IQ3_S
|
||||
case tensorTypeIQ3_S:
|
||||
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
|
||||
case 22: // IQ2_S
|
||||
case tensorTypeIQ2_S:
|
||||
return 2 + blockSize/4 + blockSize/16
|
||||
case 23: // IQ4_XS
|
||||
case tensorTypeIQ4_XS:
|
||||
return 2 + 2 + blockSize/2 + blockSize/64
|
||||
case 24: // I8
|
||||
case TensorTypeI8:
|
||||
return 1
|
||||
case 25: // I16
|
||||
case TensorTypeI16:
|
||||
return 2
|
||||
case 26: // I32
|
||||
case TensorTypeI32:
|
||||
return 4
|
||||
case 27: // I64
|
||||
case TensorTypeI64:
|
||||
return 8
|
||||
case 28: // F64
|
||||
case TensorTypeF64:
|
||||
return 8
|
||||
case 29: // IQ1_M
|
||||
case tensorTypeIQ1_M:
|
||||
return blockSize/8 + blockSize/16 + blockSize/32
|
||||
case 30: // BF16
|
||||
case TensorTypeBF16:
|
||||
return 2
|
||||
case 4, TensorTypeMXFP4:
|
||||
return 1 + blockSize/2
|
||||
default:
|
||||
return 0
|
||||
}
|
||||
}
|
||||
|
||||
func (t Tensor) parameters() uint64 {
|
||||
func (t Tensor) Elements() uint64 {
|
||||
var count uint64 = 1
|
||||
for _, n := range t.Shape {
|
||||
count *= n
|
||||
@@ -311,7 +462,11 @@ func (t Tensor) parameters() uint64 {
|
||||
}
|
||||
|
||||
func (t Tensor) Size() uint64 {
|
||||
return t.parameters() * t.typeSize() / t.blockSize()
|
||||
return t.Elements() * t.typeSize() / t.blockSize()
|
||||
}
|
||||
|
||||
func (t Tensor) Type() string {
|
||||
return TensorType(t.Kind).String()
|
||||
}
|
||||
|
||||
type container interface {
|
||||
@@ -355,18 +510,13 @@ func DetectContentType(b []byte) string {
|
||||
// Decode decodes a GGML model from the given reader.
|
||||
//
|
||||
// It collects array values for arrays with a size less than or equal to
|
||||
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
|
||||
// the maxArraySize is negative, all arrays are collected.
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
if maxArraySize == 0 {
|
||||
maxArraySize = 1024
|
||||
}
|
||||
|
||||
// maxArraySize. If the maxArraySize is negative, all arrays are collected.
|
||||
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, error) {
|
||||
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
|
||||
|
||||
var magic uint32
|
||||
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
|
||||
return nil, 0, err
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var c container
|
||||
@@ -376,43 +526,92 @@ func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
|
||||
case FILE_MAGIC_GGUF_BE:
|
||||
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
|
||||
default:
|
||||
return nil, 0, errors.New("invalid file magic")
|
||||
return nil, errors.New("invalid file magic")
|
||||
}
|
||||
|
||||
model, err := c.Decode(rs)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
return nil, err
|
||||
}
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// final model type
|
||||
return &GGML{
|
||||
container: c,
|
||||
model: model,
|
||||
}, offset, nil
|
||||
Length: offset,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
|
||||
embedding := f.KV().EmbeddingLength()
|
||||
heads := f.KV().HeadCount()
|
||||
headsKV := f.KV().HeadCountKV()
|
||||
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
|
||||
func (f GGML) GraphSize(context, batch uint64, numParallel int, kvCacheType string, useFlashAttention bool) (kv []uint64, partialOffload, fullOffload uint64) {
|
||||
context *= uint64(numParallel)
|
||||
|
||||
embeddingHeads := f.KV().EmbeddingHeadCount()
|
||||
embedding := f.KV().EmbeddingLength()
|
||||
heads := f.KV().HeadCountMax()
|
||||
headsArr := f.KV().HeadCount()
|
||||
headsKV := f.KV().HeadCountKVMax()
|
||||
headsKVArr := f.KV().HeadCountKV()
|
||||
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array[string]).size)
|
||||
|
||||
embeddingHeads := f.KV().EmbeddingHeadCountMax()
|
||||
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
|
||||
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
|
||||
|
||||
layers := f.Tensors().GroupLayers()
|
||||
|
||||
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
|
||||
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
|
||||
// Default for models unless special-cased below. These defaults mirror the
|
||||
// cache usage in llama.cpp under the assumption that models without special
|
||||
// cases below will use the llamarunner and caching will be handled by the
|
||||
// llama.cpp layer.
|
||||
//
|
||||
// This also assumes that a layer without heads or headsKV set is recurrent
|
||||
// which is usually the case. Some models (eg nemotronh) use "blocks" in
|
||||
// place of layers where some are MLP blocks that don't have any cache.
|
||||
// Models like this will need a special case below to be accurately
|
||||
// estimated.
|
||||
var kvTotal uint64
|
||||
kv = make([]uint64, f.KV().BlockCount())
|
||||
kvSizeAttn := uint64(0)
|
||||
kvSizeRecurrent := uint64(0)
|
||||
for i := range kv {
|
||||
headsL := headsArr[i]
|
||||
headsKVL := headsKVArr[i]
|
||||
if headsL > 0 && headsKVL > 0 {
|
||||
// full attention layer
|
||||
// NOTE: Assumes uniform values for all attn layers
|
||||
kv[i] = uint64(float64(context*(embeddingHeadsK+embeddingHeadsV)*headsKVL) * bytesPerElement)
|
||||
kvSizeAttn += kv[i]
|
||||
} else {
|
||||
// recurrent layer
|
||||
ssmDConv := f.KV().SSMConvKernel()
|
||||
ssmDState := f.KV().SSMStateSize()
|
||||
ssmDInner := f.KV().SSMInnerSize()
|
||||
ssmNGroups := f.KV().SSMGroupCount()
|
||||
nEmbdR := uint64(0)
|
||||
if ssmDConv > 0 {
|
||||
nEmbdR = (ssmDConv - 1) * (ssmDInner + 2*ssmNGroups*ssmDState)
|
||||
}
|
||||
nEmbdS := ssmDState * ssmDInner
|
||||
|
||||
// recurrent always uses F32 in llama.cpp backend
|
||||
// https://github.com/ggml-org/llama.cpp/blob/master/src/llama-model.cpp#L18644
|
||||
bytesPerElementRecurrent := kvCacheBytesPerElement("f32")
|
||||
|
||||
kv[i] = (nEmbdR + nEmbdS) * uint64(bytesPerElementRecurrent)
|
||||
kvSizeRecurrent += kv[i]
|
||||
}
|
||||
kvTotal += kv[i]
|
||||
}
|
||||
slog.Debug("default cache size estimate", "attention MiB", float32(kvSizeAttn)/(1024.*1024.), "attention bytes", kvSizeAttn, "recurrent MiB", float32(kvSizeRecurrent)/(1024.*1024.), "recurrent bytes", kvSizeRecurrent)
|
||||
|
||||
switch f.KV().Architecture() {
|
||||
case "llama":
|
||||
case "llama", "llama4":
|
||||
fullOffload = max(
|
||||
4*batch*(1+4*embedding+context*(1+heads)),
|
||||
4*batch*(embedding+vocab),
|
||||
@@ -426,7 +625,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
|
||||
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
|
||||
// mixtral 8x22b
|
||||
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
|
||||
ff := uint64(f.KV().Uint("feed_forward_length"))
|
||||
partialOffload = max(
|
||||
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
|
||||
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
|
||||
@@ -443,16 +642,14 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
case "mllama":
|
||||
var visionTokens, tiles uint64 = 1601, 4
|
||||
|
||||
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
|
||||
kv = headsKV *
|
||||
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
|
||||
(2* // sizeof(float16)
|
||||
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
|
||||
context +
|
||||
4* // sizeof(float32)
|
||||
uint64(crossAttentionLayers.size)* // num cross attention layers
|
||||
visionTokens*
|
||||
tiles)
|
||||
crossAttentionLayers := f.KV().Ints("attention.cross_attention_layers")
|
||||
for i := range kv {
|
||||
if slices.Contains(crossAttentionLayers, int32(i)) {
|
||||
kv[i] = headsKV * (embeddingHeadsK + embeddingHeadsV) *
|
||||
4 * // sizeof(float32)
|
||||
visionTokens *
|
||||
tiles
|
||||
}
|
||||
}
|
||||
|
||||
fullOffload = max(
|
||||
@@ -464,7 +661,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
var ropeFreqsCount uint64
|
||||
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
|
||||
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
|
||||
ropeFreqsCount = ropeFreqsWeights.parameters()
|
||||
ropeFreqsCount = ropeFreqsWeights.Elements()
|
||||
}
|
||||
}
|
||||
|
||||
@@ -476,7 +673,7 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
// vocab graph
|
||||
4*batch*(embedding+vocab)+embedding*vocab*105/128,
|
||||
)
|
||||
case "gemma", "gemma2":
|
||||
case "gemma", "gemma2", "gemma3", "gemma3n":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
|
||||
@@ -488,6 +685,25 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
4*embeddingHeadsK*context*8+
|
||||
embedding*embeddingHeadsK*heads*9/16,
|
||||
)
|
||||
|
||||
if f.KV().Architecture() == "gemma3n" {
|
||||
fullOffload *= 4
|
||||
partialOffload *= 4
|
||||
}
|
||||
|
||||
// Gemma2 also has sliding window attention but we only have an optimized implementation in the Ollama
|
||||
// engine. Gemma3 always uses the Ollama engine.
|
||||
if f.KV().Architecture() == "gemma3" {
|
||||
const gemma3GlobalCacheCount = 6
|
||||
slidingWindow := (uint64(numParallel) * uint64(f.KV().Uint("attention.sliding_window"))) + batch
|
||||
for i := range kv {
|
||||
// Every 6th layer is a global layer, which is the full context size that has already been set. The other
|
||||
// layers are the smaller local (sliding) layers.
|
||||
if (i+1)%gemma3GlobalCacheCount != 0 {
|
||||
kv[i] = uint64(float64(slidingWindow*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
}
|
||||
}
|
||||
}
|
||||
case "command-r":
|
||||
fullOffload = max(
|
||||
4*batch*(embedding+vocab),
|
||||
@@ -560,14 +776,101 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
|
||||
4*qkvBias.Shape[0],
|
||||
)
|
||||
}
|
||||
case "gptoss", "gpt-oss":
|
||||
kv = make([]uint64, f.KV().BlockCount())
|
||||
for i := range kv {
|
||||
kv[i] = uint64(float64((embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
|
||||
if i%2 == 0 {
|
||||
kv[i] *= (uint64(numParallel)*4096 + batch)
|
||||
} else {
|
||||
kv[i] *= context
|
||||
}
|
||||
}
|
||||
|
||||
partialOffload = 2 * f.KV().HeadCountMax() / cmp.Or(f.KV().HeadCountKVMin(), 1) * kvTotal / 6
|
||||
if useFlashAttention {
|
||||
// rough estimate of graph size with flash attention on
|
||||
partialOffload = (4*uint64(numParallel) + context>>10 + 110) * format.MebiByte
|
||||
}
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
|
||||
if llm.KV().Uint("vision.block_count") == 0 {
|
||||
return
|
||||
}
|
||||
|
||||
for name, layer := range llm.Tensors().GroupLayers() {
|
||||
if name == "v" || strings.HasPrefix(name, "v.") {
|
||||
for _, tensor := range layer {
|
||||
weights += tensor.Size()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
imageSize := uint64(llm.KV().Uint("vision.image_size"))
|
||||
patchSize := uint64(llm.KV().Uint("vision.patch_size"))
|
||||
if patchSize == 0 {
|
||||
slog.Warn("unknown patch size for vision model")
|
||||
return
|
||||
}
|
||||
|
||||
numChannels := uint64(llm.KV().Uint("vision.num_channels"))
|
||||
|
||||
numPatches := (imageSize / patchSize) * (imageSize / patchSize)
|
||||
if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
|
||||
embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
|
||||
|
||||
switch llm.KV().Architecture() {
|
||||
case "mllama":
|
||||
numPaddedPatches := numPatches + 8 - (numPatches%8)%8
|
||||
|
||||
maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
|
||||
|
||||
graphSize = 4 * (8 +
|
||||
imageSize*imageSize*numChannels*maxNumTiles +
|
||||
embeddingLength*numPatches*maxNumTiles +
|
||||
9*embeddingLength*numPaddedPatches*maxNumTiles +
|
||||
numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
|
||||
case "gemma3", "mistral3":
|
||||
graphSize = 4 * (imageSize*imageSize*numChannels +
|
||||
embeddingLength*patchSize +
|
||||
numPatches*numPatches*headCount)
|
||||
case "qwen25vl":
|
||||
maxPixels := uint64(llm.KV().Uint("vision.max_pixels", 28*28*1280))
|
||||
|
||||
numPatches := maxPixels / (patchSize * patchSize)
|
||||
|
||||
graphSize = 4 * (maxPixels*numChannels + // Original image storage
|
||||
// Normalized pixels
|
||||
maxPixels*numChannels +
|
||||
// Patches storage (numPatches * channels * patchSize^2)
|
||||
numPatches*numChannels*patchSize*patchSize +
|
||||
// Self-attention calculations
|
||||
numPatches*numPatches*headCount +
|
||||
// Additional buffer for processing
|
||||
embeddingLength*numPatches)
|
||||
case "llama4":
|
||||
// vision graph is computed independently in the same schedule
|
||||
// and is negligible compared to the worst case text graph
|
||||
}
|
||||
|
||||
return weights, graphSize
|
||||
}
|
||||
|
||||
// SupportsKVCacheType checks if the requested cache type is supported
|
||||
func (f GGML) SupportsKVCacheType(cacheType string) bool {
|
||||
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
|
||||
if cacheType == "" || cacheType == "f16" {
|
||||
return true
|
||||
}
|
||||
|
||||
return slices.Contains([]string{"q8_0", "q4_0"}, cacheType)
|
||||
}
|
||||
|
||||
// SupportsFlashAttention checks if the model supports flash attention
|
||||
@@ -577,12 +880,26 @@ func (f GGML) SupportsFlashAttention() bool {
|
||||
return false
|
||||
}
|
||||
|
||||
if arch := f.KV().Architecture(); slices.Contains([]string{"gemma2"}, arch) {
|
||||
return false
|
||||
}
|
||||
|
||||
// Check head counts match and are non-zero
|
||||
headCountK := f.KV().EmbeddingHeadCountK()
|
||||
headCountV := f.KV().EmbeddingHeadCountV()
|
||||
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
|
||||
}
|
||||
|
||||
// FlashAttention checks if the model should enable flash attention
|
||||
func (f GGML) FlashAttention() bool {
|
||||
return slices.Contains([]string{
|
||||
"gemma3",
|
||||
"gptoss", "gpt-oss",
|
||||
"qwen3",
|
||||
"qwen3moe",
|
||||
}, f.KV().String("general.architecture"))
|
||||
}
|
||||
|
||||
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
|
||||
func kvCacheBytesPerElement(cacheType string) float64 {
|
||||
switch cacheType {
|
||||
@@ -590,6 +907,8 @@ func kvCacheBytesPerElement(cacheType string) float64 {
|
||||
return 1 // 1/2 of fp16
|
||||
case "q4_0":
|
||||
return 0.5 // 1/4 of fp16
|
||||
case "f32":
|
||||
return 4 // f32 (default for recurrent)
|
||||
default:
|
||||
return 2 // f16 (default)
|
||||
}
|
||||
|
||||
@@ -2,6 +2,7 @@ package ggml
|
||||
|
||||
import (
|
||||
"maps"
|
||||
"math"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
@@ -210,3 +211,91 @@ func TestTensorTypes(t *testing.T) {
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestKeyValue(t *testing.T) {
|
||||
kv := KV{
|
||||
"general.architecture": "test",
|
||||
"test.strings": &array[string]{size: 3, values: []string{"a", "b", "c"}},
|
||||
"test.float32s": &array[float32]{size: 3, values: []float32{1.0, 2.0, 3.0}},
|
||||
"test.int32s": &array[int32]{size: 3, values: []int32{1, 2, 3}},
|
||||
"test.uint32s": &array[uint32]{size: 3, values: []uint32{1, 2, 3}},
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("strings"), []string{"a", "b", "c"}); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("nonexistent.strings"), []string(nil)); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Strings("default.strings", []string{"ollama"}), []string{"ollama"}); diff != "" {
|
||||
t.Errorf("unexpected strings (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("float32s"), []float32{1.0, 2.0, 3.0}); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("nonexistent.float32s"), []float32(nil)); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Floats("default.float32s", []float32{math.MaxFloat32}), []float32{math.MaxFloat32}); diff != "" {
|
||||
t.Errorf("unexpected float32s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("int32s"), []int32{1, 2, 3}); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("nonexistent.int32s"), []int32(nil)); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Ints("default.int32s", []int32{math.MaxInt32}), []int32{math.MaxInt32}); diff != "" {
|
||||
t.Errorf("unexpected int8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("uint32s"), []uint32{1, 2, 3}); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("nonexistent.uint32s"), []uint32(nil)); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
|
||||
if diff := cmp.Diff(kv.Uints("default.uint32s", []uint32{math.MaxUint32}), []uint32{math.MaxUint32}); diff != "" {
|
||||
t.Errorf("unexpected uint8s (-got +want):\n%s", diff)
|
||||
}
|
||||
}
|
||||
|
||||
func TestHeadCount(t *testing.T) {
|
||||
valuesArray := []int32{1, 5, 3, 4}
|
||||
cases := []struct {
|
||||
kv KV
|
||||
want uint64
|
||||
}{
|
||||
{
|
||||
kv: KV{
|
||||
"general.architecture": "abc",
|
||||
"abc.attention.head_count": &array[int32]{values: valuesArray, size: len(valuesArray)},
|
||||
},
|
||||
want: uint64(5),
|
||||
},
|
||||
{
|
||||
kv: KV{
|
||||
"general.architecture": "abc",
|
||||
"abc.attention.head_count": uint32(3),
|
||||
},
|
||||
want: uint64(3),
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range cases {
|
||||
got := tt.kv.HeadCountMax()
|
||||
if got != tt.want {
|
||||
t.Errorf("unexpected max value: got=%d want=%d", got, tt.want)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
346
fs/ggml/gguf.go
346
fs/ggml/gguf.go
@@ -9,8 +9,12 @@ import (
|
||||
"io"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"runtime"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"golang.org/x/sync/errgroup"
|
||||
)
|
||||
|
||||
type containerGGUF struct {
|
||||
@@ -36,10 +40,6 @@ type containerGGUF struct {
|
||||
maxArraySize int
|
||||
}
|
||||
|
||||
func (c *containerGGUF) canCollectArray(size int) bool {
|
||||
return c.maxArraySize < 0 || size <= c.maxArraySize
|
||||
}
|
||||
|
||||
func (c *containerGGUF) Name() string {
|
||||
return "gguf"
|
||||
}
|
||||
@@ -229,16 +229,13 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
|
||||
}
|
||||
|
||||
llm.tensors = append(llm.tensors, &tensor)
|
||||
llm.parameters += tensor.parameters()
|
||||
llm.parameters += tensor.Elements()
|
||||
}
|
||||
|
||||
// patch KV with parameter count
|
||||
llm.kv["general.parameter_count"] = llm.parameters
|
||||
|
||||
alignment, ok := llm.kv["general.alignment"].(uint32)
|
||||
if !ok {
|
||||
alignment = 32
|
||||
}
|
||||
alignment := llm.kv.Uint("general.alignment", 32)
|
||||
|
||||
offset, err := rs.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
@@ -298,6 +295,23 @@ func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
|
||||
return b.String(), nil
|
||||
}
|
||||
|
||||
func readGGUFV1StringsData(llm *gguf, r io.Reader, a *array[string]) (any, error) {
|
||||
for i := range a.size {
|
||||
if a.values != nil {
|
||||
e, err := readGGUFV1String(llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a.values[i] = e
|
||||
} else {
|
||||
discardGGUFString(llm, r)
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func discardGGUFString(llm *gguf, r io.Reader) error {
|
||||
buf := llm.scratch[:8]
|
||||
_, err := io.ReadFull(r, buf)
|
||||
@@ -355,78 +369,44 @@ func writeGGUFString(w io.Writer, s string) error {
|
||||
return err
|
||||
}
|
||||
|
||||
type array struct {
|
||||
size int
|
||||
values []any
|
||||
}
|
||||
|
||||
func (a *array) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(a.values)
|
||||
}
|
||||
|
||||
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
n, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, 0, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
e, err = readGGUFV1String(llm, r)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
func readGGUFStringsData(llm *gguf, r io.Reader, a *array[string]) (any, error) {
|
||||
for i := range a.size {
|
||||
if a.values != nil {
|
||||
e, err := readGGUFString(llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a.values[i] = e
|
||||
} else {
|
||||
discardGGUFString(llm, r)
|
||||
}
|
||||
}
|
||||
|
||||
return a, nil
|
||||
}
|
||||
|
||||
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1Array(llm, r)
|
||||
}
|
||||
type array[T any] struct {
|
||||
// size is the actual size of the array
|
||||
size int
|
||||
|
||||
// values is the array of values. this is nil if the array is larger than configured maxSize
|
||||
values []T
|
||||
}
|
||||
|
||||
func (a *array[T]) MarshalJSON() ([]byte, error) {
|
||||
return json.Marshal(a.values)
|
||||
}
|
||||
|
||||
func newArray[T any](size, maxSize int) *array[T] {
|
||||
a := array[T]{size: size}
|
||||
if maxSize < 0 || size <= maxSize {
|
||||
a.values = make([]T, size)
|
||||
}
|
||||
return &a
|
||||
}
|
||||
|
||||
func readGGUFArray(llm *gguf, r io.Reader) (any, error) {
|
||||
t, err := readGGUF[uint32](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
@@ -437,45 +417,55 @@ func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
a := &array{size: int(n)}
|
||||
if llm.canCollectArray(int(n)) {
|
||||
a.values = make([]any, int(n))
|
||||
}
|
||||
|
||||
for i := range n {
|
||||
var e any
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
e, err = readGGUF[uint8](llm, r)
|
||||
case ggufTypeInt8:
|
||||
e, err = readGGUF[int8](llm, r)
|
||||
case ggufTypeUint16:
|
||||
e, err = readGGUF[uint16](llm, r)
|
||||
case ggufTypeInt16:
|
||||
e, err = readGGUF[int16](llm, r)
|
||||
case ggufTypeUint32:
|
||||
e, err = readGGUF[uint32](llm, r)
|
||||
case ggufTypeInt32:
|
||||
e, err = readGGUF[int32](llm, r)
|
||||
case ggufTypeUint64:
|
||||
e, err = readGGUF[uint64](llm, r)
|
||||
case ggufTypeInt64:
|
||||
e, err = readGGUF[int64](llm, r)
|
||||
case ggufTypeFloat32:
|
||||
e, err = readGGUF[float32](llm, r)
|
||||
case ggufTypeFloat64:
|
||||
e, err = readGGUF[float64](llm, r)
|
||||
case ggufTypeBool:
|
||||
e, err = readGGUF[bool](llm, r)
|
||||
case ggufTypeString:
|
||||
if a.values != nil {
|
||||
e, err = readGGUFString(llm, r)
|
||||
} else {
|
||||
err = discardGGUFString(llm, r)
|
||||
}
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
switch t {
|
||||
case ggufTypeUint8:
|
||||
a := newArray[uint8](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt8:
|
||||
a := newArray[int8](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint16:
|
||||
a := newArray[uint16](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt16:
|
||||
a := newArray[int16](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint32:
|
||||
a := newArray[uint32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt32:
|
||||
a := newArray[int32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeUint64:
|
||||
a := newArray[uint64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeInt64:
|
||||
a := newArray[int64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeFloat32:
|
||||
a := newArray[float32](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeFloat64:
|
||||
a := newArray[float64](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeBool:
|
||||
a := newArray[bool](int(n), llm.maxArraySize)
|
||||
return readGGUFArrayData(llm, r, a)
|
||||
case ggufTypeString:
|
||||
a := newArray[string](int(n), llm.maxArraySize)
|
||||
if llm.Version == 1 {
|
||||
return readGGUFV1StringsData(llm, r, a)
|
||||
}
|
||||
|
||||
return readGGUFStringsData(llm, r, a)
|
||||
default:
|
||||
return nil, fmt.Errorf("invalid array type: %d", t)
|
||||
}
|
||||
}
|
||||
|
||||
func readGGUFArrayData[T any](llm *gguf, r io.Reader, a *array[T]) (any, error) {
|
||||
for i := range a.size {
|
||||
e, err := readGGUF[T](llm, r)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -502,62 +492,86 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if t == ggufTypeString {
|
||||
for _, e := range any(s).([]string) {
|
||||
if err := binary.Write(w, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(w, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
return binary.Write(w, binary.LittleEndian, s)
|
||||
}
|
||||
|
||||
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
|
||||
alignment := kv.Uint("general.alignment", 32)
|
||||
|
||||
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint32(3)); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(ts))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
if err := binary.Write(f, binary.LittleEndian, uint64(len(kv))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
keys := slices.Collect(maps.Keys(kv))
|
||||
slices.Sort(keys)
|
||||
|
||||
for _, key := range keys {
|
||||
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
|
||||
for _, key := range slices.Sorted(maps.Keys(kv)) {
|
||||
if err := ggufWriteKV(f, key, kv[key]); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
||||
slices.SortStableFunc(ts, func(a, b Tensor) int {
|
||||
if i, j := a.block(), b.block(); i < 0 && j > 0 {
|
||||
return 1
|
||||
} else if i > 0 && j < 0 {
|
||||
return -1
|
||||
} else {
|
||||
return cmp.Compare(i, j)
|
||||
}
|
||||
})
|
||||
slices.SortStableFunc(
|
||||
ts,
|
||||
func(a, b *Tensor) int {
|
||||
return cmp.Or(
|
||||
cmp.Compare(a.block(), b.block()),
|
||||
cmp.Compare(a.Name, b.Name),
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
var s uint64
|
||||
for _, t := range ts {
|
||||
t.Offset = s
|
||||
if err := ggufWriteTensorInfo(ws, t); err != nil {
|
||||
for i := range ts {
|
||||
ts[i].Offset = s
|
||||
if err := ggufWriteTensorInfo(f, ts[i]); err != nil {
|
||||
return err
|
||||
}
|
||||
s += t.Size()
|
||||
s += ts[i].Size()
|
||||
s += uint64(ggufPadding(int64(s), int64(alignment)))
|
||||
}
|
||||
|
||||
var alignment int64 = 32
|
||||
offset, err := f.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
offset += ggufPadding(offset, int64(alignment))
|
||||
|
||||
var g errgroup.Group
|
||||
g.SetLimit(runtime.GOMAXPROCS(0))
|
||||
// TODO consider reducing if tensors size * gomaxprocs is larger than free memory
|
||||
for _, t := range ts {
|
||||
if err := ggufWriteTensor(ws, t, alignment); err != nil {
|
||||
t := t
|
||||
w := io.NewOffsetWriter(f, offset+int64(t.Offset))
|
||||
g.Go(func() error {
|
||||
_, err := t.WriteTo(w)
|
||||
return err
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
return nil
|
||||
return g.Wait()
|
||||
}
|
||||
|
||||
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
@@ -572,8 +586,10 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
|
||||
var err error
|
||||
switch v := v.(type) {
|
||||
case uint32:
|
||||
case uint32, FileType:
|
||||
err = writeGGUF(ws, ggufTypeUint32, v)
|
||||
case uint64:
|
||||
err = writeGGUF(ws, ggufTypeUint64, v)
|
||||
case float32:
|
||||
err = writeGGUF(ws, ggufTypeFloat32, v)
|
||||
case bool:
|
||||
@@ -582,32 +598,24 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
err = writeGGUFString(ws, v)
|
||||
case []int32:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v)
|
||||
case *array[int32]:
|
||||
err = writeGGUFArray(ws, ggufTypeInt32, v.values)
|
||||
case []uint32:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v)
|
||||
case *array[uint32]:
|
||||
err = writeGGUFArray(ws, ggufTypeUint32, v.values)
|
||||
case []float32:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v)
|
||||
case *array[float32]:
|
||||
err = writeGGUFArray(ws, ggufTypeFloat32, v.values)
|
||||
case []string:
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, e := range v {
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
err = writeGGUFArray(ws, ggufTypeString, v)
|
||||
case *array[string]:
|
||||
err = writeGGUFArray(ws, ggufTypeString, v.values)
|
||||
case []bool:
|
||||
err = writeGGUFArray(ws, ggufTypeBool, v)
|
||||
case *array[bool]:
|
||||
err = writeGGUFArray(ws, ggufTypeBool, v.values)
|
||||
default:
|
||||
return fmt.Errorf("improper type for '%s'", k)
|
||||
}
|
||||
@@ -615,7 +623,7 @@ func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
func ggufWriteTensorInfo(ws io.WriteSeeker, t *Tensor) error {
|
||||
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
|
||||
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
|
||||
return err
|
||||
@@ -629,8 +637,8 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
return err
|
||||
}
|
||||
|
||||
for i := range len(t.Shape) {
|
||||
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
|
||||
for _, n := range t.Shape {
|
||||
if err := binary.Write(ws, binary.LittleEndian, n); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
@@ -642,20 +650,6 @@ func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
|
||||
return binary.Write(ws, binary.LittleEndian, t.Offset)
|
||||
}
|
||||
|
||||
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
|
||||
offset, err := ws.Seek(0, io.SeekCurrent)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
_, err = t.WriteTo(ws)
|
||||
return err
|
||||
}
|
||||
|
||||
func ggufPadding(offset, align int64) int64 {
|
||||
return (align - offset%align) % align
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user